The present invention relates to a hub device according to the introductory part of the attached claim 1.
The invention also relates to a brake disc according to the introductory part of the attached claim 12.
The invention also relates to a vehicle according to claim 15.
During braking, a disc brake disc becomes very warm. This results in heat being given off from the disc to the surroundings by convection, conduction and radiation, but in normal operating conditions there is a predominance of conduction, i.e. heat being conducted away from the brake disc. Since the brake disc is fixed in the wheel hub, the latter has to be so configured that its seals and bearings are not subject to high temperatures due to said conduction, which is not normally a problem in the case of a traditional hub and a traditional brake disc, in which the neck of the disc is firmly screwed centrally to the hub.
A so-called splined disc, i.e. a brake disc with no neck, however, is fastened close to an end of the hub by splines of the hub. The result is an unfavourable temperature distribution in the hub, causing raised bearing temperatures. This is of course undesirable and affects bearing service life etc.
The object of the present invention is to provide a hub device, in which bearings and seals do not become warm to an extent as in the state of the art, resulting in a more favourable stress distribution in the hub and better cooling of the hub and hence a solution to the problems described above. Another object is that the hub device be capable of being cast integrally and therefore at relatively low cost.
The object as above is achieved with a device and a brake disc with features according to the independent claims 1 and 12 respectively and a vehicle according to claim 15.
Further advantages are achieved by what is specified in the dependent claims.
The present invention will be better understood with reference to the following detailed description read together with the attached drawings, in which the same notations refer to the same parts throughout the various views etc. and in which
In
The hub device comprises at its one end 5 a fastening portion 6 by which it is adapted to being fastened to an undepicted vehicle wheel. Ref. 7 denotes a number of ridges (splines) adapted to holding the brake disc in the circumferential direction of the hub device, the brake disc being provided with a central hole 2′ with grooves 2″ running axially for cooperation with the ridges.
Each ridge 7 has a portion 8 which protrudes freely away from the fastening portion, resulting in a gap 9 between said protruding portions and the outer shell surface 10 of the end 11 (which points away from the fastening portion) of a bearing socket 12 (which is supported by the fastening portion) of the hub device, which protruding portions 8 are adapted to supporting a brake disc 2.
Each protruding portion has a substantially rectangular cross-section transverse to the axial direction of the hub device, with two mutually substantially parallel opposite side surfaces 13 running axially and substantially radially and two opposite side surfaces 14 running axially and in the circumferential direction, while the brake disc has corresponding grooves and can be applied axially to the ridges of the hub device.
It is preferable that the ridges are relatively few in number, e.g. five. According to the embodiment depicted, the freely protruding portion of each ridge is supported by a carrier portion 15 running towards and up to the fastening portion, which carrier portions run axially to the fastening portion at substantial mutual spacing in the circumferential direction and preferably join together with adjacent carrier portions at the fastening portion.
The carrier portions are so arranged that each of them protrudes in the radial direction from the bearing socket and has a radial thickness which is reduced by an internal recess 15′ (see
It is preferred that the width in the circumferential direction of the carrier portions at the transition 16 to the protruding portions (see
According to the embodiment depicted (see
According to preferred embodiments, the hub device is cast integrally with the fastening portion, the bearing socket, the ridges and the carrier portions and is preferably made of cast iron.
Also according to preferred embodiments, the protruding portions 8 do not extend as far as the free end 18 of the bearing socket and they support the brake disc close to the free ends 19 of the respective portions 8. Embodiments are also preferred in which a wearing layer 3′, viz. that further away from the fastening portion, is situated at least partly beyond the free ends of the protruding portions of the ridges (
The brake disc according to the invention is adapted to the hub device in such a way that the number of grooves 2″ corresponds to the number of ridges, i.e. five in the case depicted.
It is preferred that said grooves 2″ are arranged in an internal flange 20 which runs in the circumferential direction of the brake disc (see
According to a preferred embodiment, an assembly fitting (see
The embodiment in
The function of the hub device is probably substantially and sufficiently indicated above.
Friction heat imparted to the brake disc during braking is conducted from the brake disc to the ridges. The ridges being provided with the freely protruding portions leaving a gap between them and the bearing socket results in the heat not being conducted further radially to the bearing/bearings arranged in the bearing socket within the ridges, but axially to the carrier portions while at the same time the ridges are cooled in the gap. The extent of the carrier portions in the circumferential direction provides them with a large cooling surface. The small number of ridges results in a large temperature gradient and consequently more effective air-cooling of both the hub device and the disc. An embodiment in which a wearing layer is situated at least partly outside the ridges will reduce the heat conduction from the brake disc to the hub device and facilitate air-cooling of the brake disc. The configuration of the hub device also makes it very suitable for being cast integrally.
The invention is described above in relation to preferred embodiments and embodiment examples.
Further embodiments and also minor modifications and additions are of course conceivable without departing from the basic concept of the invention.
Thus more or fewer than five ridges with freely protruding portions are conceivable, e.g. four or six.
The hub device and the brake disc are primarily intended for heavy trucks but may of course be used for other kinds of vehicles.
Number | Date | Country | Kind |
---|---|---|---|
0601955-8 | Sep 2006 | SE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/SE07/50605 | 8/31/2007 | WO | 00 | 3/17/2009 |