The subject invention relates to a drive system, typically for a hull robot configured to clean and/or inspect the hull of a vessel.
Co-pending U.S. patent application Ser. No. 12/313,643 filed Nov. 21, 2008 discloses a new autonomous hull robot including turbines driven by water flowing past the hull while the vessel is underway. The turbines operate (e.g., power) the cleaning and the drive subsystems of the robot.
Most prior hull cleaning robots suffer from several shortcomings. Typically, the robots are connected to a cable and powered and controlled by an on-board power supply and control subsystem and are able to operate only on a stationary vessel.
It is desirable to be able to turn the robot as it traverses the hull of a vessel. Typically, the drive system for the robot includes one or more wheels, rollers, or magnetic tracks, e.g., structures which roll on the hull. Complex steering systems or steering systems with numerous moveable components are not desirable.
If the steering angle of the drive system is very small, the resulting turning radius may be fairly large, but, since the hull of a ship is very large in area compared to the size of the robot, a large turning radius may be satisfactory. That realization enables the innovation of a drive system which can include relatively few moving parts and which is robust and simple in design. Alignment and adjustment of various components may not be required.
This invention features, in one aspect, a robot drive system comprising a frame including a first frame portion rotatably supporting a first axle with a first wheel thereon. A second frame portion rotatably supports a second axle with a second wheel thereon. A joint connects the first frame portion to the second frame portion and defines an expendable and contractible portion between the first frame portion and second frame portion. An actuator subsystem is configured expand and contract the expandable and contractible portion to move the first frame portion relative to the second frame portion at the joint to angle the first axle relative to the second axle to steer the robot.
The first and second axles may each include a pair of magnetic wheels. The first and second wheels may be drum shaped and include alternating magnetic and ferromagnetic material. The second frame portion can include a module with spaced side walls for the second axle or it may house two axles of a magnetic track subsystem. The second frame portion may include a third wheel on a third axle spaced from the second axle and a magnetic track about the second and third wheels.
Typically at least one of the first and second frame portions includes a propulsion subsystem for driving the robot. One propulsion subsystem includes a motor with a drive shaft. There may be a drive train between the drive shaft and a wheel. For example, the drive train may include a first pulley coupled to the wheel, a second pulley coupled to the drive shaft, and a belt about the first and second pulleys.
In one embodiment the joint includes a flexible member between the first frame portion and the second frame portion. In other embodiments, the joint includes a hinged portion between the first frame portion and the second frame portion.
In one version, the actuator subsystem includes a shaft including threads in one direction on a first end and threads in an opposite direction on a second end. The first end of the shaft extends into a threaded orifice of the first frame portion and the second end extends into a threaded orifice of the second frame portion. The threaded orifices may include barrel nuts therein. One preferred actuator subsystem also includes means for rotating the shaft. In one design the means for rotating the shaft includes a piston coupled to the shaft and extending from a cylinder connected to the pivotable joint. The actuator subsystem may further include a coupling member between the piston and the shaft. In another design, the actuator subsystem includes a motor associated with the first frame portion driving a shaft threaded into the second frame portion.
In some embodiments, one of the first and second frame portions includes a second joint, a second expandable and contractible portion, and a second actuator subsystem configured to expand and contract the second expandable and contractible portion and angle the first axle relative to the second axle at the second joint. The joint can be located on one side of the frame or located interior to the frame defining first and second expandable and contractible portions. In this example, there is typically an actuator subsystem on each side of the joint configured to expand and contract the first and second expandable and contractible portions.
The invention also features a robot drive system comprising a frame including spaced side walls, a first axle rotatably disposed between the spaced side walls, a second axle, spaced from the first axle, and rotatably disposed between the spaced side walls. An expandable and contractible portion in the frame is located between the first and second axles. An actuator subsystem is configured to expand and contract the expandable and contractible portion to angle the first axle relative to the second axle to steer the robot. In one preferred design, the expandable portion includes a gap in the frame and a joint spanning the gap and the joint includes a flexible member spanning the gap.
An example of a robot drive in accordance with this invention features a first frame portion housing a first magnetic rolling means, a second frame portion housing a second magnetic rolling means, and at least one expandable and contractible portion defined by a joint between the first and second frame portions. An actuator subsystem is configured to expand and contract the expandable portion and flex the joint to angle the first magnetic roller means relative to the second magnetic roller means to steer the robot. A propulsion subsystem is included for at least one of the first and second magnetic roller means to drive the robot. In one example, the first and second magnetic rolling means each include one or more magnetic wheels, drums, and/or tracks.
The subject invention, however, in other embodiments, need not achieve all these objectives and the claims hereof should not be limited to structures or methods capable of achieving these objectives.
Other objects, features and advantages will occur to those skilled in the art from the following description of a preferred embodiment and the accompanying drawings, in which:
Aside from the preferred embodiment or embodiments disclosed below, this invention is capable of other embodiments and of being practiced or being carried out in various ways. Thus, it is to be understood that the invention is not limited in its application to the details of construction and the arrangements of components set forth in the following description or illustrated in the drawings. If only one embodiment is described herein, the claims hereof are not to be limited to that embodiment. Moreover, the claims hereof are not to be read restrictively unless there is clear and convincing evidence manifesting a certain exclusion, restriction, or disclaimer.
In the examples shown, turbines 26a and 26b drive generators 28a and 28b, respectively. Turbines 26a and 26b are driven by water flowing past the vessel hull when the vessel is underway. Generators 28a and 28b recharge a power source such as a battery. One or more motors are powered by the power source. An electronic controller is also powered by the power source.
For example,
Typically, other subsystems are included as components of the robot, for example, a navigation subsystem, a communication subsystem, and the like. Preferably robot body 12 need not be tethered to any kind of an on-board power or control subsystem. The turbine subsystem can operate the drive subsystem (and, in one example, a cleaning subsystem) directly or via a generator charging a power subsystem (e.g., a battery pack) which supplies power to one or more motors driving the drive subsystem and/or the cleaning subsystem. The battery pack can also be used to energize the other electronic and/or electromechanical subsystems associated with the robot. It is also possible for a generator to drive one or more motors directly.
In the example shown in
Actuator subsystem 116 is configured to move frame portion 108a relative to frame portion 108b and flex joint 112 while expanding and contracting expandable gaps 115 and 117 in the direction shown. This action, in turn, angles first axle 106a relative to second axle 106b and turns the drive and the robot it is attached to. If axles 106a and 106b are, for example, a foot apart, the turning radius can be between 5 to 40 feet, which is sufficient for operation on the hull of a ship.
In this particular example, actuator subsystem 116 includes shaft 120,
Piston 132 driven in and out of cylinder 130 is coupled to shaft 120 via pivoting joint 134. In this way, actuating cylinder 130 rotates shaft 120. Cylinder 130 is typically coupled to the frame, (see
Rollers 150a and 150b are magnetic and may include bands of alternating magnetic material 156 and ferromagnetic material 158 for directing magnetic flux into the hull.
In another design, motor 72d,
If a magnetic track is desired,
In the design shown in
The novel drive system of the invention is thus highly versatile and can incorporate numerous different features and combinations.
Typically, switch 202 is activated to shunt magnet 220 as permanent magnet element 200 reaches the end of its travel on the hull and switch 202 is again activated to actuate magnet 220 as permanent magnet element 200 again comes into contact with the hull. In this way, power usage is minimized and yet there is still a very strong tractive force provided to keep the robot on the hull. Power usage is minimized because power is not wasted in removing the individual permanent magnet elements from the hull. Also, damage to the hull is minimized since the permanent magnet elements are not switched to their non-shorted states until they are actually in contact with the hull. Each permanent magnet element may include a protective covering to also reduce damage to the vessel hull. The intent is to control the holding force exerted by the magnets but at the same time use permanent magnets which consume no power unlike electromagnets.
Since tunnel body 206′ is coupled to the robot body, and since permanent magnet elements 200b-200e in their non-shunted states are strongly attracted to the vessel hull, chain 262 actually drives tunnel body 206′ forward (and rearward) and thus the robot body is driven with respect to the vessel hull via the rotation of chain 262 and about sprocket 260 and a similar sprocket at the other end of the tunnel body. Both sprockets are on axles typically housed by one of the drive frame portions, e.g. frame portion 102b,
In one preferred design, the tunnel body performs two functions: it constrains the movement of the permanent magnet elements and also serves to house the propulsion mechanism (e.g., a chain about two sprockets) connected to the carriages of the permanent magnet elements. This design also provides structural support against slack in the drive assembly. The side plates also serve two functions: they flexibly support the tunnel body and they include means for actuating the switches of the permanent magnet elements. In the preferred design, the magnetic elements are switched between their minimum tractive state and their maximum tractive state irrespective of the direction of travel of the robot. These are not limitations of the subject invention, however, as other designs are possible.
Other features associated with the typical hull robot are disclosed in the patents cited in the Background section hereof and incorporated herein by this reference. Also, U.S. patent application Ser. No. 12/313,643 filed Nov. 21, 2008 by the assignee hereof discloses additional features which may be associated with a hull robot. The drive system disclosed herein, however, is not limited to use in connection with such a vessel hull robot. The drive module, for example, can be used on any ferromagnetic body including but not limited to vessel hulls, underwater structures, and the like. “Hull,” as used herein, then, broadly means a structure to be traversed.
Although specific features of the invention are shown in some drawings and not in others, this is for convenience only as each feature may be combined with any or all of the other features in accordance with the invention. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed in the subject application are not to be taken as the only possible embodiments.
In addition, any amendment presented during the prosecution of the patent application for this patent is not a disclaimer of any claim element presented in the application as filed: those skilled in the art cannot reasonably be expected to draft a claim that would literally encompass all possible equivalents, many equivalents will be unforeseeable at the time of the amendment and are beyond a fair interpretation of what is to be surrendered (if anything), the rationale underlying the amendment may bear no more than a tangential relation to many equivalents, and/or there are many other reasons the applicant can not be expected to describe certain insubstantial substitutes for any claim element amended.
Other embodiments will occur to those skilled in the art and are within the following claims.
This application is a continuation-in-part application which claims the benefit of and priority to U.S. patent application Ser. No. 12/313,643, filed Nov. 21, 2008 under 35 U.S.C. §§119, 120, 363, 365, and 37 C.F.R. §1.55 and §1.78, incorporated herein by this reference. The subject application is related to U.S. patent application Ser. No. 12/583,346, filed Aug. 19, 2009 and U.S. patent application Ser. No. 12/587,949 filed Oct. 14, 2009.
Number | Name | Date | Kind |
---|---|---|---|
2104062 | Temple | Jan 1938 | A |
2132661 | Temple | Nov 1938 | A |
2386650 | Bell | Oct 1945 | A |
3088429 | Johannessen | May 1963 | A |
3285676 | Hetteen | Nov 1966 | A |
3439937 | Dixon | Apr 1969 | A |
3554300 | Rosenberg | Jan 1971 | A |
3638600 | Modrey | Feb 1972 | A |
3777834 | Hiraoka et al. | Dec 1973 | A |
3922991 | Woods | Dec 1975 | A |
3934664 | Pohjola | Jan 1976 | A |
3946692 | Sierra et al. | Mar 1976 | A |
3960229 | Shio | Jun 1976 | A |
3984944 | Maasberg et al. | Oct 1976 | A |
4046429 | Pohjola | Sep 1977 | A |
4079694 | Galinou | Mar 1978 | A |
4119356 | Pohjola | Oct 1978 | A |
4135592 | Vincent | Jan 1979 | A |
4202453 | Wilkes et al. | May 1980 | A |
4251791 | Yanagisawa et al. | Feb 1981 | A |
4401048 | Rogers | Aug 1983 | A |
4574722 | Orita et al. | Mar 1986 | A |
4674949 | Kroczynski | Jun 1987 | A |
4690092 | Rabuse | Sep 1987 | A |
4697536 | Hirata | Oct 1987 | A |
4734954 | Greskovics et al. | Apr 1988 | A |
4736826 | White et al. | Apr 1988 | A |
4789037 | Kneebone | Dec 1988 | A |
4809383 | Urakami | Mar 1989 | A |
4841894 | Nellessen, Jr. | Jun 1989 | A |
4890567 | Caduff | Jan 1990 | A |
4926775 | Andorsen | May 1990 | A |
5048445 | Lever et al. | Sep 1991 | A |
5174222 | Rogers | Dec 1992 | A |
5203646 | Landsberger et al. | Apr 1993 | A |
5249631 | Ferren | Oct 1993 | A |
5253605 | Collins | Oct 1993 | A |
5253724 | Prior | Oct 1993 | A |
5285601 | Watkin et al. | Feb 1994 | A |
5366038 | Hidetsugu et al. | Nov 1994 | A |
5435405 | Schempf et al. | Jul 1995 | A |
5569371 | Perling | Oct 1996 | A |
5628271 | McGuire | May 1997 | A |
5849099 | McGuire | Dec 1998 | A |
5852984 | Matsuyama et al. | Dec 1998 | A |
5894901 | Awamura et al. | Apr 1999 | A |
5947051 | Geiger | Sep 1999 | A |
6000484 | Zoretich et al. | Dec 1999 | A |
6053267 | Fisher | Apr 2000 | A |
6064708 | Sakamaki | May 2000 | A |
6102145 | Fisher | Aug 2000 | A |
6125955 | Zoretich et al. | Oct 2000 | A |
6276478 | Hopkins et al. | Aug 2001 | B1 |
6317387 | D'Amaddio et al. | Nov 2001 | B1 |
6564815 | McGuire | May 2003 | B2 |
6595152 | McGuire | Jul 2003 | B2 |
6698376 | Delahousse et al. | Mar 2004 | B2 |
6792335 | Ross et al. | Sep 2004 | B2 |
6886486 | Van Rompay | May 2005 | B2 |
6886651 | Slocum et al. | May 2005 | B1 |
7296530 | Bernstein et al. | Nov 2007 | B1 |
7390560 | Wallach | Jun 2008 | B2 |
7520356 | Sadegh et al. | Apr 2009 | B2 |
7866421 | Moore et al. | Jan 2011 | B2 |
7934575 | Waibel et al. | May 2011 | B2 |
20030000445 | McGuire | Jan 2003 | A1 |
20040089216 | Van Rompay | May 2004 | A1 |
20040133999 | Walton | Jul 2004 | A1 |
20050027412 | Hobson et al. | Feb 2005 | A1 |
20050156562 | Cohen et al. | Jul 2005 | A1 |
20050216125 | Huston et al. | Sep 2005 | A1 |
20060175439 | Steur et al. | Aug 2006 | A1 |
20060191457 | Murphy | Aug 2006 | A1 |
20060249622 | Steele | Nov 2006 | A1 |
20060261772 | Kim | Nov 2006 | A1 |
20070089916 | Lundstrom | Apr 2007 | A1 |
20070276552 | Rodocker et al. | Nov 2007 | A1 |
20070284940 | Koolhiran | Dec 2007 | A1 |
20080202405 | Kern | Aug 2008 | A1 |
20080276407 | Schnittman et al. | Nov 2008 | A1 |
20080281470 | Gilbert, Jr. et al. | Nov 2008 | A1 |
20090078484 | Kocijan | Mar 2009 | A1 |
20090094765 | Osaka et al. | Apr 2009 | A1 |
20090166102 | Waibel et al. | Jul 2009 | A1 |
20090301203 | Brussieux | Dec 2009 | A1 |
20100000723 | Chambers | Jan 2010 | A1 |
20100126403 | Rooney, III et al. | May 2010 | A1 |
20100131098 | Rooney, III et al. | May 2010 | A1 |
20100217436 | Jones et al. | Aug 2010 | A1 |
20100219003 | Rooney, III et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
3611750 | Oct 1987 | DE |
2038721 | Jul 1980 | GB |
WO 02074611 | Sep 2002 | WO |
WO 02074611 | Sep 2002 | WO |
WO 2005014387 | Feb 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20100219003 A1 | Sep 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12313643 | Nov 2008 | US |
Child | 12800174 | US |