1. Technical Field
The present disclosure relates to housings of electronic devices, especially to a housing having an antenna formed thereon and a method for making the housing.
2. Description of Related Art
Electronic devices, such as mobile phones, personal digital assistants (PDAs) and laptop computers are widely used. Most of these electronic devices have antenna modules for receiving and sending wireless signals. A typical antenna includes a thin metal radiator element mounted to a support member, and attached to a housing. However, the radiator element is usually exposed from the housing, and may be easily damaged and has a limited receiving effect. In addition, the radiator element and the support member occupy precious space.
Therefore, there is room for improvement within the art.
Many aspects of the embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the exemplary process for surface treating aluminum or aluminum alloys and housings made of aluminum or aluminum alloys treated by the surface treatment. Moreover, in the drawings like reference numerals designate corresponding parts throughout the several views. Wherever possible, the same reference numbers are used throughout the drawings to refer to the same or like elements of an embodiment.
The disclosure is illustrated by way of example and not by way of limitation in the accompanying drawings. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references can include the meaning of “at least one” embodiment where the context permits.
Referring to
The antenna radiator 13 is made of conductive plastic, which is a mixture of materials consisting of thermoplastic, organic filling substances, and conductive small particle sized material i.e., material having a diameter that would be typically described using the dimension “nanometers”. The resistivity of mixture is equal to or lower than 1.5˜10×10−8 Ω·m at 20° C. The mixture includes: the thermoplastic—65% to 75% by weight, the organic filling substances—22% to 28% by weight, and the non-conductive oxide—3% to 7% by weight. The thermoplastic can be made of polybutylene terephthalate (PBT) or polyesterimide (PI). The organic filling substances can be made of silicic acid and/or silicic acid derivatives.
The conductive small particle sized material may be nanoparticles of silver (Ag), gold (Au), copper (Cu), nickel (Ni), palladium (Pd), platinum (Pt), or an alloy thereof. The particle diameter of the metal nanoparticles may be equal to or less than 75 nanometers (nm), with smaller particle sizes easing formation for injection. The conductive small particle sized material may also be conductive nanometer calcium carbonate, fabricated of calcium carbonate (CaCO3), tin (Sn), and antimony (Sb). The mass ratio of CaCO3: Sn: Sb is approximately 55˜90: 9˜40: 1˜10, using nanometer sized calcium carbonate as nucleosome and forming tin dioxide doped with an antimony coating on the calcium carbonate surface by chemical co-deposition. The conductive small particle sized material may be carbon nanotubes. The particle diameter of the carbon nanotubes may be 20 nm˜40 nm, and the length of the carbon nanotubes may be 200 nm˜5000 nm. The conductive small particle sized material may be carbon nanofiber, graphite nanofiber, or metal nanofiber. The particle diameter of the nanofibers may be 20 nm˜40 nm.
The outer layer 15 may be made of Silicon Nitrogen (Si—N) layer. The Si—N layer is forming by physical vapor, deposition (PVD).
A method for making the housing 10 of the embodiment includes the following steps:
Referring to
Referring to
Referring to
An vacuum sputtering process may be used to form the outer layer 15 by a vacuum sputtering device 20. Referring to
Magnetron sputtering of the outer layer 15 uses argon gas as sputtering gas. Argon gas has a flow rate of about 100 sccm to about 200 sccm. The temperature of magnetron sputtering is at about 100° C. to about 150° C., the power of the silicon target is in a range of about 2 kw to about 8 kw, a negative bias voltage of about −50 V to about −100 V is applied to the substrate and the duty cycle is about 30% to about 50%. The vacuum sputtering of the base layer takes about 90 min to about 180 min, the Si—N layer has a thickness at a range of about 0.5 μm-about 1 μm.
The antenna radiator 13 is sandwiched between the base 11 and the outer layer 15 so that the antenna radiator 13 is protected from being damaged. In addition, the antenna radiator 13 can be directly attached to the housing 10, thus, the working efficiency is increased.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
201110155725.4 | Jun 2011 | CN | national |