Human Antigen Binding Proteins That Bind To a Complex Comprising beta-Klotho and an FGF Receptor

Abstract
The present invention provides compositions and methods relating to or derived from antigen binding proteins capable of inducing B-Klotho, and or FGF21-like mediated signaling. In embodiments, the antigen binding proteins specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. In some embodiments the antigen binding proteins induce FGF21-like signaling. In some embodiments, an antigen binding protein is a fully human, humanized, or chimeric antibodies, binding fragments and derivatives of such antibodies, and polypeptides that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Other embodiments provide nucleic acids encoding such antigen binding proteins, and fragments and derivatives thereof, and polypeptides, cells comprising such polynucleotides, methods of making such antigen binding proteins, and fragments and derivatives thereof, and polypeptides, and methods of using such antigen binding proteins, fragments and derivatives thereof, and polypeptides, including methods of treating or diagnosing subjects suffering from type 2 diabetes, obesity, NASH, metabolic syndrome and related disorders or conditions.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted in ASCII format via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Aug. 10, 2016, is named A-1650-US—NP_SEQ_LIST_2094_08 10 2016. txt and is 1,661 KB in size.


FIELD OF THE INVENTION

The present disclosure relates to nucleic acid molecules encoding antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling, as well as pharmaceutical compositions comprising antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling, and methods for treating metabolic disorders using such nucleic acids, polypeptides, or pharmaceutical compositions. Diagnostic methods using the antigen binding proteins are also provided.


BACKGROUND

Fibroblast Growth Factor 21 (FGF21) is a secreted polypeptide that belongs to a subfamily of Fibroblast Growth Factors (FGFs) that includes FGF19, FGF21, and FGF23 (Itoh et al., (2004) Trend Genet. 20:563-69). FGF21 is an atypical FGF in that it is heparin independent and functions as a hormone in the regulation of glucose, lipid, and energy metabolism.


It is highly expressed in liver and pancreas and is the only member of the FGF family to be primarily expressed in liver. Transgenic mice overexpressing FGF21 exhibit metabolic phenotypes of slow growth rate, low plasma glucose and triglyceride levels, and an absence of age-associated type 2 diabetes, islet hyperplasia, and obesity. Pharmacological administration of recombinant FGF21 protein in rodent and primate models results in normalized levels of plasma glucose, reduced triglyceride and cholesterol levels, and improved glucose tolerance and insulin sensitivity. In addition, FGF21 reduces body weight and body fat by increasing energy expenditure, physical activity, and metabolic rate. Experimental research provides support for the pharmacological administration of FGF21 for the treatment of type 2 diabetes, obesity, dyslipidemia, and other metabolic conditions or disorders in humans.


FGF21 is a liver derived endocrine hormone that stimulates glucose uptake in adipocytes and lipid homeostasis through the activation of its receptor. Interestingly, in addition to the canonical FGF receptor, the FGF21 receptor also comprises the membrane associated β-Klotho as an essential cofactor. Activation of the FGF21 receptor leads to multiple effects on a variety of metabolic parameters.


In mammals, FGFs mediate their action via a set of four FGF receptors, FGFR1-4, that in turn are expressed in multiple spliced variants, e.g., FGFR1c, FGFR2c, FGFR3c and FGFR4. Each FGF receptor contains an intracellular tyrosine kinase domain that is activated upon ligand binding, leading to downstream signaling pathways involving MAPKs (Erk1/2), RAF1, AKT1 and STATs. (Kharitonenkov et al., (2008) BioDrugs 22:37-44). Several reports suggested that the “c”-reporter splice variants of FGFR1-3 exhibit specific affinity to β-Klotho and could act as endogenous receptor for FGF21 (Kurosu et al., (2007) 1 Biol. Chem. 282:26687-95); Ogawa et al., (2007) Proc. Natl. Acad. Sci. USA 104:7432-37); Kharitonenkov et al., (2008) J. Cell Physiol. 215:1-7). In the liver, which abundantly expresses both β-Klotho and FGFR4, FGF21 does not induce phosphorylation of MAPK albeit the strong binding of FGF21 to the β-Klotho-FGFR4 complex. In 3T3-L1 cells and white adipose tissue, FGFR1 is by far the most abundant receptor, and it is therefore most likely that FGF21's main functional receptors in this tissue are the β-Klotho/FGFR1c complexes.


The present disclosure provides a human (or humanized) antigen binding protein, such as a monoclonal antibody, that induces FGF21-like signaling, e.g., an agonistic antibody that mimics the function of FGF21. Such an antibody is a molecule with FGF21-like activity and selectivity but with added therapeutically desirable characteristics typical for an antibody such as protein stability, lack of immunogenicity, ease of production and long half-life in vivo.


SUMMARY

The instant disclosure provides antigen binding proteins that bind a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling, as well as pharmaceutical compositions comprising antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including antigen binding proteins that induce FGF21-like signaling. In another aspect, also provided are expression vectors and host cells transformed or transfected with the expression vectors that comprise the aforementioned isolated nucleic acid molecules that encode the antigen binding proteins disclosed herein. Representative heavy and light chains are provided in Tables 1A and 1B; representative variable region heavy chain and light chain sequences are provided in Tables 2A and 2B; coding sequences for the variable region of the heavy and light chains are provided in Tables 2C and 2D; Tables 3A and 3B provide CDR regions of the disclosed variable heavy and light chains, and Tables 3C and 3D provide coding sequences for the disclosed CDRs.


In another aspect, also provided are methods of preparing antigen binding proteins that specifically or selectively bind a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and comprise the step of preparing the antigen binding protein from a host cell that secretes the antigen binding protein.


Other embodiments provide a method of preventing or treating a condition in a subject in need of such treatment comprising administering a therapeutically effective amount of a pharmaceutical composition provided herein to a subject, wherein the condition is treatable by lowering blood glucose, insulin or serum lipid levels. In embodiments, the condition is type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease or metabolic syndrome.


These and other aspects are described in greater detail herein. Each of the aspects provided can encompass various embodiments provided herein. It is therefore anticipated that each of the embodiments involving one element or combinations of elements can be included in each aspect described, and all such combinations of the above aspects and embodiments are expressly considered. Other features, objects, and advantages of the disclosed antigen binding proteins and associated methods and compositions are apparent in the detailed description that follows.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1a-1b is an alignment showing the sequence homology between human FGFR1c (GenBank Accession No P11362; SEQ ID NO: 4) and murine FGFR1c (GenBank Accession No NP 034336; SEQ ID NO: 1832); various features are highlighted, including the signal peptide, transmembrane sequence, heparin binding region, and a consensus sequence (SEQ ID NO: 1833) is provided.



FIG. 2a-2c is an alignment showing the sequence homology between human β-Klotho (GenBank Accession No NP_783864; SEQ ID NO: 7) and murine β-Klotho (GenBank Accession No NP_112457; SEQ ID NO: 10); various features are highlighted, including the transmembrane sequence and two glycosyl hydrolase domains, and a consensus sequence (SEQ ID NO: 1834) is provided.



FIG. 3 is a plot showing the representative data from Luciferase reporter activity screens of the antibodies disclosed herein with FGF21 and a reference antibody 16H7.1 as positive controls (insert); these hybridomas were generated by immunization with cell-bound receptor of 293T transfectants expressing full length human β-Klotho and an N-terminal truncated form of human FGFR1c encompassing amino acid residue #141 to #822 polypeptide of SEQ ID NO:4. X- and Y-axis in the plot are % FGF21 activity from two independent assays (n=1 and n=2) of the same set of hybridoma samples (gray circles) showing the consistency of the assays; several hybridoma samples were also included as negative controls (black circles);



FIG. 4 shows a schematic representation of the chimeras constructed in relation to present invention.



FIG. 5 shows the ability of the antigen binding proteins, as well as human FGF21, to activate chimeras in L6 cells.



FIGS. 6a-e show the amino acid alignment of heavy and light chains of the antibodies compared to the corresponding germline V-gene sequence.





DETAILED DESCRIPTION

The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.


Unless otherwise defined herein, scientific and technical terms used in connection with the present application shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular.


Generally, nomenclatures used in connection with, and techniques of, cell and tissue culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art. The methods and techniques of the present application are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification unless otherwise indicated. See, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001) and subsequent editions, Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates (1992), and Harlow & Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1988), which are incorporated herein by reference. Enzymatic reactions and purification techniques are performed according to manufacturer's specifications, as commonly accomplished in the art or as described herein. The terminology used in connection with, and the laboratory procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques can be used for chemical syntheses, chemical analyses, pharmaceutical preparation, formulation, and delivery, and treatment of patients.


It should be understood that the instant disclosure is not limited to the particular methodology, protocols, and reagents, etc., described herein and as such can vary. The terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present disclosure.


Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients or reaction conditions used herein should be understood as modified in all instances by the term “about.” The term “about” when used in connection with percentages can mean±5%, e.g., 1%, 2%, 3%, or 4%.


I. Definitions

As used herein, the terms “a” and “an” mean “one or more” unless specifically stated otherwise.


As used herein, an “antigen binding protein” is a protein comprising a portion that binds to an antigen or target and, optionally, a scaffold or framework portion that allows the antigen binding portion to adopt a conformation that promotes binding of the antigen binding protein to the antigen. Examples of antigen binding proteins include a human antibody, a humanized antibody; a chimeric antibody; a recombinant antibody; a single chain antibody; a diabody; a triabody; a tetrabody; a Fab fragment; a F(ab′)2 fragment; an IgD antibody; an IgE antibody; an IgM antibody; an IgG1 antibody; an IgG2 antibody; an IgG3 antibody; or an IgG4 antibody, and fragments thereof. The antigen binding protein can comprise, for example, an alternative protein scaffold or artificial scaffold with grafted CDRs or CDR derivatives. Such scaffolds include, but are not limited to, antibody-derived scaffolds comprising mutations introduced to, for example, stabilize the three-dimensional structure of the antigen binding protein as well as wholly synthetic scaffolds comprising, for example, a biocompatible polymer. See, e.g., Korndorfer et al., (2003) Proteins: Structure, Function, and Bioinformatics, 53(1):121-129; Roque et al., (2004) Biotechnol. Prog. 20:639-654. In addition, peptide antibody mimetics (“PAMs”) can be used, as well as scaffolds based on antibody mimetics utilizing fibronectin components as a scaffold.


An antigen binding protein can have, for example, the structure of a naturally occurring immunoglobulin. An “immunoglobulin” is a tetrameric molecule. In a naturally occurring immunoglobulin, each tetramer is composed of two identical pairs of polypeptide chains, each pair having one “light” (about 25 kDa) and one “heavy” chain (about 50-70 kDa). The amino-terminal portion of each chain includes a variable region of about 100 to 110 or more amino acids primarily responsible for antigen recognition. The carboxy-terminal portion of each chain defines a constant region primarily responsible for effector function. Human light chains are classified as kappa and lambda light chains. Heavy chains are classified as mu, delta, gamma, alpha, or epsilon, and define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. Within light and heavy chains, the variable and constant regions are joined by a “J” region of about 12 or more amino acids, with the heavy chain also including a “D” region of about 10 more amino acids. See generally, Fundamental Immunology 2nd ed. Ch. 7 (Paul, W., ed., Raven Press, N.Y. (1989)), incorporated by reference in its entirety for all purposes. The variable regions of each light/heavy chain pair form the antibody binding site such that an intact immunoglobulin has two binding sites.


Naturally occurring immunoglobulin chains exhibit the same general structure of relatively conserved framework regions (FR) joined by three hypervariable regions, also called complementarity determining regions or CDRs. From N-terminus to C-terminus, both light and heavy chains comprise the domains FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. The assignment of amino acids to each domain can be done in accordance with the definitions of Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242. Although presented herein using the Kabat nomenclature system, as desired, the CDRs disclosed herein can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, (1987) J. Mol. Biol. 196:901-917; Chothia et al., (1989) Nature 342:878-883 or Honegger & Pluckthun, (2001) J. Mol. Biol. 309:657-670).


In the context of the instant disclosure an antigen binding protein is said to “specifically bind” or “selectively bind” its target antigen when the dissociation constant (KD) is ≦10−8 M. The antibody specifically binds antigen with “high affinity” when the KD is ≦5×10−9 M, and with “very high affinity” when the KD is ≦5×10−10 M. In one embodiment, the antibodies will bind to a complex comprising β-Klotho and an FGFR, including a complex comprising both human FGFR1c and human β-Klotho, with a KD of between about 10−7 M and 10−12 M, and in yet another embodiment the antibodies will bind with a KD≦5×10−9.


An “antibody” refers to an intact immunoglobulin or to an antigen binding portion thereof that competes with the intact antibody for specific binding, unless otherwise specified. Antigen binding portions can be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. Antigen binding portions include, inter alia, Fab, Fab′, F(ab′)2, Fv, domain antibodies (dAbs), fragments including complementarity determining regions (CDRs), single-chain antibodies (scFv), chimeric antibodies, diabodies, triabodies, tetrabodies, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide.


A Fab fragment is a monovalent fragment having the VL, VH, CL and CH1 domains; a F(ab′)2 fragment is a bivalent fragment having two Fab fragments linked by a disulfide bridge at the hinge region; a Fd fragment has the VH and CH1 domains; an Fv fragment has the VL and VH domains of a single arm of an antibody; and a dAb fragment has a VH domain, a VL domain, or an antigen-binding fragment of a VH or VL domain (U.S. Pat. Nos. 6,846,634, and 6,696,245; and US App. Pub. Nos. 05/0202512, 04/0202995, 04/0038291, 04/0009507, 03/0039958, Ward et al., Nature 341:544-546 (1989)).


A single-chain antibody (scFv) is an antibody in which a VL and a VH region are joined via a linker (e.g., a synthetic sequence of amino acid residues) to form a continuous protein chain wherein the linker is long enough to allow the protein chain to fold back on itself and form a monovalent antigen binding site (see, e.g., Bird et al., (1988) Science 242:423-26 and Huston et al., (1988) Proc. Natl. Acad. Sci. USA 85:5879-83). Diabodies are bivalent antibodies comprising two polypeptide chains, wherein each polypeptide chain comprises VH and VL domains joined by a linker that is too short to allow for pairing between two domains on the same chain, thus allowing each domain to pair with a complementary domain on another polypeptide chain (see, e.g., Holliger et al., (1993) Proc. Natl. Acad. Sci. USA 90:6444-48, and Poljak et al., (1994) Structure 2:1121-23). If the two polypeptide chains of a diabody are identical, then a diabody resulting from their pairing will have two identical antigen binding sites. Polypeptide chains having different sequences can be used to make a diabody with two different antigen binding sites. Similarly, tribodies and tetrabodies are antibodies comprising three and four polypeptide chains, respectively, and forming three and four antigen binding sites, respectively, which can be the same or different.


Complementarity determining regions (CDRs) and framework regions (FR) of a given antibody can be identified using the system described by Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242. Although presented using the Kabat nomenclature system, as desired, the CDRs disclosed herein can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, (1987) J. Mol. Biol. 196:901-917; Chothia et al., (1989) Nature 342:878-883 or Honegger & Pluckthun, (2001) J. Mol. Biol. 309:657-670). One or more CDRs can be incorporated into a molecule either covalently or noncovalently to make it an antigen binding protein. An antigen binding protein can incorporate the CDR(s) as part of a larger polypeptide chain, can covalently link the CDR(s) to another polypeptide chain, or can incorporate the CDR(s) noncovalently. The CDRs permit the antigen binding protein to specifically bind to a particular antigen of interest.


An antigen binding protein can but need not have one or more binding sites. If there is more than one binding site, the binding sites can be identical to one another or can be different. For example, a naturally occurring human immunoglobulin typically has two identical binding sites, while a “bispecific” or “bifunctional” antibody has two different binding sites. Antigen binding proteins of this bispecific form (e.g., those comprising various heavy and light chain CDRs provided herein) comprise aspects of the instant disclosure.


The term “human antibody” includes all antibodies that have one or more variable and constant regions derived from human immunoglobulin sequences. In one embodiment, all of the variable and constant domains are derived from human immunoglobulin sequences (a fully human antibody). These antibodies can be prepared in a variety of ways, examples of which are described below, including through the immunization with an antigen of interest of a mouse that is genetically modified to express antibodies derived from human heavy and/or light chain-encoding genes, such as a mouse derived from a XENOMOUSE®, ULTIMAB™, HUMAB-MOUSE®, VELOCIMOUSE®, VELOCIMMUNE®, KYMOUSE, or ALIVAMAB system, or derived from human heavy chain transgenic mouse, transgenic rat human antibody repertoire, transgenic rabbit human antibody repertoire or cow human antibody repertoire or HUTARG™ technology. Phage-based approaches can also be employed.


A humanized antibody has a sequence that differs from the sequence of an antibody derived from a non-human species by one or more amino acid substitutions, deletions, and/or additions, such that the humanized antibody is less likely to induce an immune response, and/or induces a less severe immune response, as compared to the non-human species antibody, when it is administered to a human subject. In one embodiment, certain amino acids in the framework and constant domains of the heavy and/or light chains of the non-human species antibody are mutated to produce the humanized antibody. In another embodiment, the constant domain(s) from a human antibody are fused to the variable domain(s) of a non-human species. In another embodiment, one or more amino acid residues in one or more CDR sequences of a non-human antibody are changed to reduce the likely immunogenicity of the non-human antibody when it is administered to a human subject, wherein the changed amino acid residues either are not critical for immunospecific binding of the antibody to its antigen, or the changes to the amino acid sequence that are made are conservative changes, such that the binding of the humanized antibody to the antigen is not significantly worse than the binding of the non-human antibody to the antigen. Examples of how to make humanized antibodies can be found in U.S. Pat. Nos. 6,054,297, 5,886,152 and 5,877,293.


The term “chimeric antibody” refers to an antibody that contains one or more regions from one antibody and one or more regions from one or more other antibodies. In one embodiment, one or more of the CDRs are derived from a human antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. In another embodiment, all of the CDRs are derived from a human antibody that binds to a complex β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. In another embodiment, the CDRs from more than one human antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are mixed and matched in a chimeric antibody. For instance, a chimeric antibody can comprise a CDR1 from the light chain of a first human antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, a CDR2 and a CDR3 from the light chain of a second human antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and the CDRs from the heavy chain from a third antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Further, the framework regions can be derived from one of the same antibodies that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, from one or more different antibodies, such as a human antibody, or from a humanized antibody. In one example of a chimeric antibody, a portion of the heavy and/or light chain is identical with, homologous to, or derived from an antibody from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with, homologous to, or derived from an antibody or antibodies from another species or belonging to another antibody class or subclass. Also included are fragments of such antibodies that exhibit the desired biological activity (e.g., the ability to specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c).


The term “light chain” includes a full-length light chain and fragments thereof having sufficient variable region sequence to confer binding specificity. A full-length light chain includes a variable region domain, VL, and a constant region domain, CL. The variable region domain of the light chain is at the amino-terminus of the polypeptide. Light chains include kappa (“κ”) chains and lambda (“λ”) chains.


The term “heavy chain” includes a full-length heavy chain and fragments thereof having sufficient variable region sequence to confer binding specificity. A full-length heavy chain includes a variable region domain, VH, and three constant region domains, CH1, CH2, and CH3. The VH domain is at the amino-terminus of the polypeptide, and the CH domains are at the carboxyl-terminus, with the CH3 being closest to the carboxy-terminus of the polypeptide. Heavy chains can be of any isotype, including IgG (including IgG1, IgG2, IgG3 and IgG4 subtypes), IgA (including IgA1 and IgA2 subtypes), IgM and IgE.


The term “immunologically functional fragment” (or simply “fragment”) of an antigen binding protein, e.g., an antibody or immunoglobulin chain (heavy or light chain), as used herein, is an antigen binding protein comprising a portion (regardless of how that portion is obtained or synthesized) of an antibody that lacks at least some of the amino acids present in a full-length chain but which is capable of specifically binding to an antigen. Such fragments are biologically active in that they bind specifically to the target antigen and can compete with other antigen binding proteins, including intact antibodies, for specific binding to a given epitope. In one aspect, such a fragment will retain at least one CDR present in the full-length light or heavy chain, and in some embodiments will comprise a single heavy chain and/or light chain or portion thereof. These biologically active fragments can be produced by recombinant DNA techniques, or can be produced by enzymatic or chemical cleavage of antigen binding proteins, including intact antibodies. Immunologically functional immunoglobulin fragments include, but are not limited to, Fab, Fab′, F(ab′)2, Fv, domain antibodies and single-chain antibodies, and can be derived from any mammalian source, including but not limited to human, mouse, rat, camelid or rabbit. It is contemplated further that a functional portion of the antigen binding proteins disclosed herein, for example, one or more CDRs, could be covalently bound to a second protein or to a small molecule to create a therapeutic agent directed to a particular target in the body, possessing bifunctional therapeutic properties, or having a prolonged serum half-life.


An “Fc” region contains two heavy chain fragments comprising the CH2 and CH3 domains of an antibody. The two heavy chain fragments are held together by two or more disulfide bonds and by hydrophobic interactions of the CH3 domains.


An “Fab′ fragment” contains one light chain and a portion of one heavy chain that contains the VH domain and the CH1 domain and also the region between the CH1 and CH2 domains, such that an interchain disulfide bond can be formed between the two heavy chains of two Fab′ fragments to form an F(ab′)2 molecule.


An “F(ab′)2 fragment” contains two light chains and two heavy chains containing a portion of the constant region between the CH1 and CH2 domains, such that an interchain disulfide bond is formed between the two heavy chains. A F(ab′)2 fragment thus is composed of two Fab′ fragments that are held together by a disulfide bond between the two heavy chains.


The “Fv region” comprises the variable regions from both the heavy and light chains, but lacks the constant regions.


A “domain antibody” is an immunologically functional immunoglobulin fragment containing only the variable region of a heavy chain or the variable region of a light chain. In some instances, two or more VH regions are covalently joined with a peptide linker to create a bivalent domain antibody. The two VH regions of a bivalent domain antibody can target the same or different antigens.


A “hemibody” is an immunologically-functional immunoglobulin construct comprising a complete heavy chain, a complete light chain and a second heavy chain Fc region paired with the Fc region of the complete heavy chain. A linker can, but need not, be employed to join the heavy chain Fc region and the second heavy chain Fc region. In particular embodiments a hemibody is a monovalent form of an antigen binding protein disclosed herein. In other embodiments, pairs of charged residues can be employed to associate one Fc region with the second Fc region.


A “bivalent antigen binding protein” or “bivalent antibody” comprises two antigen binding sites. In some instances, the two binding sites have the same antigen specificities. Bivalent antigen binding proteins and bivalent antibodies can be bispecific, as described herein, and form aspects of the instant disclosure.


A “multispecific antigen binding protein” or “multispecific antibody” is one that targets more than one antigen or epitope, and forms another aspect of the instant disclosure.


A “bispecific,” “dual-specific” or “bifunctional” antigen binding protein or antibody is a hybrid antigen binding protein or antibody, respectively, having two different antigen binding sites. Bispecific antigen binding proteins and antibodies are a species of multispecific antigen binding protein or multispecific antibody and can be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai and Lachmann, (1990) Clin. Exp. Immunol. 79:315-321; Kostelny et al., (1992) J. Immunol. 148:1547-1553. The two binding sites of a bispecific antigen binding protein or antibody will bind to two different epitopes, which can reside on the same (e.g., β-Klotho, FGFR1c, FGFR2c, or FGFR3c) or different protein targets (e.g., β-Klotho and one of (i) FGFR1c, (ii) FGFR2c, and (iii) FGFR3c).


The terms “FGF21-like signaling” and “induces FGF21-like signaling,” when applied to an antigen binding protein of the present disclosure, means that the antigen binding protein mimics, or modulates, an in vivo biological effect induced by the binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and induces a biological response that otherwise would result from FGF21 binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in vivo. In assessing the binding and specificity of an antigen binding protein, e.g., an antibody or immunologically functional fragment thereof, an antibody or fragment is deemed to induce a biological response when the response is equal to or greater than 5%, and preferably equal to or greater than 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%, of the activity of a wild type FGF21 standard comprising the mature form of SEQ ID NO: 2 (i.e., the mature form of the human FGF21 sequence) and has the following properties: exhibiting an efficacy level of equal to or more than 5% of an FGF21 standard, with an EC50 of equal to or less than 100 nM, e.g., 90 nM, 80 nM, 70 nM, 60 nM, 50 nM, 40 nM, 30 nM, 20 nM or 10 nM in (1) the recombinant FGF21 receptor-mediated luciferase reporter cell assay of Example 4; (2) ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 4; and (3) ERK-phosphorylation in human adipocytes as described in Example 4. The “potency” of an antigen binding protein is defined as exhibiting an EC50 of equal to or less than 100 nM, e.g., 90 nM, 80 nM, 70 nM, 60 nM, 50 nM, 40 nM, 30 nM, 20 nM, 10 nM and preferably less than 10 nM of the antigen binding protein in the following assays: (1) the recombinant FGF21 receptor mediated luciferase-reporter cell assay of Example 4; (2) the ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 4; and (3) ERK-phosphorylation in human adipocytes as described in Example 4.


It is noted that not all of the antigen binding proteins of the present disclosure induce FGF21-mediated signaling (e.g., that induce agonistic activity), nor is this property desirable in all circumstances. Nevertheless, antigen binding proteins that do not induce FGF21-mediated signaling form aspects of the present disclosure and may be useful as diagnostic reagents or other applications.


As used herein, the term “FGF21R” means a multimeric receptor complex that FGF21 is known or suspected to form in vivo. In various embodiments, FGF21R comprises (i) an FGFR, e.g., FGFR1c, FGFR2c, FGFR3c or FGFR4, and (ii) β-Klotho.


The term “polynucleotide” or “nucleic acid” includes both single-stranded and double-stranded nucleotide polymers. The nucleotides comprising the polynucleotide can be ribonucleotides or deoxyribonucleotides or a modified form of either type of nucleotide. Said modifications include base modifications such as bromouridine and inosine derivatives, ribose modifications such as 2′, 3′-dideoxyribose, and internucleotide linkage modifications such as phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phoshoraniladate and phosphoroamidate.


The term “oligonucleotide” means a polynucleotide comprising 200 or fewer nucleotides. In some embodiments, oligonucleotides are 10 to 60 bases in length. In other embodiments, oligonucleotides are 12, 13, 14, 15, 16, 17, 18, 19, or 20 to 40 nucleotides in length. Oligonucleotides can be single stranded or double stranded, e.g., for use in the construction of a mutant gene. Oligonucleotides can be sense or antisense oligonucleotides. An oligonucleotide can include a label, including a radiolabel, a fluorescent label, a hapten or an antigenic label, for detection assays. Oligonucleotides can be used, for example, as PCR primers, cloning primers or hybridization probes.


An “isolated nucleic acid molecule” means a DNA or RNA of genomic, mRNA, cDNA, or synthetic origin or some combination thereof which is not associated with all or a portion of a polynucleotide in which the isolated polynucleotide is found in nature, or is linked to a polynucleotide to which it is not linked in nature. For purposes of this disclosure, it is understood that “a nucleic acid molecule comprising” a particular nucleotide sequence does not encompass intact chromosomes. Isolated nucleic acid molecules “comprising” specified nucleic acid sequences can include, in addition to the specified sequences, coding sequences for up to ten or even up to twenty other proteins or portions thereof, or can include operably linked regulatory sequences that control expression of the coding region of the recited nucleic acid sequences, and/or can include vector sequences.


Unless specified otherwise, the left-hand end of any single-stranded polynucleotide sequence discussed herein is the 5′ end; the left-hand direction of double-stranded polynucleotide sequences is referred to as the 5′ direction. The direction of 5′ to 3′ addition of nascent RNA transcripts is referred to as the transcription direction; sequence regions on the DNA strand having the same sequence as the RNA transcript that are 5′ to the 5′ end of the RNA transcript are referred to as “upstream sequences;” sequence regions on the DNA strand having the same sequence as the RNA transcript that are 3′ to the 3′ end of the RNA transcript are referred to as “downstream sequences.”


The term “control sequence” refers to a polynucleotide sequence that can affect the expression and processing of coding sequences to which it is ligated. The nature of such control sequences can depend upon the host organism. In particular embodiments, control sequences for prokaryotes can include a promoter, a ribosomal binding site, and a transcription termination sequence. For example, control sequences for eukaryotes can include promoters comprising one or a plurality of recognition sites for transcription factors, transcription enhancer sequences, and transcription termination sequence. “Control sequences” can include leader sequences and/or fusion partner sequences.


The term “vector” means any molecule or entity (e.g., nucleic acid, plasmid, bacteriophage or virus) used to transfer protein coding information into a host cell.


The term “expression vector” or “expression construct” refers to a vector that is suitable for transformation of a host cell and contains nucleic acid sequences that direct and/or control (in conjunction with the host cell) expression of one or more heterologous coding regions operatively linked thereto. An expression construct can include, but is not limited to, sequences that affect or control transcription, translation, and, if introns are present, affect RNA splicing of a coding region operably linked thereto.


As used herein, “operably linked” means that the components to which the term is applied are in a relationship that allows them to carry out their inherent functions under suitable conditions. For example, a control sequence in a vector that is “operably linked” to a protein coding sequence is ligated thereto so that expression of the protein coding sequence is achieved under conditions compatible with the transcriptional activity of the control sequences.


The term “host cell” means a cell that has been transformed, or is capable of being transformed, with a nucleic acid sequence and thereby expresses a gene of interest. The term includes the progeny of the parent cell, whether or not the progeny is identical in morphology or in genetic make-up to the original parent cell, so long as the gene of interest is present.


The term “transduction” means the transfer of genes from one bacterium to another, usually by bacteriophage. “Transduction” also refers to the acquisition and transfer of eukaryotic cellular sequences by replication-defective retroviruses.


The term “transfection” means the uptake of foreign or exogenous DNA by a cell, and a cell has been “transfected” when the exogenous DNA has been introduced inside the cell membrane. A number of transfection techniques are well known in the art and are disclosed herein. See, e.g., Graham et al., (1973) Virology 52:456; Sambrook et al., (2001), supra; Davis et al., (1986) Basic Methods in Molecular Biology, Elsevier; Chu et al., (1981) Gene 13:197. Such techniques can be used to introduce one or more exogenous DNA moieties into suitable host cells.


The term “transformation” refers to a change in a cell's genetic characteristics, and a cell has been transformed when it has been modified to contain new DNA or RNA. For example, a cell is transformed where it is genetically modified from its native state by introducing new genetic material via transfection, transduction, or other techniques. Following transfection or transduction, the transforming DNA can recombine with that of the cell by physically integrating into a chromosome of the cell, or can be maintained transiently as an episomal element without being replicated, or can replicate independently as a plasmid. A cell is considered to have been “stably transformed” when the transforming DNA is replicated with the division of the cell.


The terms “polypeptide” or “protein” are used interchangeably herein to refer to a polymer of amino acid residues. The terms also apply to amino acid polymers in which one or more amino acid residues is an analog or mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. The terms can also encompass amino acid polymers that have been modified, e.g., by the addition of carbohydrate residues to form glycoproteins, or phosphorylated. Polypeptides and proteins can be produced by a naturally-occurring and non-recombinant cell, or polypeptides and proteins can be produced by a genetically-engineered or recombinant cell. Polypeptides and proteins can comprise molecules having the amino acid sequence of a native protein, or molecules having deletions from, additions to, and/or substitutions of one or more amino acids of the native sequence. The terms “polypeptide” and “protein” encompass antigen binding proteins that specifically or selectively bind to a complex comprising β-Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c), or sequences that have deletions from, additions to, and/or substitutions of one or more amino acids of an antigen binding protein that specifically or selectively binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. The term “polypeptide fragment” refers to a polypeptide that has an amino-terminal deletion, a carboxyl-terminal deletion, and/or an internal deletion as compared with the full-length protein. Such fragments can also contain modified amino acids as compared with the full-length protein. In certain embodiments, fragments are about five to 500 amino acids long. For example, fragments can be at least 5, 6, 8, 10, 14, 20, 50, 70, 100, 110, 150, 200, 250, 300, 350, 400, or 450 amino acids long. Useful polypeptide fragments include immunologically functional fragments of antibodies, including binding domains. In the case of an antigen binding protein that binds to a complex β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, useful fragments include but are not limited to a CDR region, a variable domain of a heavy or light chain, a portion of an antibody chain or just its variable region including two CDRs, and the like.


The term “isolated protein” referred means that a subject protein (1) is free of at least some other proteins with which it would normally be found, (2) is essentially free of other proteins from the same source, e.g., from the same species, (3) is expressed by a cell from a different species, (4) has been separated from at least about 50 percent of polynucleotides, lipids, carbohydrates, or other materials with which it is associated in nature, (5) is operably associated (by covalent or noncovalent interaction) with a polypeptide with which it is not associated in nature, or (6) does not occur in nature. Typically, an “isolated protein” constitutes at least about 5%, at least about 10%, at least about 25%, or at least about 50% of a given sample. Genomic DNA, cDNA, mRNA or other RNA, of synthetic origin, or any combination thereof can encode such an isolated protein. Preferably, the isolated protein is substantially free from proteins or polypeptides or other contaminants that are found in its natural environment that would interfere with its therapeutic, diagnostic, prophylactic, research or other use.


A “variant” of a polypeptide (e.g., an antigen binding protein, or an antibody) comprises an amino acid sequence wherein one or more amino acid residues are inserted into, deleted from and/or substituted into the amino acid sequence relative to another polypeptide sequence. Variants include fusion proteins.


A “derivative” of a polypeptide is a polypeptide (e.g., an antigen binding protein, or an antibody) that has been chemically modified in some manner distinct from insertion, deletion, or substitution variants, e.g., by conjugation to another chemical moiety.


The term “naturally occurring” as used throughout the specification in connection with biological materials such as polypeptides, nucleic acids, host cells, and the like, refers to materials which are found in nature.


“Antigen binding region” means a protein, or a portion of a protein, that specifically binds a specified antigen, e.g., a complex comprising β-Klotho and an β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. For example, that portion of an antigen binding protein that contains the amino acid residues that interact with an antigen and confer on the antigen binding protein its specificity and affinity for the antigen is referred to as “antigen binding region.” An antigen binding region typically includes one or more “complementary binding regions” (“CDRs”). Certain antigen binding regions also include one or more “framework” regions. A “CDR” is an amino acid sequence that contributes to antigen binding specificity and affinity. “Framework” regions can aid in maintaining the proper conformation of the CDRs to promote binding between the antigen binding region and an antigen.


In certain aspects, recombinant antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, are provided. In this context, a “recombinant protein” is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as described herein. Methods and techniques for the production of recombinant proteins are well known in the art.


The term “compete” when used in the context of antigen binding proteins (e.g., neutralizing antigen binding proteins, neutralizing antibodies, agonistic antigen binding proteins, agonistic antibodies and binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c) that compete for the same epitope or binding site on a target means competition between antigen binding proteins as determined by an assay in which the antigen binding protein (e.g., antibody or immunologically functional fragment thereof) under study prevents or inhibits the specific binding of a reference molecule (e.g., a reference ligand, or reference antigen binding protein, such as a reference antibody) to a common antigen (e.g., FGFR1c, FGFR2c, FGFR3c, β-Klotho or a fragment thereof, or a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c). Numerous types of competitive binding assays can be used to determine if a test molecule competes with a reference molecule for binding. Examples of assays that can be employed include solid phase direct or indirect radioimmunoassay (RIA), solid phase direct or indirect enzyme immunoassay (EIA), sandwich competition assay (see, e.g., Stahli et al., (1983) Methods in Enzymology 9:242-253); solid phase direct biotin-avidin EIA (see, e.g., Kirkland et al., (1986) J. Immunol. 137:3614-3619) solid phase direct labeled assay, solid phase direct labeled sandwich assay (see, e.g., Harlow and Lane, (1988) supra); solid phase direct label RIA using 1-125 label (see, e.g., Morel et al., (1988) Molec. Immunol. 25:7-15); solid phase direct biotin-avidin EIA (see, e.g., Cheung, et al., (1990) Virology 176:546-552); and direct labeled RIA (Moldenhauer et al., (1990) Scand. J. Immunol. 32:77-82). Typically, such an assay involves the use of a purified antigen bound to a solid surface or cells bearing either of an unlabelled test antigen binding protein or a labeled reference antigen binding protein. Competitive inhibition is measured by determining the amount of label bound to the solid surface or cells in the presence of the test antigen binding protein. Usually the test antigen binding protein is present in excess. Antigen binding proteins identified by competition assay (competing antigen binding proteins) include antigen binding proteins binding to the same epitope as the reference antigen binding proteins and antigen binding proteins binding to an adjacent epitope sufficiently proximal to the epitope bound by the reference antigen binding protein for steric hindrance to occur. Additional details regarding methods for determining competitive binding are provided in the examples herein. Usually, when a competing antigen binding protein is present in excess, it will inhibit specific binding of a reference antigen binding protein to a common antigen by at least 40%, 45%, 50%, 55%, 60%, 65%, 70% or 75%. In some instance, binding is inhibited by at least 80%, 85%, 90%, 95%, or 97% or more.


The term “antigen” refers to a molecule or a portion of a molecule capable of being bound by a selective binding agent, such as an antigen binding protein (including, e.g., an antibody or immunological functional fragment thereof), and may also be capable of being used in an animal to produce antibodies capable of binding to that antigen. An antigen can possess one or more epitopes that are capable of interacting with different antigen binding proteins, e.g., antibodies.


The term “epitope” means the amino acids of a target molecule that are contacted by an antigen binding protein (for example, an antibody) when the antigen binding protein is bound to the target molecule. The term includes any subset of the complete list of amino acids of the target molecule that are contacted when an antigen binding protein, such as an antibody, is bound to the target molecule. An epitope can be contiguous or non-contiguous (e.g., (i) in a single-chain polypeptide, amino acid residues that are not contiguous to one another in the polypeptide sequence but that within in context of the target molecule are bound by the antigen binding protein, or (ii) in a multimeric receptor comprising two or more individual components, e.g., a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, amino acid residues that are present on one or more of the individual components, but which are still bound by the antigen binding protein). In certain embodiments, epitopes can be mimetic in that they comprise a three dimensional structure that is similar to an antigenic epitope used to generate the antigen binding protein, yet comprise none or only some of the amino acid residues found in that epitope used to generate the antigen binding protein. Most often, epitopes reside on proteins, but in some instances can reside on other kinds of molecules, such as nucleic acids. Epitope determinants can include chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl or sulfonyl groups, and can have specific three dimensional structural characteristics, and/or specific charge characteristics. Generally, antigen binding proteins specific for a particular target molecule will preferentially recognize an epitope on the target molecule in a complex mixture of proteins and/or macromolecules.


The term “identity” refers to a relationship between the sequences of two or more polypeptide molecules or two or more nucleic acid molecules, as determined by aligning and comparing the sequences. “Percent identity” means the percent of identical residues between the amino acids or nucleotides in the compared molecules and is calculated based on the size of the smallest of the molecules being compared. For these calculations, gaps in alignments (if any) must be addressed by a particular mathematical model or computer program (i.e., an “algorithm”). Methods that can be used to calculate the identity of the aligned nucleic acids or polypeptides include those described in Computational Molecular Biology, (Lesk, A. M., ed.), (1988) New York: Oxford University Press; Biocomputing Informatics and Genome Projects, (Smith, D. W., ed.), 1993, New York: Academic Press; Computer Analysis of Sequence Data, Part I, (Griffin, A. M., and Griffin, H. G., eds.), 1994, New Jersey: Humana Press; von Heinje, G., (1987) Sequence Analysis in Molecular Biology, New York: Academic Press; Sequence Analysis Primer, (Gribskov, M. and Devereux, J., eds.), 1991, New York: M. Stockton Press; and Carillo et al., (1988) J. Applied Math. 48:1073.


In calculating percent identity, the sequences being compared are aligned in a way that gives the largest match between the sequences. The computer program used to determine percent identity is the GCG program package, which includes GAP (Devereux et al., (1984) Nucl. Acid Res. 12:387; Genetics Computer Group, University of Wisconsin, Madison, Wis.). The computer algorithm GAP is used to align the two polypeptides or polynucleotides for which the percent sequence identity is to be determined. The sequences are aligned for optimal matching of their respective amino acid or nucleotide (the “matched span”, as determined by the algorithm). A gap opening penalty (which is calculated as 3× the average diagonal, wherein the “average diagonal” is the average of the diagonal of the comparison matrix being used; the “diagonal” is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. In certain embodiments, a standard comparison matrix (see, Dayhoff et al., (1978) Atlas of Protein Sequence and Structure 5:345-352 for the PAM 250 comparison matrix; Henikoff et al., (1992) Proc. Natl. Acad. Sci. U.S.A. 89:10915-10919 for the BLOSUM 62 comparison matrix) is also used by the algorithm.


Recommended parameters for determining percent identity for polypeptides or nucleotide sequences using the GAP program are the following:


Algorithm: Needleman et al., 1970, J. Mol. Biol. 48:443-453;


Comparison matrix: BLOSUM 62 from Henikoff et al., 1992, supra;


Gap Penalty: 12 (but with no penalty for end gaps)


Gap Length Penalty: 4


Threshold of Similarity: 0


Certain alignment schemes for aligning two amino acid sequences can result in matching of only a short region of the two sequences, and this small aligned region can have very high sequence identity even though there is no significant relationship between the two full-length sequences. Accordingly, the selected alignment method (e.g., the GAP program) can be adjusted if so desired to result in an alignment that spans at least 50 contiguous amino acids of the target polypeptide.


As used herein, “substantially pure” means that the described species of molecule is the predominant species present, that is, on a molar basis it is more abundant than any other individual species in the same mixture. In certain embodiments, a substantially pure molecule is a composition wherein the object species comprises at least 50% (on a molar basis) of all macromolecular species present. In other embodiments, a substantially pure composition will comprise at least 80%, 85%, 90%, 95%, or 99% of all macromolecular species present in the composition. In other embodiments, the object species is purified to essential homogeneity wherein contaminating species cannot be detected in the composition by conventional detection methods and thus the composition consists of a single detectable macromolecular species.


The terms “treat” and “treating” refer to any indicia of success in the treatment or amelioration of an injury, pathology or condition, including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the injury, pathology or condition more tolerable to the patient; slowing in the rate of degeneration or decline; making the final point of degeneration less debilitating; improving a patient's physical or mental well-being. The treatment or amelioration of symptoms can be based on objective or subjective parameters; including the results of a physical examination, neuropsychiatric exams, and/or a psychiatric evaluation. For example, certain methods presented herein can be employed to treat Type 2 diabetes, obesity and/or dyslipidemia, either prophylactically or as an acute treatment, to decrease plasma glucose levels, to decrease circulating triglyceride levels, to decrease circulating cholesterol levels and/or ameliorate a symptom associated with type 2 diabetes, obesity and dyslipidemia.


An “effective amount” is generally an amount sufficient to reduce the severity and/or frequency of symptoms, eliminate the symptoms and/or underlying cause, prevent the occurrence of symptoms and/or their underlying cause, and/or improve or remediate the damage that results from or is associated with diabetes, obesity and dyslipidemia. In some embodiments, the effective amount is a therapeutically effective amount or a prophylactically effective amount. A “therapeutically effective amount” is an amount sufficient to remedy a disease state (e.g., diabetes, obesity or dyslipidemia) or symptoms, particularly a state or symptoms associated with the disease state, or otherwise prevent, hinder, retard or reverse the progression of the disease state or any other undesirable symptom associated with the disease in any way whatsoever. A “prophylactically effective amount” is an amount of a pharmaceutical composition that, when administered to a subject, will have the intended prophylactic effect, e.g., preventing or delaying the onset (or reoccurrence) of diabetes, obesity or dyslipidemia, or reducing the likelihood of the onset (or reoccurrence) of diabetes, obesity or dyslipidemia or associated symptoms. The full therapeutic or prophylactic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses. Thus, a therapeutically or prophylactically effective amount can be administered in one or more administrations.


“Amino acid” takes its normal meaning in the art. The twenty naturally-occurring amino acids and their abbreviations follow conventional usage. See, Immunology—A Synthesis, 2nd Edition, (E. S. Golub and D. R. Green, eds.), Sinauer Associates: Sunderland, Mass. (1991), incorporated herein by reference for any purpose. Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural or non-naturally occurring or encoded amino acids such as α-,α-disubstituted amino acids, N-alkyl amino acids, and other unconventional amino acids can also be suitable components for polypeptides and are included in the phrase “amino acid.” Examples of non-natural and non-naturally encoded amino acids (which can be substituted for any naturally-occurring amino acid found in any sequence disclosed herein, as desired) include: 4-hydroxyproline, γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, σ-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the left-hand direction is the amino terminal direction and the right-hand direction is the carboxyl-terminal direction, in accordance with standard usage and convention. A non-limiting lists of examples of non-naturally occurring/encoded amino acids that can be inserted into an antigen binding protein sequence or substituted for a wild-type residue in an antigen binding sequence include β-amino acids, homoamino acids, cyclic amino acids and amino acids with derivatized side chains. Examples include (in the L-form or D-form; abbreviated as in parentheses): citrulline (Cit), homocitrulline (hCit), Nα-methylcitrulline (NMeCit), Nα-methylhomocitrulline (Nα-MeHoCit), ornithine (Om), Nα-Methylomithine (Nα-MeOrn or NMeOrn), sarcosine (Sar), homolysine (hLys or hK), homoarginine (hArg or hR), homoglutamine (hQ), Nα-methylarginine (NMeR), Nα-methylleucine (Nα-MeL or NMeL), N-methylhomolysine (NMeHoK), Nα-methylglutamine (NMeQ), norleucine (Nle), norvaline (Nva), 1,2,3,4-tetrahydroisoquinoline (Tic), Octahydroindole-2-carboxylic acid (Oic), 3-(1-naphthy)alanine (1-Nal), 3-(2-naphthyl)alanine (2-Nal), 1,2,3,4-tetrahydroisoquinoline (Tic), 2-indanylglycine (IgI), para-iodophenylalanine (pI-Phe), para-aminophenylalanine (4AmP or 4-Amino-Phe), 4-guanidino phenylalanine (Guf), glycyllysine (abbreviated “K(Nε-glycyl)” or “K(glycyl)” or “K(gly)”), nitrophenylalanine (nitrophe), aminophenylalanine (aminophe or Amino-Phe), benzylphenylalanine (benzylphe), γ-carboxyglutamic acid (γ-carboxyglu), hydroxyproline (hydroxypro), p-carboxyl-phenylalanine (Cpa), α-aminoadipic acid (Aad), Nα-methyl valine (NMeVal), N-α-methyl leucine (NMeLeu), Nα-methylnorleucine (NMeNle), cyclopentylglycine (Cpg), cyclohexylglycine (Chg), acetylarginine (acetylarg), α, β-diaminopropionoic acid (Dpr), α, γ-diaminobutyric acid (Dab), diaminopropionic acid (Dap), cyclohexylalanine (Cha), 4-methyl-phenylalanine (MePhe), β, β-diphenyl-alanine (BiPhA), aminobutyric acid (Abu), 4-phenyl-phenylalanine (or biphenylalanine; 4Bip), α-amino-isobutyric acid (Aib), beta-alanine, beta-aminopropionic acid, piperidinic acid, aminocaprioic acid, aminoheptanoic acid, aminopimelic acid, desmosine, diaminopimelic acid, N-ethylglycine, N-ethylaspargine, hydroxylysine, allo-hydroxylysine, isodesmosine, allo-isoleucine, N-methylglycine, N-methylisoleucine, N-methylvaline, 4-hydroxyproline (Hyp), γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, ω-methylarginine, 4-Amino-O-Phthalic Acid (4APA), and other similar amino acids, and derivatized forms of any of those specifically listed.


II. General Overview

Antigen-binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are provided herein. A unique property of the antigen binding proteins disclosed herein is the agonistic nature of these proteins, specifically the ability to mimic the in vivo effect of FGF21 and to induce FGF21-like signaling. More remarkably and specifically, some of the antigen binding proteins disclosed herein induce FGF21-like signaling in several in vitro cell-based assay, including the ELK-luciferase reporter assay of Example 4 under the following conditions: (1) the binding to and activity of the FGF21 receptor is β-Klotho dependent; (2) the activity is selective to the FGFR/β-Klotho complex; (3) the binding to the FGFR1c/βKlotho complex triggers FGF21-like signaling pathways; and (4) the potency (EC50) is comparable to a wild-type FGF21 standard comprising the mature form of SEQ ID NO: 2, as measured in the following cell-based assays: (1) the recombinant FGF21 receptor mediated luciferase-reporter cell assay of Example 4; (2) the ERK-phosphorylation in the recombinant FGF21 receptor mediated cell assay of Example 4; and (3) ERK-phosphorylation in human adipocytes as described in more details in Example 6. The disclosed antigen binding proteins, therefore, are expected to exhibit activities in vivo that are consistent with the natural biological function of FGF21. This property makes the disclosed antigen binding proteins viable therapeutics for the treatment of metabolic diseases such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, metabolic syndrome and broadly any disease or condition in which it is desirable to mimic or augment the in vivo effects of FGF21.


In some embodiments of the present disclosure the antigen binding proteins provided can comprise polypeptides into which one or more complementary determining regions (CDRs) can be embedded and/or joined. In such antigen binding proteins, the CDRs can be embedded into a “framework” region, which orients the CDR(s) such that the proper antigen binding properties of the CDR(s) is achieved. In general, such antigen binding proteins that are provided can facilitate or enhance the interaction between an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) and β-Klotho, and can substantially induce FGF21-like signaling. Accordingly, the antigen binding proteins provided herein mimic the in vivo role of FGF21 and are thus “agonistic” and offer potential therapeutic benefit for the range of conditions which benefit from FGF21 therapy, including type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, metabolic syndrome and broadly any disease or condition in which it is desirable to mimic or augment the in vivo effects of FGF21.


Certain antigen binding proteins described herein are antibodies or are derived from antibodies. In certain embodiments, the polypeptide structure of the antigen binding proteins is based on antibodies, including, but not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies (sometimes referred to herein as “antibody mimetics”), chimeric antibodies, humanized antibodies, human antibodies, antibody fusions (sometimes referred to herein as “antibody conjugates”), hemibodies and fragments thereof. The various structures are further described herein below.


The antigen binding proteins provided herein have been demonstrated to bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and particularly to a complex comprising human β-Klotho and a human FGFR (e.g., a human FGFR1c, a human FGFR2c or a human FGFR3c). As described and shown in the Examples presented herein, based Western blot results, known commercially-available anti-β-Klotho or anti-FGFR1c antibodies bind to denatured β-Klotho or FGFR1c whereas the antigen binding protein (which are agonistic antibodies) do not. Conversely, the provided antigen binding proteins recognize the native structure of the FGFR1c and β-Klotho on the cell surface whereas the commercial antibodies do not. The antigen binding proteins that are provided therefore mimic the natural in vivo biological activity of FGF21. As a consequence, the antigen binding proteins provided herein are capable of activating FGF21-like signaling activity. In particular, the disclosed antigen binding proteins can have one or more of the following activities in vivo: induction of FGF21-like signal transduction pathways, lowering blood glucose levels, lowering circulating lipid levels, improving metabolic parameters and other physiological effects induced in vivo by the formation of the ternary complex of an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c), β-Klotho and FGF21, for example conditions such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome.


The antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are disclosed herein have a variety of utilities. Some of the antigen binding proteins, for instance, are useful in specific binding assays, in the affinity purification of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including the human forms of these disclosed proteins, and in screening assays to identify other agonists of FGF21-like signaling activity.


The antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are disclosed herein can be used in a variety of treatment applications, as explained herein. For example, certain antigen binding proteins are useful for treating conditions associated with FGF21-like signaling processes in a patient, such as reducing, alleviating, or treating type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome. Other uses for the antigen binding proteins include, for example, diagnosis of diseases or conditions associated with β-Klotho, FGFR1c, FGFR2c, FGFR3c, FGFR4 or FGF21, and screening assays to determine the presence or absence of these molecules. Some of the antigen binding proteins described herein can be useful in treating conditions, symptoms and/or the pathology associated with decreased FGF21-like signaling activity. Exemplary conditions include, but are not limited to, diabetes, obesity, NASH and dyslipidemia.


FGF21

The antigen binding proteins disclosed herein induce FGF21-mediated signaling, as defined herein. In vivo, the mature form of FGF21 is the active form of the molecule. The nucleotide sequence encoding full length FGF21 is provided; the nucleotides encoding the signal sequence are underlined.









(SEQ ID NO: 1)








ATG GAC TCG GAC GAG ACC GGG TTC GAG CAC TCA GGA







CTG TGG GTT TCT GTG CTG GCT GGT CTT CTG CTG GGA







GCC TGC CAG GCA CAC CCC ATC CCT GAC TCC AGT CCT






CTC CTG CAA TTC GGG GGC CAA GTC CGG CAG CGG TAC





CTC TAC ACA GAT GAT GCC CAG CAG ACA GAA GCC CAC





CTG GAG ATC AGG GAG GAT GGG ACG GTG GGG GGC GCT





GCT GAC CAG AGC CCC GAA AGT CTC CTG CAG CTG AAA





GCC TTG AAG CCG GGA GTT ATT CAA ATC TTG GGA GTC





AAG ACA TCC AGG TTC CTG TGC CAG CGG CCA GAT GGG





GCC CTG TAT GGA TCG CTC CAC TTT GAC CCT GAG GCC





TGC AGC TTC CGG GAG CTG CTT CTT GAG GAC GGA TAC





AAT GTT TAC CAG TCC GAA GCC CAC GGC CTC CCG CTG





CAC CTG CCA GGG AAC AAG TCC CCA CAC CGG GAC CCT





GCA CCC CGA GGA CCA GCT CGC TTC CTG CCA CTA CCA





GGC CTG CCC CCC GCA CCC CCG GAG CCA CCC GGA ATC





CTG GCC CCC CAG CCC CCC GAT GTG GGC TCC TCG GAC





CCT CTG AGC ATG GTG GGA CCT TCC CAG GGC CGA AGC





CCC AGC TAC GCT TCC TGA






The amino acid sequence of full length FGF21 is provided; the amino acids that make up the signal sequence are underlined:









(SEQ ID NO: 2)








M D S D E T G F E H S G L W V S V L A G L L L G A







C Q A H P I P D S S P L L Q F G G Q V R Q R Y L Y






T D D A Q Q T E A H L E I R E D G T V G G A A D Q





S P E S L L Q L K A L K P G V I Q I L G V K T S R





F L C Q R P D G A L Y G S L H F D P E A C S F R E





L L L E D G Y N V Y Q S E A H G L P L H L P G N K





S P H R D P A P R G P A R F L P L P G L P P A P P





E P P G I L A P Q P P D V G S S D P L S M V G P S





Q G R S P S Y A S






FGFR1c

The antigen binding proteins disclosed herein bind to FGFR1c, in particular human FGFR1c, when associated with β-Klotho. The nucleotide sequence encoding human FGFR1c (GenBank Accession Number NM_023110) is provided:









(SEQ ID NO: 3)







ATGTGGAGCTGGAAGTGCCTCCTCTTCTGGGCTGTGCTGGTCACAG





CCACACTCTGCACCGCTAGGCCGTCCCCGACCTTGCCTGAACAAGC





CCAGCCCTGGGGAGCCCCTGTGGAAGTGGAGTCCTTCCTGGTCCAC





CCCGGTGACCTGCTGCAGCTTCGCTGTCGGCTGCGGGACGATGTGC





AGAGCATCAACTGGCTGCGGGACGGGGTGCAGCTGGCGGAAAGCA





ACCGCACCCGCATCACAGGGGAGGAGGTGGAGGTGCAGGACTCCG





TGCCCGCAGACTCCGGCCTCTATGCTTGCGTAACCAGCAGCCCCTC





GGGCAGTGACACCACCTACTTCTCCGTCAATGTTTCAGATGCTCTCC





CCTCCTCGGAGGATGATGATGATGATGATGACTCCTCTTCAGAGGA





GAAAGAAACAGATAACACCAAACCAAACCGTATGCCCGTAGCTCC





ATATTGGACATCACCAGAAAAGATGGAAAAGAAATTGCATGCAGT





GCCGGCTGCCAAGACAGTGAAGTTCAAATGCCCTTCCAGTGGGACA





CCAAACCCAACACTGCGCTGGTTGAAAAATGGCAAAGAATTCAAA





CCTGACCACAGAATTGGAGGCTACAAGGTCCGTTATGCCACCTGGA





GCATCATAATGGACTCTGTGGTGCCCTCTGACAAGGGCAACTACAC





CTGCATTGTGGAGAATGAGTACGGCAGCATCAACCACACATACCA





GCTGGATGTCGTGGAGCGGTCCCCTCACCGGCCCATCCTGCAAGCA





GGGTTGCCCGCCAACAAAACAGTGGCCCTGGGTAGCAACGTGGAG





TTCATGTGTAAGGTGTACAGTGACCCGCAGCCGCACATCCAGTGGC





TAAAGCACATCGAGGTGAATGGGAGCAAGATTGGCCCAGACAACC





TGCCTTATGTCCAGATCTTGAAGACTGCTGGAGTTAATACCACCGA





CAAAGAGATGGAGGTGCTTCACTTAAGAAATGTCTCCTTTGAGGAC





GCAGGGGAGTATACGTGCTTGGCGGGTAACTCTATCGGACTCTCCC





ATCACTCTGCATGGTTGACCGTTCTGGAAGCCCTGGAAGAGAGGCC





GGCAGTGATGACCTCGCCCCTGTACCTGGAGATCATCATCTATTGC





ACAGGGGCCTTCCTCATCTCCTGCATGGTGGGGTCGGTCATCGTCT





ACAAGATGAAGAGTGGTACCAAGAAGAGTGACTTCCACAGCCAGA





TGGCTGTGCACAAGCTGGCCAAGAGCATCCCTCTGCGCAGACAGGT





AACAGTGTCTGCTGACTCCAGTGCATCCATGAACTCTGGGGTTCTT





CTGGTTCGGCCATCACGGCTCTCCTCCAGTGGGACTCCCATGCTAG





CAGGGGTCTCTGAGTATGAGCTTCCCGAAGACCCTCGCTGGGAGCT





GCCTCGGGACAGACTGGTCTTAGGCAAACCCCTGGGAGAGGGCTG





CTTTGGGCAGGTGGTGTTGGCAGAGGCTATCGGGCTGGACAAGGA





CAAACCCAACCGTGTGACCAAAGTGGCTGTGAAGATGTTGAAGTC





GGACGCAACAGAGAAAGACTTGTCAGACCTGATCTCAGAAATGGA





GATGATGAAGATGATCGGGAAGCATAAGAATATCATCAACCTGCT





GGGGGCCTGCACGCAGGATGGTCCCTTGTATGTCATCGTGGAGTAT





GCCTCCAAGGGCAACCTGCGGGAGTACCTGCAGGCCCGGAGGCCC





CCAGGGCTGGAATACTGCTACAACCCCAGCCACAACCCAGAGGAG





CAGCTCTCCTCCAAGGACCTGGTGTCCTGCGCCTACCAGGTGGCCC





GAGGCATGGAGTATCTGGCCTCCAAGAAGTGCATACACCGAGACC





TGGCAGCCAGGAATGTCCTGGTGACAGAGGACAATGTGATGAAGA





TAGCAGACTTTGGCCTCGCACGGGACATTCACCACATCGACTACTA





TAAAAAGACAACCAACGGCCGACTGCCTGTGAAGTGGATGGCACC





CGAGGCATTATTTGACCGGATCTACACCCACCAGAGTGATGTGTGG





TCTTTCGGGGTGCTCCTGTGGGAGATCTTCACTCTGGGCGGCTCCCC





ATACCCCGGTGTGCCTGTGGAGGAACTTTTCAAGCTGCTGAAGGAG





GGTCACCGCATGGACAAGCCCAGTAACTGCACCAACGAGCTGTAC





ATGATGATGCGGGACTGCTGGCATGCAGTGCCCTCACAGAGACCCA





CCTTCAAGCAGCTGGTGGAAGACCTGGACCGCATCGTGGCCTTGAC





CTCCAACCAGGAGTACCTGGACCTGTCCATGCCCCTGGACCAGTAC





TCCCCCAGCTTTCCCGACACCCGGAGCTCTACGTGCTCCTCAGGGG





AGGATTCCGTCTTCTCTCATGAGCCGCTGCCCGAGGAGCCCTGCCT





GCCCCGACACCCAGCCCAGCTTGCCAATGGCGGACTCAAACGCCGC





TGA.






The amino acid sequence of human FGFR1c (GenBank Accession Number NP_075598) is provided:









(SEQ ID NO: 4)







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHP





GDLLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPA





DSGLYACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETD





NTKPNRMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR





WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEY





GSINHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQ





PHIQWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVS





FEDAGEYTCLAGNSIGLSHHSAWLTVLEALEERPAVMTSPLYLEIIIYC





TGAFLISCMVGSVIVYKMKSGTKKSDFHSQMAVHKLAKSIPLRRQVT





VSADSSASMNSGVLLVRPSRLSSSGTPMLAGVSEYELPEDPRWELPRD





RLVLGKPLGEGCFGQVVLAEAIGLDKDKPNRVTKVAVKMLKSDATE





KDLSDLISEMEMMKMIGKHKNIINLLGACTQDGPLYVIVEYASKGNLR





EYLQARRPPGLEYCYNPSHNPEEQLSSKDLVSCAYQVARGMEYLASK





KCIHRDLAARNVLVTEDNVMKIADFGLARDIHHIDYYKKTTNGRLPV





KWMAPEALFDRIYTHQSDVWSFGVLLWEIFTLGGSPYPGVPVEELFKL





LKEGHRMDKPSNCTNELYMMMRDCWHAVPSQRPTFKQLVEDLDRIV





ALTSNQEYLDLSMPLDQYSPSFPDTRSSTCSSGEDSVFSHEPLPEEPCLP





RHPAQLANGGLKRR.






The antigen binding proteins described herein bind the extracellular portion of FGFR1c. An example of an extracellular region of FGFR1c is:









(SEQ ID NO: 5)







MWSWKCLLFWAVLVTATLCTARPSPTLPEQAQPWGAPVEVESFLVHP





GDLLQLRCRLRDDVQSINWLRDGVQLAESNRTRITGEEVEVQDSVPA





DSGLYACVTSSPSGSDTTYFSVNVSDALPSSEDDDDDDDSSSEEKETD





NTKPNRMPVAPYWTSPEKMEKKLHAVPAAKTVKFKCPSSGTPNPTLR





WLKNGKEFKPDHRIGGYKVRYATWSIIMDSVVPSDKGNYTCIVENEY





GSINHTYQLDVVERSPHRPILQAGLPANKTVALGSNVEFMCKVYSDPQ





PHIQWLKHIEVNGSKIGPDNLPYVQILKTAGVNTTDKEMEVLHLRNVS





FEDAGEYTCLAGNSIGLSHHSAWLTVLEALEERPAVMTSPLY.






As described herein, FGFR1c proteins can also include fragments. As used herein, the terms are used interchangeably to mean a receptor, in particular and unless otherwise specified, a human receptor, that upon association with β-Klotho and FGF21 induces FGF21-like signaling activity.


The term FGFR1c also includes post-translational modifications of the FGFR1c amino acid sequence, for example, possible N-linked glycosylation sites. Thus, the antigen binding proteins can bind to or be generated from proteins glycosylated at one or more of the positions.


β-Klotho

The antigen binding proteins disclosed herein bind to β-Klotho, in particular human β-Klotho. The nucleotide sequence encoding human β-Klotho (GenBank Accession Number NM_175737) is provided:









(SEQ ID NO: 6)







ATGAAGCCAGGCTGTGCGGCAGGATCTCCAGGGAATGAATGGATT





TTCTTCAGCACTGATGAAATAACCACACGCTATAGGAATACAATGT





CCAACGGGGGATTGCAAAGATCTGTCATCCTGTCAGCACTTATTCT





GCTACGAGCTGTTACTGGATTCTCTGGAGATGGAAGAGCTATATGG





TCTAAAAATCCTAATTTTACTCCGGTAAATGAAAGTCAGCTGTTTCT





CTATGACACTTTCCCTAAAAACTTTTTCTGGGGTATTGGGACTGGA





GCATTGCAAGTGGAAGGGAGTTGGAAGAAGGATGGAAAAGGACCT





TCTATATGGGATCATTTCATCCACACACACCTTAAAAATGTCAGCA





GCACGAATGGTTCCAGTGACAGTTATATTTTTCTGGAAAAAGACTT





ATCAGCCCTGGATTTTATAGGAGTTTCTTTTTATCAATTTTCAATTT





CCTGGCCAAGGCTTTTCCCCGATGGAATAGTAACAGTTGCCAACGC





AAAAGGTCTGCAGTACTACAGTACTCTTCTGGACGCTCTAGTGCTT





AGAAACATTGAACCTATAGTTACTTTATACCACTGGGATTTGCCTTT





GGCACTACAAGAAAAATATGGGGGGTGGAAAAATGATACCATAAT





AGATATCTTCAATGACTATGCCACATACTGTTTCCAGATGTTTGGG





GACCGTGTCAAATATTGGATTACAATTCACAACCCATATCTAGTGG





CTTGGCATGGGTATGGGACAGGTATGCATGCCCCTGGAGAGAAGG





GAAATTTAGCAGCTGTCTACACTGTGGGACACAACTTGATCAAGGC





TCACTCGAAAGTTTGGCATAACTACAACACACATTTCCGCCCACAT





CAGAAGGGTTGGTTATCGATCACGTTGGGATCTCATTGGATCGAGC





CAAACCGGTCGGAAAACACGATGGATATATTCAAATGTCAACAAT





CCATGGTTTCTGTGCTTGGATGGTTTGCCAACCCTATCCATGGGGAT





GGCGACTATCCAGAGGGGATGAGAAAGAAGTTGTTCTCCGTTCTAC





CCATTTTCTCTGAAGCAGAGAAGCATGAGATGAGAGGCACAGCTG





ATTTCTTTGCCTTTTCTTTTGGACCCAACAACTTCAAGCCCCTAAAC





ACCATGGCTAAAATGGGACAAAATGTTTCACTTAATTTAAGAGAAG





CGCTGAACTGGATTAAACTGGAATACAACAACCCTCGAATCTTGAT





TGCTGAGAATGGCTGGTTCACAGACAGTCGTGTGAAAACAGAAGA





CACCACGGCCATCTACATGATGAAGAATTTCCTCAGCCAGGTGCTT





CAAGCAATAAGGTTAGATGAAATACGAGTGTTTGGTTATACTGCCT





GGTCTCTCCTGGATGGCTTTGAATGGCAGGATGCTTACACCATCCG





CCGAGGATTATTTTATGTGGATTTTAACAGTAAACAGAAAGAGCGG





AAACCTAAGTCTTCAGCACACTACTACAAACAGATCATACGAGAA





AATGGTTTTTCTTTAAAAGAGTCCACGCCAGATGTGCAGGGCCAGT





TTCCCTGTGACTTCTCCTGGGGTGTCACTGAATCTGTTCTTAAGCCC





GAGTCTGTGGCTTCGTCCCCACAGTTCAGCGATCCTCATCTGTACGT





GTGGAACGCCACTGGCAACAGACTGTTGCACCGAGTGGAAGGGGT





GAGGCTGAAAACACGACCCGCTCAATGCACAGATTTTGTAAACATC





AAAAAACAACTTGAGATGTTGGCAAGAATGAAAGTCACCCACTAC





CGGTTTGCTCTGGATTGGGCCTCGGTCCTTCCCACTGGCAACCTGTC





CGCGGTGAACCGACAGGCCCTGAGGTACTACAGGTGCGTGGTCAG





TGAGGGGCTGAAGCTTGGCATCTCCGCGATGGTCACCCTGTATTAT





CCGACCCACGCCCACCTAGGCCTCCCCGAGCCTCTGTTGCATGCCG





ACGGGTGGCTGAACCCATCGACGGCCGAGGCCTTCCAGGCCTACGC





TGGGCTGTGCTTCCAGGAGCTGGGGGACCTGGTGAAGCTCTGGATC





ACCATCAACGAGCCTAACCGGCTAAGTGACATCTACAACCGCTCTG





GCAACGACACCTACGGGGCGGCGCACAACCTGCTGGTGGCCCACG





CCCTGGCCTGGCGCCTCTACGACCGGCAGTTCAGGCCCTCACAGCG





CGGGGCCGTGTCGCTGTCGCTGCACGCGGACTGGGCGGAACCCGCC





AACCCCTATGCTGACTCGCACTGGAGGGCGGCCGAGCGCTTCCTGC





AGTTCGAGATCGCCTGGTTCGCCGAGCCGCTCTTCAAGACCGGGGA





CTACCCCGCGGCCATGAGGGAATACATTGCCTCCAAGCACCGACGG





GGGCTTTCCAGCTCGGCCCTGCCGCGCCTCACCGAGGCCGAAAGGA





GGCTGCTCAAGGGCACGGTCGACTTCTGCGCGCTCAACCACTTCAC





CACTAGGTTCGTGATGCACGAGCAGCTGGCCGGCAGCCGCTACGAC





TCGGACAGGGACATCCAGTTTCTGCAGGACATCACCCGCCTGAGCT





CCCCCACGCGCCTGGCTGTGATTCCCTGGGGGGTGCGCAAGCTGCT





GCGGTGGGTCCGGAGGAACTACGGCGACATGGACATTTACATCAC





CGCCAGTGGCATCGACGACCAGGCTCTGGAGGATGACCGGCTCCG





GAAGTACTACCTAGGGAAGTACCTTCAGGAGGTGCTGAAAGCATA





CCTGATTGATAAAGTCAGAATCAAAGGCTATTATGCATTCAAACTG





GCTGAAGAGAAATCTAAACCCAGATTTGGATTCTTCACATCTGATT





TTAAAGCTAAATCCTCAATACAATTTTACAACAAAGTGATCAGCAG





CAGGGGCTTCCCTTTTGAGAACAGTAGTTCTAGATGCAGTCAGACC





CAAGAAAATACAGAGTGCACTGTCTGCTTATTCCTTGTGCAGAAGA





AACCACTGATATTCCTGGGTTGTTGCTTCTTCTCCACCCTGGTTCTA





CTCTTATCAATTGCCATTTTTCAAAGGCAGAAGAGAAGAAAGTTTT





GGAAAGCAAAAAACTTACAACACATACCATTAAAGAAAGGCAAGA





GAGTTGTTAGCTAA.






The amino acid sequence of full length human β-Klotho (GenBank Accession Number NP_783864) is provided:









(SEQ ID NO: 7)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRA





VTGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVE





GSWKKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGV





SFYQFSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYH





WDLPLALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNP





YLVAWHGYGTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTH





FRPHQKGWLSITLGSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIH





GDGDYPEGMRKKLFSVLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLN





TMAKMGQNVSLNLREALNWIKLEYNNPRILIAENGWFTDSRVKTEDT





TAIYMMKNFLSQVLQAIRLDEIRVFGYTAWSLLDGFEWQDAYTIRRGL





FYVDFNSKQKERKPKSSAHYYKQIIRENGFSLKESTPDVQGQFPCDFS





WGVTESVLKPESVASSPQFSDPHLYVWNATGNRLLHRVEGVRLKTRP





AQCTDFVNIKKQLEMLARMKVTHYRFALDWASVLPTGNLSAVNRQA





LRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLPEPLLHADGWLNPST





AEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYNRSGNDTYGAAHN





LLVAHALAWRLYDRQFRPSQRGAVSLSLHADWAEPANPYADSHWRA





AERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSALPRLTEA





ERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQDITRLS





SPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRLRK





YYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK





SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC





CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS.






The antigen binding proteins described herein bind the extracellular portion of β-Klotho. An example of an extracellular region of β-Klotho is:









(SEQ ID NO: 8)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRA





VTGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVE





GSWKKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGV





SFYQFSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYH





WDLPLALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNP





YLVAWHGYGTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTH





FRPHQKGWLSITLGSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIH





GDGDYPEGMRKKLFSVLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLN





TMAKMGQNVSLNLREALNWIKLEYNNPRILIAENGWFTDSRVKTEDT





TAIYMMKNFLSQVLQAIRLDEIRVFGYTAWSLLDGFEWQDAYTIRRGL





FYVDFNSKQKERKPKSSAHYYKQIIRENGFSLKESTPDVQGQFPCDFS





WGVTESVLKPESVASSPQFSDPHLYVWNATGNRLLHRVEGVRLKTRP





AQCTDFVNIKKQLEMLARMKVTHYRFALDWASVLPTGNLSAVNRQA





LRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLPEPLLHADGWLNPST





AEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYNRSGNDTYGAAHN





LLVAHALAWRLYDRQFRPSQRGAVSLSLHADWAEPANPYADSHWRA





AERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSALPRLTEA





ERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQDITRLS





SPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRLRK





YYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK





SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKP.






The murine form of β-Klotho, and fragments and subsequences thereof, can be of use in studying and/or constructing the molecules provided herein. The nucleotide sequence encoding murine β-Klotho (GenBank Accession Number NM_031180) is provided:









(SEQ ID NO: 9)







ATGAAGACAGGCTGTGCAGCAGGGTCTCCGGGGAATGAATGGATT





TTCTTCAGCTCTGATGAAAGAAACACACGCTCTAGGAAAACAATGT





CCAACAGGGCACTGCAAAGATCTGCCGTGCTGTCTGCGTTTGTTCT





GCTGCGAGCTGTTACCGGCTTCTCCGGAGACGGGAAAGCAATATGG





GATAAAAAACAGTACGTGAGTCCGGTAAACCCAAGTCAGCTGTTCC





TCTATGACACTTTCCCTAAAAACTTTTCCTGGGGCGTTGGGACCGG





AGCATTTCAAGTGGAAGGGAGTTGGAAGACAGATGGAAGAGGACC





CTCGATCTGGGATCGGTACGTCTACTCACACCTGAGAGGTGTCAAC





GGCACAGACAGATCCACTGACAGTTACATCTTTCTGGAAAAAGACT





TGTTGGCTCTGGATTTTTTAGGAGTTTCTTTTTATCAGTTCTCAATCT





CCTGGCCACGGTTGTTTCCCAATGGAACAGTAGCAGCAGTGAATGC





GCAAGGTCTCCGGTACTACCGTGCACTTCTGGACTCGCTGGTACTT





AGGAATATCGAGCCCATTGTTACCTTGTACCATTGGGATTTGCCTCT





GACGCTCCAGGAAGAATATGGGGGCTGGAAAAATGCAACTATGAT





AGATCTCTTCAACGACTATGCCACATACTGCTTCCAGACCTTTGGA





GACCGTGTCAAATATTGGATTACAATTCACAACCCTTACCTTGTTGC





TTGGCATGGGTTTGGCACAGGTATGCATGCACCAGGAGAGAAGGG





AAATTTAACAGCTGTCTACACTGTGGGACACAACCTGATCAAGGCA





CATTCGAAAGTGTGGCATAACTACGACAAAAACTTCCGCCCTCATC





AGAAGGGTTGGCTCTCCATCACCTTGGGGTCCCATTGGATAGAGCC





AAACAGAACAGACAACATGGAGGACGTGATCAACTGCCAGCACTC





CATGTCCTCTGTGCTTGGATGGTTCGCCAACCCCATCCACGGGGAC





GGCGACTACCCTGAGTTCATGAAGACGGGCGCCATGATCCCCGAGT





TCTCTGAGGCAGAGAAGGAGGAGGTGAGGGGCACGGCTGATTTCT





TTGCCTTTTCCTTCGGGCCCAACAACTTCAGGCCCTCAAACACCGTG





GTGAAAATGGGACAAAATGTATCACTCAACTTAAGGCAGGTGCTG





AACTGGATTAAACTGGAATACGATGACCCTCAAATCTTGATTTCGG





AGAACGGCTGGTTCACAGATAGCTATATAAAGACAGAGGACACCA





CGGCCATCTACATGATGAAGAATTTCCTAAACCAGGTTCTTCAAGC





AATAAAATTTGATGAAATCCGCGTGTTTGGTTATACGGCCTGGACT





CTCCTGGATGGCTTTGAGTGGCAGGATGCCTATACGACCCGACGAG





GGCTGTTTTATGTGGACTTTAACAGTGAGCAGAAAGAGAGGAAAC





CCAAGTCCTCGGCTCATTACTACAAGCAGATCATACAAGACAACGG





CTTCCCTTTGAAAGAGTCCACGCCAGACATGAAGGGTCGGTTCCCC





TGTGATTTCTCTTGGGGAGTCACTGAGTCTGTTCTTAAGCCCGAGTT





TACGGTCTCCTCCCCGCAGTTTACCGATCCTCACCTGTATGTGTGGA





ATGTCACTGGCAACAGATTGCTCTACCGAGTGGAAGGGGTAAGGCT





GAAAACAAGACCATCCCAGTGCACAGATTATGTGAGCATCAAAAA





ACGAGTTGAAATGTTGGCAAAAATGAAAGTCACCCACTACCAGTTT





GCTCTGGACTGGACCTCTATCCTTCCCACTGGCAATCTGTCCAAAGT





TAACAGACAAGTGTTAAGGTACTATAGGTGTGTGGTGAGCGAAGG





ACTGAAGCTGGGCGTCTTCCCCATGGTGACGTTGTACCACCCAACC





CACTCCCATCTCGGCCTCCCCCTGCCACTTCTGAGCAGTGGGGGGT





GGCTAAACATGAACACAGCCAAGGCCTTCCAGGACTACGCTGAGC





TGTGCTTCCGGGAGTTGGGGGACTTGGTGAAGCTCTGGATCACCAT





CAATGAGCCTAACAGGCTGAGTGACATGTACAACCGCACGAGTAA





TGACACCTACCGTGCAGCCCACAACCTGATGATCGCCCATGCCCAG





GTCTGGCACCTCTATGATAGGCAGTATAGGCCGGTCCAGCATGGGG





CTGTGTCGCTGTCCTTACATTGCGACTGGGCAGAACCTGCCAACCC





CTTTGTGGATTCACACTGGAAGGCAGCCGAGCGCTTCCTCCAGTTT





GAGATCGCCTGGTTTGCAGATCCGCTCTTCAAGACTGGCGACTATC





CATCGGTTATGAAGGAATACATCGCCTCCAAGAACCAGCGAGGGC





TGTCTAGCTCAGTCCTGCCGCGCTTCACCGCGAAGGAGAGCAGGCT





GGTGAAGGGTACCGTCGACTTCTACGCACTGAACCACTTCACTACG





AGGTTCGTGATACACAAGCAGCTGAACACCAACCGCTCAGTTGCAG





ACAGGGACGTCCAGTTCCTGCAGGACATCACCCGCCTAAGCTCGCC





CAGCCGCCTGGCTGTAACACCCTGGGGAGTGCGCAAGCTCCTTGCG





TGGATCCGGAGGAACTACAGAGACAGGGATATCTACATCACAGCC





AATGGCATCGATGACCTGGCTCTAGAGGATGATCAGATCCGAAAGT





ACTACTTGGAGAAGTATGTCCAGGAGGCTCTGAAAGCATATCTCAT





TGACAAGGTCAAAATCAAAGGCTACTATGCATTCAAACTGACTGAA





GAGAAATCTAAGCCTAGATTTGGATTTTTCACCTCTGACTTCAGAG





CTAAGTCCTCTGTCCAGTTTTACAGCAAGCTGATCAGCAGCAGTGG





CCTCCCCGCTGAGAACAGAAGTCCTGCGTGTGGTCAGCCTGCGGAA





GACACAGACTGCACCATTTGCTCATTTCTCGTGGAGAAGAAACCAC





TCATCTTCTTCGGTTGCTGCTTCATCTCCACTCTGGCTGTACTGCTAT





CCATCACCGTTTTTCATCATCAAAAGAGAAGAAAATTCCAGAAAGC





AAGGAACTTACAAAATATACCATTGAAGAAAGGCCACAGCAGAGT





TTTCAGCTAA.






The amino acid sequence of full length murine β-Klotho (GenBank Accession Number NP_112457) is provided:









(SEQ ID NO: 10)







MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLR





AVTGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFSWGVGTGAFQ





VEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALD





FLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIV





TLYHWDLPLTLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWI





TIHNPYLVAWHGFGTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHN





YDKNFRPHQKGWLSITLGSHWIEPNRTDNMEDVINCQHSMSSVLGWF





ANPIHGDGDYPEFMKTGAMIPEFSEAEKEEVRGTADFFAFSFGPNNFRP





SNTVVKMGQNVSLNLRQVLNWIKLEYDDPQILISENGWFTDSYIKTED





TTAIYMMKNFLNQVLQAIKFDEIRVFGYTAWTLLDGFEWQDAYTTRR





GLFYVDFNSEQKERKPKSSAHYYKQIIQDNGFPLKESTPDMKGRFPCD





FSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTGNRLLYRVEGVRLKT





RPSQCTDYVSIKKRVEMLAKMKVTHYQFALDWTSILPTGNLSKVNRQ





VLRYYRCVVSEGLKLGVFPMVTLYHPTHSHLGLPLPLLSSGGWLNMN





TAKAFQDYAELCFRELGDLVKLWITINEPNRLSDMYNRTSNDTYRAA





HNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHCDWAEPANPFVDSH





WKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSSSVLPR





FTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFLQDI





TRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDDQI





RKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFR





AKSSVQFYSKLISSSGLPAENRSPACGQPAEDTDCTICSFLVEKKPLIFF





GCCFISTLAVLLSITVFHHQKRRKFQKARNLQNIPLKKGHSRVFS.






As described herein, β-Klotho proteins can also include fragments. As used herein, the terms are used interchangeably to mean a co-receptor, in particular and unless otherwise specified, a human co-receptor, that upon association with FGFR1c and FGF21 induces FGF21-like signaling activity.


The term β-Klotho also includes post-translational modifications of the β-Klotho amino acid sequence, for example, possible N-linked glycosylation sites. Thus, the antigen binding proteins can bind to or be generated from proteins glycosylated at one or more of the positions.


Antigen Binding Proteins that Specifically Bind to a Complex Comprising β-Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c)


A variety of selective binding agents useful for modulating FGF21-like signaling are provided. These agents include, for instance, antigen binding proteins that contain an antigen binding domain (e.g., single chain antibodies, domain antibodies, hemibodies, immunoadhesions, and polypeptides with an antigen binding region) and specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, in particular a complex comprising human β-Klotho and a human FGFR (e.g., human FGFR1c, human FGFR2c or human FGFR3c). Some of the agents, for example, are useful in mimicking the signaling effect generated in vivo by the association of an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) with β-Klotho and with FGF21, and can thus be used to enhance or modulate one or more activities associated with FGF21-like signaling.


In general, the antigen binding proteins that are provided typically comprise one or more CDRs as described herein (e.g., 1, 2, 3, 4, 5 or 6 CDRs). In some embodiments the antigen binding proteins are naturally expressed by clones, while in other embodiments, the antigen binding protein can comprise (a) a polypeptide framework structure and (b) one or more CDRs that are inserted into and/or joined to the polypeptide framework structure. In some of these embodiments a CDR forms a component of a heavy or light chains expressed by the clones described herein; in other embodiments a CDR can be inserted into a framework in which the CDR is not naturally expressed. A polypeptide framework structure can take a variety of different forms. For example, a polypeptide framework structure can be, or comprise, the framework of a naturally occurring antibody, or fragment or variant thereof, or it can be completely synthetic in nature. Examples of various antigen binding protein structures are further described below.


In some embodiments in which the antigen binding protein comprises (a) a polypeptide framework structure and (b) one or more CDRs that are inserted into and/or joined to the polypeptide framework structure, the polypeptide framework structure of an antigen binding protein is an antibody or is derived from an antibody, including, but not limited to, monoclonal antibodies, bispecific antibodies, minibodies, domain antibodies, synthetic antibodies (sometimes referred to herein as “antibody mimetics”), chimeric antibodies, humanized antibodies, antibody fusions (sometimes referred to as “antibody conjugates”), and portions or fragments of each, respectively. In some instances, the antigen binding protein is an immunological fragment of an antibody (e.g., a Fab, a Fab′, a F(ab′)2, or a scFv).


Certain of the antigen binding proteins as provided herein specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including the human forms of these proteins. In one embodiment, an antigen binding protein specifically binds to both human FGFR1c comprising the amino acid sequence of SEQ ID NO: 4, and human β-Klotho comprising the amino acid sequence of SEQ ID NO: 7, and in another embodiment an antigen binding protein specifically binds to both human FGFR1c comprising the amino acid sequence of SEQ ID NO: 4 and human β-Klotho having the amino acid sequence of SEQ ID NO: 7 and induces FGF21-like signaling. Thus, an antigen binding protein can, but need not, induce FGF21-like signaling.


Antigen Binding Protein Structure

Some of the antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, including the human forms of these proteins, provided herein have a structure typically associated with naturally occurring antibodies. The structural units of these antibodies typically comprise one or more tetramers, each composed of two identical couplets of polypeptide chains, though some species of mammals also produce antibodies having only a single heavy chain. In a typical antibody, each pair or couplet includes one full-length “light” chain (in certain embodiments, about 25 kDa) and one full-length “heavy” chain (in certain embodiments, about 50-70 kDa). Each individual immunoglobulin chain is composed of several “immunoglobulin domains,” each consisting of roughly 90 to 110 amino acids and expressing a characteristic folding pattern. These domains are the basic units of which antibody polypeptides are composed. The amino-terminal portion of each chain typically includes a variable domain that is responsible for antigen recognition. The carboxy-terminal portion is more conserved evolutionarily than the other end of the chain and is referred to as the “constant region” or “C region”. Human light chains generally are classified as kappa (“κ”) and lambda (“λ”) light chains, and each of these contains one variable domain and one constant domain. Heavy chains are typically classified as mu, delta, gamma, alpha, or epsilon chains, and these define the antibody's isotype as IgM, IgD, IgG, IgA, and IgE, respectively. IgG has several subtypes, including, but not limited to, IgG1, IgG2, IgG3, and IgG4. IgM subtypes include IgM, and IgM2. IgA subtypes include IgA1 and IgA2. In humans, the IgA and IgD isotypes contain four heavy chains and four light chains; the IgG and IgE isotypes contain two heavy chains and two light chains; and the IgM isotype contains five heavy chains and five light chains. The heavy chain C region typically comprises one or more domains that can be responsible for effector function. The number of heavy chain constant region domains will depend on the isotype. IgG heavy chains, for example, each contain three C region domains known as CH1, CH2 and CH3. The antibodies that are provided can have any of these isotypes and subtypes. In certain embodiments, an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c is an antibody of the IgG1, IgG2, or IgG4 subtype.


In full-length light and heavy chains, the variable and constant regions are joined by a “J” region of about twelve or more amino acids, with the heavy chain also including a “D” region of about ten more amino acids. See, e.g., Fundamental Immunology, 2nd ed., Ch. 7 (Paul, W., ed.) 1989, New York: Raven Press (hereby incorporated by reference in its entirety for all purposes). The variable regions of each light/heavy chain pair typically form the antigen binding site.


One example of an IgG2 heavy constant domain of an exemplary monoclonal antibody that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has the amino acid sequence:









(SEQ ID NO: 11)







ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKT





VERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVS





HEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDW





LNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN





QVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK.






One example of a kappa light constant domain of an exemplary monoclonal antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has the amino acid sequence:









(SEQ ID NO: 12)







TVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSP





VTKSFNRGEC.






One example of a lambda light constant domain of an exemplary monoclonal antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has the amino acid sequence:









(SEQ ID NO: 13)







QPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKA





GVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVA





PTECS.






Variable regions of immunoglobulin chains generally exhibit the same overall structure, comprising relatively conserved framework regions (FR) joined by three hypervariable regions, more often called “complementarity determining regions” or CDRs. The CDRs from the two chains of each heavy chain/light chain pair mentioned above typically are aligned by the framework regions to form a structure that binds specifically with a specific epitope on the target protein (e.g., a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. From N-terminal to C-terminal, naturally-occurring light and heavy chain variable regions both typically conform with the following order of these elements: FR1, CDR1, FR2, CDR2, FR3, CDR3 and FR4. A numbering system has been devised for assigning numbers to amino acids that occupy positions in each of these domains. This numbering system is defined in Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242. Although presented using the Kabat nomenclature system, as desired, the CDRs disclosed herein can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, (1987) J. Mol. Biol. 196:901-917; Chothia et al., (1989) Nature 342:878-883 or Honegger & Pluckthun, (2001) J. Mol. Biol. 309:657-670).


The various heavy chain and light chain variable regions of antigen binding proteins provided herein are depicted in Table 2. Each of these variable regions can be attached to the disclosed heavy and light chain constant regions to form a complete antibody heavy and light chain, respectively. Further, each of the so-generated heavy and light chain sequences can be combined to form a complete antibody structure. It should be understood that the heavy chain and light chain variable regions provided herein can also be attached to other constant domains having different sequences than the exemplary sequences listed above.


Specific examples of some of the full length light and heavy chains of the antibodies that are provided and their corresponding amino acid sequences are summarized in Tables 1A and 1B. Table 1A shows exemplary light chain sequences, and Table 1B shows exemplary heavy chain sequences.









TABLE 1A







Exemplary Antibody Light Chain Sequences










Contained

SEQ ID



in Clone
Designation
NO:
Amino Acid Sequence













63E6
L6
14
DIQMTQSPSSLSASVGDRVTITCRTSQSISSYL





NWYQQKPGKAPNLLIYAASSLQSGVPSRFSG





SGSGTDFTLTISGLQPEDFSTYYCQQSYSTSL





TFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC





66F7
L7
15
DIQMTQSPSSLSASVGDRVTITCRTSQSISNY





LNVVYQQKPGKAPNLLIYAASSLQSGVPSRFS





GSGSGTDFTLTISGLQPEDFSTYYCQQSYSTS





LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





66D4
L18
16
DIQMTQSPSSLSASVGDRITITCRASQIISRYL





NWYQQNPGKAPKLLISAASSLQSGVPSRFSG





SGSGPDFTLTISSLQPEDFTTYYCQQSYSSPLT





FGGGTKVEVKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC





66B4
L11
17
DIQMTQSPSSVSSSVGDRVTITCRASQGISRW





LAWYQQKPGKAPKLLIYAASSLKSGVPSRFS





GSGSGTDFTLTISSLQPEDFATYYCQQANSFP





PTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





65B1
L19
18
DIQMTQSPSSLSASVGDRVTITCRASQNINNY





LNWYRQKPGKAPELLIYTTSSLQSGVPSRFS





GSGSGTDFTLTISSLETEDFETYYCQQSYSTP





LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





65B4
L21
19
SYVLTQPPSVSVAPGQTARITCGGNNIGSKSV





QWYQQKPGQAPVLVVYDDSDRPSGIPERFS





GSNSGNTASLTISRVEAGDEADYYCQVWDS





SSDHVVFGGGTKLTVLGQPKANPTVTLFPPS





SEELQANKATLVCLISDFYPGAVTVAWKAD





GSPVKAGVETTKPSKQSNNKYAASSYLSLTP





EQWKSHRSYSCQVTHEGSTVEKTVAPTECS





67A4
L20
20
SYVLTQPPSVSVAPGQTARITCGGNNIGSKSV





HWYQQKPGQAPVLVVYDDSDRPSGIPERFS





GSNSGNTATLTISRVEAGDEADYYCQVWDS





SSDHVVFGGGTKLTVLGQPKANPTVTLFPPS





SEELQANKATLVCLISDFYPGAVTVAWKAD





GSPVKAGVETTKPSKQSNNKYAASSYLSLTP





EQWKSHRSYSCQVTHEGSTVEKTVAPTECS





63A10v1
L22
21
SYELTQPHSVSVATAQMARITCGGNNIGSKA





VHWYQQKPGQDPVLVIYCDSNRPSGIPER





FSGSNPGNTATLTISRIEAGDEADYYCQVWD





SSSDGVFGGGTKLTVLGQPKANPTVTLFPPS





SEELQANKATLVCLISDFYPGAVTVAWKAD





GSPVKAGVETTKPSKQSNNKYAASSYLSLTP





EQWKSHRSYSCQVTHEGSTVEKTVAPTECS





63A10v2
L101
1835
SYELTQPHSVSVATAQMARITCGGNNIGSKA





VHWYQQKPGQDPVLVIYCDSNRPSGIPER





FSGSNPGNTATLTISRIEAGDEADYYCQAWD





STTVVFGGGTKLTVLGQPKANPTVTLFPPSS





EELQANKATLVCLISDFYPGAVTVAWKADG





SPVKAGVETTKPSKQSNNKYAASSYLSLTPE





QWKSHRSYSCQVTHEGSTVEKTVAPTECS





63A10v3
L102
1836
SYELTQPPSVSVSPGQTANITCSGDKLGNRY





TCWYQQKSGQSPVLVIYQDSERPSGIPER





FSGSNSGNTATLTISGTQAMDEADYYCQAW





DSTTVVFGGGTKLTVLGQPKANPTVTLFPPS





SEELQANKATLVCLISDFYPGAVTVAWKAD





GSPVKAGVETTKPSKQSNNKYAASSYLSLTP





EQWKSHRSYSCQVTHEGSTVEKTVAPTECS





65H11v1
L23
22
SYELTQPHSVSVATAQMARITCGGNNIGSKT





VHWFQQKPGQDPVLVIYSDSNRPSGIPERFS





GSNPGNTATLTISRIEAGDEADYYCQVWDSS





CDGVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





65H11v2
L103
1837
SYELTQPPSVSVSPGQTANITCSGDKLGDRY





VCWYQQKPGQSPVLVIYQDSKRPSGIPEQFS





GSNSGNTATLTISGTQAIDEADYYCQAWDSI





TVVFGGGTKLTVLGQPKANPTVTLFPPSSEE





LQANKATLVCLISDFYPGAVTVAWKADGSP





VKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





67G10v1
L9
23
SYELTQPHSVSVATAQMARITCGGNNIGSKA





VHWYQQKPGQDPVLVIYSDSNRPSGIPERFS





GSNPGNTATLTISRIEAGDEADYYCQVWDSS





SDGVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





67G10v2
L10
24
SYELTQPPSVSVSPGQTASITCSGDKLGDKY





ACWYQQKPGQSPVLVIYQDNERPSGIPERFS





GSNSGNTATLTISGTQAMDEADYYCQAWDS





TTVVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





64C8
L24
25
DVVMTQSPLSLPVTLGQPASISRRSSPSLVYS





DGNTYLNCFQQRPGHSPRRLIYKGSNWDSG





VPDRFSGSGSGTDFTLKISRVEAEDVGIYYCI





QDTHWPTCSFGQGTKLEIKRTVAAPSVFIFPP





SDEQLKSGTASVVCLLNNFYPREAKVQWKV





DNALQSGNSQESVTEQDSKDSTYSLSSTLTL





SKADYEKHKVYACEVTHQGLSSPVTKSFNR





GEC





64A8
L1
26
DIQMTQSPSSLSASVGDRVTITCRASQDIRND


67B4


LGWYQQKPGKAPKRLIYAASNLQRGVPSRF





SGSGSGTEFTLTISTLQPEDFATYSCLQHNSY





PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





63G8v1
L104
1838
DIQMTQSPSSLSASVGDRVTITCRASQDIRND





LGWYQQKPGKAPKRLIYAASNLQRGVPSRF





SGSGSGTEFTLTISTLQPDDFATYSCLQHNSY





PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





63G8v2
L105
1839
DIQMTQSPSSLSASVGDRVTITCRASQGIRSG





LGWYQQKPGKAPKRLIYAASNLQRGVPSRF





SGSGSGTEFTLTVSSLQPEDFATYSCLQHNSY





PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





63G8v3
L106
1840
DIQMTQSPSSLSASVGDRVTITCRASQGIRSG





LGWYQQKPGKAPKRLIYAASNLQRGVPSRF





SGSGSGTEFTLTVSSLQPEDFATYSCLQHNTY





PLTFGGGTKGEIRRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





66G2
L12
27
DIQMTQSPSSLSASVGDRVTITCRASQGIRND





LGWYQQKPGKAPKRLIYAASNLQSGVPSRFS





GSGSGTKFTLTINSLQPEDFATYYCLQLNGY





PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





68D3v1
L2
28
DIQMTQSPSSLSASVGDRVTITCRASQDIRND


68D3v2


LGWYQQKPGKAPKRLIYAASNLQRGVPSRF





SGSGSGTEFTLTISTLQPDDFATYSCLQHNSY





PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





65D1
L27
29
SYDLTQPPSVSVSPGQTASITCSGDKLGDKY





VCWYQQKPGQSPVLVIYQDSKRPSGIPERFS





GSNSGNTATLTISGIQAMDEADYYCQAWDS





RVFGGGTKLTVLGQPKANPTVTLFPPSSEEL





QANKATLVCLISDFYPGAVTVAWKADGSPV





KAGVETTKPSKQSNNKYAASSYLSLTPEQW





KSHRSYSCQVTHEGSTVEKTVAPTECS





64H5
L8
30
SYEMTQPLSVSVALGQTARITCGGNNIGSKN


65G4


VHWYQQKPGQAPVLVIYRDSKRPSGIPERFS





GSNSGNTATLTISRAQAGDEADYYCQVWDS





SSVVFGGGTKLTVLGQPKANPTVTLFPPSSEE





LQANKATLVCLISDFYPGAVTVAWKADGSP





VKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





65D4
L26
31
SYELTQPLSVSVALGQTARIPCGGNDIGSKN





VHWYQQKPGQAPVLVIYRDRNRPSGIPERFS





GSNSGNTATLTISRAQAGDEADYYCQVWDS





NPVVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





65E3
L25
32
SYELTQPLSVSVALGQTARITCGGNNIGSKN





VHWYQQKPGQAPVLVIYRDRNRPSGIPERFS





GSNSGNTATLTISRAQAGDEADYYCQVWDS





STVVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





67G8
L28
33
SYELTQPLSVSVALGQTARITCGGNNIGSYN





VFWYQQKPGQAPVLVIYRDSKRPSGIPERFS





GSNSGNTATLTISRAQAGDEADYHCQVWDS





STVVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





65B7v1
L29
34
EIVLTQSPGTLSLSPGERATLSCRASQSVSSIY





LAWYQQKPGQAPRLLIYGASSRATGIPDRFS





GSGSGTDFTLTISRLEPEDFAVYYCQQYGSSC





SFGQGTKLEIKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC





65B7v2
L107
1841
DVVMTQSPLSLPVTLGQPASISYRSSQSLVYS





DGDTYLNWFQQRPGQSPRRLIYKVSNWDSG





VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC





MQGTHWRGWTFGQGTKVEIKRTVAAPSVFI





FPPSDEQLKSGTASVVCLLNNFYPREAKVQ





WKVDNALQSGNSQESVTEQDSKDSTYSLSS





TLTLSKADYEKHKVYACEVTHQGLSSPVTK





SFNRGEC





63B6
L4
35
EIVLTQSPGTLSLSPGERATLSCRASQSVSNS


64D4


YLAWYQQKPGQAPRLLIYGAFSRATGIPDRF





SGSGSGTDFTLTISRLEPEDFAVYYCQQFGRS





FTFGGGTKVEIRRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





63F5
L14
36
EVVLTQSPGTLSLSPGERATLSCRASQTVRN





NYLAWYQQQPGQAPRLLIFGASSRATGIPDR





FSGSGSGTDFTLTISRLEPEDFAVYYCQQFGS





SLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





65E8
L3
37
EIVLTQSPGTLSLSPGERATLSCRASQSVRNS


63H11


YLAWYQQQPGQAPRLLIYGAFSRASGIPDRF


64E6


SGSGSGTDFTLTISRLEPEDFAVYYCQQFGSS


67G7


LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS


65F11


GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





65C1
L16
38
EIVLTQSPGTLSLSPGERATLSCRASQTIRNSY





LAWYQQQPGQAPRLLIYGAFSRATGIPDRFS





GGGSGTDFTLTISRLEPEDFAVYYCQQFGSSL





TFGGGTKVEIKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC





66F6
L15
39
EIVLTQSPGTLSLSPGERATLSCRASQSVRNS





YLAWYQQQPGQAPRLLIYGAFSRATGIPDRF





SGSGSGTDFTLTISRLEPEDFAVYYCQQFGSS





LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





64A6
L30
40
EILMTQSPATLSVSPGERATLSCRASQSVNSN





LAWYQQKPGQAPRLLIYGTSTRATGVPARF





GGSGSGTEFTLTISSLQSEDFAFYYCQQYNT





WPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQ





LKSGTASVVCLLNNFYPREAKVQWKVDNAL





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD





YEKHKVYACEVTHQGLSSPVTKSFNRGEC





65F9
L31
41
EILMTQSPATLSVSPGERATLSCRASQSVSSN





LAWYQQKPGQSPRLLIYGASTRATGIPARFG





GSGSGTDFTLTISSLQSEDFAFYYCQQYNTW





PWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





64A7
L17
42
EIVLTQSPGTLSLSPGERATLSCRASQSVSRN





YLAWYQQKPGQAPRLLIYGASSRATGVPDR





FSGSGSGTDFTLTISRLEPEDFAVYYCQQYGS





SSLCSFGQGTNLDIRRTVAAPSVFIFPPSDEQL





KSGTASVVCLLNNFYPREAKVQWKVDNAL





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD





YEKHKVYACEVTHQGLSSPVTKSFNRGEC





65C3
L5
43
EMVMTQSPATLSVSPGERATLSCRASQSVSS


68D5


QLAWYQEKPGRAPRLLIYGASNRAIDIPARL





SGSGSGTEFTLTISSLQSEDFAVYYCQQYNN





WPWTFGQGTKVEFKRTVAAPSVFIFPPSDEQ





LKSGTASVVCLLNNFYPREAKVQWKVDNAL





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD





YEKHKVYACEVTHQGLSSPVTKSFNRGEC





67F5
L32
44
EIVMTQSPATLSVSPGERVTLSCRASQSVSSN





LAWYQQKPGQAPRLLIHGSSNRAIGIPARFS





GSGSGTEFTLTISSLQSADFAVYNCQQYEIWP





WTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





64B10v1
L33
45
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNN


64B10v2


YVAWYQQLPGTAPKLLIYDNDKRPSGIPDRF





SGSKSGTSATLGITGLQTGDEADYYCGTWDS





SLSAVVFGGGTKLTVLGQPKANPTVTLFPPS





SEELQANKATLVCLISDFYPGAVTVAWKAD





GSPVKAGVETTKPSKQSNNKYAASSYLSLTP





EQWKSHRSYSCQVTHEGSTVEKTVAPTECS





68C8
L34
46
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNN





YVSWYQQLPGTAPKLLIYDNNKRPSGIPDRF





SGSKSGTSATLGITGLQTGDEADYYCGTWDS





SLSAVVFGGGTKLTVLGQPKANPTVTLFPPS





SEELQANKATLVCLISDFYPGAVTVAWKAD





GSPVKAGVETTKPSKQSNNKYAASSYLSLTP





EQWKSHRSYSCQVTHEGSTVEKTVAPTECS





67A5
L35
47
DIVMTQTPLSLPVTPGEPASISCRSSQSLLNSD





DGNTYLDWYLQKPGQSPQLLIYTLSYRASG





VPDRFSGTGSGTEFTLKISRVEAEDVGVYYC





MQRLEFPITFGQGTRLEIKRTVAAPSVFIFPPS





DEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLS





KADYEKHKVYACEVTHQGLSSPVTKSFNRG





EC





67C10
L36
48
DFVMTQTPLSLPVTPGEPASISCRSSQSLLNS





DDGNTYLDWYLQKPGQSPQLLIYTLSYRAS





GVPDRFSGSGSGTDFTLKISRVEAEDVGVYY





CMQRIEFPITFGQGTRLEIKRTVAAPSVFIFPP





SDEQLKSGTASVVCLLNNFYPREAKVQWKV





DNALQSGNSQESVTEQDSKDSTYSLSSTLTL





SKADYEKHKVYACEVTHQGLSSPVTKSFNR





GEC





64H6
L37
49
SYELTQPLSVSVALGQTARITCGGNNIGSKN





VHWYQQKPGQAPVVVIYRDSKRPSGIPERFS





GSNSGNTATLTISRAQAGDEADYYCQVWDS





SPVVFGGGTKLTVLGQPKANPTVTLFPPSSEE





LQANKATLVCLISDFYPGAVTVAWKADGSP





VKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





63F9
L38
50
DIQMTQSPSSLSVSVGDRVTITCRASQDIRND





LAWYQQTPGKAPKRLIYASSSLQSGVPSRFS





GTGSGTEFTLTISSLQPEDFATYFCLQRNSYP





LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





67F6v1
L39
51
DIVMTQTPLSLPVIPGEPASIFCRSSQSLLNSD





AGTTYLDWYLQKPGQSPQLLIYTLSFRASGV





PDRFSGSGSGTDFTLKITRVEAEDVGVYYCM





QRIEFPITFGQGTRLEIKRTVAAPSVFIFPPSDE





QLKSGTASVVCLLNNFYPREAKVQWKVDN





ALQSGNSQESVTEQDSKDSTYSLSSTLTLSK





ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





67F6v2
L108
1842
DIVMTQTPLSLPVIPGEPASIFCRSSQSLLNSD





AGTTYLDWYLQKPGRSPQLLIYTLSFRASGV





PDRFSGSGSGTDFTLKITRVEAEDVGVYYCM





QRIEFPITFGQGTRLEIKRTVAAPSVFIFPPSDE





QLKSGTASVVCLLNNFYPREAKVQWKVDN





ALQSGNSQESVTEQDSKDSTYSLSSTLTLSK





ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





48C9
L78
52
DIQMTQSPSSLSASIGDRVTITCRASQNIRTYL


49A12


NWYQQKPGKAPKLLIYVASSLESGVPSRFSG


51E2


TGSGTDFALTISSLQPEDFATYYCQQSDSIPR





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC





48F3
L77
53
DIQMTQSPSSLSASVGDRVTITCRASQRISSY





LNWYQQKPGKAPKFLIYAVSSLQSGVPSRFS





GSGSGTDFTLTISSLEPEDFATYYCQQSYSAT





FTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





48F8
L49
54
EIVLTQSPDFQSVTPKEKVTITCRASQDIGNS


53B9


LHWYQQKPDQSPKLLIKFASQSFSGVPSRFS


56B4


GSGSGTDFALTINSLEAEDAATYYCHQSSDL


57E7


PLTFGGGTKVDIKRTVAAPSVFIFPPSDEQLK


57F11


SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





48H11
L40
55
DIQMTQSPSSLSTSVGDRVTITCRASQNIRSY





LNWYQLKPGKAPKVLIYGASNLQSGVPSRFS





GSGSGTDFTLTISNLQSEDFAIYYCQQSYNTP





CSFGQGTKLEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





49A10
L65
56
DIVMTQTPLSLPVTPGEPASISCRSSQSLLDSD


48D4


DGNTYLDWYLQKPGQSPQLLIYTLSYRASG





VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC





MQRIEFPITFGQGTRLEIKRTVAAPSVFIFPPS





DEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLS





KADYEKHKVYACEVTHQGLSSPVTKSFNRG





EC





49C8
L45
57
DIQMTQSPSSLSASVGDRVTFTCQASQDINIY


52H1


LNWYQQKPGKAPKLLIYDVSNLETGVPSRFS





GSGSGTDFTFTISSLQPEDIATYFCQQYDNLP





FTFGPGTKVDLKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





49G2
L66
58
DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSD


50C12


DGDTYLDWYLQKPGQSPQLLIYTLSYRASG


55G11


VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC





MQHIEFPSTFGQGTRLEIKRTVAAPSVFIFPPS





DEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLS





KADYEKHKVYACEVTHQGLSSPVTKSFNRG





EC





49G3
L47
59
DIQMTQSPSSLSASIGDRVTITCQASQGISNYL





NWYQQKPGKAPKLLIYDASNLETGVPSRFSG





SGSGTDFTFTISSLQPEDIATYYCHQYDDLPL





TFGGGTKVEIRRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC





49H12
L43
60
DIQMTQSPSSLSASVGDRVTITCQASQDITKY





LNVVYQQKPGKAPKLLIYDTFILETGVPSRFS





GSGSGTDFTFTISSLQPEDIATYYCQQYDNLP





LTFGQGTRLEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





51A8
L61
61
NFILTQPHSVSESPGKTVTISCTRSSGSIASDY





VQWYQQRPGSSPTTVIYEDKERSSGVPDRFS





GSIDSSSNSASLTISGLKTEDEADYYCQSYDR





NNHVVFGGGTKLTVLGQPKANPTVTLFPPSS





EELQANKATLVCLISDFYPGAVTVAWKADG





SPVKAGVETTKPSKQSNNKYAASSYLSLTPE





QWKSHRSYSCQVTHEGSTVEKTVAPTECS





51C10.1
L55
62
SYELTQPPSVSVSPGQTARITCSGDALPKKYA





YWYQQKSGQAPVLVIYEDSKRPSGIPERFSG





SISGTMATLTISGAQVEDEADYYCYSTDSSV





NHVVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





51C10.2
L70
63
SYDLTQPPSVSVSPGQTASITCSGDELGDKY





ACWYQQKPGQSPVLVIYQDTKRPSGIPERFS





GSNSGNTATLTISGTQAMDEADYYCQAWDS





GTVVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





51E5
L79
64
DIQMTQSPSSLSASVGDRVTITCRASQDIRND





LGWYQQKPGKAPNRLIYAASSLQFGVPSRFS





GSGSGTEFTLTISSLQPEDFATYYCLQHSSYP





LTFGGGTRVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





51G2
L51
65
DIQMTQSPSSVSASVGDRVTITCRASQGISSW





LAWYQQKPGKAPKLLIYDASSLQSGVPSRFS





GSGSGTDFTLTISSLQPEDFATYYCQQTNSFP





PWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





52A8
L41
66
DIQMTQSPSFLSASVGDRVTITCRASQTISSY





LNWHQQKPGKAPKLLIYAASSLQSGVPSRFS





GSGSGTDFSLTISSLQPEDFATYYCQQSYSTP





LTFGGGTKVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





52B8
L82
67
EVVLTQSPATLSVSPGGRATLSCRASQSVSDI





LAWYQQKPGQAPRLLIYGASTRATGIPARFS





GGGSGTEFTLTISSLQSEDFAVYFCQQYNNW





PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





52C1
L67
68
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGINY





VSWYQQLPGTAPKLLIYDNNKRPSGIPDRFS





GSKSGTSATLGITGLQTGDEADYCCGTWDSS





LSAVVFGGGTKLTVLGQPKANPTVTLFPPSS





EELQANKATLVCLISDFYPGAVTVAWKADG





SPVKAGVETTKPSKQSNNKYAASSYLSLTPE





QWKSHRSYSCQVTHEGSTVEKTVAPTECS





52F8
L42
69
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSN





GYNYLDWYLQKPGQSPQLLIYLGSNRASGV





PDRFSGRGSGTDFSLKISRVEAEDVGIYYCM





QALQTPFTFGPGTNVDIKQTVAAPSVFIFPPS





DEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLS





KADYEKHKVYACEVTHQGLSSPVTKSFNRG





EC





52H2
L84
70
ENVLTQSPGTLSLSPGERATLSCRASQSVRSS





YLAWYQQRPGQAPRLLIFGASRRATGIPDRF





SGSGSGTDFTLTISRLEPEDFAVYYCQQYGSS





PRSFGQGTKLEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





53F6
L63
71
DIVMTQSPLSLPVTPGEPASISCRSSQSLQHSN





GYNYLDWYLQKPGQSPQLLIYLDSNRASGV





PDRFSGSGSGTDFTLKISRVEAEDIGVYYCM





QGLQTPPTFGGGTKVEIKRTVAAPSVFIFPPS





DEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLS





KADYEKHKVYACEVTHQGLSSPVTKSFNRG





EC





53H5.2
L62
72
DIQMTQSPSSLSASVGDRVTITCRASQGIRND





LGWYQQKPGKAPKRLIYAASSLQSGVPSRFS





GSGSGTEFTLTISSLQPEDFATYYCLQHKSYP





FTFGPGTKMDIKGTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





53H5.3
L80
73
EIVMTQSPVTLSVSPGERAIISCRASQSVSSNV





AWYQQKPGQTPRLLIYGASTRATGLPTRFSG





SGSGTVFTLTISSLQPEDFAVYYCQQFSNSITF





GQGTRLEIKRTVAAPSVFIFPPSDEQLKSGTA





SVVCLLNNFYPREAKVQWKVDNALQSGNS





QESVTEQDSKDSTYSLSSTLTLSKADYEKHK





VYACEVTHQGLSSPVTKSFNRGEC





54A1
L44
74
DIQMAQSPSSLSASVGDRVTITCQASQDISIY


55G9


LNWYQLKPGKAPKLLIYDVSNLETGVPSRFS





GGGSGTDFTFTISSLQPEDIATYYCQQYDNLP





LTFGPGTKVDIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





54H10.1
L53
75
EIVVTQSPGTLSLSVGERAILSCRASQSFSSSY


55D1


LAWYQQKPGQAPRLLIYGASSRATGIPDRFS


48H3


GSGSGTDFTLTISRLEPEDFAVYYCQQYGSSR


53C11


TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC





55D3
L71
76
DIQMTQSPSSLSVSVGDRVTITCRASQDISNY





LAWFQQKPGKAPKSLIYAASSLQSGVPSKFS





GSGSGTDFTLTISSLQPEDFATYYCQQYNIYP





RTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





55E4
L75
77
DIQMTQSPSSLSTSIGDRITITCRASQSISNYLN


49B11


WFQQIPGKAPRLLIYTASSLQSGVPSRFSGSG


50H10


SGTDFTLTISSLQPEDFATYYCQQSSSIPWTF


53C1


GQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTA





SVVCLLNNFYPREAKVQWKVDNALQSGNS





QESVTEQDSKDSTYSLSSTLTLSKADYEKHK





VYACEVTHQGLSSPVTKSFNRGEC





55E9
L68
78
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSN





GFNYLDWYLQKPGQSPQVLIYLGSNRASGV





PDRFSGSGSGTDFTLKISRVEAEDVGIYYCM





QALQTLITFGQGTRLEIKRTVAAPSVFIFPPSD





EQLKSGTASVVCLLNNFYPREAKVQWKVDN





ALQSGNSQESVTEQDSKDSTYSLSSTLTLSK





ADYEKHKVYACEVTHQGLSSPVTKSFNRGEC





55G5
L83
79
SYELTQPPSVSVSPGQTASITCSGDNLGDKY





AFWYQQKPGQSPVLVIYQDNKRPSGIPERFS





GSNSGNTATLTISGTQAVDEADYYCQAWDS





ATVIFGGGTKLTVLGQPKANPTVTLFPPSSEE





LQANKATLVCLISDFYPGAVTVAWKADGSP





VKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





56A7
L52
80
DIQMTQSPSSVSASVGDRVTITCRASQDISSW


56E4


LAWYQQKPGKAPKFLIYDASTLQSGVPSRFS





GSGSGADFTLTINNLQPEDFATYYCQQTNSF





PPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQL





KSGTASVVCLLNNFYPREAKVQWKVDNAL





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD





YEKHKVYACEVTHQGLSSPVTKSFNRGEC





56C11
L64
81
SYVLTQPPSVSVAPGQAARITCGGNDIGSKS





VHWYQQKPGQAPVLVVYDDSDRPSGIPERF





SGSKSGNTATLIISRVEAGEEADYYCQVWDS





SSDVVFGGGTKLTVLGQPKANPTVTLFPPSS





EELQANKATLVCLISDFYPGAVTVAWKADG





SPVKAGVETTKPSKQSNNKYAASSYLSLTPE





QWKSHRSYSCQVTHEGSTVEKTVAPTECS





56E7
L86
82
DLQMTQSPSSLSASVGDRVTITCQASQDIKK





FLNWYQQKPGKAPNLLIYDASNLETGVPSRF





SGSGSGTDFTFTISSLQPEDIATYYCQQYAILP





FTFGPGTTVDIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





56G1
L76
83
DIQMTQSPSSLSASVGDRVTITCRASQSISNY





LNWFLQIPGKAPKLLIYAASSLQSGVPSRFSG





SGSGTDFTLTINSLQPEDFGTYYCQQSSTIPW





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC





56G3.3
L81
84
EIVLTQSPGTLSLSPGERATLSCRASQSVSRD


55B10


YLAWYRQKPGQAPRLLVYGASARATGIPDR





FSGSGSGTDFTLTISRLEPEDFAVYYCQQYGR





SLFTFGPGTKVDIKRTVAAPSVFIFPPSDEQL





KSGTASVVCLLNNFYPREAKVQWKVDNAL





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD





YEKHKVYACEVTHQGLSSPVTKSFNRGEC





57B12
L72
85
DIQMTQSPSSLSVSVGDRVTITCRASHDISNY





LAWFQQKPGKAPKSLIYAASSLQSGVPSKFS





GSGSGTDFTLTISSLQPEDFATYYCQQYNTYP





RTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





57D9
L87
86
EIVLTQSPGTLSLSPGERATLSCRASPSVSSSY





LAWYQQKPAQAPRLLIYGASSRATGIPDRFS





GSGSGTDFTLTISRLEPEDFAVYYCHQYGTSP





CSFGQGTKLEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





59A10
L48
87
DIQMTQSPSSVSASVGDRVTITCRASQGISSW


49H4


LAWYQQKPGKAPKLLIYGASSLQSGVPSRFS





GSGSGTDFTLTISSLQPEDFATYYCQQTNSFP





PWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





59C9
L50
88
DIQMTQSPSSVSASVGDRVTITCRASQDIDS


58A5


WLVWYQQKPGKAPNLLIYAASNLQRGVPSR


57A4


FSGSGSGTDFTLTIASLQPEDFATYYCQQTNS


57F9


FPPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQ





LKSGTASVVCLLNNFYPREAKVQWKVDNAL





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD





YEKHKVYACEVTHQGLSSPVTKSFNRGEC





59G10.2
L60
89
SYELSQPPSVSVSPGQTVSITCSGDNLGDKYA





CWYQQRPGQSPVLVIYQDTKRPSGIPERFSG





SNSGNTATLTISGTQAMDEADYYCQAWDSS





TTWVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





59G10.3
L54
90
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGDN





YVSWYQQFPGTAPKLLIYDNNKRPSGIPDRF





SGSKSGTSATLGITGLQTGDEADYYCGTWDS





SLSVMVFGGGTKLTVLGQPKANPTVTLFPPS





SEELQANKATLVCLISDFYPGAVTVAWKAD





GSPVKAGVETTKPSKQSNNKYAASSYLSLTP





EQWKSHRSYSCQVTHEGSTVEKTVAPTECS





60D7
L69
91
DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSD





DGDTYLDWYLQKPGQSPQLLIYTLSYRASG





VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC





MQRIEFPLTFGGGTKVEIKRTVAAPSVFIFPPS





DEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLS





KADYEKHKVYACEVTHQGLSSPVTKSFNRG





EC





60F9
L58
92
EIMLTQSPGTLSLSPGERATLSCRASQRVPSS


48B4


YIVWYQQKPGQAPRLLIYGSSNRATGIPDRF


52D6


SGSGSGTDFTLTIGRLEPEDFAVYYCQQYGS





SPPWTFGQGTKVAIKRTVAAPSVFIFPPSDEQ





LKSGTASVVCLLNNFYPREAKVQWKVDNAL





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD





YEKHKVYACEVTHQGLSSPVTKSFNRGEC





60G5.2
L46
93
SYELTQPPSVSVSPGQTASITCSGNKLGDKY





VCWYQQKPGQSPVLVIYQDSKRPSGIPERFS





GSNSGNTATLTISGTQALDEADYYCQAWDS





STWVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





61G5
L59
94
EIMLTQSPGTLSLSPGERATLSCRASQRVPSS





YLVWYQQKPGQAPRLLIYGASNRATGIPDRF





SGSGSGTDFTLTIGRLEPEDFAVYYCQQYGS





SPPWTFGQGTKVAIKRTVAAPSVFIFPPSDEQ





LKSGTASVVCLLNNFYPREAKVQWKVDNAL





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD





YEKHKVYACEVTHQGLSSPVTKSFNRGEC





52C5
L73
95
DIQMTQSPSSLSASIGDRVTITCRASQSISNYL





NWFQQIPGKAPRLLIYAASSLQSGVPSRFSGS





GSGTDFTLTISSLQPEDFAIYYCQQSSSIPWTF





GQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTA





SVVCLLNNFYPREAKVQWKVDNALQSGNS





QESVTEQDSKDSTYSLSSTLTLSKADYEKHK





VYACEVTHQGLSSPVTKSFNRGEC





61H5
L88
96
EIVLTQSPGTLSLSPGERATLSCRASQSVSRD


52B9


YLAWYRQKPGQAPRLLIYGASSRATGIPDRF





SGSGSGTDFTLTISRLEPEDFAVYYCQQYGRS





LFTFGPGTTVDIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





59D10v1
L56
97
SYELTQPPSVSVSPGQTARITCSGDAVPKKY





ANWYQQKSGQAPVLVIYEDSKRPSGIPERFS





GSSSGTMATLTISGAQVEDEADYYCYSTDSS





GNHVVFGGGTKLTVLGQPKANPTVTLFPPSS





EELQANKATLVCLISDFYPGAVTVAWKADG





SPVKAGVETTKPSKQSNNKYAASSYLSLTPE





QWKSHRSYSCQVTHEGSTVEKTVAPTECS





59D10v2
L57
98
SYELTQPPSVSVSPGQTASITCSGDKLGDKY





VCWYQQMPGQSPVLVIHQNNKRPSGIPERFS





GSNSGNTATLTISGTQAMDEADYYCQAWDS





STAVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





56G3.2
L85
99
ETVMTQSPATLSVSPGERATLSCRARQSVGS





NLIWYQQKPGQAPRLLIFGASSRDTGIPARFS





GSGSGTEFTLTISSLQSEDFAVYYCQQYNNW





PLTFGGGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





68G5
L13
100
SYELTQPLSVSVALGQTARLTCGGNNIGSIN





VHWYQQKPGQAPVLVIYRDRNRPSGIPERFS





GSNSGNTATLTISRAQAGDEADYYCQLWDS





STVVFGGGTKLTVLGQPKANPTVTLFPPSSE





ELQANKATLVCLISDFYPGAVTVAWKADGS





PVKAGVETTKPSKQSNNKYAASSYLSLTPEQ





WKSHRSYSCQVTHEGSTVEKTVAPTECS





60G5.1
L74
1843
DIQMTQSPSSLSASIGDRVTITCRASQSISNYL





NWFQQIPGKAPRLLIYAASSLQSGVPSRFSGS





GSGTDFTLTISSLQPEDFATYYCQQSSSIPWT





FGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGT





ASVVCLLNNFYPREAKVQWKVDNALQSGN





SQESVTEQDSKDSTYSLSSTLTLSKADYEKH





KVYACEVTHQGLSSPVTKSFNRGEC





48G4
L89
101
EIVLTQSPGTLSLSPGERATLSCRASQSVASS


53C3.1


YLVWYQQKPGQAPRLLIYGAFSRATGIPDRF





SGSGSGTDFTLTIRRLEPEDFAVYYCQQYGT





SPFTFGPGTKVDLKRTVAAPSVFIFPPSDEQL





KSGTASVVCLLNNFYPREAKVQWKVDNAL





QSGNSQESVTEQDSKDSTYSLSSTLTLSKAD





YEKHKVYACEVTHQGLSSPVTKSFNRGEC





50G1
L90
102
DIVMTQTPLSLPVSPGEPASISCRSSQSLLDSD





DGDTYLDWYLQKPGQSPQLLIYTLSYRASG





VPDRFSVSGSGTDFTLKISRVEAEDVGVYYC





MQRIEFPLTFGGGTKVEIKRTVAAPSVFIFPPS





DEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLS





KADYEKHKVYACEVTHQGLSSPVTKSFNRG





EC





58C2
L91
103
EIVMTQTPLSLPVTPGEPASISCRSSQSLFDND





DGDTYLDWYLQKPGQSPQLLIYTLSYRASG





VPDRFSGSGSGTDFTLKISRVEAEDVGVYYC





MQRLEFPITFGQGTRLEIKRTVAAPSVFIFPPS





DEQLKSGTASVVCLLNNFYPREAKVQWKVD





NALQSGNSQESVTEQDSKDSTYSLSSTLTLS





KADYEKHKVYACEVTHQGLSSPVTKSFNRG





EC





50D4
L92
104
DIQMTQSPSSLSASVGDRVTITCRASQDISNY





LAWYQQKPGKVPTLLIYAASTLLSGVPSRFS





GSGSGTDFTLTISSLQPEDVAAYYCQKYYSA





PFTFGPGTKVDINRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





50G5v1
L93
105
DIQMTQSPSSLSASVGDRVTITCRASQGIRND





LGWYQQKPGKAPNRLIYAASSLQSGVPSRFS





GSGSGTEFTLTISSLQPEDFATYYCLQHNSYP





RTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKS





GTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





50G5v2
L94
106
DVVMTQCPLSLPVTLGQPASISCRSSQRLVY





SDGNTYLNWVQQRPGQSPRRLIYKVSNWDS





GVPDRFSGSGSGTDFTLKISRVEAEDVGVNY





CMEGTHWPRDFGQGTRLEIKRTVAAPSVFIF





PPSDEQLKSGTASVVCLLNNFYPREAKVQW





KVDNALQSGNSQESVTEQDSKDSTYSLSSTL





TLSKADYEKHKVYACEVTHQGLSSPVTKSF





NRGEC





51C1
L95
107
DIQMTQSPSSLSASIGDRVTITCRASQSISNYL





NWFQQIPGKAPRLLIYAASSLQSGVPSRFSGS





GSGTDFTLTISSLQPEDFATYYCQQSSSIPWT





FGQGTTVEIKRTVAAPSVFIFPPSDEQLKSGT





ASVVCLLNNFYPREAKVQWKVDNALQSGN





SQESVTEQDSKDSTYSLSSTLTLSKADYEKH





KVYACEVTHQGLSSPVTKSFNRGEC





53C3.2
L96
108
DIVMTQSPATLSVSPGERATLSCRASQSISSN





LAWYQQTPGQAPRLLIYGTSIRASTIPARFSG





SGSGTEFTLTISSLQSEDFAIYYCHQYTNWPR





TFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC





54H10.3
L97
109
DIQMTQSPSSLSASVGDRVTITCRASQTISIYL





NWYQQKPGKAPKFLIYSASSLQSGVPSRFSG





SGSGTDFTLTISSLQPEDFSTYFCQQSYSSPLT





FGGGTKVEIKRTVAAPSVFIFPPSDEQLKSGT





ASVVCLLNNFYPREAKVQWKVDNALQSGN





SQESVTEQDSKDSTYSLSSTLTLSKADYEKH





KVYACEVTHQGLSSPVTKSFNRGEC





55A7
L98
110
DIQMTQSPSSLSASVGDRVTITCRASQSISSYL





NWYQQKPGKAPKLLIYAASSLQSGVPSRFSG





SGSGTDFTLTISSLQPEDFATYYCQQTYSAPF





TFGPGTKVDIKRTVAAPSVFIFPPSDEQLKSG





TASVVCLLNNFYPREAKVQWKVDNALQSG





NSQESVTEQDSKDSTYSLSSTLTLSKADYEK





HKVYACEVTHQGLSSPVTKSFNRGEC





55E6
L99
111
EIVLTQSPGTLSLSPGERATLSCRASQSVSRS





HLAWYQQNSGQAPRLLIYGASSRATGIPDRF





SGSGSGTDFTLTISRLEPEDFAVYYCQQYGSS





PWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLK





SGTASVVCLLNNFYPREAKVQWKVDNALQS





GNSQESVTEQDSKDSTYSLSSTLTLSKADYE





KHKVYACEVTHQGLSSPVTKSFNRGEC





61E1
L100
112
DIQMTQSPSSLSASIRDRVTITCRASQSIGTFL





NWYQQKPGTAPKLLIYAASSLQSGVPSRFSG





SGSGTDFTLTISSLHPEDFASYYCQQSFSTPLT





FGGGTKVEITRTVAAPSVFIFPPSDEQLKSGT





ASVVCLLNNFYPREAKVQWKVDNALQSGN





SQESVTEQDSKDSTYSLSSTLTLSKADYEKH





KVYACEVTHQGLSSPVTKSFNRGEC
















TABLE 1B







Exemplary Antibody Heavy Chain Sequences










Contained

SEQ ID



in Clone
Designation
NO:
Amino Acid Sequence













63E6
H6
113
QVQLMQSGAEVKKPGASVKVSCKASGYTFTG


66F7


YYMHWVRQAPGQGLEWMGWMNPNSGATKY





AQKFQGRVTMTRDTSISTAYMELSRLRSDDTA





VYYCARELGDYPFFDYWGQGTLGIVSSASTKG





PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV





SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV





ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV





TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK





PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC





KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR





EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYTQKSLSLSPGK





66D4
H17
114
QVQLVQSGAEVKKPGASVKVSCRASGYTFTG





YYIHWMRQAPGHGLEWMGWINPPSGATNYA





QKFRGRVAVTRDTSISTVYMELSRLRSDDTAV





YYCARETGTWNFFDYWGQGTLVTVSSASTKG





PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV





SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV





ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV





TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK





PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC





KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR





EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYTQKSLSLSPGK





66B4
H10
115
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG





YYLHWVRQAPGQGLEWMGWINPNSGGTDYA





QKFQGRVTMTRDTSISTAYMELSRLRSDDTAV





YYCVGDAATGRYYFDNWGQGTLVTVSSASTK





GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT





VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT





VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC





CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP





EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK





TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK





CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS





REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ





PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ





QGNVFSCSVMHEALHNHYTQKSLSLSPGK





65B1
H18
116
QVQLVQSGAEVKRPGASVKVSCKASGYTFTG





YFMHWVRQAPGQGLEWMGWINPNSGATNYA





QKFHGRVTMTRDTSITTVYMELSRLRSDDTAV





YYCTRELGIFNWFDPWGQGTLVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





65B4
H20
117
EVQLVESGGGLVQPGGSLRLSCAASGFAFSSY





DMHWVRQATGKGLEWVSTIDTAGDAYYPGSV





KGRFTISRENAKTSLYLQMNSLRAGDTAVYYC





TRDRSSGRFGDFYGMDVWGQGTAVTVSSAST





KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





67A4
H19
118
EVQLEESGGGLVQPGGSLRLSCAASGFTFRTYD





MHWVRQVTGKGLEWVSAIGIAGDTYYSDSVK





GRFTISRENAKNSLYLQMNSLRVGDTAVYYCA





RDRSSGRFGDYYGMDVWGQGTTVTVSSASTK





GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT





VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT





VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC





CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP





EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK





TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK





CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS





REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ





PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ





QGNVFSCSVMHEALHNHYTQKSLSLSPGK





63A10v1
H21
119
EVQLVESGGDLVKPGGSLRLSCAVSGITFSNA


63A10v2


WMSWVRQAPGKGLEWVGRIKSKTDGGTTDY


63A10v3


AAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTA





VYYCTTDSSGSYYVEDYFDYWGQGTLVTVSS





ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYF





PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS





SVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTV





ERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMI





SRTPEVTCVVVDVSHEDPEVQFNWYVDGVEV





HNAKTKPREEQFNSTFRVVSVLTVVHQDWLN





GKEYKCKVSNKGLPAPIEKTISKTKGQPREPQV





YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK





65H11v1
H22
120
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNA


65H11v2


WMSWVRQAPGKGLEWVGRIIGKTDGGTTDYA





APVKGRFTISRDDSKNTLYLQMNSLKTEDTAV





YYCTSDSSGSYYVEDYFDYWGQGTLVAVSSAS





TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





67G10v1
H9
121
EVQLVESGGGLVKPGGSLRLACAASGITFNNA


67G10v2


WMSWVRQAPGKGLEWVGRIKSKTDGGTTDY





AAPVKGRFTISRDDSKSILYLQMNSLKSEDTAV





YYCTTDSSGSYYVEDYFDYWGQGTLVTVSSAS





TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





64C8
H23
122
QVQLVESGGGVVQPGRSLRLSCVASGFTFSSY





GMHWVRQDPGKGLEWVAVISYDGSNKHYAD





SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY





YCARELLWFGEYGVDHGMDVWGQGTTVTVS





SASTKGPSVFPLAPCSRSTSESTAALGCLVKDY





FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKT





VERKCCVECPPCPAPPVAGPSVFLFPPKPKDTL





MISRTPEVTCVVVDVSHEDPEVQFNWYVDGVE





VHNAKTKPREEQFNSTFRVVSVLTVVHQDWL





NGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQ





VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK





63G8v1
H1
123
QAQLVESGGGVVQPGRSLRLSCAASGFTFSSY


63G8v2


GIHWVRQAPGKGLEWVAVISYDGSNKYYADS


63G8v3


VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY


68D3v1


CATTVTKEDYYYYGMDVWGQGTTVTVSSAST


64A8


KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP


67B4


VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





68D3v2
H95
1844
QAQLVESGGGVVQPGRSLRLSCAASGFTFSSY





GMHWVRQAPGKGLEWVAFISYAGSNKYY





ADSVKGRFTISRDNSKNTLYLQMSSLRAEDTA





VYYCATTVTEEDYYYYGMDVWGQGTTVT





VSSASTKGPSVFPLAPCSRSTSESTAALGCLVK





DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL





YSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV





DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVQFNWYVD





GVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD





WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR





EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI





AVEWESNGQPENNYKTTPPMLDSDGSFFLYSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGK





66G2
H11
124
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY





GMHWVRQAPGKGLEWVAGISYDGSNKNYAD





SVKGRITISRDNPKNTLYLQMNSLRAEDTAVY





YCATTVTKEDYYYYGMDVWGQGTTVTVSSAS





TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





65D1
H26
125
QVQLVESGGGVVQPGRSLRLSCAASGFTFSYY





YIHWVRQAPGKGLEWVALIWYDGSNKDYADS





VKGRFTISRDNSKNTLYLHVNSLRAEDTAVYY





CAREGTTRRGFDYWGQGTLVTVSSASTKGPSV





FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSW





NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS





NFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





64H5
H7
126
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY





GMHWVRQAPGKGLEWVAVIWDDGSNKYYAD





SVKGRFTISRDNSKNTLSLQMNSLRAEDTAVY





YCAREYVAEAGFDYWGQGTLVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





65D4
H25
127
QEQLVESGGGVVQPGRSLRLSCAVSGFTFSFYG





MHWVRQAPGKGLEWVAVIWYDGSNKYYADS





VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY





CTRALNWNFFDYWGQGTLVTVSSASTKGPSVF





PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWN





SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSN





FGTQTYTCNVDHKPSNTKVDKTVERKCCVECP





PCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCV





VVDVSHEDPEVQFNWYVDGVEVHNAKTKPRE





EQFNSTFRVVSVLTVVHQDWLNGKEYKCKVS





NKGLPAPIEKTISKTKGQPREPQVYTLPPSREEM





TKNQVSLTCLVKGFYPSDIAVEWESNGQPENN





YKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNV





FSCSVMHEALHNHYTQKSLSLSPGK





65E3
H24
128
QVQLVESGGGVVQPGRSLRLSCAASGFTLSNY





NMHWVRQAPGKGLEWVAVLWYDGNTKYYA





DSVKGRVTISRDNSKNTLYLQMNSLRAEDTAV





YYCARDVYGDYFAYWGQGTLVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





65G4
H8
129
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY





GMHWVRQAPGKGLEWVAVIWDDGSNKYY





ADSVKGRFTISRDNSKNTLSLQMNSLRAEDTA





VYYCAREYVAEAGFDYWGQGTLVTVSSASTK





GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT





VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT





VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC





CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP





EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK





TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK





CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS





REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ





PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ





QGNVFSCSVMHEALHNHYTQKSLSLSPGK





68G5
H12
130
QVQLVESGGGVVQPGRSLRLSCTASGFTFSSYG





MHWVRQAPGKGLEWVAVIWYDGSNKYHADS





VKGRFTISRDDSKNALYLQMNSLRAEDTAVYY





CVRDPGYSYGHFDYWGQGTLVTVSSASTKGPS





VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





67G8
H27
131
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY





GMHWVRQAPGKGLEWVAVIWYDGSNKDYAD





SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY





YCARSAVALYNWFDPWGQGTLVTVSSASTKG





PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV





SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV





ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV





TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK





PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC





KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR





EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYTQKSLSLSPGK





65B7v1
H28
132
QVQLQESGPGLVNPSQTLSLTCTVSGGSISSDA


65B7v2


YYWSWIRQHPGKGLEWIGYIFYSGSTYYNPSL





KSRVTISVDTSKNRFSLKLSSVTAADTAVYYCA





RESRILYFNGYFQHWGQGTLVTVSSASTKGPS





VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





63B6
H4
133
QVQLQESGPGLVKPSQTLSLTCAVSGGSISSGD


64D4


YYWSWIRQHPGKGLEWIGYIYYSGTTYYNPSL





KSRVTISVDTSKNQFSLKLTSVTAADTAVYYC





ARMTTPYWYFGLWGRGTLVTVSSASTKGPSVF





PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWN





SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSN





FGTQTYTCNVDHKPSNTKVDKTVERKCCVECP





PCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCV





VVDVSHEDPEVQFNWYVDGVEVHNAKTKPRE





EQFNSTFRVVSVLTVVHQDWLNGKEYKCKVS





NKGLPAPIEKTISKTKGQPREPQVYTLPPSREEM





TKNQVSLTCLVKGFYPSDIAVEWESNGQPENN





YKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNV





FSCSVMHEALHNHYTQKSLSLSPGK





63F5
H13
134
QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGD





YYWTWIRQHPGKDLEWITYIYYSGSAYYNPSL





KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA





RMTTPYWYFDLWGRGTLVTVSSASTKGPSVFP





LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF





GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP





CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





63H11
H3
135
QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGD





YYWTWIRQHPGKGLEWIAYIYYSGSTYYNPSL





KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA





RMTTPYWYFDLWGRGTLVTVSSASTKGPSVFP





LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF





GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP





CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





64E6
H2
136
QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGD


65E8


YYWTWIRQHPGKGLEWIAYIYYTGSTYYNPSL


65F11


KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA


67G7


RMTTPYWYFDLWGRGTLVTVSSASTKGPSVFP





LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF





GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP





CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





65C1
H15
137
QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGD





YYWTWIRQHPGKGLEWIAYIFYSGSTYYNPSL





KSRVTISLDTSKNQFSLKLNSVTAADTAVYYC





ARMTSPYWYFDLWGRGTLVTVSSASTKGPSVF





PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWN





SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSN





FGTQTYTCNVDHKPSNTKVDKTVERKCCVECP





PCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCV





VVDVSHEDPEVQFNWYVDGVEVHNAKTKPRE





EQFNSTFRVVSVLTVVHQDWLNGKEYKCKVS





NKGLPAPIEKTISKTKGQPREPQVYTLPPSREEM





TKNQVSLTCLVKGFYPSDIAVEWESNGQPENN





YKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNV





FSCSVMHEALHNHYTQKSLSLSPGK





66F6
H14
138
QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGD





YYWTWIRHHPGKGLEWIAYIYYSGSTYYNPSL





KSRVTISVDTSKNQFSLKLNSVTAADTAVYYC





ARMTTPYWYFDLWGRGTLVTVSSASTKGPSVF





PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWN





SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSN





FGTQTYTCNVDHKPSNTKVDKTVERKCCVECP





PCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCV





VVDVSHEDPEVQFNWYVDGVEVHNAKTKPRE





EQFNSTFRVVSVLTVVHQDWLNGKEYKCKVS





NKGLPAPIEKTISKTKGQPREPQVYTLPPSREEM





TKNQVSLTCLVKGFYPSDIAVEWESNGQPENN





YKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNV





FSCSVMHEALHNHYTQKSLSLSPGK





64A6
H29
139
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG





YYWSWIRQRPGKGLEWVGYIYYSGGTHYNPS





LKSRVTISIDTSENQFSLKLSSVTAADTAVYYC





ARVLHYSDSRGYSYYSDFWGQGTLVTVSSAST





KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





65F9
H30
140
QVQLQESGPGLVKPSQTLSLTCTLSGGSFSSGD





YYWSWIRQHPGKGLEWIGYIYYSGSTYYNPSL





KSRVTISIDTSKNQFSLKLTSVTAADTAVYYCA





RVLHYYDSSGYSYYFDYWGQGTLVTVSSAST





KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





64A7
H16
141
QLQLQESGPGLVKPSETLSLTCTVSGGSISSDTS





YWGWIRQPPGKGLEWIGNIYYSGTTYFNPSLK





SRVSVSVDTSKNQFSLKLSSVTAADTAVFYCA





RLRGVYWYFDLWGRGTLVTVSSASTKGPSVFP





LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF





GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP





CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





65C3
H5
142
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY


68D5


WSWIRQPPGKGLEWIGYIYYTGSTNYNPSLKSR





VTISVDTSKNQFSLKLSSVTAADTAVYYCARE





YYYGSGSYYPWGQGTLVTVSSASTKGPSVFPL





APCSRSTSESTAALGCLVKDYFPEPVTVSWNSG





ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFG





TQTYTCNVDHKPSNTKVDKTVERKCCVECPPC





PAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





67F5
H31
143
QVQLKESGPGLVKPSETLSLTCTVSGGSISSYY





WSWIRQPPGKGLEWIGYIYYSGNTNYNPSLKS





RVTISVDTSKNQFSLKLSSVTAADTAVYYCARE





YYYGSGSYYPWGQGTLVTVSSASTKGPSVFPL





APCSRSTSESTAALGCLVKDYFPEPVTVSWNSG





ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFG





TQTYTCNVDHKPSNTKVDKTVERKCCVECPPC





PAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





64B10v1
H32
144
QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDY





YWSWIRQPPGKGLEWIGFIYYSGGTNYNPSLKS





RVTISIDTSKNQFSLKLNSVTAADTAVYYCARY





SSTWDYYYGVDVWGQGTTVTVSSASTKGPSV





FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSW





NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS





NFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





64B10v2
H96
1845
QVQLLESGPGLVKPSETLSLTCTVSGGSVSSGD





YYWSWIRQPPGKGLEWIGFIYYSGGTNYNPPL





KSRVTISIDTSKNQFSLKLSSVTAADTAVYYCA





RYSSTWDYYYGVDVWGQGTTVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





68C8
H33
145
QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGD





NYWSWIRQPPGKGLEWIGFMFYSGSTNYNPSL





KSRVTISLHTSKNQFSLRLSSVTAADTAVYYCG





RYRSDWDYYYGMDVWGQGTTVTVSSASTKG





PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV





SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV





ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV





TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK





PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC





KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR





EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYTQKSLSLSPGK





67A5
H34
146
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY





WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSF





QGQVTISADKSINTAYLQWSSLKASDTAIYFCA





RRASRGYRFGLAFAIWGQGTMVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





67C10
H35
147
EVQLVQSGAEVKKPGESLKISCQGSGYSFSSY





WIGWVRQMPGKGLEWMGIIYPGDSDTRYSPSF





QGQVTISADKSINTAYLQWSSLKASDTAIYYCA





RRASRGYRYGLAFAIWGQGTMVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





64H6
H36
148
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSY





WIGWVRQMPGKGLEWMGIIYPGDSETRYSPSF





QGQVTISADKSISTAYLQWNSLKTSDTAMYFC





ATVAVSAFNWFDPWGQGTLVTVSSASTKGPSV





FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSW





NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS





NFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





63F9
H37
149
QVQLKESGPGLVKPSQTLSLTCTVSGGSISSGG





YYWNWIRQHPGKGLEWIGYIYDSGSTYYNPSL





KSRVTMSVDTSKNQFSLKLSSVTAADTAVYYC





ARDVLMVYTKGGYYYYGVDVWGQGTTVTVS





SASTKGPSVFPLAPCSRSTSESTAALGCLVKDY





FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKT





VERKCCVECPPCPAPPVAGPSVFLFPPKPKDTL





MISRTPEVTCVVVDVSHEDPEVQFNWYVDGVE





VHNAKTKPREEQFNSTFRVVSVLTVVHQDWL





NGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQ





VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK





67F6v1
H38
150
EVQLVQSGAEVKKPGESLKISCKGSGYSFTGY


67F6v2


WIGWVRQLPGKGLEWMGIIYPGDSDTRYSPSF





QGQVTISVDKSINTAYLQWSSLKASDTAMYYC





ARRASRGYSYGHAFDFWGQGTMVTVSSASTK





GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT





VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT





VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC





CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP





EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK





TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK





CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS





REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ





PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ





QGNVFSCSVMHEALHNHYTQKSLSLSPGK





48C9
H73
151
QVQLQQWGAGLLKPSETLSLTCSVYGGSFSGY


49A12


YWTWIRQPPGKGLEWIGEINHSENTNYNPSLKS


51E2


RVTISIDTSKNQFSLKLSSVTAADTAVYYCARE





SGNFPFDYWGQGTLVTVSSASTKGPSVFPLAPC





SRSTSESTAALGCLVKDYFPEPVTVSWNSGALT





SGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQT





YTCNVDHKPSNTKVDKTVERKCCVECPPCPAP





PVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDV





SHEDPEVQFNWYVDGVEVHNAKTKPREEQFN





STFRVVSVLTVVHQDWLNGKEYKCKVSNKGL





PAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQ





VSLTCLVKGFYPSDIAVEWESNGQPENNYKTT





PPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCS





VMHEALHNHYTQKSLSLSPGK





48F3
H72
152
QVQLQQWGAGPLKPSETLSLTCAVYGGSISGY





YWSWIRQPPGKGLEWIGEITHTGSSNYNPSLKS





RVTISVDTSKNQFSLKLSSVTAADTAVYYCAR





GGILWFGEQAFDIWGQGTMVTVSSASTKGPSV





FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSW





NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS





NFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





48F8
H48
153
EVQLVESGGGLVKPGGSLRLSCTASGFTFRSYS


53B9


MNWVRQAPGKGLEWVSSISSSSSYEYYVDSVK


56B4


GRFTISRDIAKSSLWLQMNSLRAEDTAVYYCA


57E7


RSLSIAVAASDYWGKGTLVTVSSASTKGPSVFP


57F11


LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF





GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP





CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





48H11
H39
154
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG





YYKHWVRQAPGQGLEWMGWINPNSGATKYA





QKFQGRVTMTRDTSISTVYMELSRLRSVDTAL





YYCAREVPDGIVVAGSNAFDFWGQGTMVTVS





SASTKGPSVFPLAPCSRSTSESTAALGCLVKDY





FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKT





VERKCCVECPPCPAPPVAGPSVFLFPPKPKDTL





MISRTPEVTCVVVDVSHEDPEVQFNWYVDGVE





VHNAKTKPREEQFNSTFRVVSVLTVVHQDWL





NGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQ





VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK





49A10
H62
155
QVHLVESGGGVVQPGRSLRLSCAASGFTFSNY


48D4


GMHWVRQAPGKGLEWVAIIWYDGSNKNYAD





SVKGRFTISRDNSKNTLYLEMNSLRAEDTAVY





YCARDQDYDFWSGYPYFYYYGMDVWGQGTT





VTVSSASTKGPSVFPLAPCSRSTSESTAALGCLV





KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG





LYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV





DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVQFNWYVD





GVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD





WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR





EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI





AVEWESNGQPENNYKTTPPMLDSDGSFFLYSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGK





49C8
H44
156
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY


52H1


DIDWVRQATGQGLEWMGWMNPNGGNTGYA





QKFQGRVTMTRNTSINTAYMELSSLRSEDTAIY





YCARGKEFSRAEFDYWGQGTLVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





49G2
H63
157
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY


50C12


GMRWVRQAPGKGLEWVALIWYDGSNKFYAD


55G11


SVKGRFTISRDNSKNTLNLQMNSLRAEDTAVY





YCARDRYYDFWSGYPYFFYYGLDVWGQGTTV





TVSSASTKGPSVFPLAPCSRSTSESTAALGCLVK





DYFPEPVTVSWNSGALTSGVHTFPAVLQSSGL





YSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV





DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVQFNWYVD





GVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD





WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR





EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI





AVEWESNGQPENNYKTTPPMLDSDGSFFLYSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGK





49G3
H46
158
QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPR





MGVSWIRQPPGKALEWLTHIFSNDEKSYSTSLK





SRLTISKDTSKSQVVLSMTNMDPVDTATYYCV





RVDTLNYHYYGMDVWGQGTTVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





49H12
H42
159
QVQLVQSGAEVKKPGASVKVSCMASGYIFTSY





DINWVRQATGQGPEWMGWMNPYSGSTGYAQ





NFQGRVTMTRNTSINTAYMELSSLRSEDTAVY





YCAKYNWNYGAFDFWGQGTMVTVSSASTKG





PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV





SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV





ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV





TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK





PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC





KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR





EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYTQKSLSLSPGK





51A8
H58
160
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY





GMHWVRQAPGKGLEWVAVISYDGSNKYYAD





SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY





YCARADGDYPYYYYYYGMDVWGQGTTVTVS





SASTKGPSVFPLAPCSRSTSESTAALGCLVKDY





FPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSL





SSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKT





VERKCCVECPPCPAPPVAGPSVFLFPPKPKDTL





MISRTPEVTCVVVDVSHEDPEVQFNWYVDGVE





VHNAKTKPREEQFNSTFRVVSVLTVVHQDWL





NGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQ





VYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK





51C10.2
H67
161
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGG





YYWSWIRQHPGKGLEWIGYIYYNGSPYDNPSL





KRRVTISIDASKNQFSLKLSSMTAADTAVYYCA





RGALYGMDVWGQGTTVTVSSASTKGPSVFPL





APCSRSTSESTAALGCLVKDYFPEPVTVSWNSG





ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFG





TQTYTCNVDHKPSNTKVDKTVERKCCVECPPC





PAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





51E5
H74
162
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY





YWSWIRQPPGKGLEWIGELDHSGSINYNPSLKS





RVTISVDTSKNQFSLKLTSVTAADTAVYYCAR





VLGSTLDYWGQGTLVTVSSASTKGPSVFPLAP





CSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL





TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQ





TYTCNVDHKPSNTKVDKTVERKCCVECPPCPA





PPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD





VSHEDPEVQFNWYVDGVEVHNAKTKPREEQF





NSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG





LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN





QVSLTCLVKGFYPSDIAVEWESNGQPENNYKT





TPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSC





SVMHEALHNHYTQKSLSLSPGK





51G2
H50
163
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS





MNWVRQAPGKGLEWVSSISSSSTYIYYADSVK





GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA





RDTYISGWNYGMDVWGQGTTVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





52A8
H40
164
QVQLVQSGAEVKKPGASVKVSCKASGYTFTG





YYLHWVRQAPGQGLEWMGWINPNSAATNYA





PKFQGRVTVTRDTSISTAYMELSRLRSDDTAVY





YCAREGGTYNWFDPWGQGTLVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





52B8
H77
165
QVQLQESGPGLMKPSETLSLTCTVSGGSISYYY





WSWIRQSPGKGLEWIGYIYYSGSTNYNPSLKSR





VTMSVDTSKNQFSLKLSSVTAADTAVYYCASG





TRAFDIWGQGTMVTVSSASTKGPSVFPLAPCSR





STSESTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYT





CNVDHKPSNTKVDKTVERKCCVECPPCPAPPV





AGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH





EDPEVQFNWYVDGVEVHNAKTKPREEQFNSTF





RVVSVLTVVHQDWLNGKEYKCKVSNKGLPAP





IEKTISKTKGQPREPQVYTLPPSREEMTKNQVS





LTCLVKGFYPSDIAVEWESNGQPENNYKTTPP





MLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV





MHEALHNHYTQKSLSLSPGK





52C1
H64
166
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY





GMHWVRQAPGKGLEWVAVIWYDGSNNYYAD





SVKGRFTISRDNSKSTLFLQMNSLRAEDTAIYY





CARDRAGASPGMDVWGQGTTVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





52F8
H41
167
QVQLVQSGAEVKKPGASVKVSCKASGFTFIGY





YTHWVRQAPGQGLEWMGWINPSSGDTKYAQ





KFQGRVTLARDTSISTAYMELSRLRSDDTAVY





YCANSGWYPSYYYGMDVWGQGTTVTVSSAST





KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





52H2
H79
168
QVQLQESGPGLVKPSETLSLTCTVSGGSISTYY





WSWIRQPPGTGLEWIGYIFYNGNANYSPSLKSR





VTFSVDTSKNQFSLKLSSVTAADTAVYFCARET





DYGDYARPFEYWGQGTLVTVSSASTKGPSVFP





LAPCSRSTSESTAALGCLVKDYFPEPVTVSWNS





GALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNF





GTQTYTCNVDHKPSNTKVDKTVERKCCVECPP





CPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





53F6
H60
169
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTY





GMHWVRQAPGKGLEWVAVIWYDGSNKYYAD





SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY





YCARGHYDSSGPRDYWGQGTLVTVSSASTKG





PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV





SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV





ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV





TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK





PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC





KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR





EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYTQKSLSLSPGK





53H5.2
H59
170
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY





GMHWVRQAPGQGLEWVALISYDGSNKYYAD





SVKGRFTISRDKSKNTLYLQMNSLRAEDTAVY





YCAREANWGYNYYGMDVWGQGTTVTVSSAS





TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





53H5.3
H75
171
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDY





YWNWIRQPPGKGPEWIGEINHSGTTNYNPSLK





SRVTISVDTSKNQFSLKLSSVTAADTAVYYCVG





ILRYFDWLEYYFDYWGQGTLVTVSSASTKGPS





VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





54A1
H43
172
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY


55G9


DINWVRQATGQGLEWMGWMNPHSGNTGYAQ





KFQGRVTMTRNTSINTAYMELSSLRSEDTAVY





YCAKYNWNYGAFDFWGQGTMVTVSSASTKG





PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV





SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV





ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV





TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK





PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC





KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR





EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYTQKSLSLSPGK





54H10.1
H52
173
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA


55D1


MSWVRQAPGKGLEWVSAISGSGRTTYSADSV


48H3


KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC


53C11


AKEQQWLVYFDYWGQGTLVTVSSASTKGPSV





FPLAPCSRSTSESTAALGCLVKDYFPEPVTVSW





NSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSS





NFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





55D3
H68
174
QVQLQESGPGLVKPSQTLSLTCTVSGGSITSGV





YYWNWIRQHPGKGLEWIGYLYYSGSTYYNPS





LKSRLTISADMSKNQFSLKLSSVTVADTAVYY





CARDGITMVRGVTHYYGMDVWGQGTTVTVSS





ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYF





PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS





SVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTV





ERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMI





SRTPEVTCVVVDVSHEDPEVQFNWYVDGVEV





HNAKTKPREEQFNSTFRVVSVLTVVHQDWLN





GKEYKCKVSNKGLPAPIEKTISKTKGQPREPQV





YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK





55E4
H70
175
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY


52C5


YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS


60G5.1


RVTISLDTSNDQFSLRLTSVTAADTAVYYCARV


49B11


TGTDAFDFWGQGTMVTVSSASTKGPSVFPLAP


50H10


CSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL


53C1


TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQ





TYTCNVDHKPSNTKVDKTVERKCCVECPPCPA





PPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD





VSHEDPEVQFNWYVDGVEVHNAKTKPREEQF





NSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG





LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN





QVSLTCLVKGFYPSDIAVEWESNGQPENNYKT





TPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSC





SVMHEALHNHYTQKSLSLSPGK





55E9
H65
176
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSFG





MHWVRQAPGKGLEWVALIWYDGDNKYYADS





VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY





CARNSGWDYFYYYGMDVWGQGTTVTVSSAS





TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





55G5
H78
177
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY





WSWIRQPAGKGLEWIGRIYISGSTNYNPSLENR





VTMSGDTSKNQFSLKLNSVTAADTAVYYCAG





SGSYSFDYWGQGTLVTVSSASTKGPSVFPLAPC





SRSTSESTAALGCLVKDYFPEPVTVSWNSGALT





SGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQT





YTCNVDHKPSNTKVDKTVERKCCVECPPCPAP





PVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDV





SHEDPEVQFNWYVDGVEVHNAKTKPREEQFN





STFRVVSVLTVVHQDWLNGKEYKCKVSNKGL





PAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQ





VSLTCLVKGFYPSDIAVEWESNGQPENNYKTT





PPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCS





VMHEALHNHYTQKSLSLSPGK





50G1
H84
178
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY





GLHWVRQAPGKGLEWVAVIWNDGSNKLYAD





SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY





YCARDQYYDFWSGYPYYHYYGMDVWGQGTT





VTVSSASTKGPSVFPLAPCSRSTSESTAALGCLV





KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG





LYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV





DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVQFNWYVD





GVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD





WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR





EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI





AVEWESNGQPENNYKTTPPMLDSDGSFFLYSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGK





56A7
H51
179
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS


56E4


MNWVRQAPGKGLEWVSSISSSSTYIYYADSVK





GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA





RDIYSSGWSYGMDVWGQGTTVTVSSASTKGPS





VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





56C11
H61
180
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSY





GMHWVRQAPGKGLEWVAVIWYDGSYQFYAD





SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY





YCARDHVWRTYRYIFDYWGQGTLVTVSSAST





KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





56E7
H81
181
EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYW





IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQ





GQVTISADTSISTAYLQWSRLKASDTAVYYCA





RAQLGIFDYWGQGTLVTVSSASTKGPSVFPLAP





CSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL





TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQ





TYTCNVDHKPSNTKVDKTVERKCCVECPPCPA





PPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD





VSHEDPEVQFNWYVDGVEVHNAKTKPREEQF





NSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG





LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN





QVSLTCLVKGFYPSDIAVEWESNGQPENNYKT





TPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSC





SVMHEALHNHYTQKSLSLSPGK





56G1
H71
182
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY





YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS





RVTISLDTSNKQFSLRLTSVTAADTAVYYCARV





TGTDAFDFWGQGTMVTVSSASTKGPSVFPLAP





CSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL





TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQ





TYTCNVDHKPSNTKVDKTVERKCCVECPPCPA





PPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD





VSHEDPEVQFNWYVDGVEVHNAKTKPREEQF





NSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG





LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN





QVSLTCLVKGFYPSDIAVEWESNGQPENNYKT





TPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSC





SVMHEALHNHYTQKSLSLSPGK





56G3.3
H76
183
QLQLQESGPGLVKPSETLSLTCTVSGDSISSSSY


55B10


YWGWIRQPPGKGLEWIGMIYYSGTTYYNPSLK





SRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR





VAAVYWYFDLWGRGTLVTVSSASTKGPSVFPL





APCSRSTSESTAALGCLVKDYFPEPVTVSWNSG





ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFG





TQTYTCNVDHKPSNTKVDKTVERKCCVECPPC





PAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





57B12
H69
184
QVQLQESGPGLVKPSQTLSLTCTVSGGSITSGV





YYWSWIRQLPGKGLEWIGYIYYSGSTYYNPSL





KSRLTISADTSKNQFSLKLSSVTVADTAVYYCA





RDGITMVRGVTHYYGMDVWGQGTTVTVSSAS





TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





57D9
H82
185
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNS





ATWNWIRQSPSRGLEWLGRTYYRSKWYNDYA





VSVKSRITINPDTSKNQFSLQLNSVTPEDTAVY





YCVGIVVVPAVLFDYWGQGTLVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





58C2
H85
186
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY





GMHWVRQAPGKGLEWVAVIWNDGNNKYYA





DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAV





YYCARDQNYDFWNGYPYYFYYGMDVWGQG





TTVTVSSASTKGPSVFPLAPCSRSTSESTAALGC





LVKDYFPEPVTVSWNSGALTSGVHTFPAVLQS





SGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNT





KVDKTVERKCCVECPPCPAPPVAGPSVFLFPPK





PKDTLMISRTPEVTCVVVDVSHEDPEVQFNWY





VDGVEVHNAKTKPREEQFNSTFRVVSVLTVVH





QDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQ





PREPQVYTLPPSREEMTKNQVSLTCLVKGFYPS





DIAVEWESNGQPENNYKTTPPMLDSDGSFFLY





SKLTVDKSRWQQGNVFSCSVMHEALHNHYTQ





KSLSLSPGK





59A10
H47
187
QVQVVESGGGLVKPGGSLRLSCAASGFTFSDS


49H4


YMSWIRQAPGKGLEWISSISSSGSIVYFADSVK





GRFTISRDIAKNSLYLHMNSLRAEDTAVYYCA





RETFSSGWFDAFDIWGQGTMVTVSSASTKGPS





VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





59C9
H49
188
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS


58A5


MSWVRQAPGKGLEWVSSISSSSTYIYYADSLK


57A4


GRFTISRDNAKNSLFLQVNSLRAEDSAVYYCA


57F9


RDRWSSGWNEGFDYWGQGTLVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





59G10.2
H57
189
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNY





GMHWVRQAPGKGLEWVAITSYGGSNKNYAD





SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVY





YCAREAGYSFDYWGQGTLVTVSSASTKGPSVF





PLAPCSRSTSESTAALGCLVKDYFPEPVTVSWN





SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSN





FGTQTYTCNVDHKPSNTKVDKTVERKCCVECP





PCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCV





VVDVSHEDPEVQFNWYVDGVEVHNAKTKPRE





EQFNSTFRVVSVLTVVHQDWLNGKEYKCKVS





NKGLPAPIEKTISKTKGQPREPQVYTLPPSREEM





TKNQVSLTCLVKGFYPSDIAVEWESNGQPENN





YKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNV





FSCSVMHEALHNHYTQKSLSLSPGK





59G10.3
H53
190
EVQLLGSGGGLVQPGGSLRLSCAASGFTFNHY





AMSWVRQAPGKGLEWVSAISGSGAGTFYADS





MKGRFTISRDNSENTLHLQMNSLRAEDTAIYY





CAKDLRIAVAGSFDYWGQGTLVTVSSASTKGP





SVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK





60D7
H66
191
QVQLVESGGGVVQPGRSLRLSCAASGFNFSSY





GMHWVRQAPGKGLEWVAVIWYDGSNKYYAD





SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVF





YCARDQYFDFWSGYPFFYYYGMDVWGQGTT





VTVSSASTKGPSVFPLAPCSRSTSESTAALGCLV





KDYFPEPVTVSWNSGALTSGVHTFPAVLQSSG





LYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV





DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPK





DTLMISRTPEVTCVVVDVSHEDPEVQFNWYVD





GVEVHNAKTKPREEQFNSTFRVVSVLTVVHQD





WLNGKEYKCKVSNKGLPAPIEKTISKTKGQPR





EPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDI





AVEWESNGQPENNYKTTPPMLDSDGSFFLYSK





LTVDKSRWQQGNVFSCSVMHEALHNHYTQKS





LSLSPGK





60F9
H55
192
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA


48B4


MSWVRQAPGKGLEWVSVISDSGGSTYYADSV


52D6


KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC





AKDHSSGWYYYGMDVWGQGTTVTVSSASTK





GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT





VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT





VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC





CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP





EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK





TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK





CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS





REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ





PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ





QGNVFSCSVMHEALHNHYTQKSLSLSPGK





60G5.2
H45
193
QVQLVQSGAEVKTPGASVRVSCKASGYTFTNY





GISWVRQAPGQGLEWMGWISAYNGYSNYAQK





FQDRVTMTTDTSTSTAYMELRSLRSDDTAVYY





CAREEKQLVKDYYYYGMDVWGQGSTVTVSS





ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYF





PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS





SVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTV





ERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMI





SRTPEVTCVVVDVSHEDPEVQFNWYVDGVEV





HNAKTKPREEQFNSTFRVVSVLTVVHQDWLN





GKEYKCKVSNKGLPAPIEKTISKTKGQPREPQV





YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK





61G5
H56
194
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA





MSWVRQSPGKGLEWVSVISGSGGDTYYADSV





KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC





AKDHTSGWYYYGMDVWGQGTTVTVSSASTK





GPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVT





VSWNSGALTSGVHTFPAVLQSSGLYSLSSVVT





VPSSNFGTQTYTCNVDHKPSNTKVDKTVERKC





CVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTP





EVTCVVVDVSHEDPEVQFNWYVDGVEVHNAK





TKPREEQFNSTFRVVSVLTVVHQDWLNGKEYK





CKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS





REEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ





PENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQ





QGNVFSCSVMHEALHNHYTQKSLSLSPGK





59D10v1
H54
195
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNY


59D10v2


AMSWVRQAPGKGLEWVSGISGSSAGTYYADS


51C10.1


VKGRFTISRDNSKNTLFLQMDSLRAEDTAVYY





CAQDWSIAVAGTFDYWGQGTLVTVSSASTKG





PSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTV





SWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVP





SSNFGTQTYTCNVDHKPSNTKVDKTVERKCCV





ECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEV





TCVVVDVSHEDPEVQFNWYVDGVEVHNAKTK





PREEQFNSTFRVVSVLTVVHQDWLNGKEYKC





KVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSR





EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQP





ENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQ





GNVFSCSVMHEALHNHYTQKSLSLSPGK





56G3.2
H80
196
QVQLQESGPGLVKPSETLSLTCTVSDGSISSYY





WNWIRQPAGKGLEWIGRIYTSGSTNYNPSLKS





RVTMSVDTSKNQFSLNLTSVTAADTAVYYCAR





GPLWFDYWGQGTLVTVSSASTKGPSVFPLAPC





SRSTSESTAALGCLVKDYFPEPVTVSWNSGALT





SGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQT





YTCNVDHKPSNTKVDKTVERKCCVECPPCPAP





PVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDV





SHEDPEVQFNWYVDGVEVHNAKTKPREEQFN





STFRVVSVLTVVHQDWLNGKEYKCKVSNKGL





PAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQ





VSLTCLVKGFYPSDIAVEWESNGQPENNYKTT





PPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCS





VMHEALHNHYTQKSLSLSPGK





48G4
H83
197
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTEL


53C3.1


SIHWVRQAPGKGLEWMGGFDPEDGETIYAQKF





QGRVTMTEDTSTDTAYMELSSLRSEDTAVYYC





ATHSGSGRFYYYYYGMDVWGQGTTVTVSSAS





TKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





61H5
H86
198
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSY


52B9


YWGWIRQPPGKGLEWIGSIYYSGTTYYNPSLK





SRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR





VAAVYWYFDLWGRGTLVTVSSASTKGPSVFPL





APCSRSTSESTAALGCLVKDYFPEPVTVSWNSG





ALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFG





TQTYTCNVDHKPSNTKVDKTVERKCCVECPPC





PAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVV





VDVSHEDPEVQFNWYVDGVEVHNAKTKPREE





QFNSTFRVVSVLTVVHQDWLNGKEYKCKVSN





KGLPAPIEKTISKTKGQPREPQVYTLPPSREEMT





KNQVSLTCLVKGFYPSDIAVEWESNGQPENNY





KTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVF





SCSVMHEALHNHYTQKSLSLSPGK





50D4
H87
199
QVQLVQSGAEVKKTGASVKVSCKASGYTFTSH





DINWVRQATGHGLEWMGWMNPYSGSTGLAQ





RFQDRVTMTRNTSISTAYMELSSLRSEDTAVY





YCARDLSSGYYYYGLDVWGQGTTVTVSSAST





KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





50G5v1
H88
200
QVQLVQSGAEVKKPGASVKVSCKASGYPFIGY


50G5v2


YMHWVRQAPGQGLEWMGWINPDSGGTNYAQ





KFQGRVTMTRDTSITTAYMELSRLRSDDTAVF





YCARGGYSYGYEDYYGMDVWGQGTTVTVSS





ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYF





PEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLS





SVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTV





ERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMI





SRTPEVTCVVVDVSHEDPEVQFNWYVDGVEV





HNAKTKPREEQFNSTFRVVSVLTVVHQDWLN





GKEYKCKVSNKGLPAPIEKTISKTKGQPREPQV





YTLPPSREEMTKNQVSLTCLVKGFYPSDIAVE





WESNGQPENNYKTTPPMLDSDGSFFLYSKLTV





DKSRWQQGNVFSCSVMHEALHNHYTQKSLSL





SPGK





51C1
H89
201
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY





YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS





RVTISLDTSHDQFSLRLTSVTAADTAVYYCARV





TGTDAFDFWGQGTMVTVSSASTKGPSVFPLAP





CSRSTSESTAALGCLVKDYFPEPVTVSWNSGAL





TSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQ





TYTCNVDHKPSNTKVDKTVERKCCVECPPCPA





PPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVD





VSHEDPEVQFNWYVDGVEVHNAKTKPREEQF





NSTFRVVSVLTVVHQDWLNGKEYKCKVSNKG





LPAPIEKTISKTKGQPREPQVYTLPPSREEMTKN





QVSLTCLVKGFYPSDIAVEWESNGQPENNYKT





TPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSC





SVMHEALHNHYTQKSLSLSPGK





53C3.2
H90
202
QVQLQESGPGLVKPSQTLSLTCTVSNGSINSGN





YYWSWIRQHPGKGLEWIGYIYHSGSAYYNPSL





KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA





RTTGASDIWGQGIMVTVSSASTKGPSVFPLAPC





SRSTSESTAALGCLVKDYFPEPVTVSWNSGALT





SGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQT





YTCNVDHKPSNTKVDKTVERKCCVECPPCPAP





PVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDV





SHEDPEVQFNWYVDGVEVHNAKTKPREEQFN





STFRVVSVLTVVHQDWLNGKEYKCKVSNKGL





PAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQ





VSLTCLVKGFYPSDIAVEWESNGQPENNYKTT





PPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCS





VMHEALHNHYTQKSLSLSPGK





54H10.3
H91
203
QVQVVQSGTEVKKPGASVKVSCKASGYTFTG





YYIHWVRQAPGQGLEWMGWINPNSGGTNYA





QKFRGRVTMTRDTSISTAYMELSRLRSDDTAV





YYCAREEDYSDHHYFDYWGQGTLVTVSSAST





KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





55A7
H92
204
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYY





WSWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSR





VTISVDTSKNQFSLRLSSVTAADTAVYYCARGI





TGTIDFWGQGTLVTVSSASTKGPSVFPLAPCSR





STSESTAALGCLVKDYFPEPVTVSWNSGALTSG





VHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYT





CNVDHKPSNTKVDKTVERKCCVECPPCPAPPV





AGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH





EDPEVQFNWYVDGVEVHNAKTKPREEQFNSTF





RVVSVLTVVHQDWLNGKEYKCKVSNKGLPAP





IEKTISKTKGQPREPQVYTLPPSREEMTKNQVS





LTCLVKGFYPSDIAVEWESNGQPENNYKTTPP





MLDSDGSFFLYSKLTVDKSRWQQGNVFSCSV





MHEALHNHYTQKSLSLSPGK





55E6
H93
205
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYS





MNWVRQAPGKGLEWISYISSGSSTIYHADSVK





GRFTISRDNAKNSLYLQMNSLRDEDTAVYYCA





REGYYDSSGYYYNGMDVWGQGTTVTVSSAST





KGPSVFPLAPCSRSTSESTAALGCLVKDYFPEP





VTVSWNSGALTSGVHTFPAVLQSSGLYSLSSV





VTVPSSNFGTQTYTCNVDHKPSNTKVDKTVER





KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISR





TPEVTCVVVDVSHEDPEVQFNWYVDGVEVHN





AKTKPREEQFNSTFRVVSVLTVVHQDWLNGKE





YKCKVSNKGLPAPIEKTISKTKGQPREPQVYTL





PPSREEMTKNQVSLTCLVKGFYPSDIAVEWESN





GQPENNYKTTPPMLDSDGSFFLYSKLTVDKSR





WQQGNVFSCSVMHEALHNHYTQKSLSLSPGK





61E1
H94
206
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNS





AAWNWIRQSPSRGLEWLGRTYYRSKWYNDY





AVSVKSRITITPDTSKNQFSLQLKSVTPEDTAIY





YCAREGSWSSFFDYWGQGTLVTVSSASTKGPS





VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS





WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPS





SNFGTQTYTCNVDHKPSNTKVDKTVERKCCVE





CPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVT





CVVVDVSHEDPEVQFNWYVDGVEVHNAKTKP





REEQFNSTFRVVSVLTVVHQDWLNGKEYKCK





VSNKGLPAPIEKTISKTKGQPREPQVYTLPPSRE





EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE





NNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQG





NVFSCSVMHEALHNHYTQKSLSLSPGK









Each of the exemplary heavy chains (H1, H2, H3 etc.) listed in Table 1B, infra, can be combined with any of the exemplary light chains shown in Table 1A, infra, to form an antibody. Examples of such combinations include H1 combined with any of L1 through L100; H2 combined with any of L1 through L100; H3 combined with any of L1 through L100, and so on. In some instances, the antibodies include at least one heavy chain and one light chain from those listed in Tables 1A and 1B, infra; particular examples pairings of light chains and heavy chains include L1 with H1, L2 with H1, L3 with H2 or H3, L4 with H4, L5 with H5, L6 with H6, L7 with H6, L8 with H7 or H8, L9 with H9, L10 with H9, L11 with H10, L12 with H11, L13 with H12, L13 with H14, L14 with H13, L15 with H14, L16 with H15, L17 with H16, L18 with H17, L19 with H18, L20 with H19, L21 with H20, L22 with H21, L23 with H22, L24 with H23, L25 with H24, L26 with H25, L27 with H26, L28 with H27, L29 with H28, L30 with H29, L31 with H30, L32 with H31, L33 with H32, L34 with H33, L35 with H34, L36 with H35, L37 with H36, L38 with H37, L39 with H38, L40 with H39, L41 with H40, L42 with H41, L43 with H42, L44 with H43, L45 with H44, L46 with H45, L47 with H46, L48 with H47, L49 with H48, L50 with H49, L51 with H50, L52 with H51, L53 with H52, L54 with H53, L55 with H54, and L56 with H54, L57 with H54, L58 with H55, L59 with H56, L60 with H57, L61 with H58, L62 with H59, L63 with H60, L64 with H1, L65 with H62, L66 with H63, L67 with H64, L68 with H65, L69 with H66, L70 with H67, L71 with H68, L72 with H69, L73 with H70, L74 with H70, and L75 with H70, L76 with H71, L77 with H72, L78 with H73, L79 with H74, L80 with H75, L81 with H76, L82 with H77, L83 with H78, L84 with H79, L85 with H80, L86 with H81, L87 with H82, L88 with H86, L89 with H83, L90 with H84, L91 with H85, L92 with H87, L93 with H88, L94 with H88, L95 with H89, L96 with H90, L97 with H91, L98 with H92, L99 with H93, and L100 with H94. In addition to antigen binding proteins comprising a heavy and a light chain from the same clone, a heavy chain from a first clone can be paired with a light chain from a second clone (e.g., a heavy chain from a first clone paired with a light chain from a second clone or a heavy chain from a first clone paired with a light chain from a second clone). Generally, such pairings can include VL with 90% or greater homology can be paired with the heavy chain of the naturally occurring clone.


In some instances, the antibodies comprise two different heavy chains and two different light chains listed in Tables 1A and 1B, infra. In other instances, the antibodies contain two identical light chains and two identical heavy chains. As an example, an antibody or immunologically functional fragment can include two L1 light chains with two H1 heavy chains, two L2 light chains with two H1 heavy chains, two L3 light chains with two H2 heavy chains or two H3 heavy chains, two L4 light chains with two H4 heavy chains, two L5 light chains with two H5 heavy chains, two L6 light chains with two H6 heavy chains, two L7 light chains with two H6 heavy chains, two L8 light chains with two H7 heavy chains or two H8 heavy chains, two L9 light chains with two H9 heavy chains, two L10 light chains with two H9 heavy chains, two L11 light chains with two H10 heavy chains, two L12 light chains with two H11 heavy chains, two L13 light chains with two H12 heavy chains, two L13 light chains with two H14 heavy chains, two L14 light chains with two H13 heavy chains, two L15 light chains with two H14 heavy chains, two L16 light chains with two H15 heavy chains, two L17 light chains with two H16 heavy chains, two L18 light chains with two H17 heavy chains, two L19 light chains with two H18 heavy chains, two L20 light chains with two H19 heavy chains, two L21 light chains with two H20 heavy chains, two L22 light chains with two H21 heavy chains, two L23 light chains with two H22 heavy chains, two L24 light chains with two H23 heavy chains, two L25 light chains with two H24 heavy chains, two L26 light chains with two H25 heavy chains, two L27 light chains with two H26 heavy chains, two L28 light chains with two H27 heavy chains, two L29 light chains with two H28 heavy chains, two L30 light chains with two H29 heavy chains, two L31 light chains with two H30 heavy chains, two L32 light chains with two H31 heavy chains, two L33 light chains with two H32 heavy chains, two L34 light chains with two H33 heavy chains, two L35 chains with two H34 heavy chains, two L36 chains with two H35 heavy chains, two L37 light chains with two H36 heavy chains, two L38 light chains with two H37 heavy chains, two L39 light chains with two H38 heavy chains, two L40 light chains with two H39 heavy chains, two L41 light chains with two H40 heavy chains, two L42 light chains with two H41 heavy chains, two L43 light chains with two H42 heavy chains, two L44 light chains with two H43 heavy chains, two L45 light chains with two H44 heavy chains, two L46 light chains with two H45 heavy chains, two L47 light chains with two H46 heavy chains, two L48 light chains with two H47 heavy chains, two L49 light chains with two H48 heavy chains, two L50 light chains with two H49 heavy chains, two L51 light chains with two H50 heavy chains, two L52 light chains with two H51 heavy chains, two L53 light chains with two H52 heavy chains, two L54 light chains with two H53 heavy chains, two L55 light chains with two H54 heavy chains, and two L56 light chains with two H54 heavy chains, two L57 light chains with two H54 heavy chains, two L58 light chains with two H55 heavy chains, two L59 light chains with two H56 heavy chains, two L60 light chains with two H57 heavy chains, two L61 light chains with two H58 heavy chains, two L62 light chains with two H59 heavy chains, two L63 light chains with two H60 heavy chains, two L64 light chains with two H1 heavy chains, two L65 light chains with two H62 heavy chains, two L66 light chains with two H63 heavy chains, two L67 light chains with two H64 heavy chains, two L68 light chains with two H65 heavy chains, two L69 light chains with two H66 heavy chains, two L70 light chains with two H67 heavy chains, two L71 light chains with two H68 heavy chains, two L72 light chains with two H69 heavy chains, two L73 light chains with two H70 heavy chains, two L74 light chains with two H70 heavy chains, and two L75 light chains with two H70 heavy chains, two L76 light chains with two H71 heavy chains, two L77 light chains with two H72 heavy chains, two L78 light chains with two H73 heavy chains, two L79 light chains with two H74 heavy chains, two L80 light chains with two H75 heavy chains, two L81 light chains with two H76 heavy chains, two L82 light chains with two H77 heavy chains, two L83 light chains with two H78 heavy chains, two L84 light chains with two H79 heavy chains, two L85 light chains with two H80 heavy chains, two L86 light chains with two H81 heavy chains, two L87 light chains with two H82 heavy chains, two L88 light chains with two H86 heavy chains, two L89 light chains with two H83 heavy chains, two L90 light chains with two H84 heavy chains, two L91 light chains with two H85 heavy chains, two L92 light chains with two H87 heavy chains, two L93 light chains with two H88 heavy chains, two L94 light chains with two H88 heavy chains, two L95 light chains with two H89 heavy chains, two L96 light chains with two H90 heavy chains, two L97 light chains with two H91 heavy chains, two L98 light chains with two H92 heavy chains, two L99 light chains with two H93 heavy chains, and two L100 light chains with two H94 heavy chains, as well as other similar combinations of pairs comprising the light chains and pairs of heavy chains as listed in Tables 1A and 1B, infra.


In another aspect of the instant disclosure, “hemibodies” are provided. A hemibody is a monovalent antigen binding protein comprising (i) an intact light chain, and (ii) a heavy chain fused to an Fc region (e.g., an IgG2 Fc region of SEQ ID NO: 11), optionally via a linker, The linker can be a (G4S)x linker (SEQ ID NO: 207) where “x” is a non-zero integer (e.g., (G4S)2, (G4S)3, (G4S)4, (G4S)5, (G4S)6, (G4S)7, (G4S)8, (G4S)9, (G4S)10; SEQ ID NOs: 208-216, respectively). Hemibodies can be constructed using the provided heavy and light chain components.


Other antigen binding proteins that are provided are variants of antibodies formed by combination of the heavy and light chains shown in Tables 1A and 1B, infra and comprise light and/or heavy chains that each have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identity to the amino acid sequences of these chains. In some instances, such antibodies include at least one heavy chain and one light chain, whereas in other instances the variant forms contain two identical light chains and two identical heavy chains.


Variable Domains of Antigen Binding Proteins

Also provided are antigen binding proteins that contain an antibody heavy chain variable region selected from the group consisting of VH1, VH2, VH3, VH4, VH5, VH6, VH7, VH8, VH9, VH10, VH11, VH12, VH13, VH14, VH15, VH16, VH17, VH18, VH19, VH20, VH21 VH22, VH23, VH24, VH25, VH26, VH27, VH28, VH29, VH30, VH31, VH32, VH33, VH34, VH35, VH36, VH37, VH38, VH39, VH40, VH41, VH42, VH43, VH44, VH45, VH46, VH47, VH48, VH49, VH50, VH51, VH52, VH53, VH54, VH55, VH56, VH57, VH58, VH59, VH60, VH61, VH62, VH63, VH64, VH65, VH66, VH67, VH68, VH69, VH70, VH71, VH72, VH73, VH74, VH75, VH76, VH77, VH78, VH79, VH80, 81, VH82, VH83, VH84, VH85, VH 86, VH 87, VH88, VH89, VH90, VH91, VH92, VH93, and VH94 as shown in Table 2B and/or an antibody light chain variable region selected from the group consisting of VL1, VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VL41, VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100 as shown in Table 2A, and immunologically functional fragments, derivatives, muteins and variants of these light chain and heavy chain variable regions.









TABLE 2A







Exemplary Antibody Variable Light (VL) Chains










Contained

SEQ ID



in Clone
Designation
NO.
Amino Acid Sequence













63E6
VL6
217
DIQMTQSPSSLSASVGDRVTITCRTSQSISSYLNWY





QQKPGKAPNLLIYAASSLQSGVPSRFSGSGSGTDFT





LTISGLQPEDFSTYYCQQSYSTSLTFGGGTKVEIKR





66F7
VL7
218
DIQMTQSPSSLSASVGDRVTITCRTSQSISNYLNWY





QQKPGKAPNLLIYAASSLQSGVPSRFSGSGSGTDFT





LTISGLQPEDFSTYYCQQSYSTSLTFGGGTKVEIKR





66D4
VL18
219
DIQMTQSPSSLSASVGDRITITCRASQIISRYLNWY





QQNPGKAPKLLISAASSLQSGVPSRFSGSGSGPDFT





LTISSLQPEDFTTYYCQQSYSSPLTFGGGTKVEVKR





66B4
VL11
220
DIQMTQSPSSVSSSVGDRVTITCRASQGISRWLAW





YQQKPGKAPKLLIYAASSLKSGVPSRFSGSGSGTD





FTLTISSLQPEDFATYYCQQANSFPPTFGQGTKVEI





KR





65B1
VL19
221
DIQMTQSPSSLSASVGDRVTITCRASQNINNYLNW





YRQKPGKAPELLIYTTSSLQSGVPSRFSGSGSGTDF





TLTISSLETEDFETYYCQQSYSTPLTFGGGTKVEIKR





65B4
VL21
222
SYVLTQPPSVSVAPGQTARITCGGNNIGSKSVQWY





QQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTA





SLTISRVEAGDEADYYCQVWDSSSDHVVFGGGTK





LTVLG





67A4
VL20
223
SYVLTQPPSVSVAPGQTARITCGGNNIGSKSVHWY





QQKPGQAPVLVVYDDSDRPSGIPERFSGSNSGNTA





TLTISRVEAGDEADYYCQVWDSSSDHVVFGGGTK





LTVLG





63A10v1
VL22
224
SYELTQPHSVSVATAQMARITCGGNNIGSKAVHW





YQQKPGQDPVLVIYCDSNRPSGIPER





FSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSD





GVFGGGTKLTVLG





63A10v2
VL101
1846
SYELTQPHSVSVATAQMARITCGGNNIGSKAVHW





YQQKPGQDPVLVIYCDSNRPSGIPER





FSGSNPGNTATLTISRIEAGDEADYYCQAWDSTTV





VFGGGTKLTVLG





63A10v3
VL102
1847
SYELTQPPSVSVSPGQTANITCSGDKLGNRYTCWY





QQKSGQSPVLVIYQDSERPSGIPER





FSGSNSGNTATLTISGTQAMDEADYYCQAWDSTT





VVFGGGTKLTVLG





65H11v1
VL23
225
SYELTQPHSVSVATAQMARITCGGNNIGSKTVHW





FQQKPGQDPVLVIYSDSNRPSGIPERFSGSNPGNTA





TLTISRIEAGDEADYYCQVWDSSCDGVFGGGTKLT





VLG





65H11v2
VL103
1848
SYELTQPPSVSVSPGQTANITCSGDKLGDRYVCWY





QQKPGQSPVLVIYQDSKRPSGIPEQFSGSNSGNTAT





LTISGTQAIDEADYYCQAWDSITVVFGGGTKLTVLG





67G10v1
VL9
226
SYELTQPHSVSVATAQMARITCGGNNIGSKAVHW





YQQKPGQDPVLVIYSDSNRPSGIPERFSGSNPGNTA





TLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLT





VLG





67G10v2
VL10
227
SYELTQPPSVSVSPGQTASITCSGDKLGDKYACWY





QQKPGQSPVLVIYQDNERPSGIPERFSGSNSGNTAT





LTISGTQAMDEADYYCQAWDSTTVVFGGGTKLTV





LG





64C8
VL24
228
DVVMTQSPLSLPVTLGQPASISRRSSPSLVYSDGNT





YLNCFQQRPGHSPRRLIYKGSNWDSGVPDRFSGSG





SGTDFTLKISRVEAEDVGIYYCIQDTHWPTCSFGQ





GTKLEIKR





64A8
VL1
229
DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGW


67B4


YQQKPGKAPKRLIYAASNLQRGVPSRFSGSGSGTE





FTLTISTLQPEDFATYSCLQHNSYPLTFGGGTKVEI





KR





63G8v1
VL104
1849
DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGW





YQQKPGKAPKRLIYAASNLQRGVPSRFSGSGSGTE





FTLTISTLQPDDFATYSCLQHNSYPLTFGGGTKVEI





KR





63G8v2
VL105
1850
DIQMTQSPSSLSASVGDRVTITCRASQGIRSGLGW





YQQKPGKAPKRLIYAASNLQRGVPSRFSGSGSGTE





FTLTVSSLQPEDFATYSCLQHNSYPLTFGGGTKVEI





KR





63G8v3
VL106
1851
DIQMTQSPSSLSASVGDRVTITCRASQGIRSGLGW





YQQKPGKAPKRLIYAASNLQRGVPSRFSGSGSGTE





FTLTVSSLQPEDFATYSCLQHNTYPLTFGGGTKGEI





RR





66G2
VL12
230
DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGW





YQQKPGKAPKRLIYAASNLQSGVPSRFSGSGSGTK





FTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEI





KR





68D3v1
VL2
231
DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGW


68D3v2


YQQKPGKAPKRLIYAASNLQRGVPSRFSGSGSGTE





FTLTISTLQPDDFATYSCLQHNSYPLTFGGGTKVEI





KR





65D1
VL27
232
SYDLTQPPSVSVSPGQTASITCSGDKLGDKYVCWY





QQKPGQSPVLVIYQDSKRPSGIPERFSGSNSGNTAT





LTISGIQAMDEADYYCQAWDSRVFGGGTKLTVLG





64H5
VL8
233
SYEMTQPLSVSVALGQTARITCGGNNIGSKNVHW


65G4


YQQKPGQAPVLVIYRDSKRPSGIPERFSGSNSGNT





ATLTISRAQAGDEADYYCQVWDSSSVVFGGGTKL





TVLG





65D4
VL26
234
SYELTQPLSVSVALGQTARIPCGGNDIGSKNVHWY





QQKPGQAPVLVIYRDRNRPSGIPERFSGSNSGNTA





TLTISRAQAGDEADYYCQVWDSNPVVFGGGTKLT





VLG





65E3
VL25
235
SYELTQPLSVSVALGQTARITCGGNNIGSKNVHWY





QQKPGQAPVLVIYRDRNRPSGIPERFSGSNSGNTA





TLTISRAQAGDEADYYCQVWDSSTVVFGGGTKLT





VLG





68G5
VL13
236
SYELTQPLSVSVALGQTARLTCGGNNIGSINVHWY





QQKPGQAPVLVIYRDRNRPSGIPERFSGSNSGNTA





TLTISRAQAGDEADYYCQLWDSSTVVFGGGTKLT





VLG





67G8
VL28
237
SYELTQPLSVSVALGQTARITCGGNNIGSYNVFWY





QQKPGQAPVLVIYRDSKRPSGIPERFSGSNSGNTAT





LTISRAQAGDEADYHCQVWDSSTVVFGGGTKLTV





LG





65B7v1
VL29
238
EIVLTQSPGTLSLSPGERATLSCRASQSVSSIYLAW





YQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDF





TLTISRLEPEDFAVYYCQQYGSSCSFGQGTKLEIKR





65B7v2
VL107
1852
DVVMTQSPLSLPVTLGQPASISYRSSQSLVYSDGD





TYLNWFQQRPGQSPRRLIYKVSNWDSGVPDRFSG





SGSGTDFTLKISRVEAEDVGVYYCMQGTHWRGW





TFGQGTKVEIKR





63B6
VL4
239
EIVLTQSPGTLSLSPGERATLSCRASQSVSNSYLAW


64D4


YQQKPGQAPRLLIYGAFSRATGIPDRFSGSGSGTDF





TLTISRLEPEDFAVYYCQQFGRSFTFGGGTKVEIRR





63F5
VL14
240
EVVLTQSPGTLSLSPGERATLSCRASQTVRNNYLA





WYQQQPGQAPRLLIFGASSRATGIPDRFSGSGSGT





DFTLTISRLEPEDFAVYYCQQFGSSLTFGGGTKVEI





KR





65E8
VL3
241
EIVLTQSPGTLSLSPGERATLSCRASQSVRNSYLAW


63H11


YQQQPGQAPRLLIYGAFSRASGIPDRFSGSGSGTDF


64E6


TLTISRLEPEDFAVYYCQQFGSSLTFGGGTKVEIKR


65F11


67G7





65C1
VL16
242
EIVLTQSPGTLSLSPGERATLSCRASQTIRNSYLAW





YQQQPGQAPRLLIYGAFSRATGIPDRFSGGGSGTD





FTLTISRLEPEDFAVYYCQQFGSSLTFGGGTKVEIKR





66F6
VL15
243
EIVLTQSPGTLSLSPGERATLSCRASQSVRNSYLAW





YQQQPGQAPRLLIYGAFSRATGIPDRFSGSGSGTDF





TLTISRLEPEDFAVYYCQQFGSSLTFGGGTKVEIKR





64A6
VL30
244
EILMTQSPATLSVSPGERATLSCRASQSVNSNLAW





YQQKPGQAPRLLIYGTSTRATGVPARFGGSGSGTE





FTLTISSLQSEDFAFYYCQQYNTWPWTFGQGTKVE





IKR





65F9
VL31
245
EILMTQSPATLSVSPGERATLSCRASQSVSSNLAW





YQQKPGQSPRLLIYGASTRATGIPARFGGSGSGTDF





TLTISSLQSEDFAFYYCQQYNTWPWTFGQGTKVEI





KR





64A7
VL17
246
EIVLTQSPGTLSLSPGERATLSCRASQSVSRNYLAW





YQQKPGQAPRLLIYGASSRATGVPDRFSGSGSGTD





FTLTISRLEPEDFAVYYCQQYGSSSLCSFGQGTNLD





IRR





65C3
VL5
247
EMVMTQSPATLSVSPGERATLSCRASQSVSSQLA


68D5


WYQEKPGRAPRLLIYGASNRAIDIPARLSGSGSGTE





FTLTISSLQSEDFAVYYCQQYNNWPWTFGQGTKV





EFKR





67F5
VL32
248
EIVMTQSPATLSVSPGERVTLSCRASQSVSSNLAW





YQQKPGQAPRLLIHGSSNRAIGIPARFSGSGSGTEF





TLTISSLQSADFAVYNCQQYEIWPWTFGQGTKVEI





KR





64B10v1
VL33
249
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVA


64B10v2


WYQQLPGTAPKLLIYDNDKRPSGIPDRFSGSKSGT





SATLGITGLQTGDEADYYCGTWDSSLSAVVFGGG





TKLTVLG





68C8
VL34
250
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVS





WYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGT





SATLGITGLQTGDEADYYCGTWDSSLSAVVFGGG





TKLTVLG





67A5
VL35
251
DIVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGN





TYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGT





GSGTEFTLKISRVEAEDVGVYYCMQRLEFPITFGQ





GTRLEIKR





67C10
VL36
252
DFVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGN





TYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGS





GSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQ





GTRLEIKR





64H6
VL37
253
SYELTQPLSVSVALGQTARITCGGNNIGSKNVHWY





QQKPGQAPVVVIYRDSKRPSGIPERFSGSNSGNTA





TLTISRAQAGDEADYYCQVWDSSPVVFGGGTKLT





VLG





63F9
VL38
254
DIQMTQSPSSLSVSVGDRVTITCRASQDIRNDLAW





YQQTPGKAPKRLIYASSSLQSGVPSRFSGTGSGTEF





TLTISSLQPEDFATYFCLQRNSYPLTFGGGTKVEIKR





67F6v1
VL39
255
DIVMTQTPLSLPVIPGEPASIFCRSSQSLLNSDAGTT





YLDWYLQKPGQSPQLLIYTLSFRASGVPDRFSGSG





SGTDFTLKITRVEAEDVGVYYCMQRIEFPITFGQGT





RLEIKR





67F6v2
VL108
1853
DIVMTQTPLSLPVIPGEPASIFCRSSQSLLNSDAGTT





YLDWYLQKPGRSPQLLIYTLSFRASGVPDRFSGSG





SGTDFTLKITRVEAEDVGVYYCMQRIEFPITFGQGT





RLEIKR





48C9
VL78
256
DIQMTQSPSSLSASIGDRVTITCRASQNIRTYLNWY


49A12


QQKPGKAPKLLIYVASSLESGVPSRFSGTGSGTDF


51E2


ALTISSLQPEDFATYYCQQSDSIPRTFGQGTKVEIKR





48F3
VL77
257
DIQMTQSPSSLSASVGDRVTITCRASQRISSYLNWY





QQKPGKAPKFLIYAVSSLQSGVPSRFSGSGSGTDFT





LTISSLEPEDFATYYCQQSYSATFTFGPGTKVDIKR





48F8
VL49
258
EIVLTQSPDFQSVTPKEKVTITCRASQDIGNSLHWY


53B9


QQKPDQSPKLLIKFASQSFSGVPSRFSGSGSGTDFA


56B4


LTINSLEAEDAATYYCHQSSDLPLTFGGGTKVDIKR


57E7


57F11





48H11
VL40
259
DIQMTQSPSSLSTSVGDRVTITCRASQNIRSYLNWY





QLKPGKAPKVLIYGASNLQSGVPSRFSGSGSGTDF





TLTISNLQSEDFAIYYCQQSYNTPCSFGQGTKLEIKR





49A10
VL65
260
DIVMTQTPLSLPVTPGEPASISCRSSQSLLDSDDGN


48D4


TYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGS





GSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQ





GTRLEIKR





49C8
VL45
261
DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNW


52H1


YQQKPGKAPKLLIYDVSNLETGVPSRFSGSGSGTD





FTFTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDL





KR





49G2
VL66
262
DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDT


50C12


YLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGSG


55G11


SGTDFTLKISRVEAEDVGVYYCMQHIEFPSTFGQG





TRLEIKR





49G3
VL47
263
DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWY





QQKPGKAPKLLIYDASNLETGVPSRFSGSGSGTDF





TFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR





49H12
VL43
264
DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNW





YQQKPGKAPKLLIYDTFILETGVPSRFSGSGSGTDF





TFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR





51A8
VL61
265
NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQW





YQQRPGSSPTTVIYEDKERSSGVPDRFSGSIDSSSNS





ASLTISGLKTEDEADYYCQSYDRNNHVVFGGGTK





LTVLG





51C10.1
VL55
266
SYELTQPPSVSVSPGQTARITCSGDALPKKYAYWY





QQKSGQAPVLVIYEDSKRPSGIPERFSGSISGTMAT





LTISGAQVEDEADYYCYSTDSSVNHVVFGGGTKL





TVLG





51C10.2
VL70
267
SYDLTQPPSVSVSPGQTASITCSGDELGDKYACWY





QQKPGQSPVLVIYQDTKRPSGIPERFSGSNSGNTAT





LTISGTQAMDEADYYCQAWDSGTVVFGGGTKLT





VLG





51E5
VL79
268
DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGW





YQQKPGKAPNRLIYAASSLQFGVPSRFSGSGSGTE





FTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEI





KR





51G2
VL51
269
DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAW





YQQKPGKAPKLLIYDASSLQSGVPSRFSGSGSGTD





FTLTISSLQPEDFATYYCQQTNSFPPWTFGQGTKVE





IKR





52A8
VL41
270
DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWH





QQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFS





LTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR





52B8
VL82
271
EVVLTQSPATLSVSPGGRATLSCRASQSVSDILAW





YQQKPGQAPRLLIYGASTRATGIPARFSGGGSGTE





FTLTISSLQSEDFAVYFCQQYNNWPLTFGGGTKVE





IKR





52C1
VL67
272
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGINYVSW





YQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSA





TLGITGLQTGDEADYCCGTWDSSLSAVVFGGGTK





LTVLG





52F8
VL42
273
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGYN





YLDWYLQKPGQSPQLLIYLGSNRASGVPDRFSGR





GSGTDFSLKISRVEAEDVGIYYCMQALQTPFTFGP





GTNVDIKQ





52H2
VL84
274
ENVLTQSPGTLSLSPGERATLSCRASQSVRSSYLA





WYQQRPGQAPRLLIFGASRRATGIPDRFSGSGSGT





DFTLTISRLEPEDFAVYYCQQYGSSPRSFGQGTKLE





IKR





53F6
VL63
275
DIVMTQSPLSLPVTPGEPASISCRSSQSLQHSNGYN





YLDWYLQKPGQSPQLLIYLDSNRASGVPDRFSGSG





SGTDFTLKISRVEAEDIGVYYCMQGLQTPPTFGGG





TKVEIKR





53H5.2
VL62
276
DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGW





YQQKPGKAPKRLIYAASSLQSGVPSRFSGSGSGTE





FTLTISSLQPEDFATYYCLQHKSYPFTFGPGTKMDI





KG





53H5.3
VL80
277
EIVMTQSPVTLSVSPGERAIISCRASQSVSSNVAWY





QQKPGQTPRLLIYGASTRATGLPTRFSGSGSGTVFT





LTISSLQPEDFAVYYCQQFSNSITFGQGTRLEIKR





54A1
VL44
278
DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWY


55G9


QLKPGKAPKLLIYDVSNLETGVPSRFSGGGSGTDF





TFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR





54H10.1
VL53
279
EIVVTQSPGTLSLSVGERAILSCRASQSFSSSYLAW


55D1


YQQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDF


48H3


TLTISRLEPEDFAVYYCQQYGSSRTFGQGTKVEIKR


53C11





55D3
VL71
280
DIQMTQSPSSLSVSVGDRVTITCRASQDISNYLAWF





QQKPGKAPKSLIYAASSLQSGVPSKFSGSGSGTDFT





LTISSLQPEDFATYYCQQYNIYPRTFGQGTKVEIKR





55E4
VL75
281
DIQMTQSPSSLSTSIGDRITITCRASQSISNYLNWFQ


49B11


QIPGKAPRLLIYTASSLQSGVPSRFSGSGSGTDFTLT


50H10


ISSLQPEDFATYYCQQSSSIPWTFGQGTKVEIKR


53C1





55E9
VL68
282
DIVMTQSPLSLPVTPGEPASISCRSSQSLLHSNGFN





YLDWYLQKPGQSPQVLIYLGSNRASGVPDRFSGS





GSGTDFTLKISRVEAEDVGIYYCMQALQTLITFGQ





GTRLEIKR





55G5
VL83
283
SYELTQPPSVSVSPGQTASITCSGDNLGDKYAFWY





QQKPGQSPVLIYQDNKRPSGIPERFSGSNSGNTAT





LTISGTQAVDEADYYCQAWDSATVIFGGGTKLTV





LG





56A7
VL52
284
DIQMTQSPSSVSASVGDRVTITCRASQDISSWLAW


56E4


YQQKPGKAPKFLIYDASTLQSGVPSRFSGSGSGAD





FTLTINNLQPEDFATYYCQQTNSFPPWTFGQGTKV





EIKR





56C11
VL64
285
SYVLTQPPSVSVAPGQAARITCGGNDIGSKSVHWY





QQKPGQAPVLVVYDDSDRPSGIPERFSGSKSGNTA





TLIISRVEAGEEADYYCQVWDSSSDVVFGGGTKLT





VLG





56E7
VL86
286
DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNW





YQQKPGKAPNLLIYDASNLETGVPSRFSGSGSGTD





FTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR





56G1
VL76
287
DIQMTQSPSSLSASVGDRVTITCRASQSISNYLNWF





LQIPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFT





LTINSLQPEDFGTYYCQQSSTIPWTFGQGTKVEIKR





56G3.3
VL81
288
EIVLTQSPGTLSLSPGERATLSCRASQSVSRDYLAW


55B10


YRQKPGQAPRLLVYGASARATGIPDRFSGSGSGTD





FTLTISRLEPEDFAVYYCQQYGRSLFTFGPGTKVDI





KR





57B12
VL72
289
DIQMTQSPSSLSVSVGDRVTITCRASHDISNYLAWF





QQKPGKAPKSLIYAASSLQSGVPSKFSGSGSGTDFT





LTISSLQPEDFATYYCQQYNTYPRTFGQGTKVEIKR





57D9
VL87
290
EIVLTQSPGTLSLSPGERATLSCRASPSVSSSYLAW





YQQKPAQAPRLLIYGASSRATGIPDRFSGSGSGTDF





TLTISRLEPEDFAVYYCHQYGTSPCSFGQGTKLEIKR





59A10
VL48
291
DIQMTQSPSSVSASVGDRVTITCRASQGISSWLAW


49H4


YQQKPGKAPKLLIYGASSLQSGVPSRFSGSGSGTD





FTLTISSLQPEDFATYYCQQTNSFPPWTFGQGTKVE





IKR





59C9
VL50
292
DIQMTQSPSSVSASVGDRVTITCRASQDIDSWLVW


58A5


YQQKPGKAPNLLIYAASNLQRGVPSRFSGSGSGTD


57A4


FTLTIASLQPEDFATYYCQQTNSFPPWTFGQGTKV


57F9


EIKR





59G10.2
VL60
293
SYELSQPPSVSVSPGQTVSITCSGDNLGDKYACWY





QQRPGQSPVLVIYQDTKRPSGIPERFSGSNSGNTAT





LTISGTQAMDEADYYCQAWDSSTTWVFGGGTKL





TVLG





59G10.3
VL54
294
QSVLTQPPSVSAAPGQKVTISCSGSSSNIGDNYVS





WYQQFPGTAPKLLIYDNNKRPSGIPDRFSGSKSGT





SATLGITGLQTGDEADYYCGTWDSSLSVMVFGGG





TKLTVLG





60D7
VL69
295
DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDT





YLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGSG





SGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGG





TKVEIKR





60F9
VL58
296
EIMLTQSPGTLSLSPGERATLSCRASQRVPSSYIVW


48B4


YQQKPGQAPRLLIYGSSNRATGIPDRFSGSGSGTDF


52D6


TLTIGRLEPEDFAVYYCQQYGSSPPWTFGQGTKVA





IKR





60G5.2
VL46
297
SYELTQPPSVSVSPGQTASITCSGNKLGDKYVCWY





QQKPGQSPVLVIYQDSKRPSGIPERFSGSNSGNTAT





LTISGTQALDEADYYCQAWDSSTWVFGGGTKLTV





LG





61G5
VL59
298
EIMLTQSPGTLSLSPGERATLSCRASQRVPSSYLVW





YQQKPGQAPRLLIYGASNRATGIPDRFSGSGSGTD





FTLTIGRLEPEDFAVYYCQQYGSSPPWTFGQGTKV





AIKR





52C5
VL73
299
DIQMTQSPSSLSASIGDRVTITCRASQSISNYLNWF





QQIPGKAPRLLIYAASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFAIYYCQQSSSIPWTFGQGTKVEIKR





61H5
VL88
300
EIVLTQSPGTLSLSPGERATLSCRASQSVSRDYLAW


52B9


YRQKPGQAPRLLIYGASSRATGIPDRFSGSGSGTDF





TLTISRLEPEDFAVYYCQQYGRSLFTFGPGTTVDIKR





59D10v1
VL56
301
SYELTQPPSVSVSPGQTARITCSGDAVPKKYANWY





QQKSGQAPVLVIYEDSKRPSGIPERFSGSSSGTMAT





LTISGAQVEDEADYYCYSTDSSGNHVVFGGGTKL





TVLG





59D10v2
VL57
302
SYELTQPPSVSVSPGQTASITCSGDKLGDKYVCWY





QQMPGQSPVLVIHQNNKRPSGIPERFSGSNSGNTA





TLTISGTQAMDEADYYCQAWDSSTAVFGGGTKLT





VLG





56G3.2
VL85
303
ETVMTQSPATLSVSPGERATLSCRARQSVGSNLIW





YQQKPGQAPRLLIFGASSRDTGIPARFSGSGSGTEF





TLTISSLQSEDFAVYYCQQYNNWPLTFGGGTKVEI





KR





48G4
VL89
304
EIVLTQSPGTLSLSPGERATLSCRASQSVASSYLVW


53C3.1


YQQKPGQAPRLLIYGAFSRATGIPDRFSGSGSGTDF





TLTIRRLEPEDFAVYYCQQYGTSPFTFGPGTKVDL





KR





50G1
VL90
305
DIVMTQTPLSLPVSPGEPASISCRSSQSLLDSDDGD





TYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSVS





GSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGG





GTKVEIKR





58C2
VL91
306
EIVMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGD





TYLDWYLQKPGQSPQLLIYTLSYRASGVPDRFSGS





GSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQ





GTRLEIKR





60G5.1
VL74
1854
DIQMTQSPSSLSASIGDRVTITCRASQSISNYLNWF





QQIPGKAPRLLIYAASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQSSSIPWTFGQGTKVEIKR





50D4
VL92
307
DIQMTQSPSSLSASVGDRVTITCRASQDISNYLAW





YQQKPGKVPTLLIYAASTLLSGVPSRFSGSGSGTDF





TLTISSLQPEDVAAYYCQKYYSAPFTFGPGTKVDI





NR





50G5 v1
VL93
308
DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGW





YQQKPGKAPNRLIYAASSLQSGVPSRFSGSGSGTE





FTLTISSLQPEDFATYYCLQHNSYPRTFGQGTKVEI





KR





50G5 v2
VL94
309
DVVMTQCPLSLPVTLGQPASISCRSSQRLVYSDGN





TYLNWVQQRPGQSPRRLIYKVSNWDSGVPDRFSG





SGSGTDFTLKISRVEAEDVGVNYCMEGTHWPRDF





GQGTRLEIKR





51C1
VL95
310
DIQMTQSPSSLSASIGDRVTITCRASQSISNYLNWF





QQIPGKAPRLLIYAASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQSSSIPWTFGQGTTVEIKR





53C3.2
VL96
311
DIVMTQSPATLSVSPGERATLSCRASQSISSNLAWY





QQTPGQAPRLLIYGTSIRASTIPARFSGSGSGTEFTL





TISSLQSEDFAIYYCHQYTNWPRTFGQGTKVEIKR





54H10.3
VL97
312
DIQMTQSPSSLSASVGDRVTITCRASQTISIYLNWY





QQKPGKAPKFLIYSASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFSTYFCQQSYSSPLTFGGGTKVEIKR





55A7
VL98
313
DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWY





QQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTDFT





LTISSLQPEDFATYYCQQTYSAPFTFGPGTKVDIKR





55E6
VL99
314
EIVLTQSPGTLSLSPGERATLSCRASQSVSRSHLAW





YQQNSGQAPRLLIYGASSRATGIPDRFSGSGSGTDF





TLTISRLEPEDFAVYYCQQYGSSPWTFGQGTKVEI





KR





61E1
VL100
315
DIQMTQSPSSLSASIRDRVTITCRASQSIGTFLNWY





QQKPGTAPKLLIYAASSLQSGVPSRFSGSGSGTDFT





LTISSLHPEDFASYYCQQSFSTPLTFGGGTKVEITR
















TABLE 2B







Exemplary Antibody Variable Heavy (VH) Chains










Contained

SEQ ID



in Clone
Designation
NO.
Amino Acid Sequence





63E6
VH 6
316
QVQLMQSGAEVKKPGASVKVSCKASGYTFTGY


66F7


YMHWVRQAPGQGLEWMGWMNPNSGATKYA





QKFQGRVTMTRDTSISTAYMELSRLRSDDTAVY





YCARELGDYPFFDYWGQGTLGIVSS





66D4
VH17
317
QVQLVQSGAEVKKPGASVKVSCRASGYTFTGY





YIHWMRQAPGHGLEWMGWINPPSGATNYAQK





FRGRVAVTRDTSISTVYMELSRLRSDDTAVYYC





ARETGTWNFFDYWGQGTLVTVSS





66B4
VH10
318
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGY





YLHWVRQAPGQGLEWMGWINPNSGGTDYAQK





FQGRVTMTRDTSISTAYMELSRLRSDDTAVYYC





VGDAATGRYYFDNWGQGTLVTVSS





65B1
VH18
319
QVQLVQSGAEVKRPGASVKVSCKASGYTFTGY





FMHWVRQAPGQGLEWMGWINPNSGATNYAQ





KFHGRVTMTRDTSITTVYMELSRLRSDDTAVY





YCTRELGIFNWFDPWGQGTLVTVSS





65B4
VH20
320
EVQLVESGGGLVQPGGSLRLSCAASGFAFSSYD





MHWVRQATGKGLEWVSTIDTAGDAYYPGSVK





GRFTISRENAKTSLYLQMNSLRAGDTAVYYCTR





DRSSGRFGDFYGMDVWGQGTAVTVSS





67A4
VH19
321
EVQLEESGGGLVQPGGSLRLSCAASGFTFRTYD





MHWVRQVTGKGLEWVSAIGIAGDTYYSDSVK





GRFTISRENAKNSLYLQMNSLRVGDTAVYYCA





RDRSSGRFGDYYGMDVWGQGTTVTVSS





63A10v1
VH21
322
EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAW


63A10v2


MSWVRQAPGKGLEWVGRIKSKTDGGTTDYAA


63A10v3


PVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVY





YCTTDSSGSYYVEDYFDYWGQGTLVTVSS





65H11v1
VH22
323
EVQLVESGGGLVKPGGSLRLSCAASGFTFSNAW


65H11v2


MSWVRQAPGKGLEWVGRIIGKTDGGTTDYAAP





VKGRFTISRDDSKNTLYLQMNSLKTEDTAVYY





CTSDSSGSYYVEDYFDYWGQGTLVAVSS





67G10v1
VH9
324
EVQLVESGGGLVKPGGSLRLACAASGITFNNA


67G10v2


WMSWVRQAPGKGLEWVGRIKSKTDGGTTDYA





APVKGRFTISRDDSKSILYLQMNSLKSEDTAVY





YCTTDSSGSYYVEDYFDYWGQGTLVTVSS





64C8
VH23
325
QVQLVESGGGVVQPGRSLRLSCVASGFTFSSYG





MHWVRQDPGKGLEWVAVISYDGSNKHYADSV





KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC





ARELLWFGEYGVDHGMDVWGQGTTVTVSS





63G8v1
VH1
326
QAQLVESGGGVVQPGRSLRLSCAASGFTFSSYG


63G8v2


IHWVRQAPGKGLEWVAVISYDGSNKYYADSVK


63G8v3


GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAT


68D3v1


TVTKEDYYYYGMDVWGQGTTVTVSS


64A8


67B4





68D3v2
VH95
1855
QAQLVESGGGVVQPGRSLRLSCAASGFTFSSYG





MHWVRQAPGKGLEWVAFISYAGSNKYY





ADSVKGRFTISRDNSKNTLYLQMSSLRAEDTAV





YYCATTVTEEDYYYYGMDVWGQGTTVT





VSS





66G2
VH11
327
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG





MHWVRQAPGKGLEWVAGISYDGSNKNYADSV





KGRITISRDNPKNTLYLQMNSLRAEDTAVYYCA





TTVTKEDYYYYGMDVWGQGTTVTVSS





65D1
VH26
328
QVQLVESGGGVVQPGRSLRLSCAASGFTFSYYY





IHWVRQAPGKGLEWVALIWYDGSNKDYADSV





KGRFTISRDNSKNTLYLHVNSLRAEDTAVYYCA





REGTTRRGFDYWGQGTLVTVSS





64H5
VH7
329
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG





MHWVRQAPGKGLEWVAVIWDDGSNKYYADS





VKGRFTISRDNSKNTLSLQMNSLRAEDTAVYYC





AREYVAEAGFDYWGQGTLVTVSS





65D4
VH25
330
QEQLVESGGGVVQPGRSLRLSCAVSGFTFSFYG





MHWVRQAPGKGLEWVAVIWYDGSNKYYADS





VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY





CTRALNWNFFDYWGQGTLVTVSS





65E3
VH24
331
QVQLVESGGGVVQPGRSLRLSCAASGFTLSNYN





MHWVRQAPGKGLEWVAVLWYDGNTKYYADS





VKGRVTISRDNSKNTLYLQMNSLRAEDTAVYY





CARDVYGDYFAYWGQGTLVTVSS





65G4
VH8
332
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG





MHWVRQAPGKGLEWVAVIWDDGSNKYY





ADSVKGRFTISRDNSKNTLSLQMNSLRAEDTAV





YYCAREYVAEAGFDYWGQGTLVTVSS





68G5
VH12
333
QVQLVESGGGVVQPGRSLRLSCTASGFTFSSYG





MHWVRQAPGKGLEWVAVIWYDGSNKYHADS





VKGRFTISRDDSKNALYLQMNSLRAEDTAVYY





CVRDPGYSYGHFDYWGQGTLVTVSS





67G8
VH27
334
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG





MHWVRQAPGKGLEWVAVIWYDGSNKDYADS





VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY





CARSAVALYNWFDPWGQGTLVTVSS





65B7v1
VH28
335
QVQLQESGPGLVNPSQTLSLTCTVSGGSISSDAY


65B7v2


YWSWIRQHPGKGLEWIGYIFYSGSTYYNPSLKS





RVTISVDTSKNRFSLKLSSVTAADTAVYYCARE





SRILYFNGYFQHWGQGTLVTVSS





63B6
VH4
336
QVQLQESGPGLVKPSQTLSLTCAVSGGSISSGDY


64D4


YWSWIRQHPGKGLEWIGYIYYSGTTYYNPSLKS





RVTISVDTSKNQFSLKLTSVTAADTAVYYCARM





TTPYWYFGLWGRGTLVTVSS





63F5
VH13
337
QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGDY





YWTWIRQHPGKDLEWITYIYYSGSAYYNPSLKS





RVTISVDTSKNQFSLKLSSVTAADTAVYYCARM





TTPYWYFDLWGRGTLVTVSS





63H11
VH3
338
QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGDY





YWTWIRQHPGKGLEWIAYIYYSGSTYYNPSLKS





RVTISVDTSKNQFSLKLSSVTAADTAVYYCARM





TTPYWYFDLWGRGTLVTVSS





65E8
VH2
339
QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGDY


64E6


YWTWIRQHPGKGLEWIAYIYYTGSTYYNPSLKS


65F11


RVTISVDTSKNQFSLKLSSVTAADTAVYYCARM


67G7


TTPYWYFDLWGRGTLVTVSS





65C1
VH15
340
QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGDY





YWTWIRQHPGKGLEWIAYIFYSGSTYYNPSLKS





RVTISLDTSKNQFSLKLNSVTAADTAVYYCARM





TSPYWYFDLWGRGTLVTVSS





66F6
VH14
341
QVQLQESGPGLVKPSQTLSLTCPVSGGSISSGDY





YWTWIRHHPGKGLEWIAYIYYSGSTYYNPSLKS





RVTISVDTSKNQFSLKLNSVTAADTAVYYCAR





MTTPYWYFDLWGRGTLVTVSS





64A6
VH29
342
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY





YWSWIRQRPGKGLEWVGYIYYSGGTHYNPSLK





SRVTISIDTSENQFSLKLSSVTAADTAVYYCARV





LHYSDSRGYSYYSDFWGQGTLVTVSS





65F9
VH30
343
QVQLQESGPGLVKPSQTLSLTCTLSGGSFSSGDY





YWSWIRQHPGKGLEWIGYIYYSGSTYYNPSLKS





RVTISIDTSKNQFSLKLTSVTAADTAVYYCARV





LHYYDSSGYSYYFDYWGQGTLVTVSS





64A7
VH16
344
QLQLQESGPGLVKPSETLSLTCTVSGGSISSDTS





YWGWIRQPPGKGLEWIGNIYYSGTTYFNPSLKS





RVSVSVDTSKNQFSLKLSSVTAADTAVFYCARL





RGVYWYFDLWGRGTLVTVSS





65C3
VH5
345
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW


68D5


SWIRQPPGKGLEWIGYIYYTGSTNYNPSLKSRV





TISVDTSKNQFSLKLSSVTAADTAVYYCAREYY





YGSGSYYPWGQGTLVTVSS





67F5
VH31
346
QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYW





SWIRQPPGKGLEWIGYIYYSGNTNYNPSLKSRV





TISVDTSKNQFSLKLSSVTAADTAVYYCAREYY





YGSGSYYPWGQGTLVTVSS





64B10v1
VH32
347
QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDY





YWSWIRQPPGKGLEWIGFIYYSGGTNYNPSLKS





RVTISIDTSKNQFSLKLNSVTAADTAVYYCARY





SSTWDYYYGVDVWGQGTTVTVSS





64B10v2
VH96
1856
QVQLLESGPGLVKPSETLSLTCTVSGGSVSSGD





YYWSWIRQPPGKGLEWIGFIYYSGGTNYNPPLK





SRVTISIDTSKNQFSLKLSSVTAADTAVYYCARY





SSTWDYYYGVDVWGQGTTVTVSS





68C8
VH33
348
QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGD





NYWSWIRQPPGKGLEWIGFMFYSGSTNYNPSL





KSRVTISLHTSKNQFSLRLSSVTAADTAVYYCG





RYRSDWDYYYGMDVWGQGTTVTVSS





67A5
VH34
349
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW





IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQG





QVTISADKSINTAYLQWSSLKASDTAIYFCARR





ASRGYRFGLAFAIWGQGTMVTVSS





67C10
VH35
350
EVQLVQSGAEVKKPGESLKISCQGSGYSFSSYW





IGWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQG





QVTISADKSINTAYLQWSSLKASDTAIYYCARR





ASRGYRYGLAFAIWGQGTMVTVSS





64H6
VH36
351
EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYW





IGWVRQMPGKGLEWMGIIYPGDSETRYSPSFQG





QVTISADKSISTAYLQWNSLKTSDTAMYFCATV





AVSAFNWFDPWGQGTLVTVSS





63F9
VH37
352
QVQLKESGPGLVKPSQTLSLTCTVSGGSISSGGY





YWNWIRQHPGKGLEWIGYIYDSGSTYYNPSLKS





RVTMSVDTSKNQFSLKLSSVTAADTAVYYCAR





DVLMVYTKGGYYYYGVDVWGQGTTVTVSS





67F6v1
VH38
353
EVQLVQSGAEVKKPGESLKISCKGSGYSFTGYW


67F6v2


IGWVRQLPGKGLEWMGIIYPGDSDTRYSPSFQG





QVTISVDKSINTAYLQWSSLKASDTAMYYCAR





RASRGYSYGHAFDFWGQGTMVTVSS





48C9
VH73
354
QVQLQQWGAGLLKPSETLSLTCSVYGGSFSGY


49A12


YWTWIRQPPGKGLEWIGEINHSENTNYNPSLKS


51E2


RVTISIDTSKNQFSLKLSSVTAADTAVYYCARES





GNFPFDYWGQGTLVTVSS





48F3
VH72
355
QVQLQQWGAGPLKPSETLSLTCAVYGGSISGYY





WSWIRQPPGKGLEWIGEITHTGSSNYNPSLKSR





VTISVDTSKNQFSLKLSSVTAADTAVYYCARGG





ILWFGEQAFDIWGQGTMVTVSS





48F8
VH48
356
EVQLVESGGGLVKPGGSLRLSCTASGFTFRSYS


53B9


MNWVRQAPGKGLEWVSSISSSSSYEYYVDSVK


56B4


GRFTISRDIAKSSLWLQMNSLRAEDTAVYYCAR


57E7


SLSIAVAASDYWGKGTLVTVSS


57F11





48H11
VH39
357
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGY





YKHWVRQAPGQGLEWMGWINPNSGATKYAQ





KFQGRVTMTRDTSISTVYMELSRLRSVDTALYY





CAREVPDGIVVAGSNAFDFWGQGTMVTVSS





49A10
VH62
358
QVHLVESGGGVVQPGRSLRLSCAASGFTFSNYG


48D4


MHWVRQAPGKGLEWVAIIWYDGSNKNYADSV





KGRFTISRDNSKNTLYLEMNSLRAEDTAVYYCA





RDQDYDFWSGYPYFYYYGMDVWGQGTTVTVSS





49C8
VH44
359
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY


52H1


DIDWVRQATGQGLEWMGWMNPNGGNTGYAQ





KFQGRVTMTRNTSINTAYMELSSLRSEDTAIYY





CARGKEFSRAEFDYWGQGTLVTVSS





49G2
VH63
360
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYG


50C12


MRWVRQAPGKGLEWVALIWYDGSNKFYADSV


55G11


KGRFTISRDNSKNTLNLQMNSLRAEDTAVYYC





ARDRYYDFWSGYPYFFYYGLDVWGQGTTVTV





SS





49G3
VH46
361
QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRM





GVSWIRQPPGKALEWLTHIFSNDEKSYSTSLKSR





LTISKDTSKSQVVLSMTNMDPVDTATYYCVRV





DTLNYHYYGMDVWGQGTTVTVSS





49H12
VH42
362
QVQLVQSGAEVKKPGASVKVSCMASGYIFTSY





DINWVRQATGQGPEWMGWMNPYSGSTGYAQ





NFQGRVTMTRNTSINTAYMELSSLRSEDTAVYY





CAKYNWNYGAFDFWGQGTMVTVSS





51A8
VH58
363
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG





MHWVRQAPGKGLEWVAVISYDGSNKYYADSV





KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC





ARADGDYPYYYYYYGMDVWGQGTTVTVSS





51C10.1
VH54
364
EVQLLESGGGLVQPGGSLRLSCAASGFTFRNYA


59D10v1


MSWVRQAPGKGLEWVSGISGSSAGTYYADSVK


59D10v2


GRFTISRDNSKNTLFLQMDSLRAEDTAVYYCAQ





DWSIAVAGTFDYWGQGTLVTVSS





51C10.2
VH67
365
QVQLQESGPGLVKPSQTLSLTCTVSGGSISSGGY





YWSWIRQHPGKGLEWIGYIYYNGSPYDNPSLK





RRVTISIDASKNQFSLKLSSMTAADTAVYYCAR





GALYGMDVWGQGTTVTVSS





51E5
VH74
366
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY





YWSWIRQPPGKGLEWIGELDHSGSINYNPSLKS





RVTISVDTSKNQFSLKLTSVTAADTAVYYCARV





LGSTLDYWGQGTLVTVSS





51G2
VH50
367
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS





MNWVRQAPGKGLEWVSSISSSSTYIYYADSVK





GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA





RDTYISGWNYGMDVWGQGTTVTVSS





52A8
VH40
368
QVQLVQSGAEVKKPGASVKVSCKASGYTFTGY





YLHWVRQAPGQGLEWMGWINPNSAATNYAPK





FQGRVTVTRDTSISTAYMELSRLRSDDTAVYYC





AREGGTYNWFDPWGQGTLVTVSS





52B8
VH77
369
QVQLQESGPGLMKPSETLSLTCTVSGGSISYYY





WSWIRQSPGKGLEWIGYIYYSGSTNYNPSLKSR





VTMSVDTSKNQFSLKLSSVTAADTAVYYCASG





TRAFDIWGQGTMVTVSS





52C1
VH64
370
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG





MHWVRQAPGKGLEWVAVIWYDGSNNYYADS





VKGRFTISRDNSKSTLFLQMNSLRAEDTAIYYC





ARDRAGASPGMDVWGQGTTVTVSS





52F8
VH41
371
QVQLVQSGAEVKKPGASVKVSCKASGFTFIGY





YTHWVRQAPGQGLEWMGWINPSSGDTKYAQK





FQGRVTLARDTSISTAYMELSRLRSDDTAVYYC





ANSGWYPSYYYGMDVWGQGTTVTVSS





52H2
VH79
372
QVQLQESGPGLVKPSETLSLTCTVSGGSISTYY





WSWIRQPPGTGLEWIGYIFYNGNANYSPSLKSR





VTFSVDTSKNQFSLKLSSVTAADTAVYFCARET





DYGDYARPFEYWGQGTLVTVSS





53F6
VH60
373
QVQLVESGGGVVQPGRSLRLSCAASGFTFSTYG





MHWVRQAPGKGLEWVAVIWYDGSNKYYADS





VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY





CARGHYDSSGPRDYWGQGTLVTVSS





53H5.2
VH59
374
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG





MHWVRQAPGQGLEWVALISYDGSNKYYADSV





KGRFTISRDKSKNTLYLQMNSLRAEDTAVYYC





AREANWGYNYYGMDVWGQGTTVTVSS





53H5.3
VH75
375
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSDY





YWNWIRQPPGKGPEWIGEINHSGTTNYNPSLKS





RVTISVDTSKNQFSLKLSSVTAADTAVYYCVGI





LRYFDWLEYYFDYWGQGTLVTVSS





54A1
VH43
376
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSY


55G9


DINWVRQATGQGLEWMGWMNPHSGNTGYAQ





KFQGRVTMTRNTSINTAYMELSSLRSEDTAVYY





CAKYNWNYGAFDFWGQGTMVTVSS





54H10.1
VH52
377
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA


55D1


MSWVRQAPGKGLEWVSAISGSGRTTYSADSVK


48H3


GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA


53C11


KEQQWLVYFDYWGQGTLVTVSS





55D3
VH68
378
QVQLQESGPGLVKPSQTLSLTCTVSGGSITSGVY





YWNWIRQHPGKGLEWIGYLYYSGSTYYNPSLK





SRLTISADMSKNQFSLKLSSVTVADTAVYYCAR





DGITMVRGVTHYYGMDVWGQGTTVTVSS





55E4
VH70
379
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY


49B11


YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS


50H10


RVTISLDTSNDQFSLRLTSVTAADTAVYYCARV


53C1


TGTDAFDFWGQGTMVTVSS


52C5


60G5.1





55E9
VH65
380
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSFG





MHWVRQAPGKGLEWVALIWYDGDNKYYADS





VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY





CARNSGWDYFYYYGMDVWGQGTTVTVSS





55G5
VH78
381
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW





SWIRQPAGKGLEWIGRIYISGSTNYNPSLENRVT





MSGDTSKNQFSLKLNSVTAADTAVYYCAGSGS





YSFDYWGQGTLVTVSS





50G1
VH84
382
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG





LHWVRQAPGKGLEWVAVIWNDGSNKLYADSV





KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC





ARDQYYDFWSGYPYYHYYGMDVWGQGTTVT





VSS





56A7
VH51
383
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS


56E4


MNWVRQAPGKGLEWVSSISSSSTYIYYADSVK





GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCA





RDIYSSGWSYGMDVWGQGTTVTVSS





56C11
VH61
384
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG





MHWVRQAPGKGLEWVAVIWYDGSYQFYADS





VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY





CARDHVWRTYRYIFDYWGQGTLVTVSS





56E7
VH81
385
EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWI





GWVRQMPGKGLEWMGIIYPGDSDTRYSPSFQG





QVTISADTSISTAYLQWSRLKASDTAVYYCARA





QLGIFDYWGQGTLVTVSS





56G1
VH71
386
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY





YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS





RVTISLDTSNKQFSLRLTSVTAADTAVYYCARV





TGTDAFDFWGQGTMVTVSS





56G3.3
VH76
387
QLQLQESGPGLVKPSETLSLTCTVSGDSISSSSY


55B10


YWGWIRQPPGKGLEWIGMIYYSGTTYYNPSLK





SRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR





VAAVYWYFDLWGRGTLVTVSS





57B12
VH69
388
QVQLQESGPGLVKPSQTLSLTCTVSGGSITSGVY





YWSWIRQLPGKGLEWIGYIYYSGSTYYNPSLKS





RLTISADTSKNQFSLKLSSVTVADTAVYYCARD





GITMVRGVTHYYGMDVWGQGTTVTVSS





57D9
VH82
389
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSA





TWNWIRQSPSRGLEWLGRTYYRSKWYNDYAV





SVKSRITINPDTSKNQFSLQLNSVTPEDTAVYYC





VGIVVVPAVLFDYWGQGTLVTVSS





58C2
VH85
390
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYG





MHWVRQAPGKGLEWVAVIWNDGNNKYYADS





VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYY





CARDQNYDFWNGYPYYFYYGMDVWGQGTTV





TVSS





59A10
VH47
391
QVQVVESGGGLVKPGGSLRLSCAASGFTFSDSY


49H4


MSWIRQAPGKGLEWISSISSSGSIVYFADSVKGR





FTISRDIAKNSLYLHMNSLRAEDTAVYYCARET





FSSGWFDAFDIWGQGTMVTVSS





59C9
VH49
392
EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYS


58A5


MSWVRQAPGKGLEWVSSISSSSTYIYYADSLKG


57A4


RFTISRDNAKNSLFLQVNSLRAEDSAVYYCARD


57F9


RWSSGWNEGFDYWGQGTLVTVSS





59G10.2
VH57
393
QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYG





MHWVRQAPGKGLEWVAITSYGGSNKNYADSV





KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC





AREAGYSFDYWGQGTLVTVSS





59G10.3
VH53
394
EVQLLGSGGGLVQPGGSLRLSCAASGFTFNHYA





MSWVRQAPGKGLEWVSAISGSGAGTFYADSM





KGRFTISRDNSENTLHLQMNSLRAEDTAIYYCA





KDLRIAVAGSFDYWGQGTLVTVSS





60D7
VH66
395
QVQLVESGGGVVQPGRSLRLSCAASGFNFSSYG





MHWVRQAPGKGLEWVAVIWYDGSNKYYADS





VKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYC





ARDQYFDFWSGYPFFYYYGMDVWGQGTTVTV





SS





60F9
VH55
396
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA


48B4


MSWVRQAPGKGLEWVSVISDSGGSTYYADSVK


52D6


GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA





KDHSSGWYYYGMDVWGQGTTVTVSS





60G5.2
VH45
397
QVQLVQSGAEVKTPGASVRVSCKASGYTFTNY





GISWVRQAPGQGLEWMGWISAYNGYSNYAQK





FQDRVTMTTDTSTSTAYMELRSLRSDDTAVYY





CAREEKQLVKDYYYYGMDVWGQGSTVTVSS





61G5
VH56
398
EVQLLESGGGLVQPGGSLRLSCAASGFTFSSYA





MSWVRQSPGKGLEWVSVISGSGGDTYYADSVK





GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCA





KDHTSGWYYYGMDVWGQGTTVTVSS





56G3.2
VH80
399
QVQLQESGPGLVKPSETLSLTCTVSDGSISSYYW





NWIRQPAGKGLEWIGRIYTSGSTNYNPSLKSRV





TMSVDTSKNQFSLNLTSVTAADTAVYYCARGP





LWFDYWGQGTLVTVSS





48G4
VH83
400
QVQLVQSGAEVKKPGASVKVSCKVSGYTLTEL


53C3.1


SIHWVRQAPGKGLEWMGGFDPEDGETIYAQKF





QGRVTMTEDTSTDTAYMELSSLRSEDTAVYYC





ATHSGSGRFYYYYYGMDVWGQGTTVTVSS





61H5
VH86
401
QLQLQESGPGLVKPSETLSLTCTVSGGSISSSSY


52B9


YWGWIRQPPGKGLEWIGSIYYSGTTYYNPSLKS





RVTISVDTSKNQFSLKLSSVTAADTAVYYCARV





AAVYWYFDLWGRGTLVTVSS





50D4
VH87
402
QVQLVQSGAEVKKTGASVKVSCKASGYTFTSH





DINWVRQATGHGLEWMGWMNPYSGSTGLAQR





FQDRVTMTRNTSISTAYMELSSLRSEDTAVYYC





ARDLSSGYYYYGLDVWGQGTTVTVSS





50G5v1
VH88
403
QVQLVQSGAEVKKPGASVKVSCKASGYPFIGY


50G5v2


YMHWVRQAPGQGLEWMGWINPDSGGTNYAQ





KFQGRVTMTRDTSITTAYMELSRLRSDDTAVFY





CARGGYSYGYEDYYGMDVWGQGTTVTVSS





51C1
VH89
404
QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGY





YWSWIRQPPGKGLEWIGEINHSENTNYNPSLKS





RVTISLDTSHDQFSLRLTSVTAADTAVYYCARV





TGTDAFDFWGQGTMVTVSS





53C3.2
VH90
405
QVQLQESGPGLVKPSQTLSLTCTVSNGSINSGN





YYWSWIRQHPGKGLEWIGYIYHSGSAYYNPSL





KSRVTISVDTSKNQFSLKLSSVTAADTAVYYCA





RTTGASDIWGQGIMVTVSS





54H10.3
VH91
406
DIQMTQSPSSLSASVGDRVTITCRASQTISIYLN





WYQQKPGKAPKFLIYSASSLQSGVPSRFSGSGS





GTDFTLTISSLQPEDFSTYFCQQSYSSPLTFGGGT





KVEIKR





55A7
VH92
407
QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYW





SWIRQPPGKGLEWIGYIYYSGSTNYNPSLKSRVT





ISVDTSKNQFSLRLSSVTAADTAVYYCARGITGT





IDFWGQGTLVTVSS





55E6
VH93
408
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYS





MNWVRQAPGKGLEWISYISSGSSTIYHADSVKG





RFTISRDNAKNSLYLQMNSLRDEDTAVYYCAR





EGYYDSSGYYYNGMDVWGQGTTVTVSS





61E1
VH94
409
QVQLQQSGPGLVKPSQTLSLTCAISGDSVSSNSA





AWNWIRQSPSRGLEWLGRTYYRSKWYNDYAV





SVKSRITITPDTSKNQFSLQLKSVTPEDTAIYYCA





REGSWSSFFDYWGQGTLVTVSS
















TABLE 2C







Coding Sequence for Antibody Variable Light (VL) Chains










Contained

SEQ ID



in Clone
Designation
NO.
Coding Sequence













63E6
VL6
410
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGACAAGTCAGAGTATTAGCAGCTATTTAA





ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





ACCTCCTGATCTATGCTGCATCCAGTTTGCAAAG





TGGGGTCCCATCAAGATTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCGGTCTG





CAACCTGAAGATTTTTCAACTTACTACTGTCAAC





AGAGTTACAGTACCTCGCTCACTTTCGGCGGAG





GGACCAAGGTGGAGATCAAACGA





66D4
VL18
411
GACATCCAGATGACCCAGTCGCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGGATCACCATCACTT





GCCGGGCAAGTCAGATCATTAGCAGGTATTTAA





ATTGGTATCAGCAGAACCCAGGGAAAGCCCCTA





AGCTCCTGATCTCTGCTGCATCCAGTTTGCAAAG





TGGAGTCCCATCAAGGTTCAGTGGCAGTGGATC





TGGGCCAGATTTCACTCTCACCATCAGCAGTCTG





CAACCTGAAGATTTTACAACTTACTACTGTCAAC





AGAGTTACAGTTCCCCGCTCACTTTCGGCGGAG





GGACCAAGGTGGAGGTCAAACGA





66B4
VL11
412
GACATCCAGATGACCCAGTCTCCATCTTCCGTGT





CTTCATCTGTAGGAGACAGAGTCACCATCACTT





GTCGGGCGAGTCAGGGTATTAGCAGGTGGTTAG





CCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGCTCCTGATCTATGCTGCATCCAGTTTGAAAAG





TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGCCT





GCAGCCTGAAGATTTTGCAACTTACTATTGTCAA





CAGGCTAACAGTTTCCCTCCGACGTTCGGCCAA





GGGACCAAGGTGGAAATCAAACGA





65B1
VL19
413
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGAACATTAACAACTATTTAA





ATTGGTATCGGCAGAAACCAGGGAAAGCCCCTG





AACTCCTGATCTATACTACATCCAGTTTGCAAAG





TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGTCTG





GAAACTGAAGATTTTGAAACTTACTACTGTCAA





CAGAGTTACAGTACCCCTCTCACTTTCGGCGGA





GGGACCAAGGTGGAGATCAAACGA





65B4
VL21
414
TCCTATGTGCTGACTCAGCCACCCTCGGTGTCAG





TGGCCCCAGGACAGACGGCCAGGATTACCTGTG





GGGGAAACAACATTGGAAGTAAAAGTGTGCAGT





GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC





TGGTCGTCTACGATGATAGCGACCGGCCCTCAG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG





GAACACGGCCTCCCTGACCATCAGCAGGGTCGA





AGCCGGGGATGAGGCCGACTATTACTGTCAGGT





GTGGGATAGTAGTAGTGATCATGTGGTATTCGG





CGGAGGGACCAAGCTGACCGTCCTAGGT





67A4
VL20
415
TCCTATGTGCTGACTCAGCCACCCTCGGTGTCAG





TGGCCCCAGGACAGACGGCCAGGATTACCTGTG





GGGGAAACAACATTGGAAGTAAAAGTGTGCACT





GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC





TGGTCGTCTATGATGATAGCGACCGGCCCTCAG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG





GAACACGGCCACCCTGACCATCAGCAGGGTCGA





AGCCGGGGATGAGGCCGACTATTACTGTCAGGT





GTGGGATAGTAGTAGTGATCATGTGGTATTCGG





CGGAGGGACCAAGCTGACCGTCCTAGGT





63A10v1
VL22
416
TCCTATGAGCTGACTCAGCCACACTCAGTGTCA





GTGGCCACAGCACAGATGGCCAGGATC





ACCTGTGGGGGAAACAACATTGGAAGTAAAGCT





GTGCACTGGTACCAGCAAAAGCCAGGC





CAGGACCCTGTGCTGGTCATCTATTGCGATAGC





AACCGGCCCTCAGGGATCCCTGAGCGA





TTCTCTGGCTCCAACCCAGGGAACACCGCCACC





CTAACCATCAGCAGGATCGAGGCTGGG





GATGAGGCTGACTATTACTGTCAGGTGTGGGAC





AGTAGTAGTGATGGGGTATTCGGCGGA





GGGACCAAGCTGACCGTCCTAGGT





63A10v2
VL101
1857
TCCTATGAGCTGACTCAGCCACACTCAGTGTCA





GTGGCCACAGCACAGATGGCCAGGATC





ACCTGTGGGGGAAACAACATTGGAAGTAAAGCT





GTGCACTGGTACCAGCAAAAGCCAGGC





CAGGACCCTGTGCTGGTCATCTATTGCGATAGC





AACCGGCCCTCAGGGATCCCTGAGCGA





TTCTCTGGCTCCAACCCAGGGAACACCGCCACC





CTAACCATCAGCAGGATCGAGGCTGGG





GATGAGGCTGACTATTACTGTCAGGCGTGGGAC





AGCACCACTGTGGTATTCGGCGGAGGG





ACCAAGTTGACCGTCCTAGGT





63A10v3
VL102
1858
ACCTGCTCTGGAGATAAATTGGGGAATAGATAT





ACTTGCTGGTATCAGCAGAAGTCAGGC





CAGTCCCCTGTGCTGGTCATCTATCAAGATAGCG





AGCGGCCCTCAGGGATCCCTGAGCGA





TTCTCTGGCTCCAACTCTGGGAACACAGCCACTC





TGACCATCAGCGGGACCCAGGCTATG





GATGAGGCTGACTATTACTGTCAGGCGTGGGAC





AGCACCACTGTGGTATTCGGCGGAGGG





ACCAAGTTGACCGTCCTAGGT





65H11v1
VL23
417
TCCTATGAGCTGACTCAGCCACACTCAGTGTCA





GTGGCCACAGCACAGATGGCCAGGATCACCTGT





GGGGGAAACAACATTGGAAGTAAAACTGTGCAC





TGGTTCCAGCAAAAGCCAGGCCAGGACCCTGTG





CTGGTCATCTATAGCGATAGCAACCGGCCCTCA





GGGATCCCTGAGCGATTCTCTGGCTCCAACCCA





GGGAACACCGCCACCCTAACCATCAGCAGGATC





GAGGCTGGGGATGAGGCTGACTATTACTGTCAG





GTGTGGGACAGTAGTTGTGATGGGGTATTCGGC





GGAGGGACCAAGCTGACCGTCCTAGGT





65H11v2
VL103
1859
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCG





TGTCCCCAGGACAGACAGCCAACATC





ACCTGCTCTGGAGATAAATTGGGGGATAGATAT





GTTTGTTGGTATCAGCAGAAGCCAGGC





CAGTCCCCTGTGCTGGTCATCTATCAAGATAGCA





AGCGGCCCTCAGGGATCCCTGAACAA





TTCTCTGGCTCCAACTCTGGGAACACAGCCACTC





TGACCATCAGCGGGACCCAGGCTATA





GATGAGGCTGACTATTACTGTCAGGCGTGGGAC





AGCATCACTGTGGTATTCGGCGGAGGG





ACCAAGCTGACCGTCCTAGGT





67G10v1
VL9
418
TCCTATGAGCTGACTCAGCCACACTCAGTGTCA





GTGGCCACAGCACAGATGGCCAGGATCACCTGT





GGGGGAAACAACATTGGAAGTAAAGCTGTGCAC





TGGTACCAGCAAAAGCCAGGCCAGGACCCTGTG





CTGGTCATCTATAGCGATAGCAACCGGCCCTCA





GGGATCCCTGAGCGATTCTCTGGCTCCAACCCA





GGGAACACCGCCACCCTAACCATCAGCAGGATC





GAGGCTGGGGATGAGGCTGACTATTACTGTCAG





GTGTGGGACAGTAGTAGTGATGGGGTATTCGGC





GGAGGGACCAAGCTGACCGTCCTAGGT





67G10v2
VL10
419
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCG





TGTCCCCAGGACAGACAGCCAGCATCACCTGCT





CTGGAGATAAATTGGGGGATAAATATGCTTGCT





GGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGC





TGGTCATCTATCAAGATAACGAGCGGCCCTCAG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG





GAACACAGCCACTCTGACCATCAGCGGGACCCA





GGCTATGGATGAGGCTGACTATTACTGTCAGGC





GTGGGACAGCACCACTGTGGTATTCGGCGGAGG





GACCAAGCTGACCGTCCTAGGT





64C8
VL24
420
GATGTTGTGATGACTCAGTCTCCGCTCTCCCTGC





CCGTCACCCTTGGACAGCCGGCCTCCATCTCCCG





CAGGTCTAGTCCAAGCCTCGTATACAGTGATGG





AAACACCTACTTGAATTGCTTTCAGCAGAGGCC





AGGCCACTCTCCAAGGCGCCTAATTTATAAGGG





TTCTAACTGGGACTCAGGGGTCCCAGACAGATT





CAGCGGCAGTGGGTCAGGCACTGATTTCACTCT





GAAAATCAGCAGGGTGGAGGCTGAGGATGTTGG





TATTTATTACTGCATACAAGATACACACTGGCCC





ACGTGCAGTTTTGGCCAGGGGACCAAGCTGGAG





ATCAAACGA





64A8
VL1
421
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT


67B4


CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGGACATTAGAAATGATTTAG





GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGCGCCTGATCTATGCTGCATCCAATTTGCAAA





GGGGGGTCCCATCAAGGTTCAGCGGCAGTGGAT





CTGGGACAGAATTCACTCTCACAATCAGCACCC





TGCAGCCTGAAGATTTTGCAACTTATTCCTGTCT





CCAGCATAATAGTTACCCTCTCACTTTCGGCGGA





GGGACCAAGGTGGAGATCAAACGA





63G8v1
VL104
1860
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACC





ATCACTTGCCGGGCAAGTCAGGACATTAGAAAT





GATTTAGGCTGGTATCAACAGAAACCA





GGGAAAGCCCCTAAGCGCCTGATCTATGCTGCA





TCCAATTTGCAAAGGGGGGTCCCATCA





AGGTTCAGCGGCAGTGGATCTGGGACAGAATTC





ACTCTCACAATCAGCACCCTGCAGCCT





GACGATTTTGCAACTTATTCCTGTCTCCAGCATA





ATAGTTACCCTCTCACTTTCGGCGGA





GGGACCAAGGTGGAGATCAAACGA





63G8v2
VL105
1861
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACC





ATCACTTGCCGGGCAAGTCAGGGCATTAGAAGT





GGTTTAGGCTGGTATCAGCAGAAACCA





GGGAAAGCCCCTAAGCGCCTGATCTATGCTGCA





TCCAATTTGCAAAGGGGGGTCCCATCA





AGGTTCAGCGGCAGTGGATCTGGGACAGAATTC





ACTCTCACAGTCAGCAGTCTGCAGCCT





GAAGATTTTGCAACTTATTCCTGTCTCCAGCATA





ATAGTTACCCTCTCACTTTCGGCGGA





GGGACCAAGGTGGAGATCAAACGA





63G8v3
VL106
1862
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACC





ATCACTTGCCGGGCAAGTCAGGGCATTAGAAGT





GGTTTAGGCTGGTATCAACAGAAACCA





GGGAAAGCCCCTAAGCGCCTGATCTATGCTGCA





TCCAATTTGCAAAGGGGGGTCCCATCA





AGGTTCAGCGGCAGTGGATCTGGGACAGAATTC





ACTCTCACAGTCAGCAGTCTGCAGCCT





GAAGATTTTGCAACTTATTCCTGTCTCCAACATA





ATACTTACCCTCTCACTTTCGGCGGA





GGGACCAAGGGGGAGATCAGACGA





66G2
VL12
422
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGGGCATTAGAAATGATTTAG





GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGCGCCTGATCTATGCTGCATCCAATTTGCAAA





GTGGGGTCCCATCAAGGTTCAGCGGCAGTGGAT





CTGGGACAAAATTCACTCTCACAATCAACAGCC





TGCAGCCTGAAGATTTTGCAACTTATTACTGTCT





ACAACTTAATGGTTACCCTCTCACTTTCGGCGGA





GGGACCAAGGTGGAGATCAAACGA





68D3v1
VL2
423
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT


68D3v2


CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGGACATTAGAAATGATTTAG





GCTGGTATCAACAGAAACCAGGGAAAGCCCCTA





AGCGCCTGATCTATGCTGCATCCAATTTGCAAA





GGGGGGTCCCATCAAGGTTCAGCGGCAGTGGAT





CTGGGACAGAATTCACTCTCACAATCAGCACCC





TGCAGCCTGACGATTTTGCAACTTATTCCTGTCT





CCAGCATAATAGTTACCCTCTCACTTTCGGCGGA





GGGACCAAGGTGGAGATCAAACGA





65D1
VL27
424
TCCTATGACCTGACTCAGCCACCCTCAGTGTCCG





TGTCCCCAGGACAGACAGCCAGCATCACCTGCT





CTGGAGATAAATTGGGGGATAAATATGTTTGCT





GGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGC





TGGTCATCTATCAAGATAGTAAGCGGCCCTCAG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG





GAACACAGCCACTCTGACCATCAGCGGGATCCA





GGCTATGGATGAGGCTGACTATTACTGTCAGGC





GTGGGACAGCAGGGTATTCGGCGGAGGGACCA





AGCTGACCGTCCTAGGT





65G4
VL8
425
TCCTATGAGATGACTCAGCCACTCTCAGTGTCAG


64H5


TGGCCCTGGGACAGACGGCCAGGATTACCTGTG





GGGGAAACAACATTGGAAGTAAAAATGTACACT





GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGT





TGGTCATCTATAGGGATAGCAAGCGGCCCTCTG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG





GGAACACGGCCACCCTGACCATCAGCAGAGCCC





AAGCCGGGGATGAGGCTGACTATTACTGTCAGG





TGTGGGACAGCAGTAGTGTGGTATTCGGCGGAG





GGACCAAGCTGACCGTCCTAGGT





65D4
VL26
426
TCCTATGAGCTGACTCAGCCACTCTCAGTGTCTG





TGGCCCTGGGCCAGACGGCCAGGATTCCCTGTG





GGGGAAATGACATTGGAAGTAAAAATGTGCACT





GGTACCAGCAGAAACCAGGCCAGGCCCCTGTGC





TGGTCATCTATAGGGATCGCAACCGGCCCTCTG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG





GGAACACGGCCACCCTGACCATCAGCAGAGCCC





AAGCCGGGGATGAGGCTGACTATTACTGTCAGG





TGTGGGACAGCAACCCTGTGGTATTCGGCGGAG





GGACCAAGCTGACCGTCCTAGGT





65E3
VL25
427
TCCTATGAGCTGACTCAGCCACTCTCAGTGTCAG





TGGCCCTGGGACAGACGGCCAGGATTACCTGTG





GGGGAAACAACATTGGAAGTAAAAATGTGCACT





GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC





TGGTCATCTATAGGGATAGAAACCGGCCCTCTG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG





GGAACACGGCCACCCTGACCATCAGCAGAGCCC





AAGCCGGGGATGAGGCTGACTATTACTGTCAGG





TGTGGGACAGCAGCACTGTGGTCTTCGGCGGAG





GGACCAAGCTGACCGTCCTAGGT





68G5
VL13
428
TCCTATGAGCTGACTCAGCCACTCTCAGTGTCAG





TGGCCCTGGGACAGACGGCCAGGCTTACCTGTG





GGGGTAACAACATTGGAAGTATAAATGTGCACT





GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGT





TGGTCATCTATAGGGATAGGAACCGGCCCTCTG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG





GTAACACGGCCACCCTGACCATCAGCAGAGCCC





AAGCCGGGGATGAGGCTGACTATTACTGTCAGT





TGTGGGACAGCAGCACTGTGGTTTTCGGCGGAG





GGACCAAGCTGACCGTCCTAGGT





67G8
VL28
429
TCCTATGAGCTGACTCAGCCACTCTCAGTGTCAG





TGGCCCTGGGACAGACGGCCAGGATTACCTGTG





GGGGAAACAACATTGGAAGTTACAATGTGTTCT





GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC





TGGTCATCTATAGGGATAGCAAGCGGCCCTCTG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG





GGAACACGGCCACCCTGACCATCAGCAGAGCCC





AAGCCGGGGATGAGGCTGACTATCACTGTCAGG





TGTGGGACAGCAGCACTGTGGTATTCGGCGGAG





GGACCAAGCTGACCGTCCTAGGT





65B7v1
VL29
430
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG





TCTTTGTCTCCAGGGGAAAGAGCCACC





CTCTCCTGCAGGGCCAGTCAGAGTGTTAGCAGC





ATCTACTTAGCCTGGTACCAGCAGAAA





CCTGGCCAGGCTCCCAGGCTCCTCATCTATGGTG





CATCCAGCAGGGCCACTGGCATCCCA





GACAGGTTCAGTGGCAGTGGGTCTGGGACAGAC





TTCACTCTCACCATCAGCAGACTGGAG





CCTGAAGATTTTGCAGTGTATTACTGTCAGCAGT





ATGGTAGCTCGTGCAGTTTTGGCCAG





GGGACCAAGCTGGAGATCAAACGA





65B7v2
VL107
1863
GATGTTGTGATGACTCAGTCTCCACTCTCCCTGC





CCGTCACCCTTGGACAGCCGGCCTCC





ATCTCCTACAGGTCTAGTCAAAGCCTCGTATACA





GTGATGGAGACACCTACTTGAATTGG





TTTCAGCAGAGGCCAGGCCAATCTCCAAGGCGC





CTAATTTATAAGGTTTCTAACTGGGAC





TCTGGGGTCCCAGACAGATTCAGCGGCAGTGGG





TCAGGCACTGATTTCACACTGAAAATC





AGCAGGGTGGAGGCTGAGGATGTTGGGGTTTAT





TACTGCATGCAAGGTACACACTGGCGG





GGTTGGACGTTCGGCCAAGGGACCAAGGTGGAA





ATCAAACGA





63B6
VL4
431
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG


64D4


TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAGTAACAGCTACT





TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC





CCAGGCTCCTCATCTATGGTGCATTCAGTAGGGC





CACTGGCATCCCAGACAGGTTCAGTGGCAGTGG





GTCTGGGACAGACTTCACTCTCACCATCAGCAG





ACTGGAGCCTGAAGATTTTGCAGTATATTACTGT





CAGCAGTTTGGTAGGTCATTCACTTTCGGCGGA





GGGACCAAGGTGGAGATCAGACGA





63F5
VL14
432
GAAGTTGTGTTGACGCAGTCTCCAGGCACCCTG





TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGACTGTTAGGAACAACTACT





TAGCCTGGTACCAGCAGCAACCTGGCCAGGCTC





CCAGGCTCCTCATCTTTGGTGCGTCCAGCAGGGC





CACTGGCATCCCAGACAGGTTCAGTGGCAGTGG





GTCTGGGACAGACTTCACTCTCACCATCAGCAG





ACTGGAGCCTGAAGATTTTGCAGTGTATTACTGT





CAGCAGTTTGGTAGTTCACTCACTTTCGGCGGAG





GGACCAAGGTGGAGATCAAACGA





65E8
VL3
433
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG


63H11


TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT


64E6


GCAGGGCCAGTCAGAGTGTTAGGAACAGCTACT


65F11


TAGCCTGGTACCAGCAGCAACCTGGCCAGGCTC


67G7


CCAGGCTCCTCATCTATGGTGCATTTAGCAGGGC





CTCTGGCATCCCAGACAGGTTCAGTGGCAGTGG





GTCTGGGACAGACTTCACTCTCACCATCAGCAG





ACTGGAGCCTGAAGATTTTGCAGTGTATTACTGT





CAGCAGTTTGGAAGCTCACTCACTTTCGGCGGA





GGGACCAAGGTGGAGATCAAACGA





65C1
VL16
434
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG





TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGACTATTAGGAACAGCTACT





TAGCCTGGTACCAGCAGCAACCTGGCCAGGCTC





CCAGGCTCCTCATCTATGGTGCATTCAGCAGGG





CCACTGGCATCCCAGACAGGTTCAGTGGCGGTG





GGTCTGGGACAGACTTCACTCTCACCATCAGCA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCAGCAGTTTGGTAGCTCACTCACTTTCGGCGG





AGGGACCAAGGTGGAGATCAAACGA





66F6
VL15
435
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG





TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAGGAACAGCTACT





TAGCCTGGTACCAGCAGCAACCTGGCCAGGCTC





CCAGGCTCCTCATCTATGGTGCATTCAGCAGGG





CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATCAGCA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCAGCAGTTTGGTAGCTCACTCACTTTCGGCGG





AGGGACCAAGGTGGAGATCAAACGA





64A6
VL30
436
GAAATACTGATGACGCAGTCTCCAGCCACCCTG





TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAACAGCAACTTAG





CCTGGTACCAGCAGAAACCTGGCCAGGCTCCCA





GGCTCCTCATCTATGGTACATCCACCAGGGCCA





CTGGTGTCCCAGCCAGGTTCGGTGGCAGTGGGT





CTGGGACAGAATTCACTCTCACCATCAGCAGCC





TGCAGTCTGAAGATTTTGCATTTTATTACTGTCA





GCAATATAATACCTGGCCGTGGACGTTCGGCCA





AGGGACCAAGGTGGAAATCAAACGA





65F9
VL31
437
GAAATACTGATGACGCAGTCTCCAGCCACCCTG





TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAGCAGCAACTTAG





CCTGGTACCAGCAGAAACCTGGCCAGTCTCCCA





GGCTCCTCATCTATGGTGCATCCACCAGGGCCA





CTGGTATCCCAGCCAGGTTCGGTGGCAGTGGGT





CTGGGACAGACTTCACTCTCACCATCAGCAGCC





TGCAGTCTGAAGATTTTGCATTTTATTACTGTCA





GCAGTATAATACCTGGCCGTGGACGTTCGGCCA





AGGGACCAAGGTGGAAATCAAACGA





64A7
VL17
438
GAAATTGTATTGACGCAGTCTCCAGGCACCCTG





TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAGTCGCAACTACT





TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC





CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG





CCACTGGCGTCCCAGACAGGTTCAGTGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATCAGCA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCAGCAGTATGGTAGTTCATCTCTGTGCAGTTT





TGGCCAGGGGACCAACCTGGACATCAGACGA





65C3
VL5
439
GAAATGGTGATGACGCAGTCCCCAGCCACCCTG


68D5


TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAGCAGCCAGTTAG





CCTGGTACCAGGAGAAACCTGGCCGGGCTCCCA





GGCTCCTCATCTATGGTGCCTCCAACAGGGCCAT





TGATATCCCAGCCAGGTTAAGTGGCAGTGGGTC





TGGGACAGAGTTCACTCTCACCATCAGCAGCCT





GCAGTCTGAAGATTTTGCTGTTTATTACTGTCAG





CAGTATAATAACTGGCCGTGGACGTTCGGCCAA





GGGACCAAGGTGGAATTCAAACGA





67F5
VL32
440
GAAATAGTGATGACGCAGTCTCCAGCCACCCTG





TCTGTGTCTCCAGGGGAAAGAGTCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAGCAGCAACTTAG





CCTGGTACCAGCAGAAACCTGGCCAGGCTCCCA





GGCTCCTCATACATGGTTCATCCAACAGGGCCA





TTGGTATCCCAGCCAGGTTCAGTGGCAGTGGGT





CTGGGACAGAGTTCACTCTCACCATCAGCAGCC





TGCAGTCTGCAGATTTTGCTGTTTATAACTGTCA





GCAGTATGAAATTTGGCCGTGGACGTTCGGCCA





AGGGACCAAGGTGGAAATCAAACGA





64B10v1
VL33
441
CAGTCTGTGTTGACGCAGCCGCCCTCAGTGTCTG


64B10v2


CGGCCCCAGGACAGAAGGTCACCATCTCCTGCT





CTGGAAGCAGCTCCAATATTGGGAATAATTATG





TAGCCTGGTACCAGCAGCTCCCAGGAACAGCCC





CCAAACTCCTCATTTATGACAATGATAAGCGAC





CCTCAGGGATTCCTGACCGATTCTCTGGCTCCAA





GTCTGGCACGTCAGCCACCCTGGGCATCACCGG





ACTCCAGACTGGGGACGAGGCCGATTATTACTG





CGGAACATGGGATAGCAGCCTGAGTGCTGTGGT





ATTCGGCGGAGGGACCAAGCTGACCGTCCTAGGT





68C8
VL34
442
CAGTCTGTGTTGACGCAGCCGCCCTCAGTGTCTG





CGGCCCCAGGACAGAAGGTCACCATCTCCTGCT





CTGGAAGCAGTTCCAACATTGGAAATAATTATG





TATCCTGGTACCAGCAGCTCCCAGGAACAGCCC





CCAAACTCCTCATTTATGACAATAATAAGCGAC





CCTCAGGGATTCCTGACCGATTCTCTGGCTCCAA





GTCTGGCACGTCAGCCACCCTGGGCATCACCGG





ACTCCAGACTGGGGACGAGGCCGATTATTACTG





CGGAACATGGGATAGCAGCCTGAGTGCTGTGGT





ATTCGGCGGAGGGACCAAACTGACCGTCCTAGGT





67A5
VL35
443
GATATTGTGATGACCCAGACTCCACTCTCCCTGC





CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG





CAGGTCTAGTCAGAGCCTCTTAAATAGTGATGA





TGGAAATACCTATTTGGACTGGTACCTGCAGAA





GCCAGGGCAGTCTCCACAACTCCTGATCTATAC





GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG





GTTCAGTGGCACTGGGTCAGGCACTGAATTCAC





ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT





TGGAGTTTATTACTGCATGCAACGTCTAGAGTTT





CCTATTACCTTCGGCCAAGGGACACGACTGGAG





ATTAAACGA





67C10
VL36
444
GATTTTGTGATGACCCAGACTCCACTCTCCCTGC





CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG





CAGGTCTAGTCAGAGCCTCTTAAATAGTGATGA





TGGAAACACCTATTTGGACTGGTACCTGCAGAA





GCCAGGGCAGTCTCCACAGCTCCTGATCTATAC





GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG





GTTCAGTGGCAGTGGGTCAGGCACTGATTTCAC





ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT





TGGAGTTTATTACTGCATGCAACGTATAGAGTTT





CCTATCACCTTCGGCCAAGGGACACGACTGGAG





ATTAAACGA





64H6
VL37
445
TCCTACGAGCTGACTCAGCCACTCTCAGTGTCAG





TGGCCCTGGGACAGACGGCCAGGATTACCTGTG





GGGGAAACAACATTGGAAGTAAAAATGTGCACT





GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGG





TGGTCATCTATAGGGATAGCAAGCGGCCCTCTG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCGG





GGAACACGGCCACCCTGACCATCAGCAGAGCCC





AAGCCGGGGATGAGGCTGACTATTACTGTCAGG





TGTGGGACAGCAGTCCTGTGGTATTCGGCGGAG





GGACCAAGCTGACCGTCCTAGGT





63F9
VL38
446
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGTATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGGACATTAGAAATGATTTAG





CCTGGTATCAGCAGACACCAGGGAAAGCCCCTA





AGCGCCTGATCTATGCTTCATCCAGTTTGCAAAG





TGGGGTCCCATCAAGGTTCAGCGGCACTGGATC





TGGGACAGAATTCACTCTCACAATCAGCAGCCT





GCAGCCTGAAGATTTTGCAACTTATTTCTGTCTA





CAGCGTAATAGTTACCCGCTCACTTTCGGCGGA





GGGACCAAGGTGGAGATCAAACGA





67F6v1
VL39
447
GATATTGTAATGACCCAGACCCCACTCTCCCTGC





CCGTCATCCCTGGAGAGCCGGCCTCCATCTTCTG





CAGGTCTAGTCAGAGCCTCTTAAATAGTGATGC





TGGTACCACCTATTTGGACTGGTACCTGCAGAA





GCCAGGGCAGTCTCCACAACTCCTGATCTATAC





GCTTTCCTTTCGGGCCTCTGGAGTCCCAGACAGG





TTCAGTGGCAGTGGGTCAGGCACTGATTTCACA





CTGAAAATCACTAGGGTGGAGGCTGAGGATGTT





GGAGTTTATTATTGCATGCAACGTATAGAGTTCC





CTATCACCTTCGGCCAAGGGACACGACTGGAGA





TTAAACGA





67F6v2
VL108
1864
GATATTGTAATGACCCAGACCCCACTCTCCCTGC





CCGTCATCCCTGGAGAGCCGGCCTCCATCTTCTG





CAGGTCTAGTCAGAGCCTCTTAAATAGTGATGC





TGGTACCACCTATTTGGACTGGTACCTGCAGAA





GCCAGGGCGGTCTCCACAACTCCTGATCTATAC





GCTTTCCTTTCGGGCCTCTGGAGTCCCAGACAGG





TTCAGTGGCAGTGGGTCAGGCACTGATTTCACA





CTGAAAATCACTAGGGTGGAGGCTGAGGATGTT





GGAGTTTATTATTGCATGCAACGTATAGAGTTCC





CTATCACCTTCGGCCAAGGGACACGACTGGAGA





TTAAACGA





48C9
VL78
448
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT


49A12


CTGCATCTATAGGAGACAGAGTCACCATCACTT


51E2


GCCGGGCAAGTCAGAACATTAGGACCTATTTAA





ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGCTCCTGATTTATGTTGCATCCAGTTTGGAAAG





TGGGGTCCCATCAAGGTTCAGTGGCACTGGATC





TGGGACAGATTTCGCTCTCACCATCAGCAGTCTC





CAACCTGAAGATTTTGCAACTTACTACTGTCAAC





AGAGTGACAGTATCCCTCGGACGTTCGGCCAAG





GGACCAAGGTGGAAATCAAACGA





48F3
VL77
449
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGAGGATTAGCAGTTATTTAA





ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGTTCTTGATATATGCTGTATCCAGTTTGCAAAG





TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGTCTG





GAACCTGAAGATTTTGCAACTTACTACTGTCAAC





AGAGTTACAGTGCTACATTCACTTTCGGCCCTGG





GACCAAAGTGGATATCAAACGA





48F8
VL49
450
GAAATTGTGCTGACTCAGTCTCCAGACTTTCAGT


53B9


CTGTGACTCCAAAGGAGAAAGTCACCATCACCT


56B4


GCCGGGCCAGTCAGGACATTGGTAATAGCTTAC


57E7


ACTGGTACCAGCAGAAACCAGATCAGTCTCCAA


57F11


AGCTCCTCATCAAGTTTGCTTCCCAGTCCTTCTC





AGGGGTCCCCTCGAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCGCCCTCACCATCAATAGCCT





GGAAGCTGAAGATGCTGCAACGTATTACTGTCA





TCAGAGTAGTGATTTACCGCTCACTTTCGGCGGA





GGGACCAAGGTGGACATCAAACGA





48H11
VL40
451
GACATCCAGATGACCCAGTCTCCATCCTCTCTGT





CTACATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGAACATTAGGAGCTATTTAA





ATTGGTATCAACTGAAACCAGGGAAAGCCCCTA





AGGTCCTGATCTATGGTGCATCTAATTTACAGAG





TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAATCTG





CAATCTGAAGATTTTGCAATTTACTACTGTCAAC





AGAGTTACAATACCCCGTGCAGTTTTGGCCAGG





GGACCAAGCTGGAGATCAAACGA





49A10
VL65
452
GATATTGTGATGACCCAGACTCCACTCTCCCTGC


48D4


CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG





CAGGTCTAGTCAGAGCCTCTTGGATAGTGATGA





TGGAAACACCTATTTGGACTGGTACCTGCAGAA





GCCAGGGCAGTCTCCACAGCTCCTGATCTATAC





GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG





GTTCAGTGGCAGTGGGTCAGGCACTGATTTCAC





ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT





TGGAGTTTATTACTGCATGCAACGTATAGAGTTT





CCGATCACCTTCGGCCAAGGGACACGACTGGAG





ATTAAACGA





49C8
VL45
453
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT


52H1


CTGCATCTGTAGGAGACAGAGTCACCTTCACTT





GCCAGGCGAGTCAGGACATTAACATCTATTTAA





ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGCTCCTGATCTACGATGTATCCAATTTGGAAAC





AGGGGTCCCATCAAGGTTCAGTGGAAGTGGATC





TGGGACAGATTTTACTTTCACCATCAGCAGCCTG





CAGCCTGAAGATATTGCAACATATTTCTGTCAAC





AATATGATAATCTCCCATTCACTTTCGGCCCTGG





GACCAAAGTGGATCTCAAACGA





49G2
VL66
454
GATATTGTGTTGACCCAGACTCCACTCTCCCTGC


50C12


CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG


55G11


CAGGTCTAGTCAGAGCCTCTTGGATAGTGATGA





TGGAGACACCTATTTGGACTGGTACCTGCAGAA





GCCAGGGCAGTCTCCACAGCTCCTGATCTATAC





GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG





GTTCAGTGGCAGTGGGTCAGGCACTGATTTCAC





ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT





TGGAGTTTATTACTGCATGCAACATATAGAATTT





CCTTCGACCTTCGGCCAAGGGACACGACTGGAG





ATTAAACGA





49G3
VL47
455
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTATAGGAGACAGAGTCACCATCACTT





GCCAGGCGAGTCAGGGCATTAGCAACTATTTAA





ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGCTCCTGATCTACGATGCATCCAATTTGGAAA





CAGGGGTCCCATCAAGGTTCAGTGGAAGTGGAT





CTGGGACAGATTTTACTTTCACCATCAGCAGCCT





GCAGCCTGAAGATATTGCTACATATTACTGTCAC





CAGTATGATGATCTCCCGCTCACTTTCGGCGGAG





GGACCAAGGTGGAGATCAGACGA





49H12
VL43
456
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCAGGCGAGTCAAGACATTACCAAATATTTAA





ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGCTCCTGATCTACGATACATTCATTTTGGAAAC





AGGGGTCCCATCAAGGTTCAGTGGAAGTGGATC





TGGGACAGATTTTACTTTCACCATCAGCAGCCTG





CAGCCTGAAGATATTGCAACATATTACTGTCAA





CAGTATGACAATTTACCGCTCACCTTCGGCCAA





GGGACACGACTGGAGATTAAACGA





51A8
VL61
457
AATTTTATACTGACTCAGCCCCACTCTGTGTCGG





AGTCTCCGGGGAAGACGGTAACCATCTCCTGCA





CCCGCAGCAGTGGCAGCATTGCCAGCGACTATG





TGCAGTGGTACCAGCAGCGCCCGGGCAGTTCCC





CCACCACTGTGATCTATGAGGATAAAGAAAGAT





CCTCTGGGGTCCCTGATCGGTTCTCTGGCTCCAT





CGACAGTTCCTCCAACTCTGCCTCCCTCACCATC





TCTGGACTGAAGACTGAGGACGAGGCTGACTAC





TACTGTCAGTCTTATGATCGCAACAATCATGTGG





TTTTCGGCGGAGGGACCAAGCTGACCGTCCTAG





GT





51C10.1
VL55
458
TCCTATGAGTTGACACAGCCGCCCTCGGTGTCTG





TGTCCCCAGGCCAAACGGCCAGGATCACCTGCT





CTGGAGATGCATTGCCAAAAAAATATGCTTATT





GGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGC





TGGTCATCTATGAGGACAGCAAACGACCCTCCG





GGATCCCTGAGAGATTCTCTGGCTCCATCTCAGG





GACAATGGCCACCTTGACTATCAGTGGGGCCCA





GGTGGAGGATGAAGCTGACTACTACTGTTACTC





AACAGACAGCAGTGTTAATCATGTGGTATTCGG





CGGAGGGACCAAGCTGACCGTCCTAGGT





51C10.2
VL70
459
TCCTATGACCTGACTCAGCCACCCTCAGTGTCCG





TGTCCCCAGGACAGACAGCCAGCATCACCTGCT





CTGGAGACGAATTGGGGGATAAATATGCTTGCT





GGTATCAGCAGAAGCCAGGCCAGTCCCCTGTGC





TGGTCATCTATCAAGATACCAAGCGGCCCTCAG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG





GAACACAGCCACTCTGACCATCAGCGGGACCCA





GGCTATGGATGAGGCTGACTATTACTGTCAGGC





GTGGGACAGCGGCACTGTGGTATTCGGCGGAGG





GACCAAACTGACCGTCCTAGGT





51E5
VL79
460
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGGACATTAGAAATGATTTAG





GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





ACCGCCTGATCTATGCTGCATCCAGTTTGCAATT





TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC





TGGGACAGAATTCACTCTCACAATCAGCAGCCT





GCAGCCTGAAGATTTTGCAACTTATTACTGTCTA





CAACATAGTAGTTACCCGCTCACTTTCGGCGGA





GGGACCAGGGTGGAGATCAAACGA





51G2
VL51
461
GACATCCAGATGACCCAGTCTCCATCTTCCGTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GTCGGGCGAGTCAGGGTATTAGCAGCTGGTTAG





CCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGCTCCTGATCTATGATGCATCCAGTTTGCAAAG





TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGCCT





GCAGCCTGAAGATTTTGCAACTTACTATTGTCAA





CAGACTAACAGTTTCCCTCCGTGGACGTTCGGCC





AAGGGACCAAGGTGGAAATCAAACGA





52A8
VL41
462
GACATCCAGATGACCCAGTCTCCATCCTTCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGACTATTAGCAGTTATTTAA





ATTGGCATCAGCAGAAACCAGGGAAAGCCCCTA





AGCTCCTGATCTATGCTGCATCCAGTTTGCAAAG





TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCAGTCTCACCATCAGCAGTCT





GCAACCTGAAGATTTTGCAACTTACTACTGTCAG





CAGAGTTACAGTACCCCGCTCACTTTCGGCGGC





GGGACCAAGGTGGAGATCAAACGA





52B8
VL82
463
GAAGTTGTGCTGACGCAGTCTCCAGCCACCCTG





TCTGTGTCTCCAGGGGGAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAGCGACATCTTAG





CCTGGTACCAACAGAAACCTGGCCAGGCTCCCA





GGCTCCTCATCTATGGTGCATCCACCAGGGCCA





CTGGTATCCCAGCCAGGTTCAGTGGCGGTGGGT





CTGGGACAGAGTTCACTCTCACCATCAGTAGCC





TGCAGTCTGAAGATTTTGCAGTTTATTTCTGTCA





GCAGTATAATAACTGGCCGCTCACTTTCGGCGG





AGGGACCAAGGTGGAGATCAAACGA





52C1
VL67
464
CAGTCTGTGTTGACGCAGCCGCCCTCAGTGTCTG





CGGCCCCAGGACAGAAGGTCACCATCTCCTGCT





CTGGAAGCAGCTCCAACATTGGGATTAATTATG





TATCCTGGTACCAGCAGCTCCCAGGAACAGCCC





CCAAACTCCTCATTTATGACAATAATAAGCGAC





CCTCAGGGATTCCTGACCGATTCTCTGGCTCCAA





GTCTGGCACGTCAGCCACCCTGGGCATCACCGG





ACTCCAGACTGGGGACGAGGCCGATTATTGCTG





CGGAACATGGGATAGCAGCCTGAGTGCTGTGGT





ATTCGGCGGAGGGACCAAGCTGACCGTCCTAGGT





52F8
VL42
465
GATATTGTGATGACTCAGTCTCCACTCTCCCTGC





CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG





CAGGTCTAGTCAGAGCCTCCTGCATAGTAATGG





ATACAACTATTTGGATTGGTACCTGCAGAAGCC





AGGGCAGTCTCCACAGCTCCTGATCTATTTGGGT





TCTAATCGGGCCTCCGGGGTCCCTGACAGGTTC





AGTGGCAGGGGGTCAGGCACAGATTTTTCACTG





AAAATCAGCAGAGTGGAGGCTGAGGATGTTGGG





ATTTATTACTGCATGCAAGCTCTACAAACTCCAT





TCACTTTCGGCCCTGGGACCAATGTGGATATCA





AACAA





52H2
VL84
466
GAAAATGTGTTGACGCAGTCTCCAGGCACCCTG





TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCTT





GTAGGGCCAGTCAGAGTGTTAGAAGCAGCTACT





TAGCCTGGTACCAGCAGAGACCTGGCCAGGCTC





CCAGGCTCCTCATCTTTGGTGCATCCAGGAGGG





CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATCAGCA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCAGCAGTATGGTAGTTCACCTCGCAGTTTTGG





CCAGGGGACCAAGCTGGAGATCAAACGA





53F6
VL63
467
GATATTGTGATGACTCAGTCTCCACTCTCCCTGC





CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG





CAGGTCTAGTCAGAGCCTCCAGCATAGTAATGG





ATACAACTATTTGGATTGGTACCTGCAGAAGCC





AGGACAGTCTCCACAGTTATTGATCTATTTGGAT





TCTAATCGGGCCTCCGGGGTCCCTGACAGGTTC





AGTGGCAGTGGATCAGGCACAGATTTTACACTG





AAAATCAGCAGAGTGGAGGCTGAGGATATTGGG





GTTTATTACTGCATGCAAGGTCTACAAACTCCTC





CCACTTTCGGCGGAGGGACCAAGGTGGAGATCA





AACGA





53H5.2
VL62
468
GACATCCAGATGACCCAGTCTCCATCTTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGGGCATTAGAAATGATTTAG





GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGCGCCTGATCTATGCTGCATCCAGTTTGCAAA





GTGGGGTCCCATCAAGGTTCAGCGGCAGCGGAT





CTGGGACAGAATTCACTCTCACAATCAGCAGCC





TGCAGCCTGAAGATTTTGCAACTTATTACTGTCT





ACAGCATAAGAGTTACCCATTCACTTTCGGCCCT





GGGACCAAAATGGATATCAAAGGA





53H5.3
VL80
469
GAAATAGTGATGACGCAGTCTCCAGTCACCTTG





TCTGTGTCTCCAGGGGAAAGAGCCATCATCTCCT





GCAGGGCCAGTCAGAGTGTTAGCAGCAACGTCG





CCTGGTACCAGCAGAAACCTGGCCAGACTCCCA





GGCTCCTCATCTATGGTGCATCCACCAGGGCCA





CTGGTCTCCCAACCAGGTTTAGTGGCAGTGGGT





CTGGGACAGTGTTCACTCTCACCATCAGCAGCCT





GCAGCCTGAAGATTTTGCAGTTTATTACTGTCAG





CAGTTTAGTAACTCAATCACCTTCGGCCAAGGG





ACACGACTGGAGATTAAACGA





54A1
VL44
470
GACATCCAGATGGCCCAGTCTCCATCCTCCCTGT


55G9


CTGCATCTGTTGGAGACAGAGTCACCATCACTT





GCCAGGCGAGTCAGGACATTAGCATCTATTTAA





ATTGGTATCAGCTGAAACCAGGGAAAGCCCCTA





AGCTCCTGATCTACGATGTATCCAATTTGGAAAC





AGGGGTCCCATCAAGGTTCAGTGGAGGTGGATC





TGGGACAGATTTTACTTTCACCATCAGCAGCCTG





CAGCCTGAAGATATTGCAACATATTACTGTCAA





CAGTATGATAATCTCCCTCTCACTTTCGGCCCTG





GGACCAAAGTGGATATCAAACGA





54H10.1
VL53
471
GAAATTGTGGTGACGCAGTCTCCAGGCACCCTG


55D1


TCTTTGTCTGTAGGGGAAAGAGCCATCCTCTCCT


48H3


GCAGGGCCAGTCAGAGTTTTAGCAGCAGTTACT


53C11


TAGCCTGGTACCAGCAGAAACCTGGCCAGGCTC





CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG





CCACTGGCATCCCAGACAGGTTCAGCGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATCAGTA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCAGCAGTATGGTAGCTCACGGACGTTCGGCC





AAGGGACCAAGGTGGAAATCAAACGA





55D3
VL71
472
GACATCCAGATGACCCAGTCTCCATCCTCACTGT





CTGTATCTGTAGGAGACAGAGTCACCATCACTT





GTCGGGCGAGTCAGGACATTAGCAATTATTTAG





CCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTA





AGTCCCTGATCTATGCTGCATCCAGTTTGCAAAG





TGGGGTCCCATCAAAGTTCAGCGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGCCT





GCAGCCTGAAGATTTTGCAACTTATTACTGCCAA





CAGTATAATATTTACCCTCGGACGTTCGGCCAA





GGGACCAAGGTGGAAATCAAGCGA





55E4
VL75
473
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT


49B11


CTACATCTATAGGAGACAGAATCACCATCACTT


50H10


GCCGGGCAAGTCAGAGCATTAGTAACTATTTAA


53C1


ATTGGTTTCAGCAGATCCCAGGGAAAGCCCCTA





GGCTCCTGATCTATACAGCTTCCAGTTTGCAAAG





TGGGGTCCCATCGAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGTCTG





CAACCTGAAGATTTTGCAACTTACTACTGTCAAC





AGAGTTCCAGTATCCCTTGGACGTTCGGCCAAG





GGACCAAGGTGGAAATCAAACGA





55E9
VL68
474
GATATTGTGATGACTCAGTCTCCACTCTCCCTGC





CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG





CAGGTCTAGTCAGAGCCTCCTGCATAGTAACGG





ATTCAACTATTTGGATTGGTACCTGCAGAAGCC





AGGGCAGTCTCCACAGGTCCTGATCTATTTGGGT





TCTAATCGGGCCTCCGGGGTCCCTGACAGGTTC





AGTGGCAGTGGATCAGGCACAGATTTTACACTG





AAAATCAGCAGAGTGGAGGCTGAGGATGTTGGG





ATTTATTACTGCATGCAAGCTCTACAAACTCTCA





TCACCTTCGGCCAAGGGACACGACTGGAGATTA





AACGA





55G5
VL83
475
TCCTATGAACTGACTCAGCCACCCTCAGTGTCCG





TGTCCCCAGGACAGACAGCCAGCATCACCTGCT





CTGGAGATAATTTGGGGGATAAATATGCTTTCT





GGTATCAACAGAAGCCAGGCCAGTCCCCTGTAT





TGGTCATCTATCAAGATAACAAGCGGCCCTCAG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG





GAACACAGCCACTCTGACCATCAGCGGGACCCA





GGCTGTGGATGAGGCTGACTATTACTGTCAGGC





GTGGGACAGCGCCACTGTGATTTTCGGCGGAGG





GACCAAGTTGACCGTCCTAGGT





56A7
VL52
476
GACATCCAAATGACCCAGTCTCCATCTTCCGTGT


56E4


CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GTCGGGCGAGTCAGGATATTAGCAGTTGGTTAG





CCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AATTCCTGATCTATGATGCATCCACTTTGCAAAG





TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC





TGGGGCAGATTTCACTCTCACCATCAACAACCT





GCAGCCTGAAGATTTTGCAACTTACTATTGTCAA





CAGACTAACAGTTTTCCTCCGTGGACGTTCGGCC





AAGGGACCAAGGTGGAAATCAAACGA





56C11
VL64
477
TCCTATGTGCTGACTCAGCCACCCTCGGTGTCAG





TGGCCCCAGGACAGGCGGCCAGGATTACCTGTG





GGGGAAACGACATTGGAAGTAAAAGTGTGCACT





GGTACCAGCAGAAGCCAGGCCAGGCCCCTGTGC





TGGTCGTCTATGATGATAGCGACCGGCCCTCAG





GGATCCCTGAGCGATTCTCTGGCTCCAAGTCTGG





GAACACGGCCACCCTGATTATCAGCAGGGTCGA





AGCCGGGGAAGAGGCCGACTATTATTGTCAGGT





GTGGGATAGTAGTAGTGATGTGGTATTCGGCGG





AGGGACCAAGTTGACCGTCCTAGGT





56E7
VL86
478
GACCTCCAGATGACCCAGTCTCCTTCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCAGGCGAGTCAGGACATTAAAAAATTTTTAA





ATTGGTATCAGCAGAAACCAGGTAAAGCCCCTA





ACCTCCTGATCTACGATGCATCCAATTTGGAAAC





AGGGGTCCCATCAAGGTTCAGTGGAAGTGGATC





TGGGACAGATTTTACTTTCACCATCAGCAGCCTG





CAGCCTGAAGATATTGCAACATATTACTGTCAA





CAATATGCTATTCTCCCATTCACTTTCGGCCCTG





GGACCACAGTGGATATCAAACGA





56G1
VL76
479
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGAGCATTAGCAACTATTTAA





ATTGGTTTCTGCAGATACCAGGGAAAGCCCCTA





AACTCCTGATCTATGCAGCTTCCAGTTTACAAAG





TGGGGTCCCATCGAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAACAGTCTG





CAACCTGAAGATTTTGGAACTTACTACTGCCAA





CAGAGTTCCACTATCCCTTGGACGTTCGGCCAA





GGGACCAAGGTGGAAATCAAACGA





56G3.3
VL81
480
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG


55B10


TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAGCAGAGACTACT





TAGCCTGGTATCGGCAGAAACCTGGCCAGGCTC





CCAGGCTCCTCGTCTATGGTGCATCCGCCAGGG





CCACTGGCATCCCAGACAGATTCAGTGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATCAGCA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCAGCAATATGGTAGATCACTATTCACTTTCGG





CCCTGGGACCAAAGTGGATATCAAACGA





57B12
VL72
481
GACATCCAGATGACCCAGTCTCCATCCTCACTGT





CTGTATCTGTAGGAGACAGAGTCACCATCACTT





GTCGGGCGAGTCATGACATTAGCAATTATTTAG





CCTGGTTTCAGCAGAAACCAGGGAAAGCCCCTA





AGTCCCTGATCTATGCTGCATCCAGTTTGCAAAG





TGGGGTCCCATCAAAGTTCAGCGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGCCT





GCAGCCTGAAGATTTTGCAACTTATTACTGCCAA





CAATATAATACTTACCCTCGGACGTTCGGCCAA





GGGACCAAGGTGGAAATCAAGCGA





57D9
VL87
482
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG





TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCCGAGTGTTAGCAGCAGCTACT





TAGCCTGGTACCAGCAGAAACCTGCCCAGGCTC





CCAGGCTCCTCATCTATGGTGCATCCAGTAGGG





CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATCAGCA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCATCAGTATGGTACCTCACCGTGCAGTTTTGG





CCAGGGGACCAAGCTGGAGATCAAACGA





59A10
VL48
483
GACATCCAGATGACCCAGTCTCCATCTTCCGTGT


49H4


CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GTCGGGCGAGTCAGGGTATTAGCAGCTGGTTAG





CCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AACTCCTGATCTATGGTGCATCCAGTTTGCAAAG





TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGCCT





GCAGCCTGAAGATTTTGCAACTTATTATTGTCAA





CAGACTAACAGTTTCCCTCCGTGGACGTTCGGCC





AAGGGACCAAGGTGGAAATCAAACGA





59C9
VL50
484
GACATCCAGATGACCCAGTCTCCATCTTCCGTGT


58A5


CTGCATCTGTAGGAGACAGAGTCACCATCACTT


57A4


GTCGGGCGAGTCAGGATATTGACAGCTGGTTAG


57F9


TCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





ACCTCCTGATCTATGCTGCATCCAATTTGCAAAG





AGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCGCCAGCCTG





CAGCCTGAAGATTTTGCAACTTACTATTGTCAGC





AGACTAACAGTTTCCCTCCGTGGACGTTCGGCC





AAGGGACCAAGGTGGAAATCAAACGA





59G10.2
VL60
485
TCCTATGAGCTGTCTCAGCCACCCTCAGTGTCCG





TGTCCCCAGGACAGACAGTCAGCATCACCTGCT





CTGGAGATAATTTGGGGGATAAATATGCTTGCT





GGTATCAGCAGAGGCCAGGCCAGTCCCCTGTCC





TGGTCATCTATCAAGATACCAAGCGGCCCTCAG





GGATCCCTGAGCGATTCTCTGGCTCCAATTCTGG





GAACACAGCCACTCTGACCATCAGCGGGACCCA





GGCTATGGATGAGGCTGACTATTACTGTCAGGC





GTGGGACAGCAGCACTACATGGGTGTTCGGCGG





AGGGACCAAGCTGACCGTCCTAGGT





59G10.3
VL54
486
CAGTCTGTGTTGACGCAGCCGCCCTCAGTGTCTG





CGGCCCCAGGACAGAAGGTCACCATCTCCTGCT





CTGGAAGCAGCTCCAACATTGGGGATAATTATG





TATCCTGGTACCAGCAGTTCCCAGGAACAGCCC





CCAAACTCCTCATTTATGACAATAATAAGCGAC





CCTCAGGGATTCCTGACCGATTCTCTGGCTCCAA





GTCTGGCACGTCAGCCACCCTGGGCATCACCGG





ACTCCAGACTGGGGACGAGGCCGATTATTACTG





CGGAACATGGGACAGCAGCCTGAGTGTTATGGT





TTTCGGCGGAGGGACCAAGCTGACCGTCCTAGGT





60D7
VL69
487
GATATTGTGCTGACCCAGACTCCACTCTCCCTGC





CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG





CAGGTCTAGTCAGAGCCTCTTGGATAGTGATGA





TGGAGACACCTATTTGGACTGGTACCTGCAGAA





GCCAGGGCAGTCTCCACAGCTCCTGATCTATAC





GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG





GTTCAGTGGCAGTGGGTCAGGCACTGATTTCAC





ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT





TGGAGTTTATTACTGCATGCAACGTATAGAGTTT





CCGCTCACTTTCGGCGGAGGGACCAAGGTGGAG





ATCAAACGA





60F9
VL58
488
GAAATTATGTTGACGCAGTCTCCAGGCACCCTG


48B4


TCTTTGTCTCCAGGGGAAAGGGCCACCCTCTCCT


52D6


GCAGGGCCAGTCAGAGGGTTCCCAGCAGCTACA





TAGTCTGGTACCAGCAGAAACCTGGCCAGGCTC





CCAGGCTCCTCATCTATGGTTCATCCAACAGGGC





CACTGGCATCCCAGACAGGTTCAGTGGCAGTGG





GTCTGGGACAGACTTCACTCTCACCATCGGCAG





ACTGGAGCCTGAAGATTTTGCAGTGTACTACTGT





CAGCAGTATGGTAGCTCACCTCCGTGGACGTTC





GGCCAAGGGACCAAGGTGGCAATCAAACGA





60G5.2
VL46
489
TCCTATGAGCTGACTCAGCCACCCTCAGTGTCCG





TGTCCCCAGGACAGACAGCCAGCATCACCTGCT





CTGGAAATAAATTGGGGGATAAATATGTTTGCT





GGTATCAGCAGAAGCCAGGCCAGTCCCCTGTCT





TGGTCATCTATCAAGATAGCAAGCGGCCCTCAG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG





GAACACAGCCACTCTGACCATCAGCGGGACCCA





GGCTTTGGATGAGGCTGACTATTACTGTCAGGC





GTGGGACAGCAGCACTTGGGTGTTCGGCGGAGG





GACCAAGCTGACCGTCCTAGGT





61G5
VL59
490
GAAATTATGTTGACGCAGTCTCCAGGCACCCTG





TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGAGTTCCCAGCAGCTACT





TAGTCTGGTACCAGCAGAAACCTGGCCAGGCTC





CCAGGCTCCTCATCTATGGTGCATCCAACAGGG





CCACAGGCATCCCAGACAGGTTCAGCGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATCGGCA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCAGCAGTATGGTAGTTCACCTCCGTGGACGTT





CGGCCAAGGGACCAAGGTGGCAATCAAACGA





52C5
VL73
491
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTATAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGAGCATTAGCAACTATTTAA





ATTGGTTTCAGCAGATCCCAGGGAAAGCCCCTA





GGCTCCTGATCTATGCAGCTTCCAGTTTGCAAAG





TGGGGTCCCATCGAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGTCTG





CAACCTGAAGATTTTGCAATTTACTACTGTCAAC





AGAGTTCCAGTATCCCTTGGACGTTCGGCCAAG





GGACCAAGGTGGAAATCAAACGA





61H5
VL88
492
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG


52B9


TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAGCAGAGACTACT





TAGCCTGGTACCGGCAGAAACCTGGCCAGGCTC





CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG





CCACTGGCATCCCAGACAGATTCAGTGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATCAGCA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCAGCAATATGGTAGATCACTATTCACTTTCGG





CCCTGGGACCACAGTGGATATCAAACGA





59D10v1
VL56
493
TCCTATGAGCTGACACAGCCACCCTCGGTGTCTG





TGTCCCCAGGCCAAACGGCCAGGATCACCTGCT





CTGGAGATGCAGTGCCAAAAAAATATGCTAATT





GGTACCAGCAGAAGTCAGGCCAGGCCCCTGTGC





TGGTCATCTATGAGGACAGCAAACGACCCTCCG





GGATCCCTGAGAGATTCTCTGGCTCCAGCTCAG





GGACAATGGCCACCTTGACTATCAGTGGGGCCC





AGGTGGAGGATGAAGCTGACTACTACTGTTACT





CAACAGACAGCAGTGGTAATCATGTGGTATTCG





GCGGAGGGACCAAGCTGACCGTCCTAGGT





59D10v2
VL57
494
TCCTATGAGTTGACTCAGCCACCCTCAGTGTCCG





TGTCCCCAGGACAGACAGCCAGCATCACCTGCT





CTGGAGATAAATTGGGGGATAAATACGTTTGCT





GGTATCAGCAGATGCCAGGCCAGTCCCCTGTGT





TGGTCATCCATCAAAATAACAAGCGGCCCTCAG





GGATCCCTGAGCGATTCTCTGGCTCCAACTCTGG





GAACACAGCCACTCTGACCATCAGCGGGACCCA





GGCTATGGATGAGGCTGACTATTATTGTCAGGC





GTGGGATAGTAGTACTGCGGTATTCGGCGGAGG





GACCAAGCTGACCGTCCTAGGT





56G3.2
VL85
495
GAAACAGTGATGACGCAGTCTCCAGCCACCCTG





TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGGCAGAGTGTTGGCAGTAACTTAA





TCTGGTACCAGCAGAAACCTGGCCAGGCTCCCA





GGCTCCTCATCTTTGGTGCATCCAGCAGGGACA





CTGGTATCCCAGCCAGGTTCAGTGGCAGTGGGT





CTGGGACAGAGTTCACTCTCACCATCAGCAGCC





TGCAGTCTGAAGATTTTGCAGTTTATTACTGTCA





GCAGTATAATAATTGGCCTCTCACTTTCGGCGGA





GGGACCAAGGTGGAGATCAAACGA





66F7
VL7
496
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGACAAGTCAGAGCATTAGCAACTATTTAA





ATTGGTATCAGCAGAAACCAGGAAAAGCCCCTA





ACCTCCTGATCTATGCTGCATCCAGTTTGCAAAG





TGGGGTCCCATCAAGATTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCGGTCTG





CAACCTGAGGATTTTTCAACTTACTACTGTCAAC





AGAGTTACAGTACCTCGCTCACTTTCGGCGGAG





GGACCAAGGTGGAGATCAAACGA





48G4
VL89
497
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG


53C3.1


TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTGCCAGCAGTTACT





TAGTCTGGTACCAACAGAAACCTGGCCAGGCTC





CCAGGCTCCTCATCTATGGTGCATTCAGCAGGG





CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATCAGGA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCAGCAGTATGGTACCTCACCATTTACTTTCGG





CCCTGGGACCAAAGTGGATCTCAAACGA





50G1
VL90
498
GACATTGTGATGACCCAGACTCCACTCTCCCTGC





CCGTCAGCCCTGGAGAGCCGGCCTCCATCTCCT





GCAGGTCTAGTCAGAGCCTCTTGGATAGTGATG





ATGGAGACACCTATTTGGACTGGTACCTGCAGA





AGCCAGGGCAGTCTCCACAGCTCCTGATCTATA





CGCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG





GTTCAGTGTCAGTGGGTCAGGCACTGATTTCAC





ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT





TGGAGTTTATTACTGCATGCAACGTATAGAGTTT





CCGCTCACTTTCGGCGGAGGGACCAAGGTGGAG





ATCAAACGA





58C2
VL91
499
GAAATTGTGATGACCCAGACTCCACTCTCCCTGC





CCGTCACCCCTGGAGAGCCGGCCTCCATCTCCTG





CAGGTCTAGTCAGAGCCTCTTCGATAATGATGA





TGGAGACACCTATTTGGACTGGTACCTGCAGAA





GCCAGGGCAGTCTCCACAACTCCTGATCTATAC





GCTTTCCTATCGGGCCTCTGGAGTCCCAGACAG





GTTCAGTGGCAGTGGGTCAGGCACTGATTTCAC





ACTGAAAATCAGCAGGGTGGAGGCTGAGGATGT





TGGAGTTTATTACTGCATGCAACGTTTAGAGTTT





CCGATCACCTTCGGGCAAGGGACACGACTGGAG





ATTAAACGA





60G5.1
VL74
1865
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTATAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGAGCATTAGCAACTATTTAA





ATTGGTTTCAGCAGATCCCAGGGAAAGCCCCTA





GGCTCCTGATCTATGCAGCTTCCAGTTTGCAAAG





TGGGGTCCCATCGAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGTCTG





CAACCTGAAGATTTTGCAACTTACTACTGTCAAC





AGAGTTCCAGTATCCCTTGGACGTTCGGCCAAG





GGACCAAGGTGGAAATCAAACGA





50D4
VL92
500
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCGAGTCAGGACATTAGCAATTATTTAG





CCTGGTATCAGCAGAAACCAGGGAAAGTTCCTA





CGCTCCTGATCTATGCTGCATCCACTTTGCTATC





AGGGGTCCCATCTCGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGCCT





GCAGCCTGAAGATGTTGCAGCTTATTACTGTCA





AAAGTATTACAGTGCCCCTTTCACTTTCGGCCCT





GGGACCAAAGTGGATATCAACCGA





50G5v1
VL93
501
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACTATCACTT





GCCGGGCAAGTCAGGGCATTAGAAATGATTTAG





GCTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





ACCGCCTGATCTATGCTGCGTCCAGTTTGCAAAG





TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATC





TGGGACAGAATTCACTCTCACAATCAGCAGCCT





GCAGCCTGAAGATTTTGCAACTTATTACTGTCTA





CAGCATAATAGTTACCCTCGGACGTTCGGCCAA





GGGACCAAGGTGGAAATCAAACGA





50G5v2
VL94
502
GATGTTGTGATGACTCAGTGTCCACTCTCCCTGC





CCGTCACCCTTGGACAGCCGGCCTCCATCTCCTG





CAGGTCTAGTCAAAGACTCGTATACAGTGATGG





AAACACCTACTTGAATTGGGTTCAGCAGAGGCC





AGGCCAATCTCCAAGGCGCCTAATTTATAAGGT





TTCTAACTGGGACTCTGGGGTCCCAGACAGATT





CAGCGGCAGTGGGTCAGGCACTGATTTCACACT





GAAAATCAGCAGGGTGGAGGCTGAGGATGTTGG





GGTTAATTACTGCATGGAAGGTACACACTGGCC





TCGGGACTTCGGCCAAGGGACACGACTGGAGAT





TAAACGA





51C1
VL95
503
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTATAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGAGCATTAGCAACTATTTAA





ATTGGTTTCAGCAGATCCCAGGGAAAGCCCCTA





GACTCCTGATCTATGCAGCTTCCAGTTTGCAAAG





TGGGGTCCCATCGAGGTTTAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGTCTG





CAACCTGAAGATTTTGCAACTTACTACTGTCAAC





AGAGTTCCAGTATCCCTTGGACGTTCGGCCAAG





GGACCACGGTGGAAATCAAACGA





53C3.2
VL96
504
GACATAGTGATGACGCAGTCTCCAGCCACCCTG





TCTGTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTATTAGCAGCAATTTAG





CCTGGTACCAGCAGACACCTGGCCAGGCTCCCA





GGCTCCTCATCTATGGTACATCCATCAGGGCCA





GTACTATCCCAGCCAGGTTCAGTGGCAGTGGGT





CTGGGACAGAGTTCACTCTCACCATCAGCAGCC





TGCAGTCTGAAGATTTTGCAATTTATTACTGTCA





CCAGTATACTAACTGGCCTCGGACGTTCGGCCA





AGGGACCAAGGTGGAAATCAAACGA





54H10.3
VL97
505
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGACCATTAGCATCTATTTAA





ATTGGTATCAGCAAAAACCAGGGAAAGCCCCTA





AGTTCCTGATCTATTCTGCATCCAGTTTGCAAAG





TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGTCTG





CAACCTGAAGATTTTTCAACTTACTTCTGTCAAC





AGAGTTACAGTTCCCCGCTCACTTTCGGCGGAG





GGACCAAGGTGGAGATCAAACGA





55A7
VL98
506
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTGTAGGAGACAGAGTCACCATCACTT





GCCGGGCAAGTCAGAGCATTAGCAGCTATTTAA





ATTGGTATCAGCAGAAACCAGGGAAAGCCCCTA





AGCTCCTGATCTATGCTGCATCCAGTTTGCAAAG





TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATC





TGGGACAGATTTCACTCTCACCATCAGCAGTCTG





CAACCTGAAGATTTTGCAACTTACTACTGTCAAC





AGACTTACAGTGCCCCATTCACTTTCGGCCCTGG





GACCAAAGTGGATATCAAACGA





55E6
VL99
507
GAAATTGTGTTGACGCAGTCTCCAGGCACCCTG





TCTTTGTCTCCAGGGGAAAGAGCCACCCTCTCCT





GCAGGGCCAGTCAGAGTGTTAGTCGCAGCCACT





TAGCCTGGTACCAGCAGAACTCTGGCCAGGCTC





CCAGGCTCCTCATCTATGGTGCATCCAGCAGGG





CCACTGGCATCCCAGACAGGTTCAGTGGCAGTG





GGTCTGGGACAGACTTCACTCTCACCATCAGCA





GACTGGAGCCTGAAGATTTTGCAGTGTATTACT





GTCAGCAGTATGGTAGTTCACCGTGGACGTTCG





GCCAAGGGACCAAGGTGGAAATCAAACGA





61E1
VL100
508
GACATCCAGATGACCCAGTCTCCATCCTCCCTGT





CTGCATCTATTAGAGACCGAGTCACCATCACTTG





CCGGGCAAGTCAGAGCATTGGCACCTTTTTAAA





TTGGTATCAGCAGAAACCAGGGACAGCCCCTAA





GCTCCTGATCTATGCTGCGTCCAGTTTGCAAAGT





GGGGTCCCATCAAGGTTCAGTGGCAGTGGATCT





GGGACAGATTTCACTCTCACCATCAGCAGTCTA





CATCCTGAAGATTTTGCGTCTTACTATTGTCAAC





AGAGTTTCAGTACCCCGCTCACTTTCGGCGGAG





GGACCAAGGTGGAGATCACACGA
















TABLE 2D







Coding Sequence for Antibody Variable Heavy (VH) Chains










Contained

SEQ ID



in Clone
Designation
NO.
Coding Sequence













63E6
VH 6
509
CAGGTGCAGCTTATGCAGTCTGGGGCTGAGGTG


66F7


AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCTTCTGGATACACCTTCACCGGCTACTATA





TGCACTGGGTGCGACAGGCCCCTGGACAAGGGC





TTGAGTGGATGGGATGGATGAACCCTAATAGTG





GTGCCACAAAGTATGCACAGAAGTTTCAGGGCA





GGGTCACCATGACCAGGGACACGTCCATCAGCA





CAGCCTACATGGAGCTGAGCAGGCTGAGATCTG





ACGACACGGCCGTGTATTACTGTGCGAGAGAAC





TCGGTGACTACCCCTTTTTTGACTACTGGGGCCA





GGGAACCCTGGGCATCGTCTCCTCA





66D4
VH17
510
CAGGTGCAACTGGTGCAGTCTGGGGCTGAGGTG





AAGAAGCCTGGGGCCTCAGTGAAGGTC





TCCTGCAGGGCTTCTGGGTACACCTTCACCGGCT





ACTATATACACTGGATGCGACAGGCC





CCTGGCCATGGGCTGGAGTGGATGGGATGGATC





AACCCTCCCAGTGGTGCCACAAACTAT





GCACAGAAGTTTCGGGGCAGGGTCGCCGTGACC





AGGGACACGTCCATCAGCACAGTCTAC





ATGGAACTGAGCAGGCTGAGATCTGACGACACG





GCCGTATATTACTGTGCGAGAGAGACT





GGAACTTGGAACTTCTTTGACTACTGGGGCCAG





GGAACCCTGGTCACCGTCTCCTCA





66B4
VH10
511
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG





AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCATCTGGATACACCTTCACCGGCTACTATT





TGCACTGGGTGCGACAGGCCCCTGGACAAGGGC





TTGAGTGGATGGGATGGATCAACCCTAACAGTG





GTGGCACAGACTATGCACAGAAGTTTCAGGGCC





GGGTCACCATGACCAGGGACACGTCCATCAGTA





CAGCCTACATGGAGCTGAGCAGGCTGAGATCTG





ACGACACGGCCGTGTATTACTGTGTGGGAGACG





CAGCAACTGGTCGCTACTACTTTGACAACTGGG





GCCAGGGAACCCTGGTCACCGTCTCCTCA





65B1
VH18
512
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG





AAGAGGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCTTCTGGATACACCTTCACCGGCTACTTTA





TGCACTGGGTGCGACAGGCCCCTGGACAAGGGC





TTGAGTGGATGGGATGGATCAACCCTAACAGTG





GTGCCACAAACTATGCACAGAAGTTTCACGGCA





GGGTCACCATGACCAGGGACACGTCCATCACCA





CAGTCTACATGGAGCTGAGCAGGCTGAGATCTG





ACGACACGGCCGTGTATTACTGTACGAGAGAAC





TGGGGATCTTCAACTGGTTCGACCCCTGGGGCC





AGGGAACCCTGGTCACCGTCTCCTCA





65B4
VH20
513
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCTTG





GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCGCCTTCAGTAGTTACGACA





TGCACTGGGTCCGCCAAGCTACAGGAAAAGGTC





TGGAGTGGGTCTCAACTATTGATACTGCTGGTG





ACGCTTACTATCCAGGCTCCGTGAAGGGCCGAT





TCACCATCTCCAGAGAAAATGCCAAGACCTCCT





TGTATCTTCAAATGAACAGCCTGAGAGCCGGGG





ACACGGCTGTGTATTACTGTACAAGAGATCGGA





GCAGTGGCCGGTTCGGGGACTTCTACGGTATGG





ACGTCTGGGGCCAAGGGACCGCGGTCACCGTCT





CCTCA





67A4
VH19
514
GAGGTGCAGCTGGAGGAGTCTGGGGGAGGCTTG





GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTCAGGACCTACGAC





ATGCACTGGGTCCGCCAAGTTACAGGAAAAGGT





CTGGAGTGGGTCTCAGCTATTGGTATTGCTGGTG





ACACATACTATTCAGACTCCGTGAAGGGCCGAT





TCACCATCTCCAGAGAAAATGCCAAGAACTCCC





TGTATCTTCAAATGAACAGTCTAAGAGTCGGGG





ACACGGCTGTGTATTACTGTGCAAGAGATCGGA





GCAGTGGCCGGTTCGGGGACTACTACGGTATGG





ACGTCTGGGGCCAAGGGACCACGGTCACCGTCT





CCTCA





63A10v1
VH21
515
GAGGTGCAGCTGGTGGAGTCTGGGGGAGACTTG


63A10v2


GTAAAGCCTGGGGGGTCCCTTAGACTCTCCTGT


63A10v3


GCAGTCTCTGGAATCACTTTCAGTAACGCCTGG





ATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGG





CTGGAGTGGGTTGGCCGTATTAAAAGCAAAACT





GATGGTGGGACAACAGACTACGCTGCACCCGTG





AAAGGCAGATTCACCGTCTCAAGAGATGGTTCA





AAAAATACGCTGTATCTGCAAATGAACAGCCTG





AAAACCGAGGACACAGCCGTGTATTACTGTACC





ACAGATAGTAGTGGGAGCTACTACGTGGAGGAC





TACTTTGACTACTGGGGCCAGGGAACCCTGGTC





ACCGTCTCCTCA





65H11v1
VH22
516
GAGGTGCAACTGGTGGAGTCTGGGGGAGGCTTG


65H11v2


GTAAAGCCTGGGGGGTCCCTTAGACTCTCCTGT





GCAGCCTCTGGATTCACTTTCAGTAACGCCTGGA





TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGC





TGGAGTGGGTTGGCCGTATTATAGGCAAAACTG





ATGGTGGGACAACAGACTACGCTGCACCCGTGA





AAGGCAGATTCACCATTTCAAGAGATGATTCAA





AAAACACGCTGTATCTGCAAATGAACAGCCTGA





AAACCGAGGACACAGCCGTGTATTACTGTACCT





CAGATAGTAGTGGGAGCTACTACGTGGAGGACT





ACTTTGACTACTGGGGCCAGGGAACCCTGGTCG





CCGTCTCCTCA





67G10v1
VH9
517
GAGGTGCAACTGGTGGAGTCTGGGGGAGGCTTG


67G10v2


GTAAAGCCGGGGGGGTCCCTTAGACTCGCCTGT





GCAGCCTCTGGAATCACTTTCAATAACGCCTGG





ATGAGTTGGGTCCGCCAGGCTCCAGGGAAGGGG





CTGGAATGGGTTGGCCGTATTAAAAGCAAAACT





GATGGTGGGACAACAGACTACGCTGCACCCGTG





AAAGGCAGATTCACCATCTCAAGAGATGATTCA





AAAAGTATACTGTATCTGCAAATGAACAGCCTG





AAATCCGAGGACACAGCCGTGTATTATTGTACC





ACAGATAGTAGTGGGAGCTACTACGTGGAGGAC





TACTTTGACTACTGGGGCCAGGGAACCCTG





GTCACCGTCTCCTCA





64C8
VH23
518
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GTAGCCTCTGGATTCACCTTCAGTAGCTATGGCA





TGCACTGGGTCCGCCAGGATCCAGGCAAGGGGC





TGGAGTGGGTGGCAGTTATATCATATGATGGAA





GTAACAAACACTATGCAGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATCTGCAAATGAACAGCCTGAGAGCTG





AGGACACGGCTGTGTATTACTGTGCGAGGGAAT





TACTATGGTTCGGGGAGTATGGGGTAGACCACG





GTATGGACGTCTGGGGCCAAGGGACCACGGTCA





CCGTCTCCTCA





63G8v1
VH1
519
CAGGCGCAGCTGGTGGAGTCTGGGGGAGGCGTG


63G8v2


GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT


63G8v3


GCAGCCTCTGGATTCACCTTCAGTAGCTATGGCA


68D3v1


TACACTGGGTCCGCCAGGCTCCAGGCAAGGGGC


64A8


TGGAGTGGGTGGCAGTTATATCATATGATGGAA


67B4


GTAATAAATACTATGCAGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATCTGCAAATGAACAGCCTGAGAGCTG





AGGACACGGCTGTGTATTACTGTGCGACTACGG





TGACTAAGGAGGACTACTACTACTACGGTATGG





ACGTCTGGGGCCAAGGGACCACGGTCACCGTCT





CCTCA





68D3v2
VH95
1866
CAGGCGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTC





TCCTGTGCAGCCTCTGGATTCACCTTCAGTAGCT





ATGGCATGCACTGGGTCCGCCAGGCT





CCAGGCAAGGGGCTGGAGTGGGTGGCATTTATA





TCATATGCTGGAAGTAATAAATACTAT





GCAGACTCCGTGAAGGGCCGATTCACCATCTCC





AGAGACAATTCCAAGAACACGCTGTAT





CTGCAAATGAGCAGCCTGAGAGCTGAGGACACG





GCTGTGTATTACTGTGCGACTACGGTG





ACTGAGGAGGACTACTACTACTACGGTATGGAC





GTCTGGGGCCAAGGGACCACGGTCACC





GTCTCCTCA





66G2
VH11
520
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCCTCAGGATTCACCTTCAGTAGCTATGGC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG





CTGGAGTGGGTGGCAGGTATATCATATGATGGA





AGTAATAAAAACTATGCAGACTCCGTGAAGGGC





CGAATCACCATCTCCAGAGACAATCCCAAGAAC





ACGCTGTATCTGCAAATGAACAGCCTGAGAGCT





GAGGACACGGCTGTGTATTACTGTGCGACTACG





GTGACTAAGGAGGACTACTACTACTACGGTATG





GACGTCTGGGGCCAAGGGACCACGGTCACCGTC





TCCTCA





65D1
VH26
521
CAGGTGCAACTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTTACTATTACA





TTCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC





TGGAGTGGGTGGCACTTATATGGTATGATGGAA





GTAATAAAGACTATGCAGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATCTGCATGTGAACAGCCTGAGAGCCG





AGGACACGGCTGTGTATTACTGTGCGAGAGAAG





GGACAACTCGACGGGGATTTGACTACTGGGGCC





AGGGAACCCTGGTCACCGTCTCCTCA





64H5
VH7
522
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGAGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG





CTGGAGTGGGTGGCAGTTATATGGGATGATGGA





AGTAATAAATACTATGCAGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAATTCCAAGAAC





ACGCTGTCTCTGCAAATGAACAGCCTGAGGGCC





GAGGACACGGCTGTTTATTACTGTGCGAGAGAA





TACGTAGCAGAAGCTGGTTTTGACTACTGGGGC





CAGGGAACCCTGGTCACCGTCTCCTCA





65D4
VH25
523
CAGGAGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGTGTCTGGATTCACCTTCAGTTTCTATGGCA





TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC





TGGAGTGGGTGGCAGTTATATGGTATGATGGAA





GTAATAAATACTATGCAGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATTTGCAAATGAACAGCCTGAGAGCCG





AGGACACGGCTGTGTATTACTGTACGAGAGCCC





TCAACTGGAACTTTTTTGACTACTGGGGCCAGG





GAACCCTGGTCACCGTCTCCTCA





65E3
VH24
524
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCCTCAGTAACTATAAC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG





CTGGAGTGGGTGGCAGTTTTATGGTATGATGGA





AATACTAAATACTATGCAGACTCCGTGAAGGGC





CGAGTCACCATCTCTAGAGACAATTCCAAGAAC





ACGCTGTATCTTCAAATGAACAGCCTGAGAGCC





GAGGACACGGCTGTGTATTACTGTGCGAGAGAT





GTCTACGGTGACTATTTTGCGTACTGGGGCCAG





GGAACCCTGGTCACCGTCTCCTCA





65G4
VH8
525
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG





CTGGAGTGGGTGGCAGTTATATGGGATGATGGA





AGTAATAAATACTATGCAGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAATTCCAAGAAC





ACGCTGTCTCTGCAAATGAACAGCCTGAGGGCC





GAGGACACGGCTGTTTATTACTGTGCGAGAGAA





TACGTAGCAGAAGCTGGTTTTGACTACTGGGGC





CAGGGAACCCTGGTCACCGTCTCCTCA





68G5
VH12
526
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





ACAGCGTCTGGATTCACCTTCAGTAGCTATGGC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG





CTGGAGTGGGTGGCAGTTATATGGTATGATGGA





AGTAATAAATACCATGCAGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACGATTCCAAGAAC





GCGCTTTATCTGCAAATGAACAGCCTGAGAGCC





GAGGACACGGCTGTGTATTACTGTGTGAGAGAT





CCTGGATACAGCTATGGTCACTTTGACTACTGGG





GCCAGGGAACCCTGGTCACCGTCTCCTCA





67G8
VH27
527
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG





CTGGAGTGGGTGGCAGTTATATGGTATGATGGA





AGTAATAAAGACTATGCAGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAATTCCAAGAAC





ACGCTGTATCTGCAAATGAACAGCCTGAGAGCC





GAGGACACGGCTGTGTATTACTGTGCGAGATCA





GCAGTGGCTTTGTACAACTGGTTCGACCCCTGG





GGCCAGGGAACCCTGGTCACCGTCTCCTCA





65B7v1
VH28
528
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG


65B7v2


GTGAACCCTTCACAGACCCTGTCCCTCACCTGCA





CTGTCTCTGGTGGCTCCATCAGCAGTGATGCTTA





CTACTGGAGCTGGATCCGCCAGCACCCAGGGAA





GGGCCTGGAGTGGATTGGGTACATCTTTTACAG





TGGGAGCACCTACTACAACCCGTCCCTCAAGAG





TCGAGTTACCATTTCAGTAGACACGTCTAAGAA





CCGGTTCTCCCTGAAGCTGAGCTCTGTGACTGCC





GCGGACACGGCCGTGTATTACTGTGCGAGAGAG





TCTAGGATATTGTACTTCAACGGGTACTTCCAGC





ACTGGGGCCAGGGCACCCTGGTCACCGTCTCCT





CA





63B6
VH4
529
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG


64D4


GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCG





CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA





CTACTGGAGCTGGATCCGCCAGCACCCAGGGAA





GGGCCTGGAGTGGATTGGGTACATCTATTACAG





TGGGACCACCTACTACAACCCGTCCCTCAAGAG





TCGAGTTACCATATCAGTAGACACGTCCAAGAA





CCAGTTCTCCCTGAAGCTGACCTCTGTGACTGCC





GCGGACACGGCCGTATATTACTGTGCGAGAATG





ACTACTCCTTACTGGTACTTCGGTCTCTGGGGCC





GTGGCACCCTGGTCACTGTCTCCTCA





63F5
VH13
530
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCC





CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA





TTACTGGACCTGGATCCGCCAGCACCCAGGGAA





GGACCTGGAGTGGATTACATACATCTATTACAG





TGGGAGCGCCTACTACAACCCGTCCCTCAAGAG





TCGAGTTACCATATCAGTAGACACGTCTAAGAA





CCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCC





GCGGACACGGCCGTATATTATTGTGCGAGGATG





ACTACCCCTTATTGGTACTTCGATCTCTGGGGCC





GTGGCACCCTGGTCACTGTCTCCTCA





63H11
VH3
531
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCC





CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA





CTACTGGACCTGGATCCGCCAGCACCCAGGGAA





GGGCCTGGAGTGGATTGCATACATCTATTACAG





TGGGAGCACCTACTACAACCCGTCCCTCAAGAG





TCGAGTTACCATATCAGTAGACACGTCTAAGAA





CCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCC





GCGGACACGGCCGTATATTACTGTGCGAGGATG





ACTACCCCTTACTGGTACTTCGATCTCTGGGGCC





GTGGCACCCTGGTCACTGTCTCCTCA





65E8
VH2
532
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG


64E6


GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCC


65F11


CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA


67G7


CTACTGGACCTGGATCCGCCAGCACCCAGGGAA





GGGCCTGGAGTGGATTGCATACATCTATTACAC





TGGGAGCACCTACTACAACCCGTCCCTCAAGAG





TCGAGTTACCATATCAGTAGACACGTCTAAGAA





CCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCC





GCGGACACGGCCGTATATTACTGTGCGAGGATG





ACTACCCCTTACTGGTACTTCGATCTCTGGGGCC





GTGGCACCCTGGTCACTGTCTCCTCA





65C1
VH15
533
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCC





CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA





CTACTGGACCTGGATCCGCCAACACCCAGGGAA





GGGCCTGGAGTGGATTGCATACATTTTTTACAGT





GGGAGCACCTACTACAACCCGTCCCTCAAGAGT





CGAGTTACCATATCACTTGACACGTCTAAGAAC





CAGTTCTCCCTGAAGCTGAACTCTGTGACTGCCG





CGGACACGGCCGTATATTACTGTGCGAGGATGA





CTTCCCCTTACTGGTACTTCGATCTCTGGGGCCG





TGGCACCCTGGTCACTGTCTCCTCA





66F6
VH14
534
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCC





CTGTCTCTGGTGGCTCCATCAGCAGTGGTGATTA





CTACTGGACCTGGATCCGCCATCACCCAGGGAA





GGGCCTGGAGTGGATTGCATACATTTATTACAG





TGGGAGCACCTACTACAACCCGTCCCTCAAGAG





TCGAGTTACCATATCAGTTGACACGTCTAAGAA





CCAGTTTTCCCTGAAGCTGAACTCTGTGACTGCC





GCGGACACGGCCGTTTATTACTGTGCGAGGATG





ACTACCCCTTACTGGTACTTCGATCTCTGGGGCC





GTGGCACCCTGGTCACTGTCTCCTCA





64A6
VH29
535
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA





CTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTA





TTACTGGAGCTGGATCCGCCAGCGCCCAGGGAA





GGGCCTGGAGTGGGTTGGGTACATCTATTACAG





TGGGGGCACCCACTACAACCCGTCCCTCAAAAG





TCGAGTTACCATATCAATAGACACGTCTGAGAA





CCAGTTCTCCCTGAAGCTGAGTTCTGTGACTGCC





GCGGACACGGCCGTGTATTACTGTGCGAGAGTC





CTCCATTACTCTGATAGTCGTGGTTACTCGTACT





ACTCTGACTTCTGGGGCCAGGGAACCCTGGTCA





CCGTCTCCTCA





65F9
VH30
536
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA





CTCTCTCTGGTGGCTCCTTCAGCAGTGGTGATTA





CTACTGGAGCTGGATCCGCCAGCACCCAGGGAA





GGGCCTGGAGTGGATTGGGTACATCTATTACAG





TGGGAGCACCTACTACAACCCATCCCTCAAGAG





TCGAGTTACCATATCAATAGACACGTCTAAGAA





CCAGTTCTCCCTGAAACTGACCTCTGTGACTGCC





GCGGACACGGCCGTGTATTACTGTGCGAGAGTC





CTCCATTACTATGATAGTAGTGGTTACTCGTACT





ACTTTGACTACTGGGGCCAGGGAACCCTGGTCA





CCGTCTCCTCA





64A7
VH16
537
CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGGCTCCATCAGCAGTGATACTT





CCTACTGGGGCTGGATCCGCCAGCCCCCAGGAA





AGGGGCTGGAGTGGATTGGGAATATCTATTATA





GTGGGACCACCTACTTCAACCCGTCCCTCAAGA





GTCGAGTCAGCGTATCCGTAGACACATCCAAGA





ACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC





CGCAGACACGGCTGTGTTTTATTGTGCGAGACTC





CGAGGGGTCTACTGGTACTTCGATCTCTGGGGC





CGTGGCACCCTGGTCACTGTCTCCTCA





65C3
VH5
538
CAGGTGCAGCTACAGGAGTCGGGTCCAGGACTG


68D5


GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGGCTCCATCAGTAGTTACTACT





GGAGCTGGATCCGGCAGCCCCCAGGGAAGGGA





CTGGAGTGGATTGGGTATATCTATTACACTGGG





AGCACCAACTACAACCCCTCCCTCAAGAGTCGA





GTCACCATATCAGTAGACACGTCCAAGAACCAG





TTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGG





ACACGGCCGTGTATTACTGTGCGAGAGAATATT





ACTATGGTTCGGGGAGTTATTATCCTTGGGGCCA





GGGAACCCTGGTCACCGTCTCCTCA





67F5
VH31
539
CAGGTGCAGCTGAAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCGGAGACCCTGTCCCTC





ACCTGCACTGTCTCTGGTGGCTCCATCAGTAGTT





ACTACTGGAGCTGGATCCGGCAGCCC





CCAGGGAAGGGACTGGAGTGGATTGGGTATATC





TATTACAGTGGGAACACCAACTACAAC





CCCTCCCTCAAGAGTCGAGTCACCATATCAGTA





GACACGTCCAAGAACCAGTTCTCCCTG





AAGCTGAGCTCTGTGACCGCTGCGGACACGGCC





GTGTATTACTGTGCGAGAGAATATTAC





TATGGTTCGGGGAGTTATTATCCTTGGGGCCAG





GGAACCCTGGTCACCGTCTCCTCA





64B10v1
VH32
540
CAGATTCAGCTGCTGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGGCTCCGTCAGTAGTGGTGATT





ACTACTGGAGCTGGATCCGGCAGCCCCCAGGGA





AGGGACTGGAGTGGATTGGGTTTATCTATTACA





GTGGGGGCACCAACTACAACCCCTCCCTCAAGA





GTCGAGTCACCATATCAATAGACACGTCCAAGA





ACCAGTTCTCCCTGAAGCTGAACTCTGTGACCGC





TGCGGACACGGCCGTGTATTACTGTGCGAGATA





TAGCAGCACCTGGGACTACTATTACGGTGTGGA





CGTCTGGGGCCAAGGGACCACGGTCACCGTCTC





CTCA





64B10v2
VH96
1867
CAGGTGCAGCTGCTGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGGCTCCGTCAGCAGTGGTGATT





ACTACTGGAGCTGGATCCGGCAGCCCCCAGGGA





AGGGACTGGAGTGGATTGGGTTTATTTATTACA





GTGGGGGCACCAACTACAACCCCCCCCTCAAGA





GTCGAGTCACCATATCAATAGACACGTCCAAGA





ACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC





TGCGGACACGGCCGTGTATTACTGTGCGAGATA





TAGCAGCACCTGGGACTACTATTACGGTGTGGA





CGTCTGGGGCCAAGGGACCACGGTCACC





GTCTCCTCA





68C8
VH33
541
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGACTCTGTCAGCAGTGGTGATA





ACTACTGGAGCTGGATCCGGCAGCCCCCAGGGA





AGGGACTGGAGTGGATTGGGTTCATGTTTTACA





GTGGGAGTACCAACTACAACCCCTCCCTCAAGA





GTCGAGTCACCATATCACTACACACGTCCAAGA





ACCAGTTCTCCCTGAGGCTGAGCTCTGTGACCGC





TGCGGACACGGCCGTGTATTACTGTGGGAGATA





TAGGAGTGACTGGGACTACTACTACGGTATGGA





CGTCTGGGGCCAAGGGACCACGGTCACCGTCTC





CTCA





67A5
VH34
542
GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTG





AAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGT





AAGGGTTCTGGATACAGCTTTACCAGTTACTGG





ATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGC





CTGGAGTGGATGGGGATCATCTATCCTGGTGAC





TCTGATACCAGATACAGCCCGTCCTTCCAAGGC





CAGGTCACCATCTCAGCCGACAAGTCCATCAAC





ACCGCCTACCTGCAGTGGAGCAGCCTGAAGGCC





TCGGACACCGCCATATACTTCTGTGCGAGACGG





GCCTCACGTGGATACAGATTTGGTCTTGCTTTTG





CGATCTGGGGCCAAGGGACAATGGTCACCGTCT





CCTCA





67C10
VH35
543
GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTG





AAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGT





CAGGGTTCTGGATACAGCTTTAGCAGTTACTGG





ATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGC





CTGGAGTGGATGGGGATCATCTATCCTGGTGAC





TCTGATACCAGATACAGCCCGTCCTTCCAAGGC





CAGGTCACCATCTCAGCCGACAAGTCCATCAAT





ACCGCCTACCTGCAGTGGAGCAGCCTGAAGGCC





TCGGACACCGCCATATATTACTGTGCGAGACGG





GCCTCACGTGGATACAGATATGGTCTTGCTTTTG





CTATCTGGGGCCAAGGGACAATGGTCACCGTCT





CTTCA





64H6
VH36
544
GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTG





AAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGT





AAGGGTTCTGGATACAGTTTTACCAGTTATTGGA





TCGGCTGGGTGCGCCAGATGCCCGGGAAAGGCC





TGGAGTGGATGGGGATCATCTATCCTGGTGACT





CTGAAACCAGATACAGCCCGTCCTTTCAAGGCC





AGGTCACCATCTCAGCCGACAAGTCCATCAGCA





CCGCCTACCTGCAGTGGAACAGCCTGAAGACCT





CGGACACCGCCATGTATTTCTGTGCGACCGTAG





CAGTGTCTGCCTTCAACTGGTTCGACCCCTGGGG





CCAGGGAACCCTGGTCACCGTCTCCTCC





63F9
VH37
545
CAGGTGCAGCTGAAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA





CTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTA





CTACTGGAACTGGATCCGCCAGCACCCAGGGAA





GGGCCTGGAGTGGATTGGGTACATCTATGACAG





TGGGAGCACCTACTACAACCCGTCCCTCAAGAG





TCGAGTTACCATGTCAGTAGACACGTCTAAGAA





CCAGTTCTCCCTGAAGTTGAGCTCTGTGACTGCC





GCGGACACGGCCGTGTATTACTGTGCGAGAGAT





GTTCTAATGGTGTATACTAAAGGGGGCTACTAC





TATTACGGTGTGGACGTCTGGGGCCAAGGGACC





ACGGTCACCGTCTCCTCA





67F6v1
VH38
546
GAGGTGCAGCTGGTGCAGTCTGGAGCAGAGGTG


67F6v2


AAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGT





AAGGGTTCTGGATACAGCTTTACCGGCTACTGG





ATCGGCTGGGTGCGCCAGCTGCCCGGGAAAGGC





CTGGAGTGGATGGGGATCATCTATCCTGGTGAC





TCTGATACCAGATACAGCCCGTCCTTCCAAGGC





CAGGTCACCATCTCAGTCGACAAGTCCATCAAC





ACCGCCTACCTGCAGTGGAGCAGCCTGAAGGCC





TCGGACACCGCCATGTATTACTGTGCGAGACGG





GCCTCACGTGGATACAGCTATGGTCATGCTTTTG





ATTTCTGGGGCCAAGGGACAATGGTCACCGTGT





CTTCA





48C9
VH73
547
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTG


49A12


TTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCT


51E2


CTGTCTATGGTGGGTCCTTCAGTGGTTACTACTG





GACCTGGATCCGCCAGCCCCCAGGGAAGGGGCT





GGAGTGGATTGGGGAAATCAATCATAGTGAAAA





CACCAACTACAACCCGTCCCTCAAGAGTCGAGT





CACCATATCAATAGACACGTCCAAGAACCAGTT





CTCCCTGAAGCTGAGCTCTGTGACCGCCGCGGA





CACGGCTGTGTATTACTGTGCGAGAGAGAGTGG





GAACTTCCCCTTTGACTACTGGGGCCAGGGAAC





CCTGGTCACCGTCTCCTCA





48F3
VH72
548
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACCG





TTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCG





CTGTCTATGGTGGGTCCATCAGTGGTTACTACTG





GAGCTGGATCCGCCAGCCCCCAGGGAAGGGGCT





GGAGTGGATTGGGGAAATCACTCATACTGGAAG





CTCCAACTACAACCCGTCCCTCAAGAGTCGAGT





CACCATATCAGTAGACACGTCCAAGAACCAGTT





CTCCCTGAAGCTGAGCTCTGTGACCGCCGCGGA





CACGGCTGTGTATTACTGTGCGAGAGGCGGGAT





TTTATGGTTCGGGGAGCAGGCTTTTGATATCTGG





GGCCAAGGGACAATGGTCACCGTCTCTTCA





48F8
VH48
549
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTG


53B9


GTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGT


56B4


ACAGCCTCTGGATTCACCTTCAGAAGCTATAGC


57E7


ATGAACTGGGTCCGCCAGGCTCCGGGGAAGGGG


57F11


CTGGAGTGGGTCTCATCCATTAGTAGTAGTAGT





AGTTACGAATACTACGTAGACTCAGTGAAGGGC





CGATTCACCATCTCCAGAGACATCGCCAAGAGC





TCACTGTGGCTGCAAATGAACAGCCTGAGAGCC





GAGGACACGGCTGTGTATTACTGTGCGAGATCC





CTAAGTATAGCAGTGGCTGCCTCTGACTACTGG





GGCAAGGGAACCCTGGTCACCGTCTCCTCA





48H11
VH39
550
CAGGTGCAACTGGTGCAGTCTGGGGCTGAGGTG





AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCTTCTGGATACACCTTCACCGGCTACTATA





AGCACTGGGTGCGACAGGCCCCTGGACAAGGGC





TTGAGTGGATGGGATGGATCAACCCTAACAGTG





GTGCCACAAAGTATGCACAGAAGTTTCAGGGCA





GGGTCACCATGACCAGGGACACGTCCATCAGCA





CAGTGTACATGGAGCTGAGCAGGCTGAGATCTG





TCGACACGGCCCTGTATTACTGTGCGAGAGAGG





TACCCGACGGTATAGTAGTGGCTGGTTCAAATG





CTTTTGATTTCTGGGGCCAAGGGACAATGGTCA





CCGTCTCTTCA





49A10
VH62
551
CAGGTGCACCTGGTGGAGTCTGGGGGAGGCGTG


48D4


GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTAACTATGGC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG





CTGGAGTGGGTGGCAATTATATGGTATGATGGA





AGTAATAAAAACTATGCAGACTCCGTGAAGGGC





CGCTTCACCATCTCCAGAGACAATTCCAAGAAC





ACGCTGTATCTGGAAATGAACAGCCTGAGAGCC





GAGGACACGGCTGTGTATTACTGTGCGAGAGAT





CAGGATTACGATTTTTGGAGTGGTTATCCTTACT





TCTACTACTACGGTATGGACGTCTGGGGCCAAG





GGACCACGGTCACCGTCTCCTCA





49C8
VH44
552
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG


52H1


AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCTTCTGGATACACCTTCACCAGTTATGATA





TCGACTGGGTGCGACAGGCCACTGGACAAGGGC





TTGAGTGGATGGGATGGATGAACCCTAACGGTG





GTAACACAGGCTATGCACAGAAGTTCCAGGGCA





GAGTCACCATGACCAGGAACACCTCCATAAACA





CGGCCTATATGGAACTGAGCAGCCTGAGATCTG





AGGACACGGCCATATATTACTGTGCGAGAGGGA





AGGAATTTAGCAGGGCGGAGTTTGACTACTGGG





GCCAGGGAACCCTGGTCACCGTCTCCTCA





49G2
VH63
553
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG


50C12


GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT


55G11


GCAGCGTCTGGATTCACCTTCAGTAACTATGGC





ATGCGCTGGGTCCGCCAGGCTCCAGGCAAGGGG





CTGGAGTGGGTGGCACTTATATGGTATGATGGA





AGTAATAAGTTCTATGCAGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAATTCCAAGAAC





ACGCTGAATCTGCAAATGAACAGCCTGAGAGCC





GAGGACACGGCTGTGTATTACTGTGCGAGAGAT





CGGTATTACGATTTTTGGAGTGGTTATCCATACT





TCTTCTACTACGGTCTGGACGTCTGGGGCCAAG





GGACCACGGTCACCGTCTCCTCA





49G3
VH46
554
CAGGTCACCTTGAAGGAGTCTGGTCCTGTGCTG





GTGAAACCCACAGAGACCCTCACGCTGACCTGC





ACCGTCTCTGGGTTCTCACTCAGTAATCCTAGAA





TGGGTGTGAGCTGGATCCGTCAGCCCCCAGGGA





AGGCCCTGGAGTGGCTTACACACATTTTTTCGAA





TGACGAAAAATCCTACAGCACATCTCTGAAGAG





CAGGCTCACCATCTCCAAGGACACCTCCAAAAG





CCAGGTGGTCCTTTCCATGACCAACATGGACCCT





GTGGACACAGCCACATATTACTGTGTACGGGTA





GATACCTTGAACTACCACTACTACGGTATGGAC





GTCTGGGGCCAAGGGACCACGGTCACCGTCTCC





TCA





49H12
VH42
555
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG





AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





ATGGCATCTGGATACATTTTCACCAGTTACGATA





TCAACTGGGTGCGACAGGCCACTGGACAAGGGC





CTGAGTGGATGGGATGGATGAACCCCTACAGTG





GGAGCACAGGCTATGCACAGAATTTCCAGGGCA





GAGTCACCATGACCAGGAATACCTCCATAAACA





CAGCCTACATGGAGCTGAGCAGCCTGAGATCTG





AGGACACGGCCGTGTATTACTGTGCGAAGTATA





ATTGGAACTATGGGGCTTTTGATTTCTGGGGCCA





AGGGACAATGGTCACCGTCTCTTCA





51A8
VH58
556
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTCAGTAGCTATGGCA





TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC





TGGAGTGGGTGGCAGTTATATCATATGATGGAA





GTAATAAATACTATGCAGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAATTCCAAGAACA





CGTTGTATCTGCAAATGAACAGCCTGAGAGCTG





AGGACACGGCTGTGTATTACTGTGCGAGAGCGG





ACGGTGACTACCCATATTACTACTACTACTACGG





TATGGACGTCTGGGGCCAAGGGACCACGGTCAC





CGTCTCCTCA





51C10.1
VH54
557
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTG


59D10v1


GTACAGCCGGGGGGGTCCCTGAGACTCTCCTGT


59D10v2


GCAGCCTCTGGATTCACCTTTCGCAACTATGCCA





TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGC





TGGAGTGGGTCTCAGGTATTAGTGGTAGTAGTG





CTGGCACATACTACGCAGACTCCGTGAAGGGCC





GGTTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTTTCTGCAAATGGACAGCCTGAGAGCCG





AGGACACGGCCGTATATTACTGTGCGCAAGATT





GGAGTATAGCAGTGGCTGGTACTTTTGACTACT





GGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





51C10.2
VH67
558
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA





CTGTCTCTGGTGGCTCCATCAGCAGTGGTGGTTA





CTACTGGAGCTGGATCCGCCAGCACCCAGGGAA





GGGCCTGGAGTGGATTGGGTACATCTATTACAA





TGGGAGTCCCTACGACAACCCGTCCCTCAAGAG





GCGAGTTACCATCTCAATAGATGCGTCTAAGAA





CCAGTTCTCCCTGAAGCTGAGCTCTATGACTGCC





GCGGACACGGCCGTGTATTACTGTGCGAGAGGG





GCCCTCTACGGTATGGACGTCTGGGGCCAAGGG





ACCACGGTCACCGTCTCCTCA





51E5
VH74
559
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTG





TTGAAGCCTTCGGAGACCCTTTCCCTCACCTGCG





CTGTCTATGGTGGGTCCTTCAGTGGTTACTACTG





GAGCTGGATCCGCCAGCCCCCAGGGAAGGGGCT





GGAGTGGATTGGGGAACTCGATCATAGTGGAAG





TATCAACTACAACCCGTCCCTCAAGAGTCGAGT





CACCATATCAGTAGACACGTCCAAGAACCAGTT





CTCCCTGAAGCTGACCTCTGTGACCGCCGCGGA





CACGGCTGTGTATTACTGTGCGAGAGTCCTGGG





ATCTACTCTTGACTATTGGGGCCAGGGAACCCT





GGTCACCGTCTCCTCA





51G2
VH50
560
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTG





GTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTCAGTAGTTATAGCA





TGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGC





TGGAGTGGGTCTCATCCATTAGTAGTAGTAGTA





CTTACATATACTACGCAGACTCAGTGAAGGGCC





GATTCACCATCTCCAGAGACAACGCCAAGAACT





CACTGTATCTGCAAATGAACAGCCTGAGAGCCG





AGGACACGGCTGTGTATTACTGTGCGAGAGATA





CTTATATCAGTGGCTGGAACTACGGTATGGACG





TCTGGGGCCAAGGGACCACGGTCACCGTCTCCT





CA





52A8
VH40
561
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG





AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCTTCTGGATACACCTTCACCGGCTACTATT





TGCACTGGGTGCGACAGGCCCCTGGACAAGGGC





TTGAGTGGATGGGATGGATCAACCCTAACAGTG





CTGCCACAAACTATGCACCGAAGTTTCAGGGCA





GGGTCACCGTGACCAGGGACACGTCCATCAGCA





CAGCCTACATGGAACTGAGCAGGCTGAGATCTG





ACGACACGGCCGTGTATTACTGTGCGAGAGAGG





GTGGAACTTACAACTGGTTCGACCCCTGGGGCC





AGGGAACCCTGGTCACCGTCTCCTCA





52B8
VH77
562
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





ATGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGGCTCCATCAGTTATTATTACT





GGAGTTGGATCCGGCAGTCCCCAGGGAAGGGAC





TGGAGTGGATTGGGTATATCTATTATAGTGGGA





GCACCAACTACAACCCCTCCCTCAAGAGTCGAG





TCACCATGTCAGTAGACACGTCCAAGAACCAGT





TCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGG





ACACGGCCGTGTATTACTGTGCGTCTGGAACTA





GGGCTTTTGATATCTGGGGCCAAGGGACAATGG





TCACCGTCTCTTCA





52C1
VH64
563
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGC





CTGGAGTGGGTGGCAGTTATATGGTATGATGGA





AGTAATAACTATTATGCAGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAATTCCAAGAGC





ACGCTGTTTCTGCAAATGAACAGCCTGAGAGCC





GAGGACACGGCTATATATTACTGTGCGAGAGAT





CGGGCGGGAGCCTCTCCCGGAATGGACGTCTGG





GGCCAAGGGACCACGGTCACCGTCTCCTCA





52F8
VH41
564
CAGGTGCAACTGGTGCAGTCTGGGGCGGAGGTG





AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCTTCTGGATTCACCTTCATCGGCTACTATA





CACACTGGGTGCGACAGGCCCCTGGACAAGGGC





TTGAGTGGATGGGATGGATCAACCCTAGCAGTG





GTGACACAAAGTATGCACAGAAGTTTCAGGGCA





GGGTCACCTTGGCCAGGGACACGTCCATCAGCA





CAGCCTACATGGAGCTGAGCAGGCTGAGATCTG





ACGACACGGCCGTGTATTACTGTGCGAACAGTG





GCTGGTACCCGTCCTACTACTACGGTATGGACGT





CTGGGGCCAAGGGACCACGGTCACCGTCTCCTCA





52H2
VH79
565
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGGCTCCATCAGTACTTACTACT





GGAGCTGGATCCGGCAGCCCCCAGGGACGGGAC





TGGAATGGATTGGGTATATCTTTTACAATGGGA





ACGCCAACTACAGCCCCTCCCTGAAGAGTCGAG





TCACCTTTTCAGTGGACACGTCCAAGAACCAGTT





CTCCCTGAAACTGAGTTCTGTGACCGCTGCGGA





CACGGCCGTGTATTTTTGTGCGAGAGAAACGGA





CTACGGTGACTACGCACGTCCTTTTGAATACTGG





GGCCAGGGAACCCTGGTCACCGTCTCCTCA





53F6
VH60
566
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTACCTATGGCA





TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC





TGGAGTGGGTGGCAGTTATATGGTATGATGGAA





GTAATAAATACTATGCAGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG





AGGACACGGCTGTGTATTACTGTGCGAGAGGCC





ACTATGATAGTAGTGGTCCCAGGGACTACTGGG





GCCAGGGAACCCTGGTCACCGTCTCCTCA





53H5.2
VH59
567
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTCAGTAGCTATGGCA





TGCACTGGGTCCGCCAGGCTCCAGGCCAGGGGC





TGGAGTGGGTGGCACTTATATCATATGATGGAA





GTAATAAATACTATGCAGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAAATCCAAGAACA





CGCTGTATCTGCAAATGAACAGCCTGAGAGCTG





AGGACACGGCTGTATATTACTGTGCGAGAGAGG





CTAACTGGGGCTACAACTACTACGGTATGGACG





TCTGGGGCCAAGGGACCACGGTCACCGTCTCCT





CA





53H5.3
VH75
568
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTG





TTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCG





CTGTCTATGGTGGGTCCTTCAGTGATTACTACTG





GAACTGGATCCGCCAGCCCCCAGGGAAGGGGCC





AGAGTGGATTGGGGAAATCAATCATAGTGGAAC





CACCAACTACAATCCGTCCCTCAAGAGTCGAGT





CACCATATCAGTAGACACGTCCAAGAACCAGTT





CTCCCTGAAGCTGAGCTCTGTGACCGCCGCGGA





CACGGCTGTATATTACTGTGTGGGGATATTACG





ATATTTTGACTGGTTAGAATACTACTTTGACTAC





TGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





54A1
VH43
569
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG


55G9


AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCTTCTGGATACACCTTCACCAGTTATGATA





TCAACTGGGTGCGACAGGCCACTGGACAAGGGC





TTGAGTGGATGGGATGGATGAACCCTCACAGTG





GTAACACAGGCTATGCACAGAAGTTCCAGGGCA





GAGTCACCATGACCAGGAACACCTCCATAAATA





CAGCCTACATGGAGCTGAGCAGCCTGAGATCTG





AGGACACGGCCGTGTATTACTGTGCGAAATATA





ACTGGAACTACGGCGCTTTTGATTTCTGGGGCCA





AGGGACAATGGTCACCGTCTCTTCA





54H10.1
VH52
570
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTG


55D1


GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT


48H3


GCAGCCTCTGGATTCACCTTTAGCAGCTATGCCA


53C11


TGAGCTGGGTCCGCCAGGCTCCGGGGAAGGGGC





TGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTC





GTACCACATACTCCGCAGACTCCGTGAAGGGCC





GGTTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG





AGGACACGGCCGTATATTACTGTGCGAAAGAAC





AGCAGTGGCTGGTTTATTTTGACTACTGGGGCCA





GGGAACCCTGGTCACCGTCTCCTCA





55D3
VH68
571
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA





CTGTCTCTGGTGGCTCCATCACCAGTGGTGTTTA





CTACTGGAACTGGATCCGCCAGCACCCAGGGAA





GGGCCTGGAGTGGATTGGGTACCTCTATTACAG





TGGGAGCACCTACTACAACCCGTCCCTCAAGAG





TCGCCTTACCATTTCAGCAGACATGTCTAAGAAC





CAGTTCTCCCTAAAGCTGAGCTCTGTGACTGTCG





CGGACACGGCCGTGTATTACTGTGCGAGAGATG





GTATTACTATGGTTCGGGGAGTTACTCACTACTA





CGGTATGGACGTCTGGGGCCAAGGGACCACGGT





CACCGTCTCCTCA





55E4
VH70
572
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTG


49B11


TTGAAGCCTTCGGAGACCCTGTCCCTCACTTGCG


50H10


CTGTCTATGGTGGGTCCTTCAGTGGTTACTACTG


53C1


GAGCTGGATCCGCCAGCCCCCAGGGAAGGGTCT


52C5


GGAGTGGATTGGGGAAATCAATCATAGTGAAAA


60G5.1


CACCAACTACAACCCGTCCCTCAAGAGTCGAGT





CACCATATCACTAGACACGTCCAATGACCAGTT





CTCCCTAAGACTAACCTCAGTGACCGCCGCGGA





CACGGCTGTCTATTACTGTGCGAGAGTAACTGG





AACGGATGCTTTTGATTTCTGGGGCCAAGGGAC





AATGGTCACCGTCTCTTCA





55E9
VH65
573
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTAGCTTTGGCA





TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC





TGGAGTGGGTGGCACTTATATGGTATGATGGAG





ATAATAAATACTATGCAGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG





AGGACACGGCTGTGTATTACTGTGCGAGAAACA





GTGGCTGGGATTACTTCTACTACTACGGTATGGA





CGTCTGGGGCCAAGGGACCACGGTCACCGTCTC





CTCA





55G5
VH78
574
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGGCTCCATCAGTAGTTACTACT





GGAGCTGGATCCGGCAGCCCGCCGGGAAGGGA





CTGGAGTGGATTGGGCGTATCTATATCAGTGGG





AGCACCAACTACAACCCCTCCCTCGAGAATCGA





GTCACCATGTCAGGAGACACGTCCAAGAACCAG





TTCTCCCTGAAGCTGAATTCTGTGACCGCCGCGG





ACACGGCCGTATATTACTGTGCGGGAAGTGGGA





GCTACTCCTTTGACTACTGGGGCCAGGGAACCC





TGGTCACCGTCTCCTCA





50G1
VH84
575
CAGGTGCAGTTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTAGCTATGGCC





TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC





TGGAGTGGGTGGCAGTTATATGGAATGATGGAA





GTAATAAGCTTTATGCAGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATCTGCAAATGAACAGCCTGAGAGCCG





AGGACACGGCTGTGTATTACTGTGCGAGAGATC





AGTATTACGATTTTTGGAGCGGTTACCCATACTA





TCACTACTACGGTATGGACGTCTGGGGCCAAGG





GACCACGGTCACCGTCTCCTCA





56A7
VH51
576
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTG


56E4


GTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTCAGTAGTTATAGCA





TGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGC





TGGAGTGGGTCTCATCCATTAGTAGTAGTAGTA





CTTACATATACTACGCAGACTCAGTGAAGGGCC





GATTCACCATCTCCAGAGACAACGCCAAGAACT





CACTGTATCTGCAAATGAACAGCCTGAGAGCCG





AGGACACGGCTGTGTATTACTGTGCGAGAGATA





TCTATAGCAGTGGCTGGAGCTACGGTATGGACG





TCTGGGGCCAAGGGACCACGGTCACCGTCTCCT





CA





56C11
VH61
577
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTAGCTATGGC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGA





CTGGAGTGGGTGGCAGTTATATGGTATGATGGA





AGTTATCAATTCTATGCAGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAATTCCAAGAAC





ACGTTGTATCTGCAAATGAACAGCCTGAGAGCC





GAGGACACGGCTGTGTATTACTGTGCGAGAGAT





CACGTTTGGAGGACTTATCGTTATATCTTTGACT





ACTGGGGCCAGGGAACCCTGGTCACCGTCTCCT





CA





56E7
VH81
578
GAGGTGCAGCTGGTGCAGTCTGGACCAGAGGTG





AAAAAGCCCGGGGAGTCTCTGAAGATCTCCTGT





AAGGGTTCGGGATACAGTTTAACCAGCTACTGG





ATCGGCTGGGTGCGCCAGATGCCCGGGAAAGGC





CTGGAGTGGATGGGGATCATCTATCCTGGTGAC





TCTGATACCAGATACAGCCCGTCCTTCCAAGGC





CAGGTCACCATCTCAGCCGACACGTCCATCAGC





ACCGCCTACCTGCAGTGGAGCAGGTTGAAGGCC





TCGGACACCGCCGTATATTACTGTGCGAGGGCA





CAACTGGGGATCTTTGACTACTGGGGCCAGGGA





ACCCTGGTCACCGTCTCCTCA





56G1
VH71
579
CAGGTGCAACTACAGCAGTGGGGCGCAGGACTG





TTGAAGCCTTCGGAGACCCTGTCCCTCACTTGCG





CTGTCTATGGTGGGTCCTTCAGTGGTTACTACTG





GAGCTGGATCCGCCAGCCCCCAGGGAAGGGTCT





GGAGTGGATTGGGGAAATCAATCATAGTGAAAA





CACCAACTACAACCCGTCCCTCAAGAGTCGAGT





CACCATATCACTAGACACGTCCAATAAGCAGTT





CTCCCTAAGACTAACCTCTGTGACCGCCGCGGA





CACGGCTGTCTATTACTGTGCGAGAGTAACTGG





AACGGATGCTTTTGATTTCTGGGGCCAAGGGAC





AATGGTCACCGTCTCTTCA





56G3.3
VH76
580
CAGTTGCAGTTGCAGGAATCGGGCCCAGGACTG


55B10


GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGACTCCATCAGTAGTAGTAGTT





ACTACTGGGGCTGGATCCGCCAGCCCCCAGGGA





AGGGGCTGGAGTGGATTGGGATGATCTATTATA





GTGGGACCACCTACTACAACCCGTCCCTCAAGA





GTCGAGTCACCATATCCGTAGACACGTCCAAGA





ATCAGTTTTCCCTGAAGCTGAGTTCTGTGACCGC





CGCAGACACGGCTGTGTATTATTGTGCGAGAGT





GGCAGCAGTTTACTGGTATTTCGATCTCTGGGGC





CGTGGCACCCTGGTCACTGTCTCCTCA





57B12
VH69
581
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA





CTGTCTCTGGTGGCTCCATCACCAGTGGTGTTTA





CTACTGGAGCTGGATCCGCCAGCTCCCAGGGAA





GGGCCTGGAGTGGATTGGGTACATCTATTACAG





TGGGAGCACCTACTACAACCCGTCCCTCAAGAG





TCGCCTTACCATATCAGCAGACACGTCTAAGAA





CCAGTTCTCCCTAAAGCTGAGCTCTGTGACTGTC





GCGGACACGGCCGTGTATTACTGTGCGAGAGAT





GGTATTACTATGGTTCGGGGAGTTACTCACTACT





ACGGTATGGACGTCTGGGGCCAAGGGACCACGG





TCACCGTCTCCTCA





57D9
VH82
582
CAGGTACAGCTGCAGCAGTCAGGTCCAGGACTG





GTGAAGCCCTCGCAGACCCTCTCACTCACCTGTG





CCATCTCCGGGGACAGTGTCTCTAGCAACAGTG





CTACTTGGAACTGGATCAGGCAGTCCCCATCGA





GAGGCCTTGAGTGGCTGGGAAGGACATACTACA





GGTCCAAGTGGTATAATGATTATGCAGTATCTGT





GAAAAGTCGAATAACCATCAACCCAGACACATC





CAAGAACCAGTTCTCCCTGCAGCTGAACTCTGT





GACTCCCGAGGACACGGCTGTGTATTACTGTGT





GGGTATTGTAGTAGTACCAGCTGTTCTCTTTGAC





TACTGGGGCCAGGGAACCCTGGTCACCGTCTCC





TCA





58C2
VH85
583
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCACCTTCAGTAACTATGGC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG





CTGGAGTGGGTGGCAGTTATATGGAATGATGGA





AATAACAAATACTATGCAGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAATTCCAAGAAC





ACGCTATATCTGCAAATGAACAGCCTGAGAGCC





GAGGACACGGCTGTGTATTACTGTGCGAGAGAT





CAGAATTACGATTTTTGGAATGGTTATCCCTACT





ACTTCTACTACGGTATGGACGTCTGGGGCCAAG





GGACCACGGTCACCGTCTCCTCA





59A10
VH47
584
CAGGTGCAGGTGGTGGAGTCTGGGGGAGGCTTG


49H4


GTCAAGCCTGGAGGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTCAGTGACTCCTACA





TGAGCTGGATCCGCCAGGCTCCAGGGAAGGGGC





TGGAGTGGATTTCTTCCATTAGTAGTAGTGGTAG





TATCGTATACTTCGCAGACTCTGTGAAGGGCCG





ATTCACCATCTCCAGGGACATCGCCAAGAACTC





ACTGTATCTGCACATGAACAGCCTGAGAGCCGA





GGACACGGCCGTGTATTACTGTGCGAGAGAGAC





GTTTAGCAGTGGCTGGTTCGATGCTTTTGATATC





TGGGGCCAAGGGACAATGGTCACCGTCTCTTCA





59C9
VH49
585
GAGGTGCAGCTGGTGGAGTCTGGGGGAGGCCTG


58A5


GTCAAGCCTGGGGGGTCCCTGAGACTCTCCTGT


57A4


GCAGCCTCTGGATTCACCTTCAGTAGCTATAGCA


57F9


TGAGTTGGGTCCGCCAGGCTCCAGGGAAGGGGC





TGGAGTGGGTCTCATCCATTAGTAGTAGTAGTA





CTTACATATACTACGCAGACTCACTGAAGGGCC





GATTCACCATCTCCAGAGACAACGCCAAGAACT





CACTGTTTCTGCAAGTGAACAGCCTGAGAGCCG





AAGACTCGGCTGTGTATTACTGTGCGAGAGATC





GATGGAGCAGTGGCTGGAACGAAGGTTTTGACT





ATTGGGGCCAGGGAACCCTGGTCACCGTCTCCT





CA





59G10.2
VH57
586
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTCAGTAACTATGGCA





TGCACTGGGTCCGCCAGGCTCCAGGCAAGGGGC





TGGAGTGGGTGGCAATTACATCATATGGAGGAA





GTAATAAAAATTATGCAGACTCCGTGAAGGGCC





GATTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATCTGCAAATGAACAGCCTGAGAGCTG





AGGACACGGCTGTGTATTATTGTGCGAGAGAGG





CCGGGTATAGCTTTGACTACTGGGGCCAGGGAA





CCCTGGTCACCGTCTCCTCA





59G10.3
VH53
587
GAGGTGCAACTGTTGGGATCTGGGGGAGGCTTG





GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTTAACCACTATGCCA





TGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGC





TGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTG





CTGGCACATTCTACGCGGACTCCATGAAGGGCC





GGTTCACCATCTCCAGAGACAATTCCGAGAACA





CGCTGCATCTGCAGATGAACAGCCTGAGAGCCG





AGGACACGGCCATATATTACTGTGCGAAAGATC





TTAGAATAGCAGTGGCTGGTTCATTTGACTACTG





GGGCCAGGGAACCCTGGTCACCGTCTCCTCA





60D7
VH66
588
CAGGTGCAGCTGGTGGAGTCTGGGGGAGGCGTG





GTCCAGCCTGGGAGGTCCCTGAGACTCTCCTGT





GCAGCGTCTGGATTCAACTTCAGTAGCTATGGC





ATGCACTGGGTCCGCCAGGCTCCAGGCAAGGGG





CTGGAGTGGGTGGCAGTTATATGGTATGATGGA





AGTAATAAATACTATGCAGACTCCGTGAAGGGC





CGATTCACCATCTCCAGAGACAATTCCAAGAAC





ACGCTGTATCTGCAAATGAACAGCCTGAGAGCC





GAGGACACGGCTGTGTTTTACTGTGCGAGAGAT





CAGTATTTCGATTTTTGGAGTGGTTATCCTTTCTT





CTACTACTACGGTATGGACGTCTGGGGCCAAGG





GACCACGGTCACCGTCTCCTCA





60F9
VH55
589
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTG


48B4


GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT


52D6


GCAGCCTCTGGATTCACCTTTAGCAGCTATGCCA





TGAGTTGGGTCCGCCAGGCTCCAGGGAAGGGGC





TGGAGTGGGTCTCAGTTATTAGTGACAGTGGTG





GTAGCACATACTACGCAGACTCCGTGAAGGGCC





GGTTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATCTACAAATGAACAGCCTGAGAGCCG





AGGATACGGCCGTATATTACTGTGCGAAAGATC





ATAGCAGTGGCTGGTACTACTACGGTATGGACG





TCTGGGGCCAAGGGACCACGGTCACCGTCTCCT





CA





60G5.2
VH45
590
CAGGTTCAGCTGGTGCAGTCTGGAGCTGAGGTG





AAGACGCCCGGGGCCTCAGTGAGGGTCTCCTGC





AAGGCTTCTGGTTACACCTTTACCAACTATGGTA





TCAGCTGGGTGCGACAGGCCCCTGGACAAGGGC





TTGAGTGGATGGGATGGATCAGCGCTTACAATG





GTTACTCAAACTATGCACAGAAGTTCCAGGACA





GAGTCACCATGACCACAGACACATCCACGAGCA





CAGCCTACATGGAGCTGAGGAGCCTGAGATCTG





ACGACACGGCCGTGTATTACTGTGCGAGAGAGG





AGAAGCAGCTCGTCAAAGACTATTACTACTACG





GTATGGACGTCTGGGGCCAGGGGTCCACGGTCA





CCGTCTCCTCA





61G5
VH56
591
GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTG





GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTTAGCAGCTATGCCA





TGAGCTGGGTCCGCCAGTCTCCAGGGAAGGGGC





TGGAGTGGGTCTCAGTTATTAGTGGTAGTGGTG





GTGACACATACTACGCAGACTCCGTGAAGGGCC





GGTTCACCATCTCCAGAGACAATTCCAAGAACA





CGCTGTATCTACAAATGAACAGCCTGAGAGCCG





AGGATACGGCCGTATATTACTGTGCGAAAGATC





ATACCAGTGGCTGGTACTACTACGGTATGGACG





TCTGGGGCCAAGGGACCACGGTCACCGTCTCCT





CA





56G3.2
VH80
592
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGATGGCTCCATCAGTAGTTACTACT





GGAACTGGATCCGGCAGCCCGCCGGGAAGGGA





CTGGAGTGGATTGGGCGTATCTATACCAGTGGG





AGCACCAACTACAATCCCTCCCTCAAGAGTCGA





GTCACCATGTCAGTAGACACGTCCAAGAACCAG





TTCTCCCTGAACCTGACCTCTGTGACCGCCGCGG





ACACGGCCGTGTATTACTGTGCGAGAGGCCCTC





TTTGGTTTGACTACTGGGGCCAGGGAACCCTGG





TCACCGTCTCCTCA





48G4
VH83
593
CAGGTCCAGCTGGTACAGTCTGGGGCTGAGGTG


53C3.1


AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGTTTCCGGATACACCCTCACTGAATTATCCA





TACACTGGGTGCGACAGGCTCCTGGAAAAGGGC





TTGAGTGGATGGGAGGTTTTGATCCTGAAGATG





GTGAAACAATCTACGCACAGAAGTTCCAGGGCA





GAGTCACCATGACCGAGGACACATCTACAGACA





CAGCCTACATGGAGCTGAGCAGCCTGAGATCTG





AGGACACGGCCGTGTATTACTGTGCAACACATT





CTGGTTCGGGGAGGTTTTACTACTACTACTACGG





TATGGACGTCTGGGGCCAAGGGACCACGGTCAC





CGTCTCCTCA





61H5
VH86
594
CAGCTGCAGCTGCAGGAGTCGGGCCCAGGACTG


52B9


GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGGCTCCATCAGCAGTAGTAGTT





ACTACTGGGGCTGGATCCGCCAGCCCCCAGGGA





AGGGGCTGGAGTGGATTGGGAGTATCTATTATA





GTGGGACCACCTACTACAACCCGTCCCTCAAGA





GTCGAGTCACCATATCCGTAGACACGTCCAAGA





ACCAGTTCTCCCTGAAGCTGAGTTCTGTGACCGC





CGCAGACACGGCTGTGTATTACTGTGCGAGAGT





GGCAGCAGTTTACTGGTACTTCGATCTCTGGGGC





CGTGGCACCCTGGTCACTGTCTCCTCA





50D4
VH87
595
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG





AAGAAGACTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCTTCTGGATACACCTTCACCAGTCATGAT





ATCAACTGGGTGCGACAGGCCACTGGACACGGG





CTTGAGTGGATGGGATGGATGAACCCTTACAGT





GGTAGCACAGGCCTCGCACAGAGGTTCCAGGAC





AGAGTCACCATGACCAGGAACACCTCCATAAGC





ACAGCCTACATGGAGCTGAGCAGCCTGAGATCT





GAGGACACGGCCGTGTATTACTGTGCGAGAGAC





CTTAGCAGTGGCTACTACTACTACGGTTTGGACG





TGTGGGGCCAAGGGACCACGGTCACCGTCTCCT





CA





50G5v1
VH88
596
CAGGTGCAGCTGGTGCAGTCTGGGGCTGAGGTG


50G5v2


AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCCTCTGGATACCCCTTCATCGGCTACTATA





TGCACTGGGTGCGACAGGCCCCTGGACAAGGGC





TTGAGTGGATGGGATGGATCAACCCTGACAGTG





GTGGCACAAACTATGCACAGAAGTTTCAGGGCA





GGGTCACCATGACCAGGGACACGTCCATCACCA





CAGCCTACATGGAGCTGAGCAGGCTGAGATCTG





ACGACACGGCCGTTTTTTACTGTGCGAGAGGCG





GATACAGCTATGGTTACGAGGACTACTACGGTA





TGGACGTCTGGGGCCAAGGGACCACGGTCACCG





TCTCCTCA





51C1
VH89
597
CAGGTGCAGCTACAGCAGTGGGGCGCAGGACTG





TTGAAGCCTTCGGAGACCCTGTCCCTCACTTGCG





CTGTCTATGGTGGGTCCTTCAGTGGTTACTACTG





GAGCTGGATCCGCCAGCCCCCAGGGAAGGGTCT





GGAGTGGATTGGGGAAATCAATCATAGTGAAAA





CACCAACTACAACCCGTCCCTCAAGAGTCGAGT





CACCATATCACTAGACACGTCCCATGACCAGTT





CTCCCTAAGACTAACCTCTGTGACCGCCGCGGA





CACGGCTGTCTATTACTGTGCGAGAGTAACTGG





AACGGATGCTTTTGATTTCTGGGGCCAAGGGAC





AATGGTCACCGTCTCTTCA





53C3.2
VH90
598
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCACAGACCCTGTCCCTCACCTGCA





CTGTCTCTAATGGCTCCATCAATAGTGGTAATTA





CTACTGGAGCTGGATCCGCCAGCACCCAGGAAA





GGGCCTGGAGTGGATTGGGTACATCTATCACAG





TGGGAGCGCCTACTACAACCCGTCCCTCAAGAG





TCGAGTTACCATATCAGTGGACACGTCTAAGAA





CCAGTTCTCCCTAAAGCTGAGTTCTGTGACTGCC





GCGGACACGGCCGTGTATTACTGTGCGAGAACT





ACGGGTGCTTCTGATATCTGGGGCCAAGGGATA





ATGGTCACCGTCTCTTCA





54H10.3
VH91
599
CAGGTGCAGGTAGTGCAGTCTGGGACTGAGGTG





AAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGC





AAGGCTTCTGGATACACCTTCACAGGCTACTAT





ATACATTGGGTGCGACAGGCCCCTGGACAAGGG





CTTGAGTGGATGGGATGGATCAACCCTAACAGT





GGTGGCACAAACTATGCACAGAAGTTTCGGGGC





AGGGTCACCATGACCAGGGACACGTCCATCAGC





ACAGCCTACATGGAGCTGAGCAGGCTGAGATCT





GACGACACGGCCGTGTATTACTGTGCGAGAGAG





GAAGACTACAGTGACCACCACTACTTTGACTAC





TGGGGCCAGGGAACCCTGGTCACCGTCTCCTCA





55A7
VH92
600
CAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTG





GTGAAGCCTTCGGAGACCCTGTCCCTCACCTGC





ACTGTCTCTGGTGGCTCCATCAGTAGTTACTACT





GGAGCTGGATCCGGCAGCCCCCAGGGAAGGGA





CTGGAGTGGATTGGGTATATCTATTACAGTGGG





AGCACCAACTACAACCCCTCCCTCAAGAGTCGA





GTCACCATATCAGTAGACACGTCCAAGAACCAG





TTCTCCCTGAGGCTGAGCTCTGTGACCGCTGCGG





ACACGGCCGTGTATTACTGTGCGAGAGGGATAA





CTGGAACTATTGACTTCTGGGGCCAGGGAACCC





TGGTCACCGTCTCCTCA





55E6
VH93
601
GAAGTGCAGTTGGTGGAGTCTGGGGGAGGCTTG





GTACAGCCTGGGGGGTCCCTGAGACTCTCCTGT





GCAGCCTCTGGATTCACCTTCAGTAGCTATAGCA





TGAACTGGGTCCGCCAGGCTCCAGGGAAGGGGC





TGGAGTGGATTTCATACATTAGTAGTGGTAGTA





GTACCATATACCACGCAGACTCTGTGAAGGGCC





GATTCACCATTTCCAGAGACAATGCCAAGAACT





CACTGTATCTGCAAATGAACAGCCTGAGAGACG





AGGACACGGCTGTGTATTACTGTGCGAGAGAAG





GGTACTATGATAGTAGTGGTTATTACTACAACG





GTATGGACGTCTGGGGCCAAGGGACCACGGTCA





CCGTCTCCTCA





61E1
VH94
602
CAGGTACAGCTACAGCAGTCAGGTCCAGGACTG





GTGAAGCCCTCGCAGACCCTCTCACTCACCTGTG





CCATCTCCGGGGACAGTGTCTCTAGCAACAGTG





CTGCTTGGAACTGGATCAGGCAGTCCCCATCGA





GAGGCCTTGAGTGGCTGGGAAGGACATACTACA





GGTCCAAGTGGTATAATGATTATGCAGTATCTGT





GAAAAGTCGAATAACCATCACCCCAGACACATC





CAAGAACCAGTTCTCCCTGCAGCTGAAGTCTGT





GACTCCCGAGGACACGGCTATTTATTACTGTGC





AAGAGAGGGCAGCTGGTCCTCCTTCTTTGACTA





CTGGGGCCAGGGAACCCTGGTCACCGTTTCCTCA









Each of the heavy chain variable regions listed in Table 2B can be combined with any of the light chain variable regions shown in Table 2A to form an antigen binding protein. Examples of such combinations include VH1 combined with any of VL1, VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VL41, VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100; VH2 combined with any of VL1, VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VL41, VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100; VH3 combined with any of VL1, VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VL41, VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100; and so on.


In some instances, the antigen binding protein includes at least one heavy chain variable region and/or one light chain variable region from those listed in Tables 2A and 2B. In some instances, the antigen binding protein includes at least two different heavy chain variable regions and/or light chain variable regions from those listed in Table 2B. An example of such an antigen binding protein comprises (a) one VH1, and (b) one of VH2, VH3, VH4, VH5, VH6, VH7, VH8, VH9, VH10, VH11, VH12, VH13, VH14, VH15, VH16, VH17, VH18, VH19, VH20, VH21 VH22, VH23, VH24, VH25, VH26, VH27, VH28, VH29, VH30, VH31, VH32, VH33, VH34, VH35, VH36, VH37, VH38, VH39, VH40, VH41, VH42, VH43, VH44, VH45, VH46, VH47, VH48, VH49, VH50, VH51, VH52, VH53, VH54, VH55, VH56, VH57, VH58, VH59, VH60, VH61, VH62, VH63, VH64, VH65, VH66, VH67, VH68, VH69, VH70, VH71, VH72, VH73, VH74, VH75, VH76, VH77, VH78, VH79, VH80, 81, VH82, VH83, VH84, VH85, VH 86, VH 87, VH88, VH89, VH90, VH91, VH92, VH93, and VH94. Another example comprises (a) one VH2, and (b) one of VH1, VH3, VH4, VH5, VH6, VH7, VH8, VH9, VH10, VH11, VH12, VH13, VH14, VH15, VH16, VH17, VH18, VH19, VH20, VH21 VH22, VH23, VH24, VH25, VH26, VH27, VH28, VH29, VH30, VH31, VH32, VH33, VH34, VH35, VH36, VH37, VH38, VH39, VH40, VH41, VH42, VH43, VH44, VH45, VH46, VH47, VH48, VH49, VH50, VH51, VH52, VH53, VH54, VH55, VH56, VH57, VH58, VH59, VH60, VH61, VH62, VH63, VH64, VH65, VH66, VH67, VH68, VH69, VH70, VH71, VH72, VH73, VH74, VH75, VH76, VH77, VH78, VH79, VH80, 81, VH82, VH83, VH84, VH85, VH 86, VH 87, VH88, VH89, VH90, VH91, VH92, VH93, and VH94. Yet another example comprises (a) one VH3, and (b) one of VH1, VH2, VH4, VH5, VH6, VH7, VH8, VH9, VH10, VH11, VH12, VH13, VH14, VH15, VH16, VH17, VH18, VH19, VH20, VH21 VH22, VH23, VH24, VH25, VH26, VH27, VH28, VH29, VH30, VH31, VH32, VH33, VH34, VH35, VH36, VH37, VH38, VH39, VH40, VH41, VH42, VH43, VH44, VH45, VH46, VH47, VH48, VH49, VH50, VH51, VH52, VH53, VH54, VH55, VH56, VH57, VH58, VH59, VH60, VH61, VH62, VH63, VH64, VH65, VH66, VH67, VH68, VH69, VH70, VH71, VH72, VH73, VH74, VH75, VH76, VH77, VH78, VH79, VH80, 81, VH82, VH83, VH84, VH85, VH 86, VH 87, VH88, VH89, VH90, VH91, VH92, VH93, and VH94, etc. Still another example of such an antigen binding protein comprises (a) one VL1, and (b) one of VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VL41, VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100. Again another example of such an antigen binding protein comprises (a) one VL2, and (b) one of VL1, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VL41, VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100. Again another example of such an antigen binding protein comprises (a) one VL3, and (b) one of VL1, VL2, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VL41, VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100, etc.


The various combinations of heavy chain variable regions can be combined with any of the various combinations of light chain variable regions.


In other embodiments, an antigen binding protein comprises two identical light chain variable regions and/or two identical heavy chain variable regions. As an example, the antigen binding protein can be an antibody or immunologically functional fragment thereof that includes two light chain variable regions and two heavy chain variable regions in combinations of pairs of light chain variable regions and pairs of heavy chain variable regions as listed in Tables 2A and 2B.


Some antigen binding proteins that are provided comprise a heavy chain variable domain comprising a sequence of amino acids that differs from the sequence of a heavy chain variable domain selected from VH1, VH2, VH3, VH4, VH5, VH6, VH7, VH8, VH9, VH10, VH11, VH12, VH13, VH14, VH15, VH16, VH17, VH18, VH19, VH20, VH21 VH22, VH23, VH24, VH25, VH26, VH27, VH28, VH29, VH30, VH31, VH32, VH33, VH34, VH35, VH36, VH37, VH38, VH39, VH40, VH41, VH42, VH43, VH44, VH45, VH46, VH47, VH48, VH49, VH50, VH51, VH52, VH53, VH54, VH55, VH56, VH57, VH58, VH59, VH60, VH61, VH62, VH63, VH64, VH65, VH66, VH67, VH68, VH69, VH70, VH71, VH72, VH73, VH74, VH75, VH76, VH77, VH78, VH79, VH80, 81, VH82, VH83, VH84, VH85, VH 86, VH 87, VH88, VH89, VH90, VH91, VH92, VH93, and VH94 at only 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues, wherein each such sequence difference is independently either a deletion, insertion or substitution of one amino acid, with the deletions, insertions and/or substitutions resulting in no more than 15 amino acid changes relative to the foregoing variable domain sequences. The heavy chain variable region in some antigen binding proteins comprises a sequence of amino acids that has at least 70%, 75%, 80%, 85%, 90%, 95%, 97% or 99% sequence identity to the amino acid sequences of the heavy chain variable region of VH1, VH2, VH3, VH4, VH5, VH6, VH7, VH8, VH9, VH10, VH11, VH12, VH13, VH14, VH15, VH16, VH17, VH18, VH19, VH20, VH21 VH22, VH23, VH24, VH25, VH26, VH27, VH28, VH29, VH30, VH31, VH32, VH33, VH34, VH35, VH36, VH37, VH38, VH39, VH40, VH41, VH42, VH43, VH44, VH45, VH46, VH47, VH48, VH49, VH50, VH51, VH52, VH53, VH54, VH55, VH56, VH57, VH58, VH59, VH60, VH61, VH62, VH63, VH64, VH65, VH66, VH67, VH68, VH69, VH70, VH71, VH72, VH73, VH74, VH75, VH76, VH77, VH78, VH79, VH80, 81, VH82, VH83, VH84, VH85, VH 86, VH 87, VH88, VH89, VH90, VH91, VH92, VH93, and VH94.


Certain antigen binding proteins comprise a light chain variable domain comprising a sequence of amino acids that differs from the sequence of a light chain variable domain selected from VL1, VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VAL VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100 at only 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15 amino acid residues, wherein each such sequence difference is independently either a deletion, insertion or substitution of one amino acid, with the deletions, insertions and/or substitutions resulting in no more than 15 amino acid changes relative to the foregoing variable domain sequences. The light chain variable region in some antigen binding proteins comprises a sequence of amino acids that has at least 70%, 75%, 80%, 85%, 90%, 95%, 97% or 99% sequence identity to the amino acid sequences of the light chain variable region of VL1, VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VL41, VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100.


In additional instances, antigen binding proteins comprise the following pairings of light chain and heavy chain variable domains: VL1 with VH1, VL2 with VH1, VL3 with VH2 or VH3, VL4 with VH4, VL5 with VH5, VL6 with VH6, VL7 with VH6, VL8 with VH7 or VH8, VL9 with VH9, VL10 with VH9, VL11 with VH 10, VL12 with VH11, VL13 with VH12, VL13 with VH14, VL14 with VH13, VL15 with VH14, VL16 with VH15, VL17 with VH16, VL18 with VH17, VL19 with VH18, VL20 with VH19, VL21 with VH20, VL22 with VH21, VL23 with VH22, VL24 with VH23, VL25 with VH24, VL26 with VH25, VL27 with VH26, VL28 with VH27, VL29 with VH28, VL30 with VH29, VL31 with VH30, VL32 with VH31, VL33 with VH32, VL34 with VH33, VL35 with VH34, VL36 with VH35, VL37 with VH36, VL38 with VH37, VL39 with VH38, VL40 with VH39, VL41 with VH40, VL42 with VH41, VL43 with VH42, VL44 with VH43, VL45 with VH44, VL46 with VH45, VL47 with VH46, VL48 with VH47, VL49 with VH48, VL50 with VH49, VL51 with VH50, 52 with VH51, VL53 with VH52, VL54 with VH53, VL55 with 54, and VL56 with VH54, VL57 with VH54, VL58 with VH55, VL59 with VH56, VL60 with VH57, VL61 with VH58, VL62 with VH59, VL63 with VH60, VL64 with VH1, VL65 with VH62, VL66 with VH63, VL67 with VH64, VL68 with VH65, VL69 with VH66, VL70 with VH67, VL71 with VH68, VL72 with VH69, VL73 with VH70, VL74 with VH70, and VL75 with VH70, VL76 with VH71, VL77 with VH72, VL78 with VH73, VL79 with VH74, VL80 with VH75, VL81 with VH76, VL82 with VH77, VL83 with VH78, VL84 with VH79, VL85 with VH80, VL86 with VH81, VL87 with VH82, VL88 with VH86, VL89 with VH83, VL90 with VH84, VL91 with VH85, VL 92 with VH 87, VL 93 with VH 88, VL 94 with VH 88, VL 95 with VH 89, VL 96 with VH 90, VL 97 with VH 91, VL 98 with VH 92, VL 99 with VH 93, and VL 100 with VH 94.


In some instances, the antigen binding proteins in the above pairings can comprise amino acid sequences that have 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with the specified variable domains.


Still other antigen binding proteins, e.g., antibodies or immunologically functional fragments, include variant forms of a variant heavy chain and a variant light chain as just described.


Antigen Binding Protein CDRs

In various embodiments, the antigen binding proteins disclosed herein can comprise polypeptides into which one or more CDRs are grafted, inserted and/or joined. An antigen binding protein can have 1, 2, 3, 4, 5 or 6 CDRs. An antigen binding protein thus can have, for example, one heavy chain CDR1 (“CDRH1”), and/or one heavy chain CDR2 (“CDRH2”), and/or one heavy chain CDR3 (“CDRH3”), and/or one light chain CDR1 (“CDRL1”), and/or one light chain CDR2 (“CDRL2”), and/or one light chain CDR3 (“CDRL3”). Some antigen binding proteins include both a CDRH3 and a CDRL3. Specific heavy and light chain CDRs are identified in Tables 3A and 3B, respectively, infra.


Complementarity determining regions (CDRs) and framework regions (FR) of a given antibody can be identified using the system described by Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242. Although presented in the Kabat nomenclature scheme, as desired, the CDRs disclosed herein can also be redefined according an alternative nomenclature scheme, such as that of Chothia (see Chothia & Lesk, (1987) J. Mol. Biol. 196:901-917; Chothia et al., (1989) Nature 342:878-883 or Honegger & Pluckthun, (2001) J. Mol. Biol. 309:657-670). Certain antibodies that are disclosed herein comprise one or more amino acid sequences that are identical or have substantial sequence identity to the amino acid sequences of one or more of the CDRs presented in Table 3A (CDRHs) and Table 3B (CDRLs), infra.









TABLE 3A







Exemplary CDRH Sequences













Con-






tained



SEQ
in



ID
Refer-
Designa-


Clone
NO:
ence
tion
Sequence














48C9
603
VH73
CDRH1-1
GYYWT


49A12

VH73


51E2

VH73





48F3
604
VH72
CDRH1-2
GYYWS


51E5

VH74


52C5

VH70


55E4

VH70


60G5.1

VH70


49B11

VH70


50H10

VH70


53C1

VH70


56G1

VH71


51C1

VH89





48F8
605
VH48
CDRH1-3
SYSMN


51G2

VH50


56A7

VH51


53B9

VH48


56B4

VH48


57E7

VH48


57F11

VH48


56E4

VH51


55E6

VH93





48H11
606
VH39
CDRH1-4
GYYKH





48G4
607
VH83
CDRH1-5
ELSIH


53C3.1

VH83





49A10
608
VH62
CDRH1-6
NYGMH


58C2

VH85


59G10.2

VH57


48D4

VH62





49C8
609
VH44
CDRH1-7
SYDID


52H1

VH44





49G2
610
VH63
CDRH1-8
NYGMR


50C12

VH63


55G11

VH63





49G3
611
VH46
CDRH1-9
NPRMGVS





49H12
612
VH42
CDRH1-10
SYDIN


54A1

VH43


55G9

VH43





50G1
613
VH84
CDRH1-11
SYGLH





51A8
614
VH58
CDRH1-12
SYGMH


52C1

VH64


53H5.2

VH59


56C11

VH61


60D7

VH66


64H5

VH7


65G4

VH8


66G2

VH11


68G5

VH12


64C8

VH23


67G8

VH27


68D3v2





51C10.1
615
VH54
CDRH1-13
NYAMS


59D10v1

VH54


59D10v2

VH54





51C10.2
616
VH67
CDRH1-14
SGGYYWS


64A6

VH29





52A8
617
VH40
CDRH1-15
GYYLH


66B4

VH10





52B8
618
VH77
CDRH1-16
YYYWS





52F8
619
VH41
CDRH1-17
GYYTH





52H2
620
VH79
CDRH1-18
TYYWS





53F6
621
VH60
CDRH1-19
TYGMH





53H5.3
622
VH75
CDRH1-20
DYYWN





54H10.1
623
VH52
CDRH1-21
SYAMS


60F9

VH55


61G5

VH56


55D1

VH52


48H3

VH52


53C11

VH52


48B4

VH55


52D6

VH55





55D3
624
VH68
CDRH1-22
SGVYYWN





55E9
625
VH65
CDRH1-23
SFGMH





55G5
626
VH78
CDRH1-24
SYYWS


65C3

VH5


68D5

VH5


67F5

VH31


55A7

VH92





56E7
627
VH81
CDRH1-25
SYWIG


67A5

VH34


67C10

VH35


64H6

VH36





56G3.2
628
VH80
CDRH1-26
SYYWN





56G3.3
629
VH76
CDRH1-27
SSSYYWG


55B10

VH76


61H5

VH86


52B9

VH86





57B12
630
VH69
CDRH1-28
SGVYYWS





57D9
631
VH82
CDRH1-29
SNSATWN





59A10
632
VH47
CDRH1-30
DSYMS


49H4

VH47





59C9
633
VH49
CDRH1-31
SYSMS


58A5

VH49


57A4

VH49


57F9

VH49





59G10.3
634
VH53
CDRH1-32
HYAMS





60G5.2
635
VH45
CDRH1-33
NYGIS





63G8
636
VH1
CDRH1-34
SYGIH


64A8

VH1


67B4

VH1


68D3

VH1





64E6
637
VH2
CDRH1-35
SGDYYWT


65E8

VH2


65F11

VH2


67G7

VH2


63H11

VH3


63F5

VH13


65C1

VH15


66F6

VH14





63B6
638
VH4
CDRH1-36
SGDYYWS


64D4

VH4


65F9

VH30


64B10

VH32


64B10v2





63E6
639
VH6
CDRH1-37
GYYMH


66F7

VH6


50G5 v1

VH88


50G5 v2

VH88





67G10v1
640
VH9
CDRH1-38
NAWMS


67G10v2

VH9VH21


63A10

VH22


65H11





53C3.2
641
VH90
CDRH1-39
SGNYYWS





64A7
642
VH16
CDRH1-40
SDTSYWG





50D4
643
VH87
CDRH1-41
SHDIN





61E1
644
VH94
CDRH1-42
SNSAAWN





66D4
645
VH17
CDRH1-43
GYYIH


54H10.3

VH91





65B1
646
VH18
CDRH1-44
GYFMH





67A4
647
VH19
CDRH1-45
TYDMH





65B4
648
VH20
CDRH1-46
SYDMH





65E3
649
VH24
CDRH1-47
NYNMH





65D4
650
VH25
CDRH1-48
FYGMH





65D1
651
VH26
CDRH1-49
YYYIH





65B7
652
VH28
CDRH1-50
SDAYYWS





68C8
653
VH33
CDRH1-51
SGDNYWS





63F9
654
VH37
CDRH1-52
SGGYYWN





67F6v1
655
VH38
CDRH1-53
GYWIG


67F6v2

VH38





48C9
656
VH73
CDRH2-1
EINHSENTNYNPSLKS


52C5

VH70


55E4

VH70


56G1

VH71


49A12

VH73


51E2

VH73


60G5.1

VH70


49B11

VH70


50H10

VH70


53C1

VH70


51C1

VH89





48F3
657
VH72
CDRH2-2
EITHTGSSNYNPSLKS





48F8
658
VH48
CDRH2-3
SISSSSSYEYYVDSVKG


53B9

VH48


56B4

VH48


57E7

VH48


57F11

VH48





48H11
659
VH39
CDRH2-4
WINPNSGATKYAQKFQG





48G4
660
VH83
CDRH2-5
GFDPEDGETIYAQKFQG


53C3.1

VH83





49A10
661
VH62
CDRH2-6
IIWYDGSNKNYADSVKG


48D4

VH62





49C8
662
VH44
CDRH2-7
WMNPNGGNTGYAQKFQG


52H1

VH44





49G2
663
VH63
CDRH2-8
LIWYDGSNKFYADSVKG


50C12

VH63


55G11

VH63





49G3
664
VH46
CDRH2-9
HIFSNDEKSYSTSLKS





49H12
665
VH42
CDRH2-10
WMNPYSGSTGYAQNFQG





50G1
666
VH84
CDRH2-11
VIWNDGSNKLYADSVKG





51A8
667
VH58
CDRH2-12
VISYDGSNKYYADSVKG


63G8

VH1


64A8

VH1


67B4

VH1


68D3

VH1





51C10.1
668
VH54
CDRH2-13
GISGSSAGTYYADSVKG


59D10v1

VH54


59D10v2

VH54





51C10.2
669
VH67
CDRH2-14
YIYYNGSPYDNPSLKR





51E5
670
VH74
CDRH2-15
ELDHSGSINYNPSLKS





51G2
671
VH50
CDRH2-16
SISSSSTYIYYADSVKG


56A7

VH51


56E4

VH51





52A8
672
VH40
CDRH2-17
WINPNSAATNYAPKFQG





52B8
673
VH77
CDRH2-18
YIYYSGSTNYNPSLKS


55A7

VH92





52C1
674
VH64
CDRH2-19
VIWYDGSNNYYADSVKG





52F8
675
VH41
CDRH2-20
WINPSSGDTKYAQKFQG





52H2
676
VH79
CDRH2-21
YIFYNGNANYSPSLKS





53F6
677
VH60
CDRH2-22
VIWYDGSNKYYADSVKG


60D7

VH66


65D4

VH25





53H5.2
678
VH59
CDRH2-23
LISYDGSNKYYADSVKG





53H5.3
679
VH75
CDRH2-24
EINHSGTTNYNPSLKS





54A1
680
VH43
CDRH2-25
WMNPHSGNTGYAQKFQG


55G9

VH43





54H10.1
681
VH52
CDRH2-26
AISGSGRTTYSADSVKG


55D1

VH52


48H3

VH52


53C11

VH52





55D3
682
VH68
CDRH2-27
YLYYSGSTYYNPSLKS





55E9
683
VH65
CDRH2-28
LIWYDGDNKYYADSVKG





55G5
684
VH78
CDRH2-29
RIYISGSTNYNPSLEN





56C11
685
VH61
CDRH2-30
VIWYDGSYQFYADSVKG





56E7
686
VH81
CDRH2-31
IIYPGDSDTRYSPSFQG


67A5

VH34


67C10

VH35


67F6v1

VH38


67F6v2

VH38





56G3.2
687
VH80
CDRH2-32
RIYTSGSTNYNPSLKS





56G3.3
688
VH76
CDRH2-33
MIYYSGTTYYNPSLKS


55B10

VH76


56G3.3

VH76





57B12
689
VH69
CDRH2-34
YIYYSGSTYYNPSLKS


63H11

VH3


66F6

VH14


65F9

VH30





57D9
690
VH82
CDRH2-35
RTYYRSKWYNDYAVSVKS


61E1

VH94





58C2
691
VH85
CDRH2-36
VIWNDGNNKYYADSVKG





59A10
692
VH47
CDRH2-37
SISSSGSIVYFADSVKG


49H4

VH47





59C9
693
VH49
CDRH2-38
SISSSSTYIYYADSLKG


58A5

VH49


57A4

VH49


57F9

VH49





59G10.2
694
VH57
CDRH2-39
ITSYGGSNKNYADSVKG





59G10.3
695
VH53
CDRH2-40
AISGSGAGTFYADSMKG





60F9
696
VH55
CDRH2-41
VISDSGGSTYYADSVKG


48B4

VH55


52D6

VH55





60G5.2
697
VH45
CDRH2-42
WISAYNGYSNYAQKFQD





61G5
698
VH56
CDRH2-43
VISGSGGDTYYADSVKG





64E6
699
VH2
CDRH2-44
YIYYTGSTYYNPSLKS


65E8

VH2


65F11

VH2


67G7

VH2





63B6
700
VH4
CDRH2-45
YIYYSGTTYYNPSLKS


64D4

VH4





65C3
701
VH5
CDRH2-46
YIYYTGSTNYNPSLKS


68D5

VH5





63E6
702
VH6
CDRH2-47
WMNPNSGATKYAQKFQG


66F7

VH6





64H5
703
VH7
CDRH2-48
VIWDDGSNKYYADSVKG


65G4

VH8





67G10v1
704
VH9
CDRH2-49
RIKSKTDGGTTEYAAPVKG


67G10v2

VH9





63F5
705
VH13
CDRH2-50
YIYYSGSAYYNPSLKS





64A7
706
VH16
CDRH2-51
NIYYSGTTYFNPSLKS





65C1
707
VH15
CDRH2-52
YIFYSGSTYYNPSLKS


65B7

VH28





66B4
708
VH10
CDRH2-53
WINPNSGGTDYAQKFQG





66G2
709
VH11
CDRH2-54
GISYDGSNKNYADSVKG





68G5
710
VH12
CDRH2-55
VIWYDGSNKYHADSVKG





66D4
711
VH17
CDRH2-56
WINPPSGATNYAQKFRG





65B1
712
VH18
CDRH2-57
WINPNSGATNYAQKFHG





67A4
713
VH19
CDRH2-58
AIGIAGDTYYSDSVKG





65B4
714
VH20
CDRH2-59
TIDTAGDAYYPGSVKG





63A10
715
VH21
CDRH2-60
RIKSKTDGGTTDYAAPVKG


67G10v1


67G10v2





65H11
716
VH22
CDRH2-61
RIIGKTDGGTTDYAAPVKG





64C8
717
VH23
CDRH2-62
VISYDGSNKHYADSVKG





65E3
718
VH24
CDRH2-63
VLWYDGNTKYYADSVKG





65D1
719
VH26
CDRH2-64
LIWYDGSNKDYADSVKG





67G8
720
VH27
CDRH2-65
VIWYDGSNKDYADSVKG





64A6
721
VH29
CDRH2-66
YIYYSGGTHYNPSLKS





67F5
722
VH31
CDRH2-67
YIYYSGNTNYNPSLKS





64B10
723
VH32
CDRH2-68
FIYYSGGTNYNPSLKS





68C8
724
VH33
CDRH2-69
FMFYSGSTNYNPSLKS





64H6
725
VH36
CDRH2-70
IIYPGDSETRYSPSFQG





63F9
726
VH37
CDRH2-71
YIYDSGSTYYNPSLKS





61H5
727
VH86
CDRH2-72
SIYYSGTTYYNPSLKS


52B9

VH86





50G5v1
728
VH88
CDRH2-73
WINPDSGGTNYAQKFQG


50G5v2

VH88





54H10.3
729
VH91
CDRH2-74
WINPNSGGTNYAQKFRG





50D4
730
VH87
CDRH2-75
WMNPYSGSTGLAQRFQD





55E6
731
VH93
CDRH2-76
YISSGSSTIYHADSVKG





53C3.2
732
VH90
CDRH2-77
YIYHSGSAYYNPSLKS





64B10v2
1868
VH96
CDRH2-78
FIYYSGGTNYNPPLKS





68D3v2
1869
VH95
CDRH2-79
FISYAGSNKYYADSVKG





48C9
733
VH73
CDRH3-1
ESGNFPFDY


49A12

VH73


51E2

VH73





48F3
734
VH72
CDRH3-2
GGILWFGEQAFDI





48F8
735
VH48
CDRH3-3
SLSIAVAASDY


53B9

VH48


56B4

VH48


57E7

VH48


57F11

VH48





48H11
736
VH39
CDRH3-4
EVPDGIVVAGSNAFDF





48G4
737
VH83
CDRH3-5
HSGSGRFYYYYYGMDV


53C3.1

VH83





49A10
738
VH62
CDRH3-6
DQDYDFWSGYPYFYYYGMDV


48D4

VH62





49C8
739
VH44
CDRH3-7
GKEFSRAEFDY


52H1

VH44





49G2
740
VH63
CDRH3-8
DRYYDFWSGYPYFFYYGLDV


50C12

VH63


55G11

VH63





49G3
741
VH46
CDRH3-9
VDTLNYHYYGMDV





49H12
742
VH42
CDRH3-10
YNWNYGAFDF


54A1

VH43


55G9

VH43





50G1
743
VH84
CDRH3-11
DQYYDFWSGYPYYHYYGMDV





51A8
744
VH58
CDRH3-12
ADGDYPYYYYYYGMDV





51C10.1
745
VH54
CDRH3-13
DWSIAVAGTFDY


59D10v1

VH54


59D10v2

VH54





51C10.2
746
VH67
CDRH3-14
GALYGMDV





51E5
747
VH74
CDRH3-15
VLGSTLDY





51G2
748
VH50
CDRH3-16
DTYISGWNYGMDV





52A8
749
VH40
CDRH3-17
EGGTYNWFDP





52B8
750
VH77
CDRH3-18
GTRAFDI





52C1
751
VH64
CDRH3-19
DRAGASPGMDV





52C5
752
VH70
CDRH3-20
VTGTDAFDF


60G5.1

VH70


49B11

VH70


50H10

VH70


53C1

VH70


51C1

VH89


55E4

VH70


56G1

VH71





52F8
753
VH41
CDRH3-21
SGWYPSYYYGMDV





52H2
754
VH79
CDRH3-22
ETDYGDYARPFEY





53F6
755
VH60
CDRH3-23
GHYDSSGPRDY





53H5.2
756
VH59
CDRH3-24
EANWGYNYYGMDV





53H5.3
757
VH75
CDRH3-25
ILRYFDWLEYYFDY





61E1
758
VH94
CDRH3-26
EGSWSSFFDY





54H10
759
VH52
CDRH3-27
EQQWLVYFDY


55D1

VH52


48H3

VH52


53C11

VH52





55D3
760
VH68
CDRH3-28
DGITMVRGVTHYYGMDV


57B12

VH69





55E6
761
VH93
CDRH3-29
EGYYDSSGYYYNGMDV





55E9
762
VH65
CDRH3-30
NSGWDYFYYYGMDV





55G5
763
VH78
CDRH3-31
SGSYSFDY





56A7
764
VH51
CDRH3-32
DIYSSGWSYGMDV


56E4

VH51





56C11
765
VH61
CDRH3-33
DHVWRTYRYIFDY





56E7
766
VH81
CDRH3-34
AQLGIFDY





50G5v1
767
VH88
CDRH3-35
GGYSYGYEDYYGMDV


50G5v2

VH88





56G3.2
768
VH80
CDRH3-36
GPLWFDY





56G3.3
769
VH76
CDRH3-37
VAAVYWYFDL


55B10

VH76


61H5

VH86


52B9

VH86





55A7
770
VH92
CDRH3-38
GITGTIDF





57D9
771
VH82
CDRH3-39
IVVVPAVLFDY





58C2
772
VH85
CDRH3-40
DQNYDFWNGYPYYFYYGMDV





59A10
773
VH47
CDRH3-41
ETFSSGWFDAFDI


49H4

VH47





59C9
774
VH49
CDRH3-42
DRWSSGWNEGFDY


58A5

VH49


57A4

VH49


57F9

VH49





53C3.2
775
VH90
CDRH3-43
TTGASDI





59G10.2
776
VH57
CDRH3-44
EAGYSFDY





59G10.3
777
VH53
CDRH3-45
DLRIAVAGSFDY





60D7
778
VH66
CDRH3-46
DQYFDFWSGYPFFYYYGMDV





60F9
779
VH55
CDRH3-47
DHSSGWYYYGMDV


48B4

VH55


52D6

VH55





60G5.2
780
VH45
CDRH3-48
EEKQLVKDYYYYGMDV





61G5
781
VH56
CDRH3-49
DHTSGWYYYGMDV





63G8
782
VH1
CDRH3-50
TVTKEDYYYYGMDV


64A8

VH1


67B4

VH1


68D3

VH1


66G2

VH11





64E6
783
VH2
CDRH3-51
MTTPYWYFDL


65E8

VH2


65F11

VH2


67G7

VH2


63H11

VH3


63F5

VH13


66F6

VH14





63B6
784
VH4
CDRH3-52
MTTPYWYFGL


64D4

VH4





65C3
785
VH5
CDRH3-53
EYYYGSGSYYP


68D5

VH5


67F5

VH31





63E6
786
VH6
CDRH3-54
ELGDYPFFDY


66F7

VH6





64H5
787
VH7
CDRH3-55
EYVAEAGFDY


65G4

VH8





67G10v1
788
VH9
CDRH3-56
DSSGSYYVEDYFDY


67G10 v2

VH9


63A10

VH21


65H11

VH22





64A7
789
VH16
CDRH3-57
LRGVYWYFDL





65C1
790
VH15
CDRH3-58
MTSPYWYFDL





66B4
791
VH10
CDRH3-59
DAATGRYYFDN





68G5
792
VH12
CDRH3-60
DPGYSYGHFDY





66D4
793
VH17
CDRH3-61
ETGTWSFFDY





65B1
794
VH18
CDRH3-62
ELGIFNWFDP





67A4
795
VH19
CDRH3-63
DRSSGRFGDYYGMDV





65B4
796
VH20
CDRH3-64
DRSSGRFGDFYGMDV





64C8
797
VH23
CDRH3-65
ELLWFGEYGVDHGMDV





65E3
798
VH24
CDRH3-66
DVYGDYFAY





65D4
799
VH25
CDRH3-67
ALNWNFFDY





65D1
800
VH26
CDRH3-68
EGTTRRGFDY





67G8
801
VH27
CDRH3-69
SAVALYNWFDP





65B7
802
VH28
CDRH3-70
ESRILYFNGYFQH





64A6
803
VH29
CDRH3-71
VLHYSDSRGYSYYSDF





65F9
804
VH30
CDRH3-72
VLHYYDSSGYSYYFDY





64B10v1
805
VH32
CDRH3-73
YSSTWDYYYGVDV


64B10v2

VH32





68C8
806
VH33
CDRH3-74
YRSDWDYYYGMDV





67A5
807
VH34
CDRH3-75
RASRGYRFGLAFAI





67C10
808
VH35
CDRH3-76
RASRGYRYGLAFAI





64H6
809
VH36
CDRH3-77
VAVSAFNWFDP





63F9
810
VH37
CDRH3-78
DVLMVYTKGGYYYYGVDV





67F6v1
811
VH38
CDRH3-79
RASRGYSYGHAFDF


67F6v2

VH38





50D4
812
VH87
CDRH3-80
DLSSGYYYYGLDV





54H10.3
813
VH91
CDRH3-81
EEDYSDHHYFDY





66D4
1870
VH17
CDRH3-82
ETGTWNFFDY





68D3v2
1871
VH95
CDRH3-83
TVTEEDYYYYGMDV
















TABLE 3B







Exemplary CDRL Sequences












SEQ
Contained





ID
in
Desig-
Amino Acid


Clone
NO:
Reference
nation
Sequence














48C9
814
VL78
CDRL1-1
RASQNIRTYLN


49A12

VL78


51E2

VL78





48F3
815
VL77
CDRL1-2
RASQRISSYLN





48F8
816
VL49
CDRL1-3
RASQDIGNSLH


53B9

VL49


56B4

VL49


57E7

VL49


57F11

VL49





48H11
817
VL40
CDRL1-4
RASQNIRSYLN





49A10
818
VL65
CDRL1-5
RSSQSLLDSDDGNTYLD


48D4

VL65





49C8
819
VL45
CDRL1-6
QASQDINIYLN


52H1

VL45





49G2
820
VL66
CDRL1-7
RSSQSLLDSDDGDTYLD


50C12

VL66


55G11

VL66


60D7

VL69


50G1

VL90





49G3
821
VL47
CDRL1-8
QASQGISNYLN





49H12
822
VL43
CDRL1-9
QASQDITKYLN





51A8
823
VL61
CDRL1-10
TRSSGSIASDYVQ





51C10.1
824
VL55
CDRL1-11
SGDALPKKYAY





51C10.2
825
VL70
CDRL1-12
SGDELGDKYAC





51E5
826
VL79
CDRL1-13
RASQDIRNDLG


63G8v1

VL104


64A8

VL1


67B4

VL1


68D3

VL2





51G2
827
VL51
CDRL1-14
RASQGISSWLA


59A10

VL48


49H4

VL48





52A8
828
VL41
CDRL1-15
RASQTISSYLN





52B8
829
VL82
CDRL1-16
RASQSVSDILA





52C1
830
VL67
CDRL1-17
SGSSSNIGINYVS





52C5
831
VL73
CDRL1-18
RASQSISNYLN


55E4

VL75


49B11

VL75


50H10

VL75


53C1

VL75


56G1

VL76


51C1

VL95


60G5.1

VL74





52F8
832
VL42
CDRL1-19
RSSQSLLHSNGYNYLD





52H2
833
VL84
CDRL1-20
RASQSVRSSYLA





53F6
834
VL63
CDRL1-21
RSSQSLQHSNGYNYLD





53H5.2
835
VL62
CDRL1-22
RASQGIRNDLG


50G5 v1

VL93


66G2

VL12





53H5.3
836
VL80
CDRL1-23
RASQSVSSNVA





54A1
837
VL44
CDRL1-24
QASQDISIYLN


55G9

VL44





54H10.1
838
VL53
CDRL1-25
RASQSFSSSYLA


55D1

VL53


48H3

VL53


53C11

VL53





55D3
839
VL71
CDRL1-26
RASQDISNYLA


50D4

VL92





55E9
840
VL68
CDRL1-27
RSSQSLLHSNGFNYLD





55G5
841
VL83
CDRL1-28
SGDNLGDKYAF





56A7
842
VL52
CDRL1-29
RASQDISSWLA


56E4

VL52





56C11
843
VL64
CDRL1-30
GGNDIGSKSVH





56E7
844
VL86
CDRL1-31
QASQDIKKFLN





56G3.2
845
VL85
CDRL1-32
RARQSVGSNLI





56G3.3
846
VL81
CDRL1-33
RASQSVSRDYLA


55B10

VL81


61H5

VL88


52B9

VL88





57B12
847
VL72
CDRL1-34
RASHDISNYLA





57D9
848
VL87
CDRL1-35
RASPSVSSSYLA





53C3.2
849
VL96
CDRL1-36
RASQSISSNLA





59C9
850
VL50
CDRL1-37
RASQDIDSWLV


58A5

VL50


57A4

VL50


57F9

VL50





59D10 v1
851
VL56
CDRL1-38
SGDAVPKKYAN





59D10 v2
852
VL57
CDRL1-39
SGDKLGDKYVC


65D1

VL27





59G10.2
853
VL60
CDRL1-40
SGDNLGDKYAC





59G10.3
854
VL54
CDRL1-41
SGSSSNIGDNYVS





54H10.3
855
VL97
CDRL1-84
RASQTISIYLN





60F9
856
VL58
CDRL1-43
RASQRVPSSYIV


48B4

VL58


52D6

VL58





60G5.2
857
VL46
CDRL1-44
SGNKLGDKYVC





61G5
858
VL59
CDRL1-45
RASQRVPSSYLV





64E6
859
VL3
CDRL1-46
RASQSVRNSYLA


65E8

VL3


65F11

VL3


67G7

VL3


63H11

VL3


66F6

VL15





63B6
860
VL4
CDRL1-47
RASQSVSNSYLA


64D4

VL4





65C3
861
VL5
CDRL1-48
RASQSVSSQLA


68D5

VL5





63E6
862
VL6
CDRL1-49
RTSQSISSYLN





66F7
863
VL7
CDRL1-50
RTSQSISNYLN





64H5
864
VL8
CDRL1-51
GGNNIGSKNVH


65G4

VL8


65E3

VL25


64H6

VL37





67G10 v1
865
VL9
CDRL1-52
GGNNIGSKAVH


63A10 v1

VL22


63A10v2

VL101





67G10 v2
866
VL10
CDRL1-53
SGDKLGDKYAC





63F5
867
VL14
CDRL1-54
RASQTVRNNYLA





64A7
868
VL17
CDRL1-55
RASQSVSRNYLA





65C1
869
VL16
CDRL1-56
RASQTIRNSYLA





66B4
870
VL11
CDRL1-57
RASQGISRWLA





55A7
871
VL98
CDRL1-58
RASQSISSYLN





68G5
872
VL13
CDRL1-59
GGNNIGSINVH





66D4
873
VL18
CDRL1-60
RASQIISRYLN





65B1
874
VL19
CDRL1-61
RASQNINNYLN





67A4
875
VL20
CDRL1-62
GGNNIGSKSVH





65B4
876
VL21
CDRL1-63
GGNNIGSKSVQ





55E6
877
VL99
CDRL1-64
RASQSVSRSHLA





65H11
878
VL23
CDRL1-65
GGNNIGSKTVH





64C8
879
VL24
CDRL1-66
RSSPSLVYSDGNTYLN





65D4
880
VL26
CDRL1-67
GGNDIGSKNVH





61E1
881
VL100
CDRL1-68
RASQSIGTFLN





67G8
882
VL28
CDRL1-69
GGNNIGSYNVF





65B7
883
VL29
CDRL1-70
RASQSVSSMYLA





64A6
884
VL30
CDRL1-71
RASQSVNSNLA





65F9
885
VL31
CDRL1-72
RASQSVSSNLA


67F5

VL32





64B10
886
VL33
CDRL1-73
SGSSSNIGNNYVA





68C8
887
VL34
CDRL1-74
SGSSSNIGNNYVS





67A5
888
VL35
CDRL1-75
RSSQSLLNSDDGNTYLD


67C10

VL36





63F9
889
VL38
CDRL1-76
RASQDIRNDLA





67F6v1
890
VL39
CDRL1-77
RSSQSLLNSDAGTTYLD





50G5v2
891
VL94
CDRL1-78
RSSQRLVYSDGNTYLN





48G4
892
VL89
CDRL1-79
RASQSVASSYLV


53C3.1

VL89





58C2
893
VL91
CDRL1-81
RSSQSLFDNDDGDTYLD





68G8v2
1872
VL105
CDRL1-82
RASQGIRSGLG


68G8v3

VL106





65B7v1
1873
VL29
CDRL1-83
RASQSVSSIYLA





67F6v2
1874
VL108
CDRL1-84
RSSQSLLNSDAGTTYLD





65B7v2
1875
VL107
CDRL1-85
RSSQSLVYSDGDTYLN





65H11v2
1876
VL103
CDRL1-86
SGDKLGDRYVC





63A10v3
1877
VL102
CDRL1-87
SGDKLGNRYTC





48C9
894
VL78
CDRL2-1
VASSLES


49A12

VL78


51E2

VL78





48F3
895
VL77
CDRL2-2
AVSSLQS





48F8
896
VL49
CDRL2-3
FASQSFS


53B9

VL49


56B4

VL49


57E7

VL49


57F11

VL49





48H11
897
VL40
CDRL2-4
GASNLQS





49A10
898
VL65
CDRL2-5
TLSYRAS


48D4

VL65


49G2

VL66


50C12

VL66


55G11

VL66


60D7

VL69


67A5

VL35


67C10

VL36


50G1

VL90


58C2

VL91





49C8
899
VL45
CDRL2-6
DVSNLET


52H1

VL45


54A1

VL44


55G9

VL44





49G3
900
VL47
CDRL2-7
DASNLET


56E7

VL86





49H12
901
VL43
CDRL2-8
DTFILET





51A8
902
VL61
CDRL2-9
EDKERSS





51C10.1
903
VL55
CDRL2-10
EDSKRPS


59D10v1

VL56





51C10.2
904
VL70
CDRL2-11
QDTKRPS


59G10.2

VL60





51E5
905
VL79
CDRL2-12
AASSLQF





51G2
906
VL51
CDRL2-13
DASSLQS





52A8
907
VL41
CDRL2-14
AASSLQS


52C5

VL73


53H5.2

VL62


55D3

VL71


56G1

VL76


57B12

VL72


63E6

VL6


66F7

VL7


66D4

VL18


50G5 v1

VL93


51C1

VL95


55A7

VL98


61E1

VL100


60G5.1

VL74





52B8
908
VL82
CDRL2-15
GASTRAT


53H5.3

VL80


65F9

VL31





52C1
909
VL67
CDRL2-16
DNNKRPS


59G10.3

VL54


68C8

VL34





52F8
910
VL42
CDRL2-17
LGSNRAS


55E9

VL68





52H2
911
VL84
CDRL2-18
GASRRAT





53F6
912
VL63
CDRL2-19
LDSNRAS





54H10.1
913
VL53
CDRL2-20
GASSRAT


55D1

VL53


48H3

VL53


53C11

VL53


57D9

VL87


61H5

VL88


52B9

VL88


63F5

VL14


64A7

VL17


65B7

VL29


55E6

VL99





55E4
914
VL75
CDRL2-21
TASSLQS


49B11

VL75


50H10

VL75


53C1

VL75





50G5v2
915
VL94
CDRL2-22
KVSNWDS


65B7v2





55G5
916
VL83
CDRL2-23
QDNKRPS





56A7
917
VL52
CDRL2-24
DASTLQS


56E4

VL52





56C11
918
VL64
CDRL2-25
DDSDRPS


67A4

VL20


65B4

VL21





56G3.2
919
VL85
CDRL2-26
GASSRDT





56G3.3
920
VL81
CDRL2-27
GASARAT


55B10

VL81





59A10
921
VL48
CDRL2-28
GASSLQS


49H4

VL48





59C9
922
VL50
CDRL2-29
AASNLQR


58A5

VL50


57A4

VL50


57F9

VL50


63G8v1

VL1


63G8v2

VL1


63G8v3

VL1


64A8

VL2


67B4


68D3





59D10 v2
923
VL57
CDRL2-30
QNNKRPS





60F9
924
VL58
CDRL2-31
GSSNRAT


48B4

VL58


52D6

VL58





60G5.2
925
VL46
CDRL2-32
QDSKRPS


65D1

VL27


65H11v2





61G5
926
VL59
CDRL2-33
GASNRAT





64E6
927
VL3
CDRL2-34
GAFSRAS


65E8

VL3


65F11

VL3


67G7

VL3


63H11

VL3





63B6
928
VL4
CDRL2-35
GAFSRAT


64D4

VL4


65C1

VL16


66F6

VL15


48G4

VL89


53C3.1

VL89





65C3
929
VL5
CDRL2-36
GASNRAI


68D5

VL5





64H5
930
VL8
CDRL2-37
RDSKRPS


65G4

VL8


67G8

VL28


64H6

VL37





67G10 v1
931
VL9
CDRL2-38
SDSNRPS


65H11

VL23





67G10 v2
932
VL10
CDRL2-39
QDNERPS





66B4
933
VL11
CDRL2-40
AASSLKS





66G2
934
VL12
CDRL2-41
AASNLQS





68G5
935
VL13
CDRL2-42
RDRNRPS


65E3

VL25


65D4

VL26





65B1
936
VL19
CDRL2-43
TTSSLQS





53C3.2
937
VL96
CDRL2-44
GTSIRAS





63A10v1
938
VL22
CDRL2-45
CDSNRPS


63A10v2

VL101





54H10.3
939
VL97
CDRL2-46
SASSLQS





64C8
940
VL24
CDRL2-47
KGSNWDS





64A6
941
VL30
CDRL2-48
GTSTRAT





67F5
942
VL32
CDRL2-49
GSSNRAI





64B10
943
VL33
CDRL2-50
DNDKRPS





63F9
944
VL38
CDRL2-51
ASSSLQS





67F6
945
VL39
CDRL2-52
TLSFRAS


67F6v2





50D4
946
VL92
CDRL2-53
AASTLLS





63A10v3
1878
VL102
CDRL2-54
QDSERPS





48C9
947
VL78
CDRL3-1
QQSDSIPRT


49A12


51E2





48F3
948
VL77
CDRL3-2
QQSYSATFT





48F8
949
VL49
CDRL3-3
HQSSDLPLT


53B9

VL49


56B4

VL49


57E7

VL49


57F11

VL49





48H11
950
VL40
CDRL3-4
QQSYNTPCS





49A10
951
VL65
CDRL3-5
MQRIEFPIT


48D4

VL65


67C10

VL36


67F6v1

VL39


67F6v1

VL39





49C8
952
VL45
CDRL3-6
QQYDNLPFT


52H1

VL45





49G2
953
VL66
CDRL3-7
MQHIEFPST


50C12

VL66


55G11

VL66





49G3
954
VL47
CDRL3-8
HQYDDLPLT





49H12
955
VL43
CDRL3-9
QQYDNLPLT


54A1

VL44


55G9

VL44





51A8
956
VL61
CDRL3-10
QSYDRNNHVV





51C10.1
957
VL55
CDRL3-11
YSTDSSVNHVV





51C10.2
958
VL70
CDRL3-12
QAWDSGTVV





51E5
959
VL79
CDRL3-13
LQHSSYPLT





51G2
960
VL51
CDRL3-14
QQTNSFPPWT


56A7

VL52


56E4

VL52


59A10

VL48


49H4

VL48


59C9

VL50


58A5

VL50


57A4

VL50


57F9

VL50





52A8
961
VL41
CDRL3-15
QQSYSTPLT


65B1

VL19





52B8
962
VL82
CDRL3-16
QQYNNWPLT


56G3.2

VL85





52C1
963
VL67
CDRL3-17
GTWDSSLSAVV


64B10

VL33


68C8

VL34





52C5
964
VL73
CDRL3-18
QQSSSIPWT


55E4

VL75


49B11

VL75


50H10

VL75


53C1

VL75


51C1

VL95


60G5.1

VL74





52F8
965
VL42
CDRL3-19
MQALQTPFT





52H2
966
VL84
CDRL3-20
QQYGSSPRS





53F6
967
VL63
CDRL3-21
MQGLQTPPT





53H5.2
968
VL62
CDRL3-22
LQHKSYPFT





53H5.3
969
VL80
CDRL3-23
QQFSNSIT





54H10.1
970
VL53
CDRL3-24
QQYGSSRT


55D1

VL53


48H3

VL53





53C11

VL53





55D3
971
VL71
CDRL3-25
QQYNIYPRT





55E9
972
VL68
CDRL3-26
MQALQTLIT





55G5
973
VL83
CDRL3-27
QAWDSATVI





56C11
974
VL64
CDRL3-28
QVWDSSSDVV





56E7
975
VL86
CDRL3-29
QQYAILPFT





56G1
976
VL76
CDRL3-30
QQSSTIPWT





56G3.3
977
VL81
CDRL3-31
QQYGRSLFT


55B10

VL81


61H5

VL88


52B9

VL88





57B12
978
VL72
CDRL3-32
QQYNTYPRT





57D9
979
VL87
CDRL3-33
HQYGTSPCS





59D10 v1
980
VL56
CDRL3-34
YSTDSSGNHVV





59D10 v2
981
VL57
CDRL3-35
QAWDSSTAV





59G10.2
982
VL60
CDRL3-36
QAWDSSTTWV





59G10.3
983
VL54
CDRL3-37
GTWDSSLSVMV





60D7
984
VL69
CDRL3-38
MQRIEFPLT


50G1

VL90





60F9
985
VL58
CDRL3-39
QQYGSSPPWT


48B4

VL58


52D6

VL58


61G5

VL59





60G5.2
986
VL46
CDRL3-40
QAWDSSTWV





63G8v1
987
VL1
CDRL3-41
LQHNSYPLT


63G8v2

VL1


64A8

VL1


67B4

VL1


68D3

VL2





64E6
988
VL3
CDRL3-42
QQFGSSLT


65E8

VL3


65F11

VL3


67G7

VL3


63H11

VL3


63F5

VL14


65C1

VL16


66F6

VL15





63B6
989
VL4
CDRL3-43
QQFGRSFT


64D4

VL4





65C3
990
VL5
CDRL3-44
QQYNNWPWT


68D5

VL5





63E6
991
VL6
CDRL3-45
QQSYSTSLT


66F7

VL7





64H5
992
VL8
CDRL3-46
QVWDSSSVV


65G4

VL8





67G10 v1
993
VL9
CDRL3-47
QVWDSSSDGV





67G10 v2
994
VL10
CDRL3-48
QAWDSTTVV


64A10v3





64A7
995
VL17
CDRL3-49
QQYGSSSLCS





66B4
996
VL11
CDRL3-50
QQANSFPPT





66G2
997
VL12
CDRL3-51
LQLNGYPLT





68G5
998
VL13
CDRL3-52
QLWDSSTVV





66D4
999
VL18
CDRL3-53
QQSYSSPLT


54H10.3

VL97





55A7
1000
VL98
CDRL3-54
QQTYSAPFT





67A4
1001
VL20
CDRL3-55
QVWDSSSDHVV


65B4

VL21





63A10
1002
VL22
CDRL3-56
HACGSSSSDGV





65H11
1003
VL23
CDRL3-57
QVWDSSCDGV





64C8
1004
VL24
CDRL3-58
IQDTHWPTCS





65E3
1005
VL25
CDRL3-59
QVWDSSTVV


67G8

VL28





65D4
1006
VL26
CDRL3-60
QVWDSNPVV





65D1
1007
VL27
CDRL3-61
QAWDSRV





65B7v1
1008
VL29
CDRL3-62
QQYGSSCS





64A6
1009
VL30
CDRL3-63
QQYNTWPWT


65F9

VL31





67F5
1010
VL32
CDRL3-64
QQYEIWPWT





55E6
1011
VL99
CDRL3-65
QQYGSSPWT





67A5
1012
VL35
CDRL3-66
MQRLEFPIT


58C2

VL91





61E1
1013
VL100
CDRL3-67
QQSFSTPLT





64H6
1014
VL37
CDRL3-68
QVWDSSPVV





63F9
1015
VL38
CDRL3-69
LQRNSYPLT





53C3.2
1016
VL96
CDRL3-70
HQYTNWPRT





48G4
1017
VL89
CDRL3-71
QQYGTSPFT


53C3.1

VL89





50G5 v1
1018
VL93
CDRL3-72
LQHNSYPRT





50D4
1019
VL92
CDRL3-74
QKYYSAPFT





50G5 v2
1020
VL94
CDRL3-75
MEGTHWPRD





63G8v3
1879
VL106
CDRL3-76
LQHNTYPLT





65B7v2
1880
VL107
CDRL3-77
MQGTHWRGWT





65H11v2
1881
VL103
CDRL3-78
QAWDSITVV





63A10v1
1882
VL22
CDRL3-79
QVWDSSSDGV
















TABLE 3C







Coding Sequences for CDRHs












SEQ
Contained





ID
in


Clone
NO:
Reference
Designation
Coding Sequences














48C9
1021
VH73
CDRH1-1
GGTTACTACTGGACC


49A12

VH73


51E2

VH73





48F3
1022
VH72
CDRH1-2
GGTTACTACTGGAGC


51E5

VH74


52C5

VH70


55E4

VH70


60G50.1

VH70


49B11

VH70


50H10

VH70


53C1

VH70


56G1

VH71


51C1

VH89





48F8
1023
VH48
CDRH1-3
AGCTATAGCATGAAC


51G2

VH50


56A7

VH51


53B9

VH48


56B4

VH48


57E7

VH48


57F11

VH48


56E4

VH51


55E6

VH93





48H11
1024
VH39
CDRH1-4
GGCTACTATAAGCAC





48G4
1025
VH83
CDRH1-5
GAATTATCCATACAC





49A10
1026
VH62
CDRH1-6
AACTATGGCATGCAC


58C2

VH85


59G10.2

VH57


48D4

VH62





49C8
1027
VH44
CDRH1-7
AGTTATGATATCGAC


52H1





49G2
1028
VH63
CDRH1-8
AACTATGGCATGCGC


50C12

VH63


55G11

VH63





49G3
1029
VH46
CDRH1-9
AATCCTAGAATGGGTGTGAGC





49H12
1030
VH42
CDRH1-10
AGTTACGATATCAAC


54A1

VH43


55G9

VH43





50G1
1031
VH84
CDRH1-11
AGCTATGGCCTGCAC





51A8
1032
VH58
CDRH1-12
AGCTATGGCATGCAC


52C1

VH64


53H5.2

VH59


56C11

VH61


60D7

VH66


64H5

VH7


65G4

VH8


66G2

VH11


68G5

VH12


64C8

VH23


67G8

VH27


68D3v2

VH8





51C10.1
1033
VH54
CDRH1-13
AACTATGCCATGAGC


59D10v1

VH54


59D10v2

VH54





51C10.2
1034
VH67
CDRH1-14
AGTGGTGGTTACTACTGGAGC


64A6

VH29





52A8
1035
VH40
CDRH1-15
GGCTACTATTTGCAC


66B4

VH10





52B8
1036
VH77
CDRH1-16
TATTATTACTGGAGT





52F8
1037
VH41
CDRH1-17
GGCTACTATACACAC





52H2
1038
VH79
CDRH1-18
ACTTACTACTGGAGC





53F6
1039
VH60
CDRH1-19
ACCTATGGCATGCAC





53H5.3
1040
VH75
CDRH1-20
GATTACTACTGGAAC





54H10.1
1041
VH52
CDRH1-21
AGCTATGCCATGAGC


60F9

VH55


61G5

VH56


55D1

VH52


48H3

VH52


53C11

VH52


48B4

VH55


52D6

VH55





55D3
1042
VH68
CDRH1-22
AGTGGTGTTTACTACTGGAAC





55E9
1043
VH65
CDRH1-23
AGCTTTGGCATGCAC





55G5
1044
VH78
CDRH1-24
AGTTACTACTGGAGC


65C3

VH5


68D5

VH5


67F5

VH31


55A7

VH92





56E7
1045
VH81
CDRH1-25
AGCTACTGGATCGGC


67A5

VH34


67C10

VH35


64H6

VH36





56G3.2
1046
VH80
CDRH1-26
AGTTACTACTGGAAC





56G3.3
1047
VH76
CDRH1-27
AGTAGTAGTTACTACTGGGGC


55B10

VH76


61H5

VH86


52B9

VH86





57B12
1048
VH69
CDRH1-28
AGTGGTGTTTACTACTGGAGC





57D9
1049
VH82
CDRH1-29
AGCAACAGTGCTACTTGGAAC





59A10
1050
VH47
CDRH1-30
GACTCCTACATGAGC


49H4





59C9
1051
VH49
CDRH1-31
AGCTATAGCATGAGT


58A5

VH49


57A4

VH49


57F9

VH49





59G10.3
1052
VH53
CDRH1-32
CACTATGCCATGAGC





60G5.2
1053
VH45
CDRH1-33
AACTATGGTATCAGC





63G8
1054
VH1
CDRH1-34
AGCTATGGCATACAC


64A8

VH1


67B4

VH1


68D3

VH1





64E6
1055
VH2
CDRH1-35
AGTGGTGATTACTACTGGACC


65E8

VH2


65F11

VH2


67G7

VH2


63H11

VH3


63F5

VH13


65C1

VH15


66F6

VH14





63B6
1056
VH4
CDRH1-36
AGTGGTGATTACTACTGGAGC


64D4

VH4


65F9

VH30


64B10v1

VH32


64B10v1

VH32





63E6
1057
VH6
CDRH1-37
AGTGGTGATTACTACTGGACC


66F7

VH6


50G5 v1

VH88


50G5 v2

VH88





67G10v1
1058
VH9
CDRH1-38
AACGCCTGGATGAGT


67G10v2

VH9


63A10

VH21


65H11

VH22





53C3.2
1059
VH90
CDRH1-39
AGTGGTAATTACTACTGGAGC





64A7
1060
VH16
CDRH1-40
AGTGATACTTCCTACTGGGGC





50D4
1061
VH87
CDRH1-41
AGTCATGATATCAAC





61E1
1062
VH94
CDRH1-42
AGCAACAGTGCTGCTTGGAAC





66D4
1063
VH17
CDRH1-43
GGCTACTATATACAC


54H10.3

VH91





65B1
1064
VH18
CDRH1-44
GGCTACTTTATGCAC





67A4
1065
VH19
CDRH1-45
ACCTACGACATGCAC





65B4
1066
VH20
CDRH1-46
AGTTACGACATGCAC





65E3
1067
VH24
CDRH1-47
AACTATAACATGCAC





65D4
1068
VH25
CDRH1-48
TTCTATGGCATGCAC





65D1
1069
VH26
CDRH1-49
TACTATTACATTCAC





65B7
1070
VH28
CDRH1-50
AGTGATGCTTACTACTGGAGC





68C8
1071
VH33
CDRH1-51
AGTGGTGATAACTACTGGAGC





63F9
1072
VH37
CDRH1-52
AGTGGTGGTTACTACTGGAAC





67F6
1073
VH38
CDRH1-53
GGCTACTGGATCGGC





48C9
1074
VH73
CDRH2-1
GAAATCAATCATAGTGAAAACACCAACT


52C5

VH70

ACAACCCGTCCCTCAAGAGT


55E4

VH70


56G1

VH71


49A12

VH73


51E2

VH73


60G5.1

VH70


49B11

VH70


50H10

VH70


53C1

VH70


51C1

VH89





48F3
1075
VH72
CDRH2-2
GAAATCACTCATACTGGAAGCTCCAACT






ACAACCCGTCCCTCAAGAGT





48F8
1076
VH48
CDRH2-3
TCCATTAGTAGTAGTAGTAGTTACGAATA


53B9

VH48

CTACGTAGACTCAGTGAAGGGC


56B4

VH48


57E7

VH48


57F11

VH48





48H11
1077
VH39
CDRH2-4
TGGATCAACCCTAACAGTGGTGCCACAA






AGTATGCACAGAAGTTTCAGGGC





48G4
1078
VH83
CDRH2-5
GGTTTTGATCCTGAAGATGGTGAAACAA


53C3.1



TCTACGCACAGAAGTTCCAGGGC





49A10
1079
VH62
CDRH2-6
ATTATATGGTATGATGGAAGTAATAAAA


48D4

VH62

ACTATGCAGACTCCGTGAAGGGC





49C8
1080
VH44
CDRH2-7
TGGATGAACCCTAACGGTGGTAACACAG






GCTATGCACAGAAGTTCCAGGGC





49G2
1081
VH63
CDRH2-8
CTTATATGGTATGATGGAAGTAATAAGTT


50C12

VH63

CTATGCAGACTCCGTGAAGGGC


55G11

VH63





49G3
1082
VH46
CDRH2-9
CACATTTTTTCGAATGACGAAAAATCCTA






CAGCACATCTCTGAAGAGC





49H12
1083
VH42
CDRH2-10
TGGATGAACCCCTACAGTGGGAGCACAG






GCTATGCACAGAATTTCCAGGGC





50G1
1084
VH84
CDRH2-11
GTTATATGGAATGATGGAAGTAATAAGC






TTTATGCAGACTCCGTGAAGGGC





51A8
1085
VH58
CDRH2-12
GTTATATCATATGATGGAAGTAATAAAT


63G8

VH1

ACTATGCAGACTCCGTGAAGGGC


64A8

VH1


67B4

VH1


68D3

VH1





51C10.1
1086
VH54
CDRH2-13
GGTATTAGTGGTAGTAGTGCTGGCACAT


59D10v1

VH54

ACTACGCAGACTCCGTGAAGGGC


59D10v2

VH54





51C10.2
1087
VH67
CDRH2-14
TACATCTATTACAATGGGAGTCCCTACGA






CAACCCGTCCCTCAAGAGG





51E5
1088
VH74
CDRH2-15
GAACTCGATCATAGTGGAAGTATCAACT






ACAACCCGTCCCTCAAGAGT





51G2
1089
VH50
CDRH2-16
TCCATTAGTAGTAGTAGTACTTACATATA


56A7

VH51

CTACGCAGACTCAGTGAAGGGC


56E4

VH51





52A8
1090
VH40
CDRH2-17
TGGATCAACCCTAACAGTGCTGCCACAA






ACTATGCACCGAAGTTTCAGGGC





52B8
1091
VH77
CDRH2-18
TATATCTATTATAGTGGGAGCACCAACTA


55A7

VH92

CAACCCCTCCCTCAAGAGT





52C1
1092
VH64
CDRH2-19
GTTATATGGTATGATGGAAGTAATAACT






ATTATGCAGACTCCGTGAAGGGC





52F8
1093
VH41
CDRH2-20
TGGATCAACCCTAGCAGTGGTGACACAA






AGTATGCACAGAAGTTTCAGGGC





52H2
1094
VH79
CDRH2-21
TATATCTTTTACAATGGGAACGCCAACTA






CAGCCCCTCCCTGAAGAGT





53F6
1095
VH60
CDRH2-22
GTTATATGGTATGATGGAAGTAATAAAT


60D7

VH66

ACTATGCAGACTCCGTGAAGGGC


65D4

VH25





53H5.2
1096
VH59
CDRH2-23
CTTATATCATATGATGGAAGTAATAAATA






CTATGCAGACTCCGTGAAGGGC





53H5.3
1097
VH75
CDRH2-24
GAAATCAATCATAGTGGAACCACCAACT






ACAATCCGTCCCTCAAGAGT





54A1
1098
VH43
CDRH2-25
TGGATGAACCCTCACAGTGGTAACACAG


55G9

VH43

GCTATGCACAGAAGTTCCAGGGC





54H10.1
1099
VH52
CDRH2-26
GCTATTAGTGGTAGTGGTCGTACCACATA


55D1

VH52

CTCCGCAGACTCCGTGAAGGGC


48H3

VH52


53C11

VH52





55D3
1100
VH68
CDRH2-27
TACCTCTATTACAGTGGGAGCACCTACTA






CAACCCGTCCCTCAAGAGT





55E9
1101
VH65
CDRH2-28
CTTATATGGTATGATGGAGATAATAAAT






ACTATGCAGACTCCGTGAAGGGC





55G5
1102
VH78
CDRH2-29
CGTATCTATATCAGTGGGAGCACCAACT






ACAACCCCTCCCTCGAGAAT





56C11
1103
VH61
CDRH2-30
GTTATATGGTATGATGGAAGTTATCAATT






CTATGCAGACTCCGTGAAGGGC





56E7
1104
VH81
CDRH2-31
ATCATCTATCCTGGTGACTCTGATACCAG


67A5

VH34

ATACAGCCCGTCCTTCCAAGGC


67C10

VH35


67F6

VH38





56G3.2
1105
VH80
CDRH2-32
CGTATCTATACCAGTGGGAGCACCAACT






ACAATCCCTCCCTCAAGAGT





56G3.3
1106
VH76
CDRH2-33
ATGATCTATTATAGTGGGACCACCTACTA






CAACCCGTCCCTCAAGAGT





57B12
1107
VH69
CDRH2-34
TACATCTATTACAGTGGGAGCACCTACTA


63H11

VH3

CAACCCGTCCCTCAAGAGT


66F6

VH14


65F9

VH30





57D9
1108
VH82
CDRH2-35
AGGACATACTACAGGTCCAAGTGGTATA


61E1

VH94

ATGATTATGCAGTATCTGTGAAAAGT





58C2
1109
VH85
CDRH2-36
GTTATATGGAATGATGGAAATAACAAAT






ACTATGCAGACTCCGTGAAGGGC





59A10
1110
VH47
CDRH2-37
TCCATTAGTAGTAGTGGTAGTATCGTATA


49H4



CTTCGCAGACTCTGTGAAGGGC





59C9
1111
VH49
CDRH2-38
TCCATTAGTAGTAGTAGTACTTACATATA


58A5

VH49

CTACGCAGACTCACTGAAGGGC


57A4

VH49


57F9

VH49





59G10.2
1112
VH57
CDRH2-39
ATTACATCATATGGAGGAAGTAATAAAA






ATTATGCAGACTCCGTGAAGGGC





59G10.3
1113
VH53
CDRH2-40
GCTATTAGTGGTAGTGGTGCTGGCACATT






CTACGCGGACTCCATGAAGGGC





60F9
1114
VH55
CDRH2-41
GTTATTAGTGACAGTGGTGGTAGCACAT


48B4

VH55

ACTACGCAGACTCCGTGAAGGGC


52D6

VH55





60G5.2
1115
VH45
CDRH2-42
TGGATCAGCGCTTACAATGGTTACTCAAA






CTATGCACAGAAGTTCCAGGAC





61G5
1116
VH56
CDRH2-43
GTTATTAGTGGTAGTGGTGGTGACACATA






CTACGCAGACTCCGTGAAGGGC





64E6
1117
VH2
CDRH2-44
TACATCTATTACACTGGGAGCACCTACTA


65E8

VH2

CAACCCGTCCCTCAAGAGT


65F11

VH2


67G7

VH2





63B6
1118
VH4
CDRH2-45
TACATCTATTACAGTGGGACCACCTACTA


64D4

VH4

CAACCCGTCCCTCAAGAGT





65C3
1119
VH5
CDRH2-46
TATATCTATTACACTGGGAGCACCAACTA


68D5

VH5

CAACCCCTCCCTCAAGAGT





63E6
1120
VH6
CDRH2-47
TGGATGAACCCTAATAGTGGTGCCACAA


66F7

VH6

AGTATGCACAGAAGTTTCAGGGC





64H5
1121
VH7
CDRH2-48
GTTATATGGGATGATGGAAGTAATAAAT


65G4

VH8

ACTATGCAGACTCCGTGAAGGGC





67G10v1
1122
VH9
CDRH2-49
CGTATTAAAAGCAAAACTGATGGTGGGA


67G10v2

VH9

CAACAGAGTACGCTGCACCCGTGAAAGGC





63F5
1123
VH13
CDRH2-50
TACATCTATTACAGTGGGAGCGCCTACTA






CAACCCGTCCCTCAAGAGT





64A7
1124
VH16
CDRH2-51
AATATCTATTATAGTGGGACCACCTACTT






CAACCCGTCCCTCAAGAGT





65C1
1125
VH15
CDRH2-52
TACATTTTTTACAGTGGGAGCACCTACTA


65B7

VH28

CAACCCGTCCCTCAAGAGT





66B4
1126
VH10
CDRH2-53
TGGATCAACCCTAACAGTGGTGGCACAG






ACTATGCACAGAAGTTTCAGGGC





66G2
1127
VH11
CDRH2-54
GGTATATCATATGATGGAAGTAATAAAA






ACTATGCAGACTCCGTGAAGGGC





68G5
1128
VH12
CDRH2-55
GTTATATGGTATGATGGAAGTAATAAAT






ACCATGCAGACTCCGTGAAGGGC





66D4
1129
VH17
CDRH2-56
TGGATCAACCCTCCCAGTGGTGCCACAA






ACTATGCACAGAAGTTTCGGGGC





65B1
1130
VH18
CDRH2-57
TGGATCAACCCTAACAGTGGTGCCACAA






ACTATGCACAGAAGTTTCACGGC





67A4
1131
VH19
CDRH2-58
GCTATTGGTATTGCTGGTGACACATACTA






TTCAGACTCCGTGAAGGGC





65B4
1132
VH20
CDRH2-59
ACTATTGATACTGCTGGTGACGCTTACTA






TCCAGGCTCCGTGAAGGGC





63A10
1133
VH21
CDRH2-60
CGTATTAAAAGCAAAACTGATGGTGGGA


67G10v1

VH9

CAACAGACTACGCTGCACCCGTGAAAGGC


67G10v2

VH9





65H11
1134
VH22
CDRH2-61
CGTATTATAGGCAAAACTGATGGTGGGA






CAACAGACTACGCTGCACCCGTGAAAGGC





64C8
1135
VH23
CDRH2-62
GTTATATCATATGATGGAAGTAACAAAC






ACTATGCAGACTCCGTGAAGGGC





65E3
1136
VH24
CDRH2-63
GTTTTATGGTATGATGGAAATACTAAATA






CTATGCAGACTCCGTGAAGGGC





65D1
1137
VH26
CDRH2-64
CTTATATGGTATGATGGAAGTAATAAAG






ACTATGCAGACTCCGTGAAGGGC





67G8
1138
VH27
CDRH2-65
GTTATATGGTATGATGGAAGTAATAAAG






ACTATGCAGACTCCGTGAAGGGC





64A6
1139
VH29
CDRH2-66
TACATCTATTACAGTGGGGGCACCCACTA






CAACCCGTCCCTCAAGAGT





67F5
1140
VH31
CDRH2-67
TATATCTATTACAGTGGGAACACCAACTA






CAACCCCTCCCTCAAGAGT





64B10
1141
VH32
CDRH2-68
TTTATCTATTACAGTGGGGGCACCAACTA






CAACCCCTCCCTCAAGAGT





68C8
1142
VH33
CDRH2-69
TTCATGTTTTACAGTGGGAGTACCAACTA






CAACCCCTCCCTCAAGAGT





64H6
1143
VH36
CDRH2-70
ATCATCTATCCTGGTGACTCTGAAACCAG






ATACAGCCCGTCCTTTCAAGGC





63F9
1144
VH37
CDRH2-71
TACATCTATGACAGTGGGAGCACCTACT






ACAACCCGTCCCTCAAGAGT





61H5
1145
VH86
CDRH2-72
AGTATCTATTATAGTGGGACCACCTACTA


52B9

VH86

CAACCCGTCCCTCAAGAGT





50G5 v1
1146
VH88
CDRH2-73
TGGATCAACCCTGACAGTGGTGGCACAA


50G5 v2

VH88

ACTATGCACAGAAGTTTCAGGGC





54H10.3
1147
VH91
CDRH2-74
TGGATCAACCCTAACAGTGGTGGCACAA






ACTATGCACAGAAGTTTCGGGGC





50D4
1148
VH87
CDRH2-75
TGGATGAACCCTTACAGTGGTAGCACAG






GCCTCGCACAGAGGTTCCAGGAC





55E6
1149
VH93
CDRH2-76
TACATTAGTAGTGGTAGTAGTACCATATA






CCACGCAGACTCTGTGAAGGGC





53C3.2
1150
VH90
CDRH2-77
TACATCTATCACAGTGGGAGCGCCTACTA






CAACCCGTCCCTCAAGAGT





64B10v2
1883
VH96
CDRH2-78
TTTATTTATTACAGTGGGGGCACCAACTA






CAACCCCCCCCTCAAGAGT





68D3v2
1884
VH95
CDRH2-79
TTTATATCATATGCTGGAAGTAATAAATA






CTATGCAGACTCCGTGAAGGGC





48C9
1151
VH73
CDRH3-1
GAGAGTGGGAACTTCCCCTTTGACTAC


49A12

VH73


51E2

VH73





48F3
1152
VH72
CDRH3-2
GGCGGGATTTTATGGTTCGGGGAGCAGG






CTTTTGATATC





48F8
1153
VH48
CDRH3-3
TCCCTAAGTATAGCAGTGGCTGCCTCTGA


53B9

VH48

CTAC


56B4

VH48


57E7

VH48


57F11

VH48





48H11
1154
VH39
CDRH3-4
GAGGTACCCGACGGTATAGTAGTGGCTG






GTTCAAATGCTTTTGATTTC





48G4
1155
VH83
CDRH3-5
CATTCTGGTTCGGGGAGGTTTTACTACTA


53C3.1



CTACTACGGTATGGACGTC





49A10
1156
VH62
CDRH3-6
GATCAGGATTACGATTTTTGGAGTGGTTA


48D4

VH62

TCCTTACTTCTACTACTACGGTATGGACG






TC





49C8
1157
VH44
CDRH3-7
GGGAAGGAATTTAGCAGGGCGGAGTTTG






ACTAC





49G2
1158
VH63
CDRH3-8
GATCGGTATTACGATTTTTGGAGTGGTTA


50C12

VH63

TCCATACTTCTTCTACTACGGTCTGGACG


55G11

VH63

TC





49G3
1159
VH46
CDRH3-9
GTAGATACCTTGAACTACCACTACTACGG






TATGGACGTC





49H12
1160
VH42
CDRH3-10
TATAATTGGAACTATGGGGCTTTTGATTTC


54A1

VH43


55G9

VH43





50G1
1161
VH84
CDRH3-11
GATCAGTATTACGATTTTTGGAGCGGTTA






CCCATACTATCACTACTACGGTATGGACG






TC





51A8
1162
VH58
CDRH3-12
GCGGACGGTGACTACCCATATTACTACTA






CTACTACGGTATGGACGTC





51C10.1
1163
VH54
CDRH3-13
GATTGGAGTATAGCAGTGGCTGGTACTTT


59D10

VH54

TGACTAC


v1


59D10

VH54


v2





51C10.2
1164
VH67
CDRH3-14
GGGGCCCTCTACGGTATGGACGTC





51E5
1165
VH74
CDRH3-15
GTCCTGGGATCTACTCTTGACTAT





51G2
1166
VH50
CDRH3-16
GATACTTATATCAGTGGCTGGAACTACG






GTATGGACGTC





52A8
1167
VH40
CDRH3-17
GAGGGTGGAACTTACAACTGGTTCGACC






CC





52B8
1168
VH77
CDRH3-18
GGAACTAGGGCTTTTGATATC





52C1
1169
VH64
CDRH3-19
GATCGGGCGGGAGCCTCTCCCGGAATGG






ACGTC





52C5
1170
VH70
CDRH3-20
GTAACTGGAACGGATGCTTTTGATTTC


60G5.1

VH70


49B11

VH70


50H10

VH70


53C1

VH70


51C1

VH89


55E4

VH70


56G1

VH71





52F8
1171
VH41
CDRH3-21
AGTGGCTGGTACCCGTCCTACTACTACGG






TATGGACGTC





52H2
1172
VH79
CDRH3-22
GAAACGGACTACGGTGACTACGCACGTC






CTTTTGAATAC





53F6
1173
VH60
CDRH3-23
GGCCACTATGATAGTAGTGGTCCCAGGG






ACTAC





53H5.2
1174
VH59
CDRH3-24
GAGGCTAACTGGGGCTACAACTACTACG






GTATGGACGTC





53H5.3
1175
VH75
CDRH3-25
ATATTACGATATTTTGACTGGTTAGAATA






CTACTTTGACTAC





61E1
1176
VH94
CDRH3-26
GAGGGCAGCTGGTCCTCCTTCTTTGACTAC





54H10.1
1177
VH52
CDRH3-27
GAACAGCAGTGGCTGGTTTATTTTGACTAC


55D1

VH52


48H3

VH52


53C11

VH52





55D3
1178
VH68
CDRH3-28
GATGGTATTACTATGGTTCGGGGAGTTAC


57B12

VH69

TCACTACTACGGTATGGACGTC





55E6
1179
VH93
CDRH3-29
GAAGGGTACTATGATAGTAGTGGTTATT






ACTACAACGGTATGGACGTC





55E9
1180
VH65
CDRH3-30
AACAGTGGCTGGGATTACTTCTACTACTA






CGGTATGGACGTC





55G5
1181
VH78
CDRH3-31
AGTGGGAGCTACTCCTTTGACTAC





56A7
1182
VH51
CDRH3-32
GATATCTATAGCAGTGGCTGGAGCTACG


56E4

VH51

GTATGGACGTC





56C11
1183
VH61
CDRH3-33
GATCACGTTTGGAGGACTTATCGTTATAT






CTTTGACTAC





56E7
1184
VH81
CDRH3-34
GCACAACTGGGGATCTTTGACTAC





50G5 v1
1185
VH88
CDRH3-35
GGCGGATACAGCTATGGTTACGAGGACT


50G5 v2

VH88

ACTACGGTATGGACGTC





56G3.2
1186
VH80
CDRH3-36
GGCCCTCTTTGGTTTGACTAC





56G3.3
1187
VH76
CDRH3-37
GTGGCAGCAGTTTACTGGTATTTCGATCTC


55B10

VH76


61H5

VH86


52B9

VH86





55A7
1188
VH92
CDRH3-38
GGGATAACTGGAACTATTGACTTC





57D9
1189
VH82
CDRH3-39
ATTGTAGTAGTACCAGCTGTTCTCTTTGA






CTAC





58C2
1190
VH85
CDRH3-40
GATCAGAATTACGATTTTTGGAATGGTTA






TCCCTACTACTTCTACTACGGTATGGACG






TC





59A10
1191
VH47
CDRH3-41
GAGACGTTTAGCAGTGGCTGGTTCGATG


49H4



CTTTTGATATC





59C9
1192
VH49
CDRH3-42
GATCGATGGAGCAGTGGCTGGAACGAAG


58A5

VH49

GTTTTGACTAT


57A4

VH49


57F9

VH49





53C3.2
1193
VH90
CDRH3-43
ACTACGGGTGCTTCTGATATC





59G10.2
1194
VH57
CDRH3-44
GAGGCCGGGTATAGCTTTGACTAC





59G10.3
1195
VH53
CDRH3-45
GATCTTAGAATAGCAGTGGCTGGTTCATT






TGACTAC





60D7
1196
VH66
CDRH3-46
GATCTTAGAATAGCAGTGGCTGGTTCATT






TGACTAC





60F9
1197
VH55
CDRH3-47
GATCAGTATTTCGATTTTTGGAGTGGTTA


48B4

VH55

TCCTTTCTTCTACTACTACGGTATGGACG


52D6

VH55

TC





60G5.2
1198
VH45
CDRH3-48
GATCATAGCAGTGGCTGGTACTACTACG






GTATGGACGTC





61G5
1199
VH56
CDRH3-49
GATCATACCAGTGGCTGGTACTACTACG






GTATGGACGTC





63G8
1200
VH1
CDRH3-50
ACGGTGACTAAGGAGGACTACTACTACT


64A8

VH1

ACGGTATGGACGTC


67B4

VH1


68D3

VH1


66G2

VH11





64E6
1201
VH2
CDRH3-51
ATGACTACCCCTTACTGGTACTTCGATCTC


65E8

VH2


65F11

VH2


67G7

VH2


63H11

VH3


63F5

VH13


66F6

VH14





63B6
1202
VH4
CDRH3-52
ATGACTACTCCTTACTGGTACTTCGGTCTC


64D4

VH4





65C3
1203
VH5
CDRH3-53
GAATATTACTATGGTTCGGGGAGTTATTA


68D5

VH5

TCCT


67F5

VH5





63E6
1204
VH6
CDRH3-54
GAACTCGGTGACTACCCCTTTTTTGACTAC


66F7

VH6





64H5
1205
VH7
CDRH3-55
GAATACGTAGCAGAAGCTGGTTTTGACT


65G4

VH8

AC





67G10v1
1206
VH9
CDRH3-56
GATAGTAGTGGGAGCTACTACGTGGAGG


67G10v2

VH9

ACTACTTTGACTAC


63A10

VH21


65H11

VH22





64A7
1207
VH16
CDRH3-57
CTCCGAGGGGTCTACTGGTACTTCGATCTC





65C1
1208
VH15
CDRH3-58
ATGACTTCCCCTTACTGGTACTTCGATCTC





66B4
1209
VH10
CDRH3-59
GACGCAGCAACTGGTCGCTACTACTTTGA






CAAC





68G5
1210
VH12
CDRH3-60
GATCCTGGATACAGCTATGGTCACTTTGA






CTAC





66D4
1211
VH17
CDRH3-61
GAGACTGGAACTTGGAGCTTCTTTGACTAC





65B1
1212
VH18
CDRH3-62
GAACTGGGGATCTTCAACTGGTTCGACCCC





67A4
1213
VH19
CDRH3-63
GATCGGAGCAGTGGCCGGTTCGGGGACT






ACTACGGTATGGACGTC





65B4
1214
VH20
CDRH3-64
GATCGGAGCAGTGGCCGGTTCGGGGACT






TCTACGGTATGGACGTC





64C8
1215
VH23
CDRH3-65
GAATTACTATGGTTCGGGGAGTATGGGG






TAGACCACGGTATGGACGTC





65E3
1216
VH24
CDRH3-66
GATGTCTACGGTGACTATTTTGCGTAC





65D4
1217
VH25
CDRH3-67
GCCCTCAACTGGAACTTTTTTGACTAC





65D1
1218
VH26
CDRH3-68
GAAGGGACAACTCGACGGGGATTTGACT






AC





67G8
1219
VH27
CDRH3-69
TCAGCAGTGGCTTTGTACAACTGGTTCGA






CCCC





65B7
1220
VH28
CDRH3-70
GAGTCTAGGATATTGTACTTCAACGGGTA






CTTCCAGCAC





64A6
1221
VH29
CDRH3-71
GTCCTCCATTACTCTGATAGTCGTGGTTA






CTCGTACTACTCTGACTTC





65F9
1222
VH30
CDRH3-72
GTCCTCCATTACTATGATAGTAGTGGTTA






CTCGTACTACTTTGACTAC





64B10
1223
VH32
CDRH3-73
TATAGCAGCACCTGGGACTACTATTACG






GTGTGGACGTC





68C8
1224
VH33
CDRH3-74
TATAGGAGTGACTGGGACTACTACTACG






GTATGGACGTC





67A5
1225
VH34
CDRH3-75
CGGGCCTCACGTGGATACAGATTTGGTCT






TGCTTTTGCGATC





67C10
1226
VH35
CDRH3-76
CGGGCCTCACGTGGATACAGATATGGTC






TTGCTTTTGCTATC





64H6
1227
VH36
CDRH3-77
GTAGCAGTGTCTGCCTTCAACTGGTTCGA






CCCC





63F9
1228
VH37
CDRH3-78
GATGTTCTAATGGTGTATACTAAAGGGG






GCTACTACTATTACGGTGTGGACGTC





67F6
1229
VH38
CDRH3-79
CGGGCCTCACGTGGATACAGCTATGGTC






ATGCTTTTGATTTC





50D4
1230
VH87
CDRH3-80
GACCTTAGCAGTGGCTACTACTACTACGG






TTTGGACGTG





54H10.3
1231
VH91
CDRH3-81
GAGGAAGACTACAGTGACCACCACTACT






TTGACTAC





66D4
1885
VH17
CDRH3-82
GAGACTGGAACTTGGAACTTCTTTGACTAC





68D3v2
1886
VH95
CDRH3-83
ACGGTGACTGAGGAGGACTACTACTACT






ACGGTATGGACGTC
















TABLE 3D







Coding Sequences for CDRLs












SEQ
Contained





ID
in


Clone
NO:
Reference
Designation
Coding Sequence














48C9
1232
VL78
CDRL1-1
CGGGCAAGTCAGAACATTAGGACCT


49A12



ATTTAAAT


51E2





48F3
1233
VL77
CDRL1-2
CGGGCAAGTCAGAGGATTAGCAGTT






ATTTAAAT





48F8
1234
VL49
CDRL1-3
CGGGCCAGTCAGGACATTGGTAATA


53B9



GCTTACAC


56B4


57E7


57F11





48H11
1235
VL40
CDRL1-4
CGGGCAAGTCAGAACATTAGGAGCT






ATTTAAAT





49A10
1236
VL65
CDRL1-5
AGGTCTAGTCAGAGCCTCTTGGATAG


48D4



TGATGATGGAAACACCTATTTGGAC





49C8
1237
VL45
CDRL1-6
CAGGCGAGTCAGGACATTAACATCTA


52H1



TTTAAAT





49G2
1238
VL66
CDRL1-7
AGGTCTAGTCAGAGCCTCTTGGATAG


50C12

VL66

TGATGATGGAGACACCTATTTGGAC


55G11

VL66


50G1

VL90


60D7

VL69





49G3
1239
VL47
CDRL1-8
CAGGCGAGTCAGGGCATTAGCAACT






ATTTAAAT





49H12
1240
VL43
CDRL1-9
CAGGCGAGTCAAGACATTACCAAAT






ATTTAAAT





51A8
1241
VL61
CDRL1-10
ACCCGCAGCAGTGGCAGCATTGCCA






GCGACTATGTGCAG





51C10.1
1242
VL55
CDRL1-11
TCTGGAGATGCATTGCCAAAAAAATA






TGCTTAT





51C10.2
1243
VL70
CDRL1-12
TCTGGAGATAAATTGGGGGATAAAT






ACGTTTGC





51E5
1244
VL79
CDRL1-13
CGGGCAAGTCAGGACATTAGAAATG


63G8v1

VL1

ATTTAGGC


64A8

VL1


67B4

VL1


68D3

VL2





51G2
1245
VL51
CDRL1-14
CGGGCGAGTCAGGGTATTAGCAGCT






GGTTAGCC





52A8
1246
VL41
CDRL1-15
CGGGCAAGTCAGACTATTAGCAGTTA






TTTAAAT





52B8
1247
VL82
CDRL1-16
AGGGCCAGTCAGAGTGTTAGCGACA






TCTTAGCC





52C1
1248
VL67
CDRL1-17
TCTGGAAGCAGCTCCAACATTGGGAT






TAATTATGTATCC





52C5
1249
VL73
CDRL1-18
CGGGCAAGTCAGAGCATTAGCAACT


55E4

VL75

ATTTAAAT


49B11

VL75


50H10

VL75


53C1

VL75


56G1

VL76


51C1

VL95


60G5.1

VL74





52F8
1250
VL42
CDRL1-19
AGGTCTAGTCAGAGCCTCCTGCATAG






TAATGGATACAACTATTTGGAT





52H2
1251
VL84
CDRL1-20
AGGGCCAGTCAGAGTGTTAGAAGCA






GCTACTTAGCC





53F6
1252
VL63
CDRL1-21
AGGTCTAGTCAGAGCCTCCAGCATAG






TAATGGATACAACTATTTGGAT





53H5.2
1253
VL62
CDRL1-22
CGGGCAAGTCAGGGCATTAGAAATG


50G5 v1

VL93

ATTTAGGC





53H5.3
1254
VL80
CDRL1-23
AGGGCCAGTCAGAGTGTTAGCAGCA






ACGTCGCC





54A1
1255
VL44
CDRL1-24
CAGGCGAGTCAGGACATTAGCATCTA


55G9

VL44

TTTAAAT





54H10.1
1256
VL53
CDRL1-25
AGGGCCAGTCAGAGTTTTAGCAGCA


55D1

VL53

GTTACTTAGCC


48H3

VL53


53C11

VL53





55D3
1257
VL71
CDRL1-26
CGGGCGAGTCAGGACATTAGCAATT


50D4

VL92

ATTTAGCC





55E9
1258
VL68
CDRL1-27
AGGTCTAGTCAGAGCCTCCTGCATAG






TAACGGATTCAACTATTTGGAT





55G5
1259
VL83
CDRL1-28
TCTGGAGACGAATTGGGGGATAAAT






ATGCTTGC





56A7
1260
VL52
CDRL1-29
CGGGCGAGTCAGGATATTAGCAGTTG


56E4

VL52

GTTAGCC





56C11
1261
VL64
CDRL1-30
GGGGGAAACGACATTGGAAGTAAAA






GTGTGCAC





56E7
1262
VL86
CDRL1-31
CAGGCGAGTCAGGACATTAAAAAAT






TTTTAAAT





56G3.2
1263
VL85
CDRL1-32
CAGGGCCAGGCAGAGTGTTGGCAGT






AACTTAATC





56G3.3
1264
VL81
CDRL1-33
AGGGCCAGTCAGAGTGTTAGCAGAG


55B10

VL81

ACTACTTAGCC


61H5

VL88


52B9





57B12
1265
VL72
CDRL1-34
CGGGCGAGTCATGACATTAGCAATTA






TTTAGCC





57D9
1266
VL87
CDRL1-35
AGGGCCAGTCCGAGTGTTAGCAGCA






GCTACTTAGCC





53C3.2
1267
VL96
CDRL1-36
AGGGCCAGTCAGAGTATTAGCAGCA






ATTTAGCC





59C9
1268
VL50
CDRL1-37
CGGGCGAGTCAGGATATTGACAGCT


58A5

VL50

GGTTAGTC


57A4

VL50


57F9

VL50





59D10
1269
VL56
CDRL1-38
TCTGGAGATGCAGTGCCAAAAAAAT


v1



ATGCTAAT





59D10
1270
VL57
CDRL1-39
TCTGGAGATAATTTGGGGGATAAATA


v2

VL27

TGCTTGC


65D1





59G10.2
1271
VL60
CDRL1-40
TCTGGAGATAATTTGGGGGATAAATA






TGCTTTC





59G10.3
1272
VL54
CDRL1-41
TCTGGAAGCAGCTCCAACATTGGGGA






TAATTATGTATCC





54H10.3
1273
VL97
CDRL1-42
CGGGCAAGTCAGACCATTAGCATCTA






TTTAAAT





60F9
1274
VL58
CDRL1-43
AGGGCCAGTCAGAGGGTTCCCAGCA


48B4

VL58

GCTACATAGTC


52D6

VL58





60G5.2
1275
VL46
CDRL1-44
TCTGGAAATAAATTGGGGGATAAAT






ATGTTTGC





61G5
1276
VL59
CDRL1-45
AGGGCCAGTCAGAGAGTTCCCAGCA






GCTACTTAGTC





64E6
1277
VL3
CDRL1-46
AGGGCCAGTCAGAGTGTTAGGAACA


65E8

VL3

GCTACTTAGCC


65F11

VL3


67G7

VL3


63H11

VL3


66F6

VL15





63B6
1278
VL4
CDRL1-47
AGGGCCAGTCAGAGTGTTAGTAACA


64D4

VL4

GCTACTTAGCC





65C3
1279
VL5
CDRL1-48
AGGGCCAGTCAGAGTGTTAGCAGCC


68D5

VL5

AGTTAGCC





63E6
1280
VL6
CDRL1-49
CGGACAAGTCAGAGTATTAGCAGCT






ATTTAAAT





66F7
1281
VL7
CDRL1-50
CGGACAAGTCAGAGCATTAGCAACT






ATTTAAAT





64H5
1282
VL8
CDRL1-51
GGGGGAAACAACATTGGAAGTAAAA


65G4

VL8

ATGTACAC


65E3

VL25


64H6

VL37





67G10
1283
VL9
CDRL1-52
GGGGGAAACAACATTGGAAGTAAAG


v1



CTGTGCAC


63A10

VL22


63A10v2

VL101





67G10
1284
VL10
CDRL1-53
TCTGGAGATAAATTGGGGGATAAAT


v2



ATGCTTGC





63F5
1285
VL14
CDRL1-54
AGGGCCAGTCAGACTGTTAGGAACA






ACTACTTAGCC





64A7
1286
VL17
CDRL1-55
AGGGCCAGTCAGAGTGTTAGTCGCA






ACTACTTAGCC





65C1
1287
VL16
CDRL1-56
AGGGCCAGTCAGACTATTAGGAACA






GCTACTTAGCC





66B4
1288
VL11
CDRL1-57
CGGGCGAGTCAGGGTATTAGCAGGT






GGTTAGCC





55A7
1289
VL98
CDRL1-58
CGGGCAAGTCAGAGCATTAGCAGCT






ATTTAAAT





68G5
1290
VL13
CDRL1-59
GGGGGTAACAACATTGGAAGTATAA






ATGTGCAC





66D4
1291
VL18
CDRL1-60
CGGGCAAGTCAGATCATTAGCAGGT






ATTTAAAT





65B1
1292
VL19
CDRL1-61
CGGGCAAGTCAGAACATTAACAACT






ATTTAAAT





67A4
1293
VL20
CDRL1-62
GGGGGAAACAACATTGGAAGTAAAA






GTGTGCAC





65B4
1294
VL21
CDRL1-63
GGGGGAAACAACATTGGAAGTAAAA






GTGTGCAG





55E6
1295
VL99
CDRL1-64
AGGGCCAGTCAGAGTGTTAGTCGCA






GCCACTTAGCC





65H11
1296
VL23
CDRL1-65
GGGGGAAACAACATTGGAAGTAAAA






CTGTGCAC





64C8
1297
VL24
CDRL1-66
AGGTCTAGTCCAAGCCTCGTATACAG






TGATGGAAACACCTACTTGAAT





65D4
1298
VL26
CDRL1-67
GGGGGAAATGACATTGGAAGTAAAA






ATGTGCAC





61E1
1299
VL100
CDRL1-68
CGGGCAAGTCAGAGCATTGGCACCTT






TTTAAAT





67G8
1300
VL28
CDRL1-69
GGGGGAAACAACATTGGAAGTTACA






ATGTGTTC





65B7
1301
VL29
CDRL1-70
AGGGCCAGTCAGAGTGTTAGCAGCA






TGTACTTAGCC





64A6
1302
VL30
CDRL1-71
AGGGCCAGTCAGAGTGTTAACAGCA






ACTTAGCC





65F9
1303
VL31
CDRL1-72
AGGGCCAGTCAGAGTGTTAGCAGCA


67F5

VL32

ACTTAGCC





64B10
1304
VL33
CDRL1-73
TCTGGAAGCAGCTCCAATATTGGGAA






TAATTATGTAGCC





68C8
1305
VL34
CDRL1-74
TCTGGAAGCAGTTCCAACATTGGAAA






TAATTATGTATCC





67A5
1306
VL35
CDRL1-75
AGGTCTAGTCAGAGCCTCTTAAATAG


67C10

VL36

TGATGATGGAAATACCTATTTGGAC





63F9
1307
VL38
CDRL1-76
CGGGCAAGTCAGGACATTAGAAATG






ATTTAGCC





67F6v1
1308
VL39
CDRL1-77
AGGTCTAGTCAGAGCCTCTTAAATAG


67F6v2

VL39

TGATGCTGGTACCACCTATTTGGAC





50G5 v2
1309
VL94
CDRL1-78
AGGTCTAGTCAAAGACTCGTATACAG






TGATGGAAACACCTACTTGAAT





48G4
1310
VL89
CDRL1-79
AGGGCCAGTCAGAGTGTTGCCAGCA


53C3.1

VL89

GTTACTTAGTC





58C2
1311
VL91
CDRL1-81
AGGTCTAGTCAGAGCCTCTTCGATAA






TGATGATGGAGACACCTATTTGGAC





65B7v1
1887
VL29
CDRL1-82
AGGGCCAGTCAGAGTGTTAGCAGCA






TCTACTTAGCC





65B7v2
1888
VL107
CDRL1-83
AGGTCTAGTCAAAGCCTCGTATACAG






TGATGGAGACACCTACTTGAAT





63G8v3
1889
VL106
CDRL1-84
CGGGCAAGTCAGGGCATTAGAAGTG


63G8v2

VL105

GTTTAGGC





63A10v3
1890
VL102
CDRL1-85
TCTGGAGATAAATTGGGGAATAGAT






ATACTTGC





65H11v2
1891
VL23
CDRL1-86
TCTGGAGATAAATTGGGGGATAGAT






ATGTTTGT





48C9
1312
VL78
CDRL2-1
GTTGCATCCAGTTTGGAAAGT


49A12

VL78


51E2

VL78





48F3
1313
VL77
CDRL2-2
GCTGTATCCAGTTTGCAAAGT





48F8
1314
VL49
CDRL2-3
TTTGCTTCCCAGTCCTTCTCA


53B9

VL49


56B4

VL49


57E7

VL49


57F11

VL49





48H11
1315
VL40
CDRL2-4
GGTGCATCTAATTTACAGAGT





49A10
1316
VL65
CDRL2-5
ACGCTTTCCTATCGGGCCTCT


48D4

VL65


49G2

VL66


50C12

VL66


55G11

VL66


60D7

VL69


67A5

VL35


67C10

VL36


50G1

VL90


60D7

VL36


58C2

VL91





49C8
1317
VL45
CDRL2-6
GATGTATCCAATTTGGAAACA


52H1

VL45


54A1

VL44


55G9

VL44





49G3
1318
VL47
CDRL2-7
GATGCATCCAATTTGGAAACA


56E7

VL86





49H12
1319
VL43
CDRL2-8
GATACATTCATTTTGGAAACA





51A8
1320
VL61
CDRL2-9
GAGGATAAAGAAAGATCCTCT





51C10.1
1321
VL55
CDRL2-10
GAGGACAGCAAACGACCCTCC


59D10

VL56


v1





51C10.2
1322
VL70
CDRL2-11
CAAAATAACAAGCGGCCCTCA


59G10.2

VL60





51E5
1323
VL79
CDRL2-12
GCTGCATCCAGTTTGCAATTT





51G2
1324
VL51
CDRL2-13
GATGCATCCAGTTTGCAAAGT





52A8
1325
VL41
CDRL2-14
GCTGCATCCAGTTTGCAAAGT


52C5

VL73


53H5.2

VL62


55D3

VL71


56G1

VL76


57B12

VL72


63E6

VL6


66F7

VL7


66D4

VL18


50G5 v1

VL93


51C1

VL95


55A7

VL98


61E1

VL100


60G5.1

VL74





52B8
1326
VL82
CDRL2-15
GGTGCATCCACCAGGGCCACT


53H5.3

VL80


65F9

VL31





52C1
1327
VL67
CDRL2-16
GACAATAATAAGCGACCCTCA


59G10.3

VL54


68C8

VL34





52F8
1328
VL42
CDRL2-17
TTGGGTTCTAATCGGGCCTCC


55E9

VL68





52H2
1329
VL84
CDRL2-18
GGTGCATCCAGGAGGGCCACT





53F6
1330
VL63
CDRL2-19
TTGGATTCTAATCGGGCCTCC





54H10.1
1331
VL53
CDRL2-20
GGTGCATCCAGCAGGGCCACT


55D1

VL53


48H3

VL53


53C11

VL53


57D9

VL87


61H5

VL88


52B9

VL88


63F5

VL14


64A7

VL17


65B7v1

VL29


55E6

VL99





55E4
1332
VL75
CDRL2-21
ACAGCTTCCAGTTTGCAAAGT


49BG11

VL75


50H10

VL75


53C1

VL75





50G5v2
1333
VL94
CDRL2-22
AAGGTTTCTAACTGGGACTCT


65B7v2

VL107





55G5
1334
VL83
CDRL2-23
CAAGATACCAAGCGGCCCTCA





56A7
1335
VL52
CDRL2-24
GATGCATCCACTTTGCAAAGT


56E4

VL52





56C11
1336
VL64
CDRL2-25
GATGATAGCGACCGGCCCTCA


67A4

VL20


65B4

VL21





56G3.2
1337
VL85
CDRL2-26
GGTGCATCCAGCAGGGACACT





56G3.3
1338
VL81
CDRL2-27
GGTGCATCCGCCAGGGCCACT


55B10

VL81





59A10
1339
VL48
CDRL2-28
GGTGCATCCAGTTTGCAAAGT


49H4

VL48





59C9
1340
VL50
CDRL2-29
GCTGCATCCAATTTGCAAAGA


58A5

VL50


57A4

VL50


57F9

VL50


63G8v1

VL104


63GBv2

VL105


63G8v3

VL106


64A8

VL1


67B4

VL1


68D3

VL1





59D10
1341
VL57
CDRL2-30
CAAGATACCAAGCGGCCCTCA


v2





60F9
1342
VL58
CDRL2-31
GGTTCATCCAACAGGGCCACT


48B4

VL58


52D6

VL58





60G5.2
1343
VL46
CDRL2-32
CAAGATAGCAAGCGGCCCTCA


65D1

VL27


65H11v2

VL103





61G5
1344
VL59
CDRL2-33
GGTGCATCCAACAGGGCCACA





64E6
1345
VL3
CDRL2-34
GGTGCATTTAGCAGGGCCTCT


65E8

VL3


65F11

VL3


67G7

VL3


63H11

VL3





63B6
1346
VL4
CDRL2-35
GGTGCATTCAGTAGGGCCACT


64D4

VL4


65C1

VL16


66F6

VL15


48G4

VL83


53C3.1

VL83





65C3
1347
VL5
CDRL2-36
GGTGCCTCCAACAGGGCCATT


68D5

VL5





64H5
1348
VL8
CDRL2-37
AGGGATAGCAAGCGGCCCTCT


65G4

VL8


67G8

VL28


64H6

VL37





67G10
1349
VL9
CDRL2-38
AGCGATAGCAACCGGCCCTCA


v1


65H11

VL23





67G10
1350
VL10
CDRL2-39
CAAGATAACGAGCGGCCCTCA


v2





66B4
1351
VL11
CDRL2-40
GCTGCATCCAGTTTGAAAAGT





66G2
1352
VL12
CDRL2-41
GCTGCATCCAATTTGCAAAGT





68G5
1353
VL13
CDRL2-42
AGGGATAGGAACCGGCCCTCT


65E3

VL25


65D4

VL26





65B1
1354
VL19
CDRL2-43
ACTACATCCAGTTTGCAAAGT





53C3.2
1355
VL96
CDRL2-44
GGTACATCCATCAGGGCCAGT





63A10v1
1356
VL22
CDRL2-45
TGTGATAGCAACCGGCCCTCA


63A10v2

VL101





54H10.3
1357
VL97
CDRL2-46
TCTGCATCCAGTTTGCAAAGT





64C8
1358
VL24
CDRL2-47
AAGGGTTCTAACTGGGACTCA





64A6
1359
VL30
CDRL2-48
GGTACATCCACCAGGGCCACT





67F5
1360
VL32
CDRL2-49
GGTTCATCCAACAGGGCCATT





64B10
1361
VL33
CDRL2-50
GACAATGATAAGCGACCCTCA





63F9
1362
VL38
CDRL2-51
GCTTCATCCAGTTTGCAAAGT





67F6v2
1363
VL39
CDRL2-52
ACGCTTTCCTTTCGGGCCTCT





50D4
1364
VL92
CDRL2-53
GCTGCATCCACTTTGCTATCA





68A10v3
1892
VL102
CDRL2-54
CAAGATAGCGAGCGGCCCTCA





48C9
1365
VL78
CDRL3-1
CAACAGAGTGACAGTATCCCTCGGACG


49A12


51E2





48F3
1366
VL77
CDRL3-2
CAACAGAGTTACAGTGCTACATTCACT





48F8
1367
VL49
CDRL3-3
CATCAGAGTAGTGATTTACCGCTCACT


53B9

VL49


56B4

VL49


57E7

VL49


57F11

VL49





48H11
1368
VL40
CDRL3-4
CAACAGAGTTACAATACCCCGTGCAGT





49A10
1369
VL65
CDRL3-5
ATGCAACGTATAGAGTTTCCGATCACC


48D4

VL65


67F6v2

VL108





49C8
1370
VL45
CDRL3-6
CAACAATATGATAATCTCCCATTCACT


52H1

VL45


67C10

VL36


67F6v1

VL39





49G2
1371
VL66
CDRL3-7
ATGCAACATATAGAATTTCCTTCGACC


50C12

VL66


55G11

VL66





49G3
1372
VL47
CDRL3-8
CACCAGTATGATGATCTCCCGCTCACT





49H12
1373
VL43
CDRL3-9
CAACAGTATGACAATTTACCGCTCACC


54A1

VL44


55G9

VL44





51A8
1374
VL61
CDRL3-10
CAGTCTTATGATCGCAACAATCATGT






GGTT





51C10.1
1375
VL55
CDRL3-11
TACTCAACAGACAGCAGTGTTAATCA






TGTGGTA





51C10.2
1376
VL70
CDRL3-12
CAGGCGTGGGATAGTAGTACTGCGGTA





51E5
1377
VL79
CDRL3-13
CTACAACATAGTAGTTACCCGCTCACT





51G2
1378
VL51
CDRL3-14
CAACAGACTAACAGTTTCCCTCCGTG


56A7

VL52

GACG


56E4

VL52


59A10

VL48


49H4

VL48


59C9

VL50


58A5

VL50


57A4

VL50


57F9

VL50





52A8
1379
VL41
CDRL3-15
CAGCAGAGTTACAGTACCCCGCTCACT


65B1

VL19





52B8
1380
VL82
CDRL3-16
CAGCAGTATAATAACTGGCCGCTCACT


56G3.2

VL85





52C1
1381
VL67
CDRL3-17
GGAACATGGGATAGCAGCCTGAGTG


64B10

VL33

CTGTGGTA


68C8

VL34





52C5
1382
VL73
CDRL3-18
CAACAGAGTTCCAGTATCCCTTGGACG


55E4

VL75


49B11

VL75


50H10

VL75


53C1

VL75


51C1

VL95


60G5.1

VL74





52F8
1383
VL42
CDRL3-19
ATGCAAGCTCTACAAACTCCATTCACT





52H2
1384
VL84
CDRL3-20
CAGCAGTATGGTAGTTCACCTCGCAGT





53F6
1385
VL63
CDRL3-21
ATGCAAGGTCTACAAACTCCTCCCACT





53H5.2
1386
VL62
CDRL3-22
CTACAGCATAAGAGTTACCCATTCACT





53H5.3
1387
VL80
CDRL3-23
CAGCAGTTTAGTAACTCAATCACC





54H10.1
1388
VL53
CDRL3-24
CAGCAGTATGGTAGCTCACGGACG


55D1

VL53


48H3

VL53


53C11

VL53





55D3
1389
VL71
CDRL3-25
CAACAGTATAATATTTACCCTCGGACG





55E9
1390
VL68
CDRL3-26
ATGCAAGCTCTACAAACTCTCATCACC





55G5
1391
VL83
CDRL3-27
CAGGCGTGGGACAGCGGCACTGTGG






TA





56C11
1392
VL64
CDRL3-28
CAGGTGTGGGATAGTAGTAGTGATGT






GGTA





56E7
1393
VL86
CDRL3-29
CAACAATATGCTATTCTCCCATTCACT





56G1
1394
VL76
CDRL3-30
CAACAGAGTTCCACTATCCCTTGGACG





56G3.3
1395
VL81
CDRL3-31
CAGCAATATGGTAGATCACTATTCACT


55B10

VL81


61H5

VL88


52B9

VL88





57B12
1396
VL72
CDRL3-32
CAACAATATAATACTTACCCTCGGACG





57D9
1397
VL87
CDRL3-33
CATCAGTATGGTACCTCACCGTGCAGT





59D10
1398
VL56
CDRL3-34
TACTCAACAGACAGCAGTGGTAATCA


v1



TGTGGTA





59D10
1399
VL57
CDRL3-35
CAGGCGTGGGACAGCAGCACTACAT


v2



GGGTG





59G10.2
1400
VL60
CDRL3-36
CAGGCGTGGGACAGCGCCACTGTGA






TT





59G10.3
1401
VL54
CDRL3-37
GGAACATGGGACAGCAGCCTGAGTG






TTATGGTT





60D7
1402
VL69
CDRL3-38
ATGCAACGTATAGAGTTTCCGCTCACT


50G1

VL90





60F9
1403
VL58
CDRL3-39
CAGCAGTATGGTAGCTCACCTCCGTG


48B4

VL58

GACG


52D6

VL58


61G5

VL59





60G5.2
1404
VL46
CDRL3-40
CAGGCGTGGGACAGCAGCACTTGGG






TG





63G8v1
1405
VL104
CDRL3-41
CTCCAGCATAATAGTTACCCTCTCACT


63G8v2

VL105


64A8

VL1


67B4

VL1


68D3

VL2





64E6
1406
VL3
CDRL3-42
CAGCAGTTTGGAAGCTCACTCACT


65E8

VL3


65F11

VL3


67G7

VL3


63H11

VL


63F5

VL14


65C1

VL16


66F6

VL15





63B6
1407
VL4
CDRL3-43
CAGCAGTTTGGTAGGTCATTCACT


64D4

VL4





65C3
1408
VL5
CDRL3-44
CAGCAGTATAATAACTGGCCGTGGACG


68D5

VL5





63E6
1409
VL6
CDRL3-45
CAACAGAGTTACAGTACCTCGCTCACT


66F7

VL7





64H5
1410
VL8
CDRL3-46
CAGGTGTGGGACAGCAGTAGTGTGG


65G4

VL8

TA





67G10
1411
VL9
CDRL3-47
CAGGTGTGGGACAGTAGTAGTGATG


v1



GGGTA





67G10
1412
VL10
CDRL3-48
CAGGCGTGGGACAGCACCACTGTGG


v2



TA


63A10v2

VL101


63A10v3

VL102





64A7
1413
VL17
CDRL3-49
CAGCAGTATGGTAGTTCATCTCTGTG






CAGT





66B4
1414
VL11
CDRL3-50
CAACAGGCTAACAGTTTCCCTCCGACG





66G2
1415
VL12
CDRL3-51
CTACAACTTAATGGTTACCCTCTCACT





68G5
1416
VL13
CDRL3-52
CAGTTGTGGGACAGCAGCACTGTGGTT





66D4
1417
VL18
CDRL3-53
CAACAGAGTTACAGTTCCCCGCTCACT


54H10.3

VL97





55A7
1418
VL98
CDRL3-54
CAACAGACTTACAGTGCCCCATTCACT





67A4
1419
VL20
CDRL3-55
CAGGTGTGGGATAGTAGTAGTGATCA


65B4

VL21

TGTGGTA





63A10
1420
VL22
CDRL3-56
CATGCGTGTGGGAGCAGTAGTAGCG






ATGGGGTA





65H11
1421
VL23
CDRL3-57
CAGGTGTGGGACAGTAGTTGTGATGG






GGTA





64C8
1422
VL24
CDRL3-58
ATACAAGATACACACTGGCCCACGTG






CAGT





65E3
1423
VL25
CDRL3-59
CAGGTGTGGGACAGCAGCACTGTGG


67G8

VL28

TC





65D4
1424
VL26
CDRL3-60
CAGGTGTGGGACAGCAACCCTGTGGTA





65D1
1425
VL27
CDRL3-61
CAGGCGTGGGACAGCAGGGTA





65B7v1
1426
VL29
CDRL3-62
CAGCAGTATGGTAGCTCGTGCAGT





64A6
1427
VL30
CDRL3-63
CAGCAATATAATACCTGGCCGTGGACG


65F9

VL31





67F5
1428
VL32
CDRL3-64
CAGCAGTATGAAATTTGGCCGTGGACG





55E6
1429
VL99
CDRL3-65
CAGCAGTATGGTAGTTCACCGTGGACG





67A5
1430
VL35
CDRL3-66
ATGCAACGTCTAGAGTTTCCTATTACC


58C2

VL91





61E1
1431
VL100
CDRL3-67
CAACAGAGTTTCAGTACCCCGCTCACT





64H6
1432
VL37
CDRL3-68
CAGGTGTGGGACAGCAGTCCTGTGGTA





63F9
1433
VL38
CDRL3-69
CTACAGCGTAATAGTTACCCGCTCACT





53C3.2
1434
VL96
CDRL3-70
CACCAGTATACTAACTGGCCTCGGACG





48G4
1435
VL89
CDRL3-71
CAGCAGTATGGTACCTCACCATTTACT


53C3.1

VL89





50G5 v1
1436
VL93
CDRL3-72
CTACAGCATAATAGTTACCCTCGGACG





64B10v2
1893
VL33
CDRL3-73
TATAGCAGCACCTGGGACTACTATTA






CGGTGTGGACGTC





50D4
1437
VL92
CDRL3-74
CAAAAGTATTACAGTGCCCCTTTCACT





50G5 v2
1438
VL94
CDRL3-75
ATGGAAGGTACACACTGGCCTCGGG






AC





63G8v3
1894
VL106
CDRL3-76
CTCCAACATAATACTTACCCTCTCACT





65B7v2
1895
VL107
CDRL3-77
ATGCAAGGTACACACTGGCGGGGTT






GGACG





65H11v2
1896
VL103
CDRL3-78
CAGGCGTGGGACAGCATCACTGTGGTA





63A10v1
1897
VH21
CDRL3-79
CAGGTGTGGGACAGTAGTAGTGATG






GGGTA









The structure and properties of CDRs within a naturally occurring antibody has been described, supra. Briefly, in a traditional antibody, the CDRs are embedded within a framework in the heavy and light chain variable region where they constitute the regions responsible for antigen binding and recognition. A variable region comprises at least three heavy or light chain CDRs, see, e.g., Kabat et al., (1991) “Sequences of Proteins of Immunological Interest”, 5th Ed., US Dept. of Health and Human Services, PHS, NIH, NIH Publication no. 91-3242; see also Chothia and Lesk, (1987) J. Mol. Biol. 196:901-917; Chothia et al., (1989) Nature 342: 877-883), within a framework region (designated framework regions 1-4, FR1, FR2, FR3, and FR4, by Kabat et al., (1991); see also Chothia and Lesk, (1987) supra). The CDRs provided herein, however, can not only be used to define the antigen binding domain of a traditional antibody structure, but can be embedded in a variety of other polypeptide structures, as described herein.


In one aspect, the CDRs provided are (a) a CDRH selected from the group consisting of (i) a CDRH1 selected from the group consisting of SEQ ID NOS 603-655; (ii) a CDRH2 selected from the group consisting of SEQ ID NOS 656-732; (iii) a CDRH3 selected from the group consisting of SEQ ID NOS 733-813; and (iv) a CDRH of (i), (ii) and (iii) that contains one or more amino acid substitutions, deletions or insertions of no more than five, four, three, two, or one amino acids; (B) a CDRL selected from the group consisting of (i) a CDRL1 selected from the group consisting of SEQ ID NOS 814-893; (ii) a CDRL2 selected from the group consisting of SEQ ID NOS 894-946; (iii) a CDRL3 selected from the group consisting of SEQ ID NOS 947-1020; and (iv) a CDRL of (i), (ii) and (iii) that contains one or more amino acid substitutions, deletions or insertions of no more than 1, 2, 3, 4, or 5 amino acids amino acids.


In another aspect, an antigen binding protein comprises 1, 2, 3, 4, 5, or 6 variant forms of the CDRs listed in Tables 3A and 3B, infra, each having at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to a CDR sequence listed in Tables 3A and 3B, infra. Some antigen binding proteins comprise 1, 2, 3, 4, 5, or 6 of the CDRs listed in Tables 3A and 3B, infra, each differing by no more than 1, 2, 3, 4 or 5 amino acids from the CDRs listed in these tables.


In still another aspect, an antigen binding protein includes the following associations of CDRL1, CDRL2 and CDRL3, presented for convenience in tabular form and in reference to the clone source of the association:









TABLE 4







CDRL Associations












Clone ID
CDRL1
CDRL2
CDRL3







63G8
CDRL1-13
CDRL2-29
CDRL3-41



64A8
CDRL1-13
CDRL2-29
CDRL3-41



67B4
CDRL1-13
CDRL2-29
CDRL3-41



68D3
CDRL1-13
CDRL2-29
CDRL3-41



64E6
CDRL1-46
CDRL2-34
CDRL3-42



65E8
CDRL1-46
CDRL2-34
CDRL3-42



65F11
CDRL1-46
CDRL2-34
CDRL3-42



67G7
CDRL1-46
CDRL2-34
CDRL3-42



63B6
CDRL1-47
CDRL2-3
CDRL3-43



64D4
CDRL1-47
CDRL2-3
CDRL3-43



65C3
CDRL1-48
CDRL2-36
CDRL3-44



68D5
CDRL1-48
CDRL2-36
CDRL3-44



63E6
CDRL1-49
CDRL2-14
CDRL3-45



66F7
CDRL1-50
CDRL2-14
CDRL3-45



64H5
CDRL1-51
CDRL2-37
CDRL3-46



65G4
CDRL1-51
CDRL2-37
CDRL3-46



67G10v1
CDRL1-52
CDRL2-38
CDRL3-47



67G10v2
CDRL1-53
CDRL2-39
CDRL3-48



66B4
CDRL1-57
CDRL2-40
CDRL3-50



66G2
CDRL1-22
CDRL2-41
CDRL3-51



68G5
CDRL1-59
CDRL2-42
CDRL3-52



63F5
CDRL1-54
CDRL2-20
CDRL3-42



66F6
CDRL1-46
CDRL2-35
CDRL3-42



65C1
CDRL1-56
CDRL2-35
CDRL3-42



64A7
CDRL1-55
CDRL2-20
CDRL3-49



66D4
CDRL1-60
CDRL2-14
CDRL3-53



65B1
CDRL1-61
CDRL2-43
CDRL3-15



67A4
CDRL1-62
CDRL2-25
CDRL3-55



65B4
CDRL1-63
CDRL2-25
CDRL3-55



63A10
CDRL1-52
CDRL2-45
CDRL3-56



65H11
CDRL1-65
CDRL2-38
CDRL3-57



64C8
CDRL1-66
CDRL2-47
CDRL3-58



65E3
CDRL1-51
CDRL2-42
CDRL3-59



65D4
CDRL1-67
CDRL2-42
CDRL3-60



65D1
CDRL1-39
CDRL2-32
CDRL3-61



67G8
CDRL1-69
CDRL2-37
CDRL3-59



65B7
CDRL1-70
CDRL2-20
CDRL3-62



64A6
CDRL1-71
CDRL2-48
CDRL3-63



65F9
CDRL1-72
CDRL2-15
CDRL3-63



67F5
CDRL1-72
CDRL2-49
CDRL3-64



64B10
CDRL1-73
CDRL2-50
CDRL3-17



68C8
CDRL1-74
CDRL2-16
CDRL3-17



67A5
CDRL1-75
CDRL2-5
CDRL3-66



67C10
CDRL1-75
CDRL2-5
CDRL3-5



64H6
CDRL1-51
CDRL2-37
CDRL3-68



63F9
CDRL1-76
CDRL2-51
CDRL3-69



67F6
CDRL1-77
CDRL2-52
CDRL3-5



48H11
CDRL1-4
CDRL2-4
CDRL3-4



52A8
CDRL1-15
CDRL2-14
CDRL3-15



52F8
CDRL1-19
CDRL2-17
CDRL3-19



49H12
CDRL1-9
CDRL2-8
CDRL3-9



54A1
CDRL1-24
CDRL2-6
CDRL3-9



55G9
CDRL1-24
CDRL2-6
CDRL3-9



49C8
CDRL1-6
CDRL2-6
CDRL3-6



52H1
CDRL1-6
CDRL2-6
CDRL3-6



60G5.2
CDRL1-44
CDRL2-32
CDRL3-40



49G3
CDRL1-8
CDRL2-7
CDRL3-8



59A10
CDRL1-14
CDRL2-28
CDRL3-14



49H4
CDRL1-14
CDRL2-28
CDRL3-14



48F8
CDRL1-3
CDRL2-3
CDRL3-3



53B9
CDRL1-3
CDRL2-3
CDRL3-3



56B4
CDRL1-3
CDRL2-3
CDRL3-3



57E7
CDRL1-3
CDRL2-3
CDRL3-3



57F11
CDRL1-3
CDRL2-3
CDRL3-3



59C9
CDRL1-37
CDRL2-29
CDRL3-14



58A5
CDRL1-37
CDRL2-29
CDRL3-14



57A4
CDRL1-37
CDRL2-29
CDRL3-14



57F9
CDRL1-37
CDRL2-29
CDRL3-14



51G2
CDRL1-14
CDRL2-13
CDRL3-14



56A7
CDRL1-29
CDRL2-24
CDRL3-14



56E4
CDRL1-29
CDRL2-24
CDRL3-14



54H10.1
CDRL1-25
CDRL2-20
CDRL3-24



55D1
CDRL1-25
CDRL2-20
CDRL3-24



48H3
CDRL1-25
CDRL2-20
CDRL3-24



53C11
CDRL1-25
CDRL2-20
CDRL3-24



59G10.3
CDRL1-41
CDRL2-16
CDRL3-37



51C10.1
CDRL1-12
CDRL2-10
CDRL3-11



59D10 v1
CDRL1-38
CDRL2-10
CDRL3-34



59D10 v2
CDRL1-39
CDRL2-30
CDRL3-35



60F9
CDRL1-43
CDRL2-31
CDRL3-39



48B4
CDRL1-43
CDRL2-31
CDRL3-39



52D6
CDRL1-43
CDRL2-31
CDRL3-39



61G5
CDRL1-45
CDRL2-33
CDRL3-39



59G10.2
CDRL1-40
CDRL2-11
CDRL3-36



51A8
CDRL1-10
CDRL2-9
CDRL3-10



53H5.2
CDRL1-22
CDRL2-14
CDRL3-22



53F6
CDRL1-21
CDRL2-19
CDRL3-21



56C11
CDRL1-30
CDRL2-25
CDRL3-28



49A10
CDRL1-5
CDRL2-5
CDRL3-5



48D4
CDRL1-5
CDRL2-5
CDRL3-5



49G2
CDRL1-7
CDRL2-5
CDRL3-7



50C12
CDRL1-7
CDRL2-5
CDRL3-7



55G11
CDRL1-7
CDRL2-5
CDRL3-7



52C1
CDRL1-17
CDRL2-16
CDRL3-17



55E9
CDRL1-27
CDRL2-17
CDRL3-26



60D7
CDRL1-1
CDRL2-5
CDRL3-38



51C10.2
CDRL1-12
CDRL2-11
CDRL3-12



55D3
CDRL1-26
CDRL2-14
CDRL3-25



57B12
CDRL1-34
CDRL2-14
CDRL3-32



52C5
CDRL1-18
CDRL2-14
CDRL3-18



55E4
CDRL1-18
CDRL2-21
CDRL3-18



49B11
CDRL1-18
CDRL2-21
CDRL3-18



50H10
CDRL1-18
CDRL2-21
CDRL3-18



53C1
CDRL1-18
CDRL2-21
CDRL3-18



56G1
CDRL1-18
CDRL2-14
CDRL3-30



48F3
CDRL1-2
CDRL2-2
CDRL3-2



48C9
CDRL1-1
CDRL2-1
CDRL3-1



49A12
CDRL1-1
CDRL2-1
CDRL3-1



51E2
CDRL1-1
CDRL2-1
CDRL3-1



51E5
CDRL1-13
CDRL2-12
CDRL3-13



53H5.3
CDRL1-23
CDRL2-15
CDRL3-23



56G3.3
CDRL1-33
CDRL2-27
CDRL3-31



55B10
CDRL1-33
CDRL2-27
CDRL3-31



52B8
CDRL1-16
CDRL2-15
CDRL3-16



55G5
CDRL1-28
CDRL2-23
CDRL3-27



52H2
CDRL1-20
CDRL2-18
CDRL3-20



56G3.2
CDRL1-32
CDRL2-26
CDRL3-16



56E7
CDRL1-31
CDRL2-7
CDRL3-29



57D9
CDRL1-35
CDRL2-20
CDRL3-33



61H5
CDRL1-33
CDRL2-20
CDRL3-31



52B9
CDRL1-33
CDRL2-20
CDRL3-31



48G4
CDRL1-79
CDRL2-35
CDRL3-71



53C3.1
CDRL1-79
CDRL2-35
CDRL3-71



50G1
CDRL1-7
CDRL2-5
CDRL3-38



58C2
CDRL1-81
CDRL2-5
CDRL3-66



60G5.1
CDRL1-18
CDRL2-14
CDRL3-18



54H10.3
CDRL1-42
CDRL2-46
CDRL3-53



50G5 v1
CDRL1-22
CDRL2-14
CDRL3-72



50G5 v2
CDRL1-78
CDRL2-22
CDRL3-75



51C1
CDRL1-18
CDRL2-14
CDRL3-18



53C3.2
CDRL1-36
CDRL2-44
CDRL3-70



50D4
CDRL1-26
CDRL2-53
CDRL3-74



55A7
CDRL1-58
CDRL2-14
CDRL3-54



55E6
CDRL1-64
CDRL2-20
CDRL3-65



61E1
CDRL1-68
CDRL2-14
CDRL3-67



63H11
CDRL1-46
CDRL2-34
CDRL3-42










In an additional aspect, an antigen binding protein includes the following associations of CDRH1, CDRH2 and CDRH3, presented for convenience in tablular form and in reference to the clone source of the association:









TABLE 5







CDRH Associations












Clone ID
CDRH1
CDRH2
CDRH3







63G8
CDRH1-34
CDRH2-12
CDRH3-50



64A8
CDRH1-34
CDRH2-12
CDRH3-50



67B4
CDRH1-34
CDRH2-12
CDRH3-50



68D3
CDRH1-34
CDRH2-12
CDRH3-50



64E6
CDRH1-35
CDRH2-44
CDRH3-51



65E8
CDRH1-35
CDRH2-44
CDRH3-51



65F11
CDRH1-35
CDRH2-44
CDRH3-51



67G7
CDRH1-35
CDRH2-44
CDRH3-51



63B6
CDRH1-36
CDRH2-45
CDRH3-52



64D4
CDRH1-36
CDRH2-45
CDRH3-52



65C3
CDRH1-24
CDRH2-46
CDRH3-53



68D5
CDRH1-24
CDRH2-46
CDRH3-53



63E6
CDRH1-37
CDRH2-47
CDRH3-54



66F7
CDRH1-37
CDRH2-47
CDRH3-54



64H5
CDRH1-12
CDRH2-48
CDRH3-55



65G4
CDRH1-12
CDRH2-48
CDRH3-55



67G10v1
CDRH1-38
CDRH2-49
CDRH3-56



67G10v2
CDRH1-38
CDRH2-49
CDRH3-56



66B4
CDRH1-15
CDRH2-53
CDRH3-59



66G2
CDRH1-12
CDRH2-54
CDRH3-50



68G5
CDRH1-12
CDRH2-55
CDRH3-60



63F5
CDRH1-35
CDRH2-50
CDRH3-51



66F6
CDRH1-35
CDRH2-34
CDRH3-51



65C1
CDRH1-35
CDRH2-52
CDRH3-58



64A7
CDRH1-40
CDRH2-51
CDRH3-57



66D4
CDRH1-43
CDRH2-56
CDRH3-61



65B1
CDRH1-44
CDRH2-57
CDRH3-62



67A4
CDRH1-45
CDRH2-58
CDRH3-63



65B4
CDRH1-46
CDRH2-59
CDRH3-64



63A10
CDRH1-38
CDRH2-60
CDRH3-56



65H11
CDRH1-38
CDRH2-61
CDRH3-56



64C8
CDRH1-12
CDRH2-62
CDRH3-65



65E3
CDRH1-47
CDRH2-63
CDRH3-66



65D4
CDRH1-48
CDRH2-22
CDRH3-67



65D1
CDRH1-49
CDRH2-64
CDRH3-68



67G8
CDRH1-12
CDRH2-65
CDRH3-69



65B7
CDRH1-50
CDRH2-52
CDRH3-70



64A6
CDRH1-14
CDRH2-66
CDRH3-71



65F9
CDRH1-36
CDRH2-34
CDRH3-72



67F5
CDRH1-24
CDRH2-67
CDRH3-53



64B10
CDRH1-36
CDRH2-68
CDRH3-73



68C8
CDRH1-51
CDRH2-69
CDRH3-74



67A5
CDRH1-25
CDRH2-31
CDRH3-75



67C10
CDRH1-25
CDRH2-31
CDRH3-76



64H6
CDRH1-25
CDRH2-70
CDRH3-77



63F9
CDRH1-52
CDRH2-71
CDRH3-78



67F6
CDRH1-53
CDRH2-31
CDRH3-79



48H11
CDRH1-4
CDRH2-4
CDRH3-4



52A8
CDRH1-15
CDRH2-17
CDRH3-17



52F8
CDRH1-17
CDRH2-20
CDRH3-21



49H12
CDRH1-10
CDRH2-10
CDRH3-10



54A1
CDRH1-10
CDRH2-25
CDRH3-10



55G9
CDRH1-10
CDRH2-25
CDRH3-10



49C8
CDRH1-7
CDRH2-7
CDRH3-7



52H1
CDRH1-7
CDRH2-7
CDRH3-7



60G5.2
CDRH1-33
CDRH2-42
CDRH3-48



49G3
CDRH1-9
CDRH2-9
CDRH3-9



59A10
CDRH1-30
CDRH2-37
CDRH3-41



49H4
CDRH1-30
CDRH2-37
CDRH3-41



48F8
CDRH1-3
CDRH2-3
CDRH3-3



53B9
CDRH1-3
CDRH2-3
CDRH3-3



56B4
CDRH1-3
CDRH2-3
CDRH3-3



57E7
CDRH1-3
CDRH2-3
CDRH3-3



57F11
CDRH1-3
CDRH2-3
CDRH3-3



59C9
CDRH1-31
CDRH2-38
CDRH3-42



58A5
CDRH1-31
CDRH2-38
CDRH3-42



57A4
CDRH1-31
CDRH2-38
CDRH3-42



57F9
CDRH1-31
CDRH2-38
CDRH3-42



51G2
CDRH1-3
CDRH2-16
CDRH3-16



56A7
CDRH1-3
CDRH2-16
CDRH3-32



56E4
CDRH1-3
CDRH2-16
CDRH3-32



54H10.1
CDRH1-21
CDRH2-26
CDRH3-27



55D1
CDRH1-21
CDRH2-26
CDRH3-27



48H3
CDRH1-21
CDRH2-26
CDRH3-27



53C11
CDRH1-21
CDRH2-26
CDRH3-27



59G10.3
CDRH1-32
CDRH2-40
CDRH3-45



51C10.1
CDRH1-13
CDRH2-13
CDRH3-13



59D10 v1
CDRH1-13
CDRH2-13
CDRH3-13



59D10 v2
CDRH1-13
CDRH2-13
CDRH3-13



60F9
CDRH1-21
CDRH2-41
CDRH3-47



48B4
CDRH1-21
CDRH2-41
CDRH3-47



52D6
CDRH1-21
CDRH2-41
CDRH3-47



61G5
CDRH1-21
CDRH2-43
CDRH3-49



59G10.2
CDRH1-6
CDRH2-39
CDRH3-44



51A8
CDRH1-12
CDRH2-12
CDRH3-12



53H5.2
CDRH1-12
CDRH2-23
CDRH3-24



53F6
CDRH1-19
CDRH2-22
CDRH3-23



56C11
CDRH1-12
CDRH2-30
CDRH3-33



49A10
CDRH1-6
CDRH2-6
CDRH3-6



48D4
CDRH1-6
CDRH2-6
CDRH3-6



49G2
CDRH1-8
CDRH2-8
CDRH3-8



50C12
CDRH1-8
CDRH2-8
CDRH3-8



55G11
CDRH1-8
CDRH2-8
CDRH3-8



52C1
CDRH1-12
CDRH2-19
CDRH3-19



55E9
CDRH1-23
CDRH2-28
CDRH3-30



60D7
CDRH1-12
CDRH2-22
CDRH3-46



51C10.2
CDRH1-14
CDRH2-14
CDRH3-14



55D3
CDRH1-22
CDRH2-27
CDRH3-28



57B12
CDRH1-28
CDRH2-34
CDRH3-28



52C5
CDRH1-2
CDRH2-1
CDRH3-20



60G5.1
CDRH1-2
CDRH2-1
CDRH3-20



55E4
CDRH1-2
CDRH2-1
CDRH3-20



49B11
CDRH1-2
CDRH2-1
CDRH3-20



50H10
CDRH1-2
CDRH2-1
CDRH3-20



53C1
CDRH1-2
CDRH2-1
CDRH3-20



56G1
CDRH1-2
CDRH2-1
CDRH3-20



48F3
CDRH1-2
CDRH2-2
CDRH3-2



48C9
CDRH1-1
CDRH2-1
CDRH3-1



49A12
CDRH1-1
CDRH2-1
CDRH3-1



51E2
CDRH1-1
CDRH2-1
CDRH3-1



51E5
CDRH1-2
CDRH2-15
CDRH3-15



53H5.3
CDRH1-20
CDRH2-24
CDRH3-25



56G3.3
CDRH1-27
CDRH2-33
CDRH3-37



55B10
CDRH1-27
CDRH2-33
CDRH3-37



52B8
CDRH1-16
CDRH2-18
CDRH3-18



55G5
CDRH1-24
CDRH2-29
CDRH3-31



52H2
CDRH1-18
CDRH2-21
CDRH3-22



56G3.2
CDRH1-26
CDRH2-32
CDRH3-36



56E7
CDRH1-25
CDRH2-31
CDRH3-34



57D9
CDRH1-29
CDRH2-35
CDRH3-39



48G4
CDRH1-5
CDRH2-5
CDRH3-5



53C3.1
CDRH1-5
CDRH2-5
CDRH3-5



50G1
CDRH1-11
CDRH2-11
CDRH3-11



58C2
CDRH1-6
CDRH2-36
CDRH3-40



63H11
CDRH1-35
CDRH2-34
CDRH3-51



61H5
CDRH1-27
CDRH2-72
CDRH3-37



52B9
CDRH1-27
CDRH2-72
CDRH3-37



54H10.3
CDRH1-43
CDRH2-74
CDRH3-81



50G5 v1
CDRH1-37
CDRH2-73
CDRH3-35



50G5 v2
CDRH1-37
CDRH2-73
CDRH3-35



51C1
CDRH1-2
CDRH2-1
CDRH3-20



53C3.2
CDRH1-39
CDRH2-77
CDRH3-43



50D4
CDRH1-41
CDRH2-75
CDRH3-80



55A7
CDRH1-24
CDRH2-18
CDRH3-38



55E6
CDRH1-3
CDRH2-76
CDRH3-29



61E1
CDRH1-42
CDRH2-35
CDRH3-26










In an additional aspect, an antigen binding protein includes the following associations of CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 and CDRL3 presented for convenience in tablular form and in reference to the clone source of the association:









TABLE 6







CDRH and CDRL Associations













Clone ID
CDRL1
CDRL2
CDRL3
CDRH1
CDRH2
CDRH3





63G8
CDRL1-13
CDRL2-29
CDRL3-41
CDRH1-34
CDRH2-12
CDRH3-50


64A8
CDRL1-13
CDRL2-29
CDRL3-41
CDRH1-34
CDRH2-12
CDRH3-50


67B4
CDRL1-13
CDRL2-29
CDRL3-41
CDRH1-34
CDRH2-12
CDRH3-50


68D3
CDRL1-13
CDRL2-29
CDRL3-41
CDRH1-34
CDRH2-12
CDRH3-50


64E6
CDRL1-46
CDRL2-34
CDRL3-42
CDRH1-35
CDRH2-44
CDRH3-51


65E8
CDRL1-46
CDRL2-34
CDRL3-42
CDRH1-35
CDRH2-44
CDRH3-51


65F11
CDRL1-46
CDRL2-34
CDRL3-42
CDRH1-35
CDRH2-44
CDRH3-51


67G7
CDRL1-46
CDRL2-34
CDRL3-42
CDRH1-35
CDRH2-44
CDRH3-51


63B6
CDRL1-47
CDRL2-3
CDRL3-43
CDRH1-36
CDRH2-45
CDRH3-52


64D4
CDRL1-47
CDRL2-3
CDRL3-43
CDRH1-36
CDRH2-45
CDRH3-52


65C3
CDRL1-48
CDRL2-36
CDRL3-44
CDRH1-24
CDRH2-46
CDRH3-53


68D5
CDRL1-48
CDRL2-36
CDRL3-44
CDRH1-24
CDRH2-46
CDRH3-53


63E6
CDRL1-49
CDRL2-14
CDRL3-45
CDRH1-37
CDRH2-47
CDRH3-54


66F7
CDRL1-50
CDRL2-14
CDRL3-45
CDRH1-37
CDRH2-47
CDRH3-54


64H5
CDRL1-51
CDRL2-37
CDRL3-46
CDRH1-12
CDRH2-48
CDRH3-55


65G4
CDRL1-51
CDRL2-37
CDRL3-46
CDRH1-12
CDRH2-48
CDRH3-55


67G10v1
CDRL1-52
CDRL2-38
CDRL3-47
CDRH1-38
CDRH2-49
CDRH3-56


67G10v2
CDRL1-53
CDRL2-39
CDRL3-48
CDRH1-38
CDRH2-49
CDRH3-56


66B4
CDRL1-57
CDRL2-40
CDRL3-50
CDRH1-15
CDRH2-53
CDRH3-59


66G2
CDRL1-22
CDRL2-41
CDRL3-51
CDRH1-12
CDRH2-54
CDRH3-50


68G5
CDRL1-59
CDRL2-42
CDRL3-52
CDRH1-12
CDRH2-55
CDRH3-60


63F5
CDRL1-54
CDRL2-20
CDRL3-42
CDRH1-35
CDRH2-50
CDRH3-51


66F6
CDRL1-46
CDRL2-35
CDRL3-42
CDRH1-35
CDRH2-34
CDRH3-51


65C1
CDRL1-56
CDRL2-35
CDRL3-42
CDRH1-35
CDRH2-52
CDRH3-58


64A7
CDRL1-55
CDRL2-20
CDRL3-49
CDRH1-40
CDRH2-51
CDRH3-57


66D4
CDRL1-60
CDRL2-14
CDRL3-53
CDRH1-43
CDRH2-56
CDRH3-61


65B1
CDRL1-61
CDRL2-43
CDRL3-15
CDRH1-44
CDRH2-57
CDRH3-62


67A4
CDRL1-62
CDRL2-25
CDRL3-55
CDRH1-45
CDRH2-58
CDRH3-63


65B4
CDRL1-63
CDRL2-25
CDRL3-55
CDRH1-46
CDRH2-59
CDRH3-64


63A10
CDRL1-52
CDRL2-45
CDRL3-56
CDRH1-38
CDRH2-60
CDRH3-56


65H11
CDRL1-65
CDRL2-38
CDRL3-57
CDRH1-38
CDRH2-61
CDRH3-56


64C8
CDRL1-66
CDRL2-47
CDRL3-58
CDRH1-12
CDRH2-62
CDRH3-65


65E3
CDRL1-51
CDRL2-42
CDRL3-59
CDRH1-47
CDRH2-63
CDRH3-66


65D4
CDRL1-67
CDRL2-42
CDRL3-60
CDRH1-48
CDRH2-22
CDRH3-67


65D1
CDRL1-39
CDRL2-32
CDRL3-61
CDRH1-49
CDRH2-64
CDRH3-68


67G8
CDRL1-69
CDRL2-37
CDRL3-59
CDRH1-12
CDRH2-65
CDRH3-69


65B7
CDRL1-70
CDRL2-20
CDRL3-62
CDRH1-50
CDRH2-52
CDRH3-70


64A6
CDRL1-71
CDRL2-48
CDRL3-63
CDRH1-14
CDRH2-66
CDRH3-71


65F9
CDRL1-72
CDRL2-15
CDRL3-63
CDRH1-36
CDRH2-34
CDRH3-72


67F5
CDRL1-72
CDRL2-49
CDRL3-64
CDRH1-24
CDRH2-67
CDRH3-53


64B10
CDRL1-73
CDRL2-50
CDRL3-17
CDRH1-36
CDRH2-68
CDRH3-73


68C8
CDRL1-74
CDRL2-16
CDRL3-17
CDRH1-51
CDRH2-69
CDRH3-74


67A5
CDRL1-75
CDRL2-5
CDRL3-66
CDRH1-25
CDRH2-31
CDRH3-75


67C10
CDRL1-75
CDRL2-5
CDRL3-5
CDRH1-25
CDRH2-31
CDRH3-76


64H6
CDRL1-51
CDRL2-37
CDRL3-68
CDRH1-25
CDRH2-70
CDRH3-77


63F9
CDRL1-76
CDRL2-51
CDRL3-69
CDRH1-52
CDRH2-71
CDRH3-78


67F6
CDRL1-77
CDRL2-52
CDRL3-5
CDRH1-53
CDRH2-31
CDRH3-79


48H11
CDRL1-4
CDRL2-4
CDRL3-4
CDRH1-4
CDRH2-4
CDRH3-4


52A8
CDRL1-15
CDRL2-14
CDRL3-15
CDRH1-15
CDRH2-17
CDRH3-17


52F8
CDRL1-19
CDRL2-17
CDRL3-19
CDRH1-17
CDRH2-20
CDRH3-21


49H12
CDRL1-9
CDRL2-8
CDRL3-9
CDRH1-10
CDRH2-10
CDRH3-10


54A1
CDRL1-24
CDRL2-6
CDRL3-9
CDRH1-10
CDRH2-25
CDRH3-10


55G9
CDRL1-24
CDRL2-6
CDRL3-9
CDRH1-10
CDRH2-25
CDRH3-10


49C8
CDRL1-6
CDRL2-6
CDRL3-6
CDRH1-7
CDRH2-7
CDRH3-7


52H1
CDRL1-6
CDRL2-6
CDRL3-6
CDRH1-7
CDRH2-7
CDRH3-7


60G5.2
CDRL1-44
CDRL2-32
CDRL3-40
CDRH1-33
CDRH2-42
CDRH3-48


49G3
CDRL1-8
CDRL2-7
CDRL3-8
CDRH1-9
CDRH2-9
CDRH3-9


59A10
CDRL1-14
CDRL2-28
CDRL3-14
CDRH1-30
CDRH2-37
CDRH3-41


49H4
CDRL1-14
CDRL2-28
CDRL3-14
CDRH1-30
CDRH2-37
CDRH3-41


48F8
CDRL1-3
CDRL2-3
CDRL3-3
CDRH1-3
CDRH2-3
CDRH3-3


53B9
CDRL1-3
CDRL2-3
CDRL3-3
CDRH1-3
CDRH2-3
CDRH3-3


56B4
CDRL1-3
CDRL2-3
CDRL3-3
CDRH1-3
CDRH2-3
CDRH3-3


57E7
CDRL1-3
CDRL2-3
CDRL3-3
CDRH1-3
CDRH2-3
CDRH3-3


57F11
CDRL1-3
CDRL2-3
CDRL3-3
CDRH1-3
CDRH2-3
CDRH3-3


59C9
CDRL1-37
CDRL2-29
CDRL3-14
CDRH1-31
CDRH2-38
CDRH3-42


58A5
CDRL1-37
CDRL2-29
CDRL3-14
CDRH1-31
CDRH2-38
CDRH3-42


57A4
CDRL1-37
CDRL2-29
CDRL3-14
CDRH1-31
CDRH2-38
CDRH3-42


57F9
CDRL1-37
CDRL2-29
CDRL3-14
CDRH1-31
CDRH2-38
CDRH3-42


51G2
CDRL1-14
CDRL2-13
CDRL3-14
CDRH1-3
CDRH2-16
CDRH3-16


56A7
CDRL1-29
CDRL2-24
CDRL3-14
CDRH1-3
CDRH2-16
CDRH3-32


56E4
CDRL1-29
CDRL2-24
CDRL3-14
CDRH1-3
CDRH2-16
CDRH3-32


54H10.1
CDRL1-25
CDRL2-20
CDRL3-24
CDRH1-21
CDRH2-26
CDRH3-27


55D1
CDRL1-25
CDRL2-20
CDRL3-24
CDRH1-21
CDRH2-26
CDRH3-27


48H3
CDRL1-25
CDRL2-20
CDRL3-24
CDRH1-21
CDRH2-26
CDRH3-27


53C11
CDRL1-25
CDRL2-20
CDRL3-24
CDRH1-21
CDRH2-26
CDRH3-27


59G10.3
CDRL1-41
CDRL2-16
CDRL3-37
CDRH1-32
CDRH2-40
CDRH3-45


51C10.1
CDRL1-12
CDRL2-10
CDRL3-11
CDRH1-13
CDRH2-13
CDRH3-13


59D10v1
CDRL1-38
CDRL2-10
CDRL3-34
CDRH1-13
CDRH2-13
CDRH3-13


59D10v2
CDRL1-39
CDRL2-30
CDRL3-35
CDRH1-13
CDRH2-13
CDRH3-13


60F9
CDRL1-43
CDRL2-31
CDRL3-39
CDRH1-21
CDRH2-41
CDRH3-47


48B4
CDRL1-43
CDRL2-31
CDRL3-39
CDRH1-21
CDRH2-41
CDRH3-47


52D6
CDRL1-43
CDRL2-31
CDRL3-39
CDRH1-21
CDRH2-41
CDRH3-47


61G5
CDRL1-45
CDRL2-33
CDRL3-39
CDRH1-21
CDRH2-43
CDRH3-49


59G10.2
CDRL1-40
CDRL2-11
CDRL3-36
CDRH1-6
CDRH2-39
CDRH3-44


51A8
CDRL1-10
CDRL2-9
CDRL3-10
CDRH1-12
CDRH2-12
CDRH3-12


53H5.2
CDRL1-22
CDRL2-14
CDRL3-22
CDRH1-12
CDRH2-23
CDRH3-24


53F6
CDRL1-21
CDRL2-19
CDRL3-21
CDRH1-19
CDRH2-22
CDRH3-23


56C11
CDRL1-30
CDRL2-25
CDRL3-28
CDRH1-12
CDRH2-30
CDRH3-33


49A10
CDRL1-5
CDRL2-5
CDRL3-5
CDRH1-6
CDRH2-6
CDRH3-6


48D4
CDRL1-5
CDRL2-5
CDRL3-5
CDRH1-6
CDRH2-6
CDRH3-6


49G2
CDRL1-7
CDRL2-5
CDRL3-7
CDRH1-8
CDRH2-8
CDRH3-8


50C12
CDRL1-7
CDRL2-5
CDRL3-7
CDRH1-8
CDRH2-8
CDRH3-8


55G11
CDRL1-7
CDRL2-5
CDRL3-7
CDRH1-8
CDRH2-8
CDRH3-8


52C1
CDRL1-17
CDRL2-16
CDRL3-17
CDRH1-12
CDRH2-19
CDRH3-19


55E9
CDRL1-27
CDRL2-17
CDRL3-26
CDRH1-23
CDRH2-28
CDRH3-30


60D7
CDRL1-1
CDRL2-5
CDRL3-38
CDRH1-12
CDRH2-22
CDRH3-46


51C10.2
CDRL1-12
CDRL2-11
CDRL3-12
CDRH1-14
CDRH2-14
CDRH3-14


55D3
CDRL1-26
CDRL2-14
CDRL3-25
CDRH1-22
CDRH2-27
CDRH3-28


57B12
CDRL1-34
CDRL2-14
CDRL3-32
CDRH1-28
CDRH2-34
CDRH3-28


52C5
CDRL1-18
CDRL2-14
CDRL3-18
CDRH1-2
CDRH2-1
CDRH3-20


60G5.1
CDRL1-18
CDRL2-14
CDRL3-18
CDRH1-2
CDRH2-1
CDRH3-20


55E4
CDRL1-18
CDRL2-21
CDRL3-18
CDRH1-2
CDRH2-1
CDRH3-20


49B11
CDRL1-18
CDRL2-21
CDRL3-18
CDRH1-2
CDRH2-1
CDRH3-20


50H10
CDRL1-18
CDRL2-21
CDRL3-18
CDRH1-2
CDRH2-1
CDRH3-20


53C1
CDRL1-18
CDRL2-21
CDRL3-18
CDRH1-2
CDRH2-1
CDRH3-20


56G1
CDRL1-18
CDRL2-14
CDRL3-30
CDRH1-2
CDRH2-1
CDRH3-20


48F3
CDRL1-2
CDRL2-2
CDRL3-2
CDRH1-2
CDRH2-2
CDRH3-2


48C9
CDRL1-1
CDRL2-1
CDRL3-1
CDRH1-1
CDRH2-1
CDRH3-1


49A12
CDRL1-1
CDRL2-1
CDRL3-1
CDRH1-1
CDRH2-1
CDRH3-1


51E2
CDRL1-1
CDRL2-1
CDRL3-1
CDRH1-1
CDRH2-1
CDRH3-1


51E5
CDRL1-13
CDRL2-12
CDRL3-13
CDRH1-2
CDRH2-15
CDRH3-15


53H5.3
CDRL1-23
CDRL2-15
CDRL3-23
CDRH1-20
CDRH2-24
CDRH3-25


56G3.3
CDRL1-33
CDRL2-27
CDRL3-31
CDRH1-27
CDRH2-33
CDRH3-37


55B10
CDRL1-33
CDRL2-27
CDRL3-31
CDRH1-27
CDRH2-33
CDRH3-37


52B8
CDRL1-16
CDRL2-15
CDRL3-16
CDRH1-16
CDRH2-18
CDRH3-18


55G5
CDRL1-28
CDRL2-23
CDRL3-27
CDRH1-24
CDRH2-29
CDRH3-31


52H2
CDRL1-20
CDRL2-18
CDRL3-20
CDRH1-18
CDRH2-21
CDRH3-22


56G3.2
CDRL1-32
CDRL2-26
CDRL3-16
CDRH1-26
CDRH2-32
CDRH3-36


56E7
CDRL1-31
CDRL2-7
CDRL3-29
CDRH1-25
CDRH2-31
CDRH3-34


57D9
CDRL1-35
CDRL2-20
CDRL3-33
CDRH1-29
CDRH2-35
CDRH3-39


61H5
CDRL1-33
CDRL2-20
CDRL3-31
CDRH1-27
CDRH2-72
CDRH3-37


52B9
CDRL1-33
CDRL2-20
CDRL3-31
CDRH1-27
CDRH2-72
CDRH3-37


48G4
CDRL1-79
CDRL2-35
CDRL3-71
CDRH1-5
CDRH2-5
CDRH3-5


53C3.1
CDRL1-79
CDRL2-35
CDRL3-71
CDRH1-5
CDRH2-5
CDRH3-5


50G1
CDRL1-7
CDRL2-5
CDRL3-38
CDRH1-11
CDRH2-11
CDRH3-11


58C2
CDRL1-81
CDRL2-5
CDRL3-66
CDRH1-6
CDRH2-36
CDRH3-40


54H10.3
CDRL1-42
CDRL2-46
CDRL3-53
CDRH1-43
CDRH2-74
CDRH3-81


50G5v1
CDRL1-22
CDRL2-14
CDRL3-72
CDRH1-37
CDRH2-73
CDRH3-35


50G5v2
CDRL1-78
CDRL2-22
CDRL3-75
CDRH1-37
CDRH2-73
CDRH3-35


51C1
CDRL1-18
CDRL2-14
CDRL3-18
CDRH1-2
CDRH2-1
CDRH3-20


53C3.2
CDRL1-36
CDRL2-44
CDRL3-70
CDRH1-39
CDRH2-77
CDRH3-43


50D4
CDRL1-26
CDRL2-53
CDRL3-74
CDRH1-41
CDRH2-75
CDRH3-80


55A7
CDRL1-58
CDRL2-14
CDRL3-54
CDRH1-24
CDRH2-18
CDRH3-38


55E6
CDRL1-64
CDRL2-20
CDRL3-65
CDRH1-3
CDRH2-76
CDRH3-29


61E1
CDRL1-68
CDRL2-14
CDRL3-67
CDRH1-42
CDRH2-35
CDRH3-26


63H11
CDRL1-46
CDRL2-34
CDRL3-42
CDRH1-35
CDRH2-34
CDRH3-51









Consensus Sequences

In yet another aspect, the CDRs disclosed herein include consensus sequences derived from groups of related monoclonal antibodies. As described herein, a “consensus sequence” refers to amino acid sequences having conserved amino acids common among a number of sequences and variable amino acids that vary within a given amino acid sequences. The CDR consensus sequences provided include CDRs corresponding to each of CDRH1, CDRH2, CDRH3, CDRL1, CDRL2 and CDRL3.


Consensus sequences were determined using standard analyses of the CDRs corresponding to the VH and VL of the disclosed antigen binding proteins shown in Tables 3A and 3B, some of which specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. The consensus sequences can be determined by keeping the CDRs contiguous within the same sequence corresponding to a VH or VL.


Light Chain CDR3









Group 1







(SEQ ID NO: 1439)







QQFGSSLT





Group 2







(SEQ ID NO: 1440)







QQS Y S T S LT










(SEQ ID NO: 1441)







QQS Y S S P LT










(SEQ ID NO: 1442)







QQS F S T P LT










(SEQ ID NO: 1443)








QQS X
1
S X
2
X
3
LT



wherein X1 is Y or F; X2 is T or S; and X3


is P or S.





Group 3







(SEQ ID NO: 1444)







LQ R N SYP L T










(SEQ ID NO: 1445)







LQ H N SYP R T










(SEQ ID NO: 1446)







LQ H S SYP L T










(SEQ ID NO: 1447)








LQ X
4
X
5
SYP X
6
T



wherein X4 is H or R; X5 is N or S; and X6


is L or R.





Group 4







(SEQ ID NO: 1448)







MQR I EFP L T










(SEQ ID NO: 1449)







MQR I EFP I T










(SEQ ID NO: 1450)







MQR L EFP I T










(SEQ ID NO: 1451)








MQR X
7
EFP X
8
T



wherein X7 is I or L; and X8 us I or L.





Group 5







(SEQ ID NO: 1452)







Q V WDS N P VV










(SEQ ID NO: 1453)







Q L WDS S T VV










(SEQ ID NO: 1454)







Q V WDS S S VV










(SEQ ID NO: 1455)







Q V WDS S P VV










(SEQ ID NO: 1456)







Q V WDS S T VV










(SEQ ID NO: 1457)








Q X
9
WDS X
10
X
11
VV



wherein X9 is V or L; X10 is S or N; and X11


is T, P or S.





Group 6







(SEQ ID NO: 1458)







QQYN N WP L T










(SEQ ID NO: 1459)







QQYN N WP W T










(SEQ ID NO: 1460)







QQYN T WP W T










(SEQ ID NO: 1461)








QQYN X
12
WP X
13
T



wherein X12 is N or T; and X13 is W or L.





Group 7







(SEQ ID NO: 1462)







QVWDSS S D H V V










(SEQ ID NO: 1463)







QVWDSS S D V V










(SEQ ID NO: 1464)







QVWDSS C D G V










(SEQ ID NO: 1465)







QVWDSS S D G V










(SEQ ID NO: 1466)








QVWDSS X
14
D X
15
V X
16



wherein X14 is S or C; X15 is H, V or G; and


X16 is V or absent.





Group 8







(SEQ ID NO: 1467)







QQSS S IPWT










(SEQ ID NO: 1468)







QQSS T IPWT










(SEQ ID NO: 1469)








QQSS X
17
IPWT



wherein X17 is S or T.





Group 9







(SEQ ID NO: 1470)







QQTNSFPPWT





Group 10







(SEQ ID NO: 1471)







GTWDSSLS A V V










(SEQ ID NO: 1472)







GTWDSSLS V V V










(SEQ ID NO: 1473)







GTWDSSLS A M V










(SEQ ID NO: 1474)








GTWDSSLS X
18
X
19
V



wherein X18 is A or V; and X19 is V or M.





Group 11







(SEQ ID NO: 1475)







QQYDNLP L T










(SEQ ID NO: 1476)







QQYDNLP F T










(SEQ ID NO: 1477)








QQYDNLP X
20
T



wherein X20 is L or F.





Group 12







(SEQ ID NO: 1478)







QQYGSS P PWT










(SEQ ID NO: 1479)







QQYGSS PWT










(SEQ ID NO: 1480)








QQYGSS X
21
PWT



wherein X21 is P or absent.





Group 13







(SEQ ID NO: 1481)







QQYG R S L FT










(SEQ ID NO: 1482)







QQYG T S P FT










(SEQ ID NO: 1483)








QQYG X
22
S X
23
FT



wherein X22 is R or T; and X23 is L or P.





Group 14







(SEQ ID NO: 1484)







QQYGSS R S










(SEQ ID NO: 1485)







QQYGSS P R S










(SEQ ID NO: 1486)







QQYGSS R T










(SEQ ID NO: 1487)







QQYGSS C S










(SEQ ID NO: 1488)








QQYGSS X
24
X
25
X
26



wherein X24 is P or absent; X25 is R or C and


X26 is S or T.





Group 15







(SEQ ID NO: 1489)







QADWSS T T W V










(SEQ ID NO: 1490)







QADWSS T A V










(SEQ ID NO: 1491)







QADWSS T W V










(SEQ ID NO: 1492)








QAWDSS X
27
T X
28
V



wherein X27 is T or absent; and X28 is W or A.





Group 16







(SEQ ID NO: 1493)







QADWS G TV V










(SEQ ID NO: 1494)







QADWS T TV V










(SEQ ID NO: 1495)







QAWDS A TV I










(SEQ ID NO: 1496)








QAWDS X
29
TV X
30



wherein X29 is G, T, A or absent; and X30


is V or I.





Group 17







(SEQ ID NO: 1497)







QQ S YSA T FT










(SEQ ID NO: 1498)







QQ T YSA P FT










(SEQ ID NO: 1499)








QQ X
31
YSA X
32
FT



wherein X31 is S or T; and X32 is T or P.





Group 18







(SEQ ID NO: 1500)







QQYN I YPRT










(SEQ ID NO: 1501)







QQYN T YPRT










(SEQ ID NO: 1502)








QQYN X
33
YPRT



wherein X33 is I or T.





Group 19







(SEQ ID NO: 1503)







HQ S S DLPLT










(SEQ ID NO: 1504)







HQ Y D DLPLT










(SEQ ID NO: 1505)








HQ X
34
X
35
DLPLT



wherein X34 is S or Y; and X35 is S or D.





Group 20







(SEQ ID NO: 1506)







MQALQT P F T










(SEQ ID NO: 1507)







MQALQT L I T










(SEQ ID NO: 1508)








MQALQT X
36
X
37
T



wherein X36 is P or L; and X37 is F or I.





Group 21







(SEQ ID NO: 1509)







QQFGRSFT





Group 22







(SEQ ID NO: 1510)







YSTDSS V NHVV










(SEQ ID NO: 1511)







YSTDSS G NHVV










(SEQ ID NO: 1512)








YSTDSS X
38
NHVV



wherein X38 is V or G.






Light Chain CDR2











Group 1







(SEQ ID NO: 1513)









A ASSL Q S











(SEQ ID NO: 1514)









S ASSL Q S











(SEQ ID NO: 1515)









A ASSL Q F











(SEQ ID NO: 1516)









A ASSL K S











(SEQ ID NO: 1517)










X
39
ASSL X
40
X
41




wherein X39 is A or S; X40 is Q or K;



and X41 is S or F.







Group 2







(SEQ ID NO: 1518)









G A S S R A T











(SEQ ID NO: 1519)









G A S S R D T











(SEQ ID NO: 1520)









G T S T R A T











(SEQ ID NO: 1521)









G A S T R A T











(SEQ ID NO: 1522)









G A S A R A T











(SEQ ID NO: 1523)









G A S R R A T











(SEQ ID NO: 1524)









G A S N R A T











(SEQ ID NO: 1525)










G X
42
S X
43
R X
44
T




wherein X42 is A or T; X43 is S, T, A, R or N;



and X44 is A or D.







Group 3







(SEQ ID NO: 1526)









GAFSRA S











(SEQ ID NO: 1527)









GAFSRA T











(SEQ ID NO: 1528)










GAFSRA X
45




wherein X45 is S or T.







Group 4







(SEQ ID NO: 1529)









Q D T KRPS











(SEQ ID NO: 1530)









R D S KRPS











(SEQ ID NO: 1531)









E D S KRPS











(SEQ ID NO: 1532)









Q D S KRPS











(SEQ ID NO: 1533)










X
46
D X
47
KRPS




wherein X46 is Q, R or E; and X47 is T or S.







Group 5







(SEQ ID NO: 1534)









TLS Y RAS











(SEQ ID NO: 1535)









TLS F RAS











(SEQ ID NO: 1536)










TLS X
48
RAS




wherein X48 is Y or F.







Group 6







(SEQ ID NO: 1537)









AASNLQ R











(SEQ ID NO: 1538)









AASNLQ S











(SEQ ID NO: 1539)










AASNLQ X
49




wherein X49 is R or S.







Group 7







(SEQ ID NO: 1540)









G A SNRA I











(SEQ ID NO: 1541)









G S SNRA I











(SEQ ID NO: 1542)









G S SNRA T











(SEQ ID NO: 1543)










G X
50
SNRA X
51




wherein X50 is A or S; and X51 is I or T.







Group 8







(SEQ ID NO: 1544)









D A S S LQS











(SEQ ID NO: 1545)









D A S T LQS











(SEQ ID NO: 1546)









G A S S LQS











(SEQ ID NO: 1547)









G A S N LQS











(SEQ ID NO: 1548)










X
52
A S X
53
LQS




wherein X52 is D or G; and X53 is S, T or N.







Group 9







(SEQ ID NO: 1549)









DN N KRPS











(SEQ ID NO: 1550)









DN D KRPS











(SEQ ID NO: 1551)










DN X
53
KRPS




wherein X53 is N or D.







Group 10







(SEQ ID NO: 1552)









D A SNLET











(SEQ ID NO: 1553)









D V SNLET











(SEQ ID NO: 1554)










D X
54
SNLET




wherein X54 is A or V.







Group 11







(SEQ ID NO: 1555)









L G SNRAS











(SEQ ID NO: 1556)









L D SNRAS











(SEQ ID NO: 1557)










L X
55
SNRAS




wherein X55 is G or D.







Group 12







(SEQ ID NO: 1558)









Q D N K RPS











(SEQ ID NO: 1559)









Q N N K RPS











(SEQ ID NO: 1560)









Q D N E RPS











(SEQ ID NO: 1561)










Q X
56
N X
57
RPS




wherein X56 is D or N; and X57 is K or E.







Group 13







(SEQ ID NO: 1562)









RDRNRPS







Group 14







(SEQ ID NO: 1563)









S DSNRPS











(SEQ ID NO: 1564)









C DSNRPS











(SEQ ID NO: 1565)










X
58
DSNRPS




wherein X58 is S or C.







Group 15







(SEQ ID NO: 1566)









DDSDRPS







Group 16







(SEQ ID NO: 1567)









A V SSLQS











(SEQ ID NO: 1568)









A S SSLQS











(SEQ ID NO: 1569)










A X
59
SSLQS




wherein X59 is S or V.







Group 17







(SEQ ID NO: 1570)









T A SSLQS











(SEQ ID NO: 1571)









T T SSLQS











(SEQ ID NO: 1572)










T X
60
SSLQS




wherein X60 is A or T.







Group 18







(SEQ ID NO: 1573)









K V SNWDS











(SEQ ID NO: 1574)









K G SNWDS











(SEQ ID NO: 1575)










K X
61
SNWDS




wherein X61 is V or G.






Light Chain CDR1









Group 1







(SEQ ID NO: 1576)







RAS Q S V S D I L A










(SEQ ID NO: 1577)







RAS P S V S S S Y L A










(SEQ ID NO: 1578)







RAS Q S F S S S Y L A










(SEQ ID NO: 1579)







RAS Q S V S R S H L A










(SEQ ID NO: 1580)







RAS Q S V S R D Y L A










(SEQ ID NO: 1581)







RAS Q S V S R N Y L A










(SEQ ID NO: 1582)







RAS Q S V S S M Y L A










(SEQ ID NO: 1583)







RAS Q S V S S Q L A










(SEQ ID NO: 1584)







RAS Q S I S S N L A










(SEQ ID NO: 1585)







RAS Q S V S S N L A










(SEQ ID NO: 1586)







RAS Q S V S S N V A










(SEQ ID NO: 1587)







RAS Q S V N S N L A










(SEQ ID NO: 1588)







RAS Q S V R S S S L A










(SEQ ID NO: 1589)







RAS Q S V S N S S L A










(SEQ ID NO: 1590)







RAS Q S V R N S S L A










(SEQ ID NO: 1591)








RAS X
62
S X
63
X
64
X
65
X
66
X
67
X
68
A



wherein X62 is P or Q; X63 is V, I or F; X64 is S,


R or absent; X65 is S, R or N; X66 is D, S, N or


M; X67 is I, Y, H, Q, N or S; and X68 is L or V.





Group 2







(SEQ ID NO: 1592)







R A SQ I I S R YLN










(SEQ ID NO: 1593)







R T SQ S I S S YLN










(SEQ ID NO: 1594)







R A SQ S I S N YLN










(SEQ ID NO: 1595)







R T SQ S I S S YLN










(SEQ ID NO: 1596)







R A SQ T I S I YLN










(SEQ ID NO: 1597)







R A SQ R I S S YLN










(SEQ ID NO: 1598)







R A SQ S I S S YLN










(SEQ ID NO: 1599)







R A SQ N I R T YLN










(SEQ ID NO: 1600)







R A SQ N I R S YLN










(SEQ ID NO: 1601)







R A SQ N I N N YLN










(SEQ ID NO: 1602)








R X
69
SQ X
70
I X
71
X
72
YLN



wherein X69 is A or T; X70 is I, S, T or N;


X71 is R, S or N; and X72 is R, S, N, or I.





Group 3







(SEQ ID NO: 1603)







GGN N IGS Y N V H










(SEQ ID NO: 1604)







GGN N IGS I N V H










(SEQ ID NO: 1605)







GGN N IGS K S V Q










(SEQ ID NO: 1606)







GGN D IGS K S V H










(SEQ ID NO: 1607)







GGN N IGS K S V H










(SEQ ID NO: 1608)







GGN N IGS K T V H










(SEQ ID NO: 1609)







GGN N IGS K A V H










(SEQ ID NO: 1610)







GGN N IGS K N V H










(SEQ ID NO: 1611)







GGN D IGS K N V H










(SEQ ID NO: 1612)








GGN X
73
IGS X
74
X
75
V X
76



wherein X73 is N, or D; X74 is Y, I or K;


X75 is N, S, T or A; and X76 is H or Q.





Group 4







(SEQ ID NO: 1613)







RASQ D IRNDL G










(SEQ ID NO: 1614)







RASQ D IRNDL A










(SEQ ID NO: 1615)







RASQ G IRNDL G










(SEQ ID NO: 1616)








RASQ X
77
IRNDL X
78



wherein X77 is D or G; and X78 is G or A.





Group 5







(SEQ ID NO: 1617)







RSSQSL L N S D A G T TYLD










(SEQ ID NO: 1618)







RSSQSL F D N D D G D TYLD










(SEQ ID NO: 1619)







RSSQSL L N S D D G N TYLD










(SEQ ID NO: 1620)







RSSQSL L D S D D G D TYLD










(SEQ ID NO: 1621)







RSSQSL L D S D D G N TYLD










(SEQ ID NO: 1622)








RSSQSL X
79
X
80
X
81 D X82 G X83 TYLD



wherein X79 is L or F; X80 is N or D;


X81 is S or N; X82 is A or D; and


X83 is T, D or N.





Group 6







(SEQ ID NO: 1623)







SG N K LGDKY V C










(SEQ ID NO: 1624)







SG D K LGDKY V C










(SEQ ID NO: 1625)







SG D K LGDKY A C










(SEQ ID NO: 1626)







SG D E LGDKY A C










(SEQ ID NO: 1627)







SG D N LGDKY A F










(SEQ ID NO: 1628)







SG D N LGDKY A C










(SEQ ID NO: 1629)








SG X
84
X
85
LGDKY X
86
X
87



wherein X84 is N or D; X85 is K, E or N;


X86 is V or A; and X87 is C or F.





Group 7







(SEQ ID NO: 1630)







QASQ G I S N Y LN










(SEQ ID NO: 1631)







QASQ D I K K F LN










(SEQ ID NO: 1632)







QASQ D I N I Y LN










(SEQ ID NO: 1633)







QASQ D I S I Y LN










(SEQ ID NO: 1634)







QASQ D I T K Y LN










(SEQ ID NO: 1635)








QASQ X
88
I X
89
X
90
X
91
LN



wherein X88 is G or D; X89 is S, K N or T;


X90 is N, K or I; and X91 is Y or F.





Group 8







(SEQ ID NO: 1636)







RASQ D I D S WL V










(SEQ ID NO: 1637)







RASQ G I S R WL A










(SEQ ID NO: 1638)







RASQ D I S S WL A










(SEQ ID NO: 1639)







RASQ G I S S WL A










(SEQ ID NO: 1640)








RASQ X
92
I X
93
X
94
WL X
95



wherein X92 is D or G; X93 is D or S;


X94 is R or S; and X95 is V or A.





Group 9







(SEQ ID NO: 1641)







SGSSSNIG N NYV A










(SEQ ID NO: 1642)







SGSSSNIG I NYV S










(SEQ ID NO: 1643)







SGSSSNIG D NYV S










(SEQ ID NO: 1644)







SGSSSNIG N NYV S










(SEQ ID NO: 1645)








SGSSSNIG X
96
NYV X
97



wherein X96 is N, I or D; and X97 is A or S.





Group 10







(SEQ ID NO: 1646)







RAS Q DISNYLA










(SEQ ID NO: 1647)







RAS H DISNYLA










(SEQ ID NO: 1648)








RAS X
98
DISNYLA



wherein X98 is Q or H.





Group 11







(SEQ ID NO: 1649)







RASQ R V P SSY I V










(SEQ ID NO: 1650)







RASQ R V P SSY L V










(SEQ ID NO: 1651)







RASQ S V A SSY L V










(SEQ ID NO: 1652)








RASQ X
99
V X
100
SSY X
101
V



wherein X99 is R or S; X100 is P or A; and


X101 is I or L.





Group 12







(SEQ ID NO: 1653)







RSSQSL L HSNG Y NYLD










(SEQ ID NO: 1654)







RSSQSL L HSNG F NYLD










(SEQ ID NO: 1655)







RSSQSL Q HSNG Y NYLD










(SEQ ID NO: 1656)








RSSQSL X
102
HSNG X
103
NYLD



wherein X102 is L or Q; and X103 is Y or F.





Group 13







(SEQ ID NO: 1657)







RASQT V RN N YLA










(SEQ ID NO: 1658)







RASQT I RN S YLA










(SEQ ID NO: 1659)








RASQT X
104
RN X
105
YLA



wherein X104 is V or I; and X105 is N or S.





Group 14







(SEQ ID NO: 1660)







RSS Q R LVYSDGNTYLN










(SEQ ID NO: 1661)







RSS P S LVYSDGNTYLN










(SEQ ID NO: 1662)








RSS X
106
X
107
LVYSDGNTYLN



wherein X106 is Q or P; and X107 is R or S.





Group 15







(SEQ ID NO: 1663)







SGDA L PKKYA Y










(SEQ ID NO: 1664)







SGDA V PKKYA N










(SEQ ID NO: 1665)








SGDA X
108
PKKYA X
109



wherein X108 is L or V; and X109 is Y or N.






Heavy Chain CDR3









Group 1







(SEQ ID NO: 1666)







MT T PYWYF D L










(SEQ ID NO: 1667)







MT S PYWYF D L










(SEQ ID NO: 1668)







MT T PYWYF G L










(SEQ ID NO: 1669)








MT X
110
PYWYF X
111
L



wherein X110 is T or S; and X111 is D or G.





Group 2







(SEQ ID NO: 1670)







D R Y Y DFW S GYP Y F R YYG L DV










(SEQ ID NO: 1671)







D Q Y F DFW S GYP F F Y YYG M DV










(SEQ ID NO: 1672)







D Q D Y DFW S GYP Y F Y YYG M DV










(SEQ ID NO: 1673)







D Q N Y DFW N GYP Y Y F YYG M DV










(SEQ ID NO: 1674)







D Q Y Y DFW S GYP Y Y H YYG M DV










(SEQ ID NO: 1675)








D X
112
X
113
X
114
DFW X
115
GYP X
116
X
117
X
118







YYG X
119
DV



wherein X112 is R or Q; X113 is Y, D or N; X114 is


Y or F; X115 is S or N; X116 is Y or F; X117 is


F or Y; X118 is R, Y, F or H; and X119 is L or M.





Group 3







(SEQ ID NO: 1676)







VTGTDAFDF





Group 4







(SEQ ID NO: 1677)







TVTKEDYYYYGMDV





Group 5







(SEQ ID NO: 1678)







DSSGSYYVEDYFDY





Group 6







(SEQ ID NO: 1679)







D W S IAVAG T FDY










(SEQ ID NO: 1680)







D L R IAVAG S FDY










(SEQ ID NO: 1681)








D X
119
X
120
IAVAG X
121
FDY



wherein X119 is W or L; X120 is S or R; and


X121 is T or S.





Group 7







(SEQ ID NO: 1682)







EYYYGSGSYYP





Group 8







(SEQ ID NO: 1683)







ELGDYPFFDY





Group 9







(SEQ ID NO: 1684)







EYVAEAGFDY





Group 10







(SEQ ID NO: 1685)







VAAVYWYFDL





Group 11







(SEQ ID NO: 1686)







YNWNYGAFDF





Group 12







(SEQ ID NO: 1687)







RASRGYR F GLAFAI










(SEQ ID NO: 1688)







RASRGYR Y GLAFAI










(SEQ ID NO: 1689)








RASRGYR X
122
GLAFAI



wherein X122 is F or Y.





Group 13







(SEQ ID NO: 1690)







DGITMVRGVTHYYGMDV





Group 14







(SEQ ID NO: 1691)







DH S SGWYYYGMDV










(SEQ ID NO: 1692)







DH T SCWYYYGMDV










(SEQ ID NO: 1693)








DH X
123
SCWYYYGMDV



wherein X123 is S or T.





Group 15







(SEQ ID NO: 1694)







Y S T WDYYYG V DV










(SEQ ID NO: 1695)







Y R D WDYYYG M DV










(SEQ ID NO: 1696)








Y X
124
X
125
WDYYYG X
126
DV



wherein X124 is S or R; X125 is T or D; and


X126 is V or M.





Group 16







(SEQ ID NO: 1697)







VLHY S DS R GYSYY S D F










(SEQ ID NO: 1698)







VLHY Y DS S GYSYY F D Y










(SEQ ID NO: 1699)








VLHY X
127
DS X
128
GYSYY X
129
D X
130



wherein X127 is S or Y; X128 is R or S; X129 is S


or F; and X130 is F or Y.






Heavy Chain CDR2









Group 1







(SEQ ID NO: 1700)







N I Y Y S G T T Y F NPSLKS










(SEQ ID NO: 1701)







F I Y Y S G G T N Y NPSLKS










(SEQ ID NO: 1702)







Y I Y Y S G G T H Y NPSLKS










(SEQ ID NO: 1703)







Y I Y H S G S A Y Y NPSLKS










(SEQ ID NO: 1704)







Y I Y D S G S T Y Y NPSLKS










(SEQ ID NO: 1705)







S I Y Y S G T T Y Y NPSLKS










(SEQ ID NO: 1706)







M I Y Y S G T T Y Y NPSLKS










(SEQ ID NO: 1707)







Y I Y Y S G T T Y Y NPSLKS










(SEQ ID NO: 1708)







Y I Y Y S G S A Y Y NPSLKS










(SEQ ID NO: 1709)







Y I F Y S G S T Y Y NPSLKS










(SEQ ID NO: 1710)







Y L Y Y S G S T Y Y NPSLKS










(SEQ ID NO: 1711)







Y I Y Y S G S T Y Y NPSLKS










(SEQ ID NO: 1712)







Y I Y Y T G S T Y Y NPSLKS










(SEQ ID NO: 1713)







Y I Y Y T G S T N Y NPSLKS










(SEQ ID NO: 1714)







Y I Y Y S G N T N Y NPSLKS










(SEQ ID NO: 1715)







Y I Y Y S G S T N Y NPSLKS










(SEQ ID NO: 1716)








X
131
X
132
X
133
X
134
X
135
G X
136
X
137
X
138
X
139







NPSLKS



wherein X131 is N, F, Y, S or M; X132 is I or L;


X133 is Y or F; X134 is Y, H or D; X135 is S or T;


X136 is T, G, S or T; X137 is T or A; X138 is Y,


N or H; and X139 is F or Y.





Group 2







(SEQ ID NO: 1717)







L I W Y DG D N K Y Y ADSVKG










(SEQ ID NO: 1718)







G I S Y DG S N K N Y ADSVKG










(SEQ ID NO: 1719)







I I W Y DG S N K N Y ADSVKG










(SEQ ID NO: 1720)







L I W Y DG S N K N Y ADSVKG










(SEQ ID NO: 1721)







L I W Y DG S N K D Y ADSVKG










(SEQ ID NO: 1722)







V I W Y DG S N K D Y ADSVKG










(SEQ ID NO: 1723)







L I S Y DG S N K Y Y ADSVKG










(SEQ ID NO: 1724)







V I S Y DG S N K H Y ADSVKG










(SEQ ID NO: 1725)







V I S Y DG S N K Y Y ADSVKG










(SEQ ID NO: 1726)







V I W D DG S N K Y Y ADSVKG










(SEQ ID NO: 1727)







V I W D DG S N N Y Y ADSVKG










(SEQ ID NO: 1728)







V I W Y DG S N K Y H ADSVKG










(SEQ ID NO: 1729)







V I W Y DG S N K Y Y ADSVKG










(SEQ ID NO: 1730)







V I W N DG N N K Y Y ADSVKG










(SEQ ID NO: 1731)







V I W N DG S N K N Y ADSVKG










(SEQ ID NO: 1732)








X
140
I X
141
X
142
DG X
143
N X
144
X
145
X
146
ADSVKG



wherein X140 is L, G, I or V; X141 is W or S;


X142 is Y, D or N; X143 is S or D; X144 is K


or N; X145 is Y, N, D, or H; and X146 is Y or H.





Group 3







(SEQ ID NO: 1733)







W I NP P SG A T N YAQKF R G










(SEQ ID NO: 1734)







W I NP N SG G T N YAQKF R G










(SEQ ID NO: 1735)







W I NP N SG A T N YAQKF H G










(SEQ ID NO: 1736)







W I NP S SG D T K YAQKF Q G










(SEQ ID NO: 1737)







W M NP N SG A T K YAQKF Q G










(SEQ ID NO: 1738)







W I NP N SG A T K YAQKF Q G










(SEQ ID NO: 1739)







W I NP D SG G T N YAQKF Q G










(SEQ ID NO: 1740)







W I NP N SG G T D YAQKF Q G










(SEQ ID NO: 1741)








W X
147
NP X
148
SG X
149
T X
150
YAQKF X
151
G



wherein X147 is I or M; X148 is P, N, S or D;


X149 is A, G or D; X150 is N, K, or D; X151


is R, H or Q.





Group 4







(SEQ ID NO: 1742)







EINHS E N TNYNPSLKS










(SEQ ID NO: 1743)







EINHS G T TNYNPSLKS










(SEQ ID NO: 1744)








EINHS X
152
X
153
TNYNPSLKS



wherein X152 is E or G; and X153 is N or T.





Group 5







(SEQ ID NO: 1745)







IIYPGDS D TRYSPSFQG










(SEQ ID NO: 1746)







IIYPGDS E TRYSPSFQG










(SEQ ID NO: 1747)








IIYPGDS X
154
TRYSPSFQG



wherein X154 is D or E.





Group 6







(SEQ ID NO: 1748)







SISSSS T Y I YY A DS V KG










(SEQ ID NO: 1749)







SISSSS T Y I YY A DS L KG










(SEQ ID NO: 1750)







SISSSS S Y E YY V DS V KG










(SEQ ID NO: 1751)








SISSSS X
155
Y X
156
YY X
157
DS X
158
KG



wherein X155 is T or S; X156 is I or E;


X157 is A or V; and X158 is V or L.





Group 7







(SEQ ID NO: 1752)







RI K S KTDGGTT D YAAPVKG










(SEQ ID NO: 1753)







RI K S KTDGGTT E YAAPVKG










(SEQ ID NO: 1754)







RI I G KTDGGTT D YAAPVKG










(SEQ ID NO: 1755)








RI X
159
X
160
KTDGGTT X
161
YAAPVKG



wherein X159 is K or I; X160 is S or G;


and X161 is D or E.





Group 8







(SEQ ID NO: 1756)







GISGSSAGTYYADSVGK





Group 9







(SEQ ID NO: 1757)







VIS D SGG S TYYADSVKG










(SEQ ID NO: 1758)







VIS G SGG D TYYADSVKG










(SEQ ID NO: 1759)








VIS X
162
SGG X
163
TYYADSVKG



wherein X162 is D or G;


and X163 is S or D.





Group 10







(SEQ ID NO: 1760)







RTYYRSKWYNDYAVSVKS





Group 11







(SEQ ID NO: 1761)







RIY I SGSTNYNPSL E N










(SEQ ID NO: 1762)







RIY T SGSTNYNPSL K S










(SEQ ID NO: 1763)








RIY X
164
SGSTNYNPSL X
165
X
166



wherein X164 is I or T; X165 is E or K;


and X166 is N or S.





Group 12







(SEQ ID NO: 1764)







WMNPYSGSTG Y AQ N FQ G










(SEQ ID NO: 1765)







WMNPYSGSTG L AQ R FQ D










(SEQ ID NO: 1766)








WMNPYSGSTG X
167
AQ X
168
FQ X
169



wherein X167 is Y or L; X168 is N or R;


and X169 is G or D.






Heavy Chain CDR1









Group 1







(SEQ ID NO: 1767)







SG V Y YW N










(SEQ ID NO: 1768)







SG V Y YW S










(SEQ ID NO: 1769)







SG G Y YW N










(SEQ ID NO: 1770)







SG G Y YW S










(SEQ ID NO: 1771)







SG D N TW S










(SEQ ID NO: 1772)







SG N Y TW S










(SEQ ID NO: 1773)







SG D Y TW T










(SEQ ID NO: 1774)







SG D Y TW S










(SEQ ID NO: 1775)








SG X
170
X
171
TW X
172



wherein X170 is V, G, N or D; X171 is Y or N; and X172 is N, S or T.





Group 2







(SEQ ID NO: 1776)







T YYW S










(SEQ ID NO: 1777)







Y YYW S










(SEQ ID NO: 1778)







S YYW S










(SEQ ID NO: 1779)







G YYW S










(SEQ ID NO: 1780)







G YYW T










(SEQ ID NO: 1781)








X
173
YYW X
174



wherein X173 is T, S or G; and X174 is S or T.





Group 3







(SEQ ID NO: 1782)







S Y GMH










(SEQ ID NO: 1783)







S F GMH










(SEQ ID NO: 1784)







T Y GMH










(SEQ ID NO: 1785)







F Y GMH










(SEQ ID NO: 1786)








X
175
X
176
GMH



wherein X175 is S, T or F; and X176 is Y or F.





Group 4







(SEQ ID NO: 1787)







SY A M S










(SEQ ID NO: 1788)







SY S M N










(SEQ ID NO: 1789)







SY S M S










(SEQ ID NO: 1790)








SY X
177
M X
178



wherein X177 is A or S; and X178 is S, N or M.





Group 5







(SEQ ID NO: 1791)







Y YY I H










(SEQ ID NO: 1792)







G YY L H










(SEQ ID NO: 1793)







G YY K H










(SEQ ID NO: 1794)







G YY T H










(SEQ ID NO: 1795)







G YY I H










(SEQ ID NO: 1796)








X
179
YY X
180 H



wherein X179 is Y or G; and X180 is I, L, K or T.





Group 6







(SEQ ID NO: 1797)







SYG I H










(SEQ ID NO: 1798)







SYG L H










(SEQ ID NO: 1799)








SYG X
181
H



wherein X181 is L or I.





Group 7







(SEQ ID NO: 1800)







NY G M H










(SEQ ID NO: 1801)







NY G M R










(SEQ ID NO: 1802)







NY N M H










(SEQ ID NO: 1803)








NY X
182
M X
183



wherein X182 is G or N; and X183 is H, R or M.





Group 8







(SEQ ID NO: 1804)







S YWIG










(SEQ ID NO: 1805)







G YWIG










(SEQ ID NO: 1806)








X
184
YWIG



wherein X184 is S or G.





Group 9







(SEQ ID NO: 1807)







GY Y MH










(SEQ ID NO: 1808)







GY F MH










(SEQ ID NO: 1809)








GY X
185
MH



wherein X185 is Y or F.





Group 10







(SEQ ID NO: 1810)







S Y DI N










(SEQ ID NO: 1811)







S H DI N










(SEQ ID NO: 1812)







S Y DI D










(SEQ ID NO: 1813)








S X
186
DI X
187



wherein X186 is Y or H; and X187 is N or D.





Group 11







(SEQ ID NO: 1814)







N YAMS










(SEQ ID NO: 1815)







H YAMS










(SEQ ID NO: 1816)








X
188
YAMS



wherein X188 is N or H.





Group 12







(SEQ ID NO: 1817)







NAWMS





Group 13







(SEQ ID NO: 1818)







SSSYYWG





Group 14







(SEQ ID NO: 1819)







D YYWN










(SEQ ID NO: 1820)







S YYWN










(SEQ ID NO: 1821)








X
189
YYWN



wherein X189 is D or S.





Group 15







(SEQ ID NO: 1822)







SNSA T WN










(SEQ ID NO: 1823)







SNSA A WN










(SEQ ID NO: 1824)








SNSA X
190
WN



wherein X190 is T or A.





Group 16







(SEQ ID NO: 1825)







S YDMH










(SEQ ID NO: 1826)







T YDMH










(SEQ ID NO: 1827)








X
191
YDMH



wherein X191 is S or T.






In some cases an antigen binding protein comprises at least one heavy chain CDR1, CDR2, or CDR3 having one of the above consensus sequences. In some cases, an antigen binding protein comprises at least one light chain CDR1, CDR2, or CDR3 having one of the above consensus sequences. In other cases, the antigen binding protein comprises at least two heavy chain CDRs according to the determined consensus sequences, and/or at least two light chain CDRs according to the determined consensus sequences. In still other cases, the antigen binding protein comprises at least three heavy chain CDRs according to the determined consensus sequences, and/or at least three light chain CDRs according to the determined consensus sequences.


Exemplary Antigen Binding Proteins

According to one aspect, an isolated antigen binding protein comprising (a) one or more heavy chain complementary determining regions (CDRHs) comprising one or more of: (i) a CDRH1 selected from the group consisting of SEQ ID NOS 603-655; (ii) a CDRH2 selected from the group consisting of SEQ ID NOS 656-732; (iii) a CDRH3 selected from the group consisting of SEQ ID NOS 733-813; and (iv) a CDRH of (i), (ii) and (iii) that comprises ten, nine, eight, seven, six, five, four, three, two or one amino acid substitutions, deletions, insertions and combinations thereof; (b) one or more light chain complementary determining regions (CDRLs) comprising one or more of: (i) a CDRL1 selected from the group consisting of SEQ ID NOS 814-893; (ii) a CDRL2 comprising one or more of SEQ ID NOS 894-946; (iii) a CDRL3 comprising one or more of SEQ ID NOS 947-1020; and (iv) a CDRL of (i), (ii) and (iii) that comprises ten, nine, eight, seven, six, five, four, three, four, two or one amino acid substitutions, deletions or insertions and combinations thereof; or (c) one or more heavy chain CDRHs of (a) and one or more light chain CDRLs of (b).


In another embodiment, the CDRHs have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 603-813, and/or the CDRLs have at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 814-1020. In a further embodiment, the VH is selected from the group consisting of SEQ ID NOS 316-409, and/or the VL is selected from the group consisting of SEQ ID NOS 217-315.


According to one aspect, an isolated antigen binding protein comprising (a) one or more variable heavy chains (VHs) comprising one or more of: (i) SEQ ID NOS 316-409; and (ii) a VH of (i) that comprises ten, nine, eight, seven, six, five, four, three, two or one amino acid substitutions, deletions, insertions and combinations thereof; (b) one or more variable light chains (VLs) selected from the group consisting of: (i) SEQ ID NOS 217-315, and (ii) a VL of (i) that comprises ten, nine, eight, seven, six, five, four, three, two or one amino acid substitutions, deletions, insertions and combinations thereof; or (c) one or more variable heavy chains of (a) and one or more variable light chains of (b).


In another embodiment, the variable heavy chain (VH) has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 36-409, and/or the variable light chain (VL) has at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%. 98% or 99% sequence identity with an amino acid sequence selected from the group consisting of SEQ ID NOS 217-315.


In one aspect, also provided is an antigen binding protein that specifically binds to a linear or three-dimensional epitope comprising one or more amino acid residues from FGFR1c, FGRF2c and FGFR3c.


In one aspect, also provided is an antigen binding protein that specifically binds to a linear or three-dimensional epitope comprising one or more amino acid residues from β-Klotho.


In another aspect, also provided is an isolated antigen binding protein that specifically binds to a linear or three-dimensional epitope comprising one or more amino acid residues from both β-Klotho and one or more amino acid residues from FGFR1c, FGFR2c and FGFR3c.


In yet another embodiment, the isolated antigen binding protein described hereinabove comprises a first amino acid sequence comprising at least one of the CDRH consensus sequences disclosed herein, and a second amino acid sequence comprising at least one of the CDRL consensus sequences disclosed herein.


In one aspect, the first amino acid sequence comprises at least two of the CDRH consensus sequences, and/or the second amino acid sequence comprises at least two of the CDRL consensus sequences. In certain embodiments, the first and the second amino acid sequence are covalently bonded to each other.


In a further embodiment, the first amino acid sequence of the isolated antigen binding protein comprises the CDRH3, the CDRH2 and the CDRH1 parings shown in Table 5 for each clone, and/or the second amino acid sequence of the isolated antigen binding protein comprises the CDRL3, the CDRL2 and the CDRL1 pairings shown in Table 4 or each clone.


In a further embodiment, the antigen binding protein comprises at least two CDRH sequences of heavy chain sequences H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17 or H18, H19, H20, H21, H22, H23, H24, H25, H26, H27, H28, H29, H30, H31, H32, H33, H34, H35, H36, H37, H38, H39, H40, H41, H42, H43, H44, H45, H146, H46, H48, H49, H50, H51, H52, H53, H54, H55, H56, H57, H58, H59, H60, H61, H62, H63, H64, H65, H66, H67, H68, H69, H70, H71, H72, H73, H74, H75, H76, H77, H78, H79, H80, H81, H82, H83, H84, H85, H86, H87, H88, H89, H90, H91, H92, H93 and H94, as shown in Tables 3A and 4A.


In again a further embodiment, the antigen binding protein comprises at least two CDRL sequences of light chain sequences L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L40, L41, L42, L43, L44, L45, L46, L47, L48, L49, L50, L51, L52, L53, L54, L55, L56, L57, L58, L59, L60, L61, L62, L63, L64, L65, L66, L67, L68, L69, L70, L71, L72, L73, L74, L75, L76, L77, L78, L79, L80, L81, L82, L83, L84, L85, L86, L87, L88, L89, L90, L91, L92, L93, L94, L95, L96, L97, L98, L99 and L100, as shown in Tables 3B and 4B.


In still a further embodiment, the antigen binding protein comprises at least two CDRH sequences of heavy chain sequences H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17 or H18, H19, H20, H21, H22, H23, H24, H25, H26, H27, H28, H29, H30, H31, H32, H33, H34, H35, H36, H37, H38, H39, H40, H41, H42, H43, H44, H45, H146, H46, H48, H49, H50, H51, H52, H53, H54, H55, H56, H57, H58, H59, H60, H61, H62, H63, H64, H65, H66, H67, H68, H69, H70, H71, H72, H73, H74, H75, H76, H77, H78, H79, H80, H81, H82, H83, H84, H85, H86, H87, H88, H89, H90, H91, H92, H93 and H94, as shown in Tables 3A and 4A, and at least two CDRLs of light chain sequences L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L40, L41, L42, L43, L44, L45, L46, L47, L48, L49, L50, L51, L52, L53, L54, L55, L56, L57, L58, L59, L60, L61, L62, L63, L64, L65, L66, L67, L68, L69, L70, L71, L72, L73, L74, L75, L76, L77, L78, L79, L80, L81, L82, L83, L84, L85, L86, L87, L88, L89, L90, L91, L92, L93, L94, L95, L96, L97, L98, L99 and L100, as shown in Tables 3B and 4B.


In again another embodiment, the antigen binding protein comprises the CDRH1, CDRH2, and CDRH3 sequences of heavy chain sequences H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13, H14, H15, H16, H17 or H18, H19, H20, H21, H22, H23, H24, H25, H26, H27, H28, H29, H30, H31, H32, H33, H34, H35, H36, H37, H38, H39, H40, H41, H42, H43, H44, H45, H146, H46, H48, H49, H50, H51, H52, H53, H54, H55, H56, H57, H58, H59, H60, H61, H62, H63, H64, H65, H66, H67, H68, H69, H70, H71, H72, H73, H74, H75, H76, H77, H78, H79, H80, H81, H82, H83, H84, H85, H86, H87, H88, H89, H90, H91, H92, H93 and H94, as shown in Tables 3A and 4A.


In yet another embodiment, the antigen binding protein comprises the CDRL1, CDRL2, and CDRL3 sequences of light chain sequences L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, L17, L18, L19, L20, L21, L22, L23, L24, L25, L26, L27, L28, L29, L30, L31, L32, L33, L34, L35, L36, L37, L38, L39, L40, L41, L42, L43, L44, L45, L46, L47, L48, L49, L50, L51, L52, L53, L54, L55, L56, L57, L58, L59, L60, L61, L62, L63, L64, L65, L66, L67, L68, L69, L70, L71, L72, L73, L74, L75, L76, L77, L78, L79, L80, L81, L82, L83, L84, L85, L86, L87, L88, L89, L90, L91, L92, L93, L94, L95, L96, L97, L98, L99 and L100, as shown in Tables 3B and 4B.


In yet another embodiment, the antigen binding protein comprises all six CDRs of an antigen binding protein comprising the following VH and VL pairs: VL1 with VH1; VL2 with VH1; VL3 with VH2 or VH3; VL4 with VH4; VL5 with VH5; VL6 with VH6; VL7 with VH6; VL8 with VH7 or VH8; VL9 with VH9; VL10 with VH9; VL11 with VH 10; VL12 with VH11; VL13 with VH12; VL13 with VH14; VL14 with VH13; VL15 with VH14; VL16 with VH15; VL17 with VH16; VL18 with VH17; VL19 with VH18; VL20 with VH19; VL21 with VH20; VL22 with VH21; VL23 with VH22; VL24 with VH23; VL25 with VH24; VL26 with VH25; VL27 with VH26; VL28 with VH27; VL29 with VH28; VL30 with VH29; VL31 with VH30; VL32 with VH31; VL33 with VH32; VL34 with VH33; VL35 with VH34; VL36 with VH35; VL37 with VH36; VL38 with VH37; VL39 with VH38; VL40 with VH39; VL41 with VH40; VL42 with VH41; VL43 with VH42; VL44 with VH43; VL45 with VH44; VL46 with VH45; VL47 with VH46; VL48 with VH47; VL49 with VH48; VL50 with VH49; VL51 with VH50; VL52 with VH51; VL53 with VH52; VL54 with VH53; VL55 with VH54; VL56 with VH54; VL57 with VH54; VL58 with VH55; VL59 with VH56; VL60 with VH57; VL61 with VH58; VL62 with VH59; VL63 with VH60; VL64 with VH1; VL65 with VH62; VL66 with VH63; VL67 with VH64; VL68 with VH65; VL69 with VH66; VL70 with VH67; VL71 with VH68; VL72 with VH69; VL73 with VH70; VL74 with VH70; VL75 with VH70; VL76 with VH71; VL77 with VH72; VL78 with VH73; VL79 with VH74; VL80 with VH75; VL81 with VH76; VL82 with VH77; VL83 with VH78; VL84 with VH79; VL85 with VH80; VL86 with VH81; VL87 with VH82; VL88 with VH86; VL89 with VH83; VL90 with VH84; VL91 with VH85; VL 92 with VH 87; VL 93 with VH 88; VL 94 with VH 88; VL 95 with VH 89; VL 96 with VH 90; VL 97 with VH 91; VL 98 with VH 92; VL 99 with VH 93; and VL 100 with VH 94; as shown in Tables 2A and 2B and Tables 4A and 4B.









TABLE 7A







Heavy Chain Sequences















Full Heavy
Full Heavy
Variable Heavy
Variable Heavy

CDRH2 SEQ ID
CDRH3 SEQ ID


Ref
(H#)
SEQ ID NO
(VH#)
SEQ ID NO
CDRH1 SEQ ID NO
NO
NO





63G8
H1
123
VH1
326
636
667
782


68D3


64A8


67B4


64E6
H2
136
VH2
339
637
699
783


65E8


65F11


67G7


63H11
H3
135
VH3
338
637
689
783


63B6
H4
133
VH4
336
638
700
784


64D4


65C3
H5
142
VH5
345
626
701
785


68D5


63E6
H6
113
VH6
316
639
702
786


66F7


64H5
H7
126
VH7
329
614
703
787


65G4
H8
129
VH8
332
614
703
787


67G10v1
H9
121
VH9
324
640
704
788


67G10v2


66B4
H10
115
VH10
318
617
708
791


66G2
H11
124
VH11
327
614
709
782


68G5
H12
130
VH12
333
614
710
792


63F5
H13
134
VH13
337
637
705
783


66F6
H14
138
VH14
341
637
689
783


65C1
H15
137
VH15
340
637
707
790


64A7
H16
141
VH16
344
642
706
789


66D4
H17
114
VH17
317
645
711
793


65B1
H18
116
VH18
319
646
712
794


67A4
H19
118
VH19
321
647
713
795


65B4
H20
117
VH20
320
648
714
796


63A10
H21
119
VH21
322
640
715
788


65H11
H22
120
VH22
323
640
716
788


64C8
H23
122
VH23
325
614
717
797


65E3
H24
128
VH24
331
649
718
798


65D4
H25
127
VH25
330
650
677
799


65D1
H26
125
VH26
328
651
719
800


67G8
H27
131
VH27
334
614
720
801


65B7
H28
132
VH28
335
652
707
802


64A6
H29
139
VH29
342
616
721
803


65F9
H30
140
VH30
343
638
689
804


67F5
H31
143
VH31
346
626
722
785


64B10
H32
144
VH32
347
638
723
805


68C8
H33
145
VH33
348
653
724
806


67A5
H34
146
VH34
349
627
686
807


67C10
H35
147
VH35
350
627
686
808


64H6
H36
148
VH36
351
627
725
809


63F9
H37
149
VH37
352
654
726
810


67F6
H38
150
VH38
353
655
686
811


48H11
H39
154
VH39
357
606
659
736


52A8
H40
164
VH40
368
617
672
749


52F8
H41
167
VH41
371
619
675
753


49H12
H42
159
VH42
362
612
665
742


54A1
H43
172
VH43
376
612
680
742


55G9


49C8
H44
156
VH44
359
609
662
739


52H1


60G5.2
H45
193
VH45
397
635
697
780


49G3
H46
158
VH46
361
611
664
741


59A10
H47
187
VH47
391
632
692
773


49H4


48F8
H48
153
VH48
356
605
658
735


53B9


56B4


57E7


57F11


59C9
H49
188
VH49
392
633
693
774


58A5


57A4


57F9


51G2
H50
163
VH50
367
605
671
748


56A7
H51
179
VH51
383
605
671
764


56E4


54H10
H52
173
VH52
377
623
681
759


55D1


48H3


53C11


59G10.3
H53
190
VH53
394
634
695
777


59D10v1
H54
195
VH54
364
615
668
745


59D10v2


51C10.1


60F9
H55
192
VH55
396
623
696
779


48B4


52D6


61G5
H56
194
VH56
398
623
698
781


59G10.2
H57
189
VH57
393
608
694
776


51A8
H58
160
VH58
363
614
667
744


53H5.2
H59
170
VH59
374
614
678
756


53F6
H60
169
VH60
373
621
677
755


56C11
H61
180
VH61
384
614
685
765


49A10
H62
155
VH62
358
608
661
738


48D4


49G2
H63
157
VH63
360
610
663
740


50C12


55G11


52C1
H64
166
VH64
370
614
674
751


55E9
H65
176
VH65
380
625
683
762


60D7
H66
191
VH66
395
614
677
778


51C10.2
H67
161
VH67
365
616
669
746


55D3
H68
174
VH68
378
624
682
760


57B12
H69
184
VH69
388
630
689
760


55E4
H70
175
VH70
379
604
656
752


52C5


60G5.1


55E4


49B11


50H10


53C1


56G1
H71
182
VH71
386
604
656
752


48F3
H72
152
VH72
355
604
657
734


48C9
H73
151
VH73
354
603
656
733


49A12


51E2


51E5
H74
162
VH74
366
604
670
747


53H5.3
H75
171
VH75
375
622
679
757


56G3.3
H76
183
VH76
387
629
688
769


55B10


52B8
H77
165
VH77
369
618
673
750


55G5
H78
177
VH78
381
626
684
763


52H2
H79
168
VH79
372
620
676
754


56G3.2
H80
196
VH80
399
628
687
768


56E7
H81
181
VH81
385
627
686
766


57D9
H82
185
VH82
389
631
690
771


48G4
H83
197
VH83
400
607
660
737


53C3.1


50G1
H84
178
VH84
382
613
666
743


58C2
H85
186
VH85
390
608
691
772


61H5
H86
198
VH86
401
629
727
769


52B9


50D4
H87
199
VH87
402
643
730
812


50G5v1
H88
200
VH88
403
639
728
767


50G5v2


51C1
H89
201
VH89
404
604
656
752


53C3.2
H90
202
VH90
405
641
732
775


54H10.3
H91
203
VH91
406
645
729
813


55A7
H92
204
VH92
407
626
673
770


55E6
H93
205
VH93
408
605
731
761


61E1
H94
206
VH94
409
644
690
758
















TABLE 7B







Light Chain Sequences















Full Light
Full Light
Variable Light
Variable Light SEQ
CDRL1 SEQ ID
CDRL2 SEQ ID
CDRL3 SEQ ID


Ref
(L#)
SEQ ID NO
(VH#)
ID NO
NO
NO
NO

















63G8
L1
26
VL1
229
826
922
987


64A8


67B4


68D3
L2
28
VL2
231
826
922
987


65E8
L3
37
VL3
241
859
927
988


63H11


64E6


67G7


65F11


63B6
L4
35
VL4
239
860
928
989


64D4


65C3
L5
43
VL5
247
861
929
990


68D5


63E6
L6
14
VL6
217
862
907
991


66F7
L7
15
VL7
218
863
907
991


64H5
L8
30
VL8
233
864
930
992


65G4


67G10v1
L9
23
VL9
226
865
931
993


67G10v2
L10
24
VL10
227
866
932
994


66B4
L11
17
VL11
220
870
933
996


66G2
L12
27
VL12
230
835
934
997


68G5
L13
100
VL13
236
872
935
998


63F5
L14
36
VL14
240
867
913
988


66F6
L15
39
VL15
243
859
928
988


65C1
L16
38
VL16
242
869
928
988


64A7
L17
42
VL17
246
868
913
995


66D4
L18
16
VL18
219
873
907
999


65B1
L19
18
VL19
221
874
936
961


67A4
L20
20
VL20
223
875
918
1001


65B4
L21
19
VL21
222
876
918
1001


63A10
L22
21
VL22
224
865
938
1002


65H11
L23
22
VL23
225
878
931
1003


64C8
L24
25
VL24
228
879
940
1004


65E3
L25
32
VL25
235
864
935
1005


65D4
L26
31
VL26
234
880
935
1006


65D1
L27
29
VL27
232
852
925
1007


67G8
L28
33
VL28
237
882
930
1005


65B7
L29
34
VL29
238
883
913
1008


64A6
L30
40
VL30
244
884
941
1009


65F9
L31
41
VL31
245
885
908
1009


67F5
L32
44
VL32
248
885
942
1010


64B10
L33
45
VL33
249
886
943
963


68C8
L34
46
VL34
250
887
909
963


67A5
L35
47
VL35
251
888
898
1012


67C10
L36
48
VL36
252
888
898
951


64H6
L37
49
VL37
253
864
930
1014


63F9
L38
50
VL38
254
889
944
1015


67F6
L39
51
VL39
255
890
945
951


48H11
L40
55
VL40
259
817
897
950


52A8
L41
66
VL41
270
828
907
961


52F8
L42
69
VL42
273
832
910
965


49H12
L43
60
VL43
264
822
901
955


54A1
L44
74
VL44
278
837
899
955


55G9


49C8
L45
57
VL45
261
819
899
952


52H1


60G5.2
L46
93
VL46
297
857
925
986


49G3
L47
59
VL47
263
821
900
954


59A10
L48
87
VL48
291
827
921
960


49H4


48F8
L49
54
VL49
258
816
896
949


53B9


56B4


57E7


57F11


59C9
L50
88
VL50
292
850
922
960


58A5


57A4


57F9


51G2
L51
65
VL51
269
827
906
960


56A7
L52
80
VL52
284
842
917
960


56E4


54H10.1
L53
75
VL53
279
838
913
970


55D1


48H3


53C11


59G10.3
L54
90
VL54
294
854
909
983


51C10.1
L55
62
VL55
266
824
903
957


59D10v1
L56
97
VL56
301
851
903
980


59D10v2
L57
98
VL57
302
852
923
981


60F9
L58
92
VL58
296
856
924
985


48B4


52D6


61G5
L59
94
VL59
298
858
926
985


59G10.2
L60
89
VL60
293
853
904
982


51A8
L61
61
VL61
265
823
902
956


53H5.2
L62
72
VL62
276
835
907
968


53F6
L63
71
VL63
275
834
912
967


56C11
L64
81
VL64
285
843
918
974


49A10
L65
56
VL65
260
818
898
951


48D4


49G2
L66
58
VL66
262
820
898
953


50C12


55G11


52C1
L67
68
VL67
272
830
909
963


55E9
L68
78
VL68
282
840
910
972


60D7
L69
91
VL69
295
820
898
984


51C10.2
L70
63
VL70
267
825
904
958


55D3
L71
76
VL71
280
839
907
971


57B12
L72
85
VL72
289
847
907
978


52C5
L73
95
VL73
299
831
907
964


60G5.1
L74

VL74


55E4
L75
77
VL75
281
831
914
964


49B11


50H10


53C1


56G1
L76
83
VL76
287
831
907
976


48F3
L77
53
VL77
257
815
895
948


48C9
L78
52
VL78
256
814
894
947


49A12


51E2


51E5
L79
64
VL79
268
826
905
959


53H5.3
L80
73
VL80
277
836
908
969


56G3.3
L81
84
VL81
288
846
920
977


55B10


52B8
L82
67
VL82
271
829
908
962


55G5
L83
79
VL83
283
841
916
973


52H2
L84
70
VL84
274
833
911
966


56G3.2
L85
99
VL85
303
845
919
962


56E7
L86
82
VL86
286
844
900
975


57D9
L87
86
VL87
290
848
913
976


61H5
L88
96
VL88
300
846
913
977


52B9


48G4
L89
101
VL89
304
892
928
1017


53C3.1


50G1
L90
102
VL90
305
820
898
984


58C2
L91
103
VL91
306
893
898
1012


50D4
L92
104
VL92
307
839
946
1019


50G5v1
L93
105
VL93
308
835
907
1018


50G5v2
L94
106
VL94
309
891
915
1020


51C1
L95
107
VL95
310
831
907
964


53C3.2
L96
108
VL96
311
849
937
1016


54H10.3
L97
109
VL97
312
855
939
999


55A7
L98
110
VL98
313
871
907
1000


55E6
L99
111
VL99
314
877
913
1011


61E1
L100
112
VL100
315
881
907
1013









In one aspect, the isolated antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c provided herein can be a monoclonal antibody, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, a chimeric antibody, a multispecific antibody, or an antibody fragment thereof.


In another embodiment, the antibody fragment of the isolated antigen-binding proteins provided herein can be a Fab fragment, a Fab′ fragment, an F(ab)2 fragment, an Fv fragment, a diabody, or a single chain antibody molecule.


In a further embodiment, an isolated antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c provided herein is a human antibody and can be of the IgG1-, IgG2-IgG3- or IgG4-type.


In another embodiment, an isolated antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises a light or a heavy chain polypeptide as set forth in Tables 1A-1B. In some embodiments, an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises a variable light or variable heavy domain such as those listed in Tables 2A-2B. In still other embodiments, an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises one, two or three CDRHs or one, two or three CDRLs as set forth in Tables 3A-3B, 4A-4B, infra. Such antigen binding proteins, and indeed any of the antigen binding proteins disclosed herein, can be PEGylated with one or more PEG molecules, for examples PEG molecules having a molecular weight selected from the group consisting of 5K, 10K, 20K, 40K, 50K, 60K, 80K, 100K or greater than 100K.


In yet another aspect, any antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c provided herein can be coupled to a labeling group and can compete for binding to the extracellular portion of the individual protein components of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with an antigen binding protein of one of the isolated antigen binding proteins provided herein. In one embodiment, the isolated antigen binding protein provided herein can reduce blood glucose levels, decrease triglyceride and cholesterol levels or improve other glycemic parameters and cardiovascular risk factors when administered to a patient.


As will be appreciated, for any antigen binding protein comprising more than one CDR provided in Tables 3A-3B, and 4A-4B, any combination of CDRs independently selected from the depicted sequences may be useful. Thus, antigen binding proteins with one, two, three, four, five or six of independently selected CDRs can be generated. However, as will be appreciated by those in the art, specific embodiments generally utilize combinations of CDRs that are non-repetitive, e.g., antigen binding proteins are generally not made with two CDRH2 regions, etc.


Some of the antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are provided herein are discussed in more detail below.


Antigen Binding Proteins and Binding Epitopes and Binding Domains

When an antigen binding protein is said to bind an epitope on a complex β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, or the extracellular domain of a protein component of such a complex, what is meant is that the antigen binding protein specifically binds to a specified portion of the complex comprising β-Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) or to the extracellular domain of such a complex. In some embodiments, e.g., in certain cases where the antigen binding protein binds only β-Klotho, the antigen binding protein can specifically bind to a polypeptide consisting of specified residues (e.g., a specified segment of β-Klotho). In other embodiments, e.g., in certain cases where an antigen binding protein interacts with both β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, the antigen binding protein can bind residues, sequences of residues, or regions in both β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, depending on which receptor the antigen binding protein recognizes. In still other embodiments the antigen binding protein will bind residues, sequences or residues or regions of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, for example FGFR1c.


In any of the foregoing embodiments, such an antigen binding protein does not need to contact every residue of β-Klotho or a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, or the extracellular domain of the recited proteins or complexes. Nor does every single amino acid substitution or deletion within β-Klotho or a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, or the extracellular domain of the recited proteins or complexes, necessarily significantly affect binding affinity.


Epitope specificity and the binding domain(s) of an antigen binding protein can be determined by a variety of methods. Some methods, for example, can use truncated portions of an antigen. Other methods utilize antigen mutated at one or more specific residues, such as by employing an alanine scanning or arginine scanning-type approach or by the generation and study of chimeric proteins in which various domains, regions or amino acids are swapped between two proteins (e.g., mouse and human forms of one or more of the antigens or target proteins), or by protease protection assays.


Competing Antigen Binding Proteins

In another aspect, antigen binding proteins are provided that compete with one of the exemplified antibodies or functional fragments for binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Such antigen binding proteins can also bind to the same epitope as one of the herein exemplified antigen binding proteins, or an overlapping epitope. Antigen binding proteins and fragments that compete with or bind to the same epitope as the exemplified antigen binding proteins are expected to show similar functional properties. The exemplified antigen binding proteins and fragments include those with the heavy and light chains H1-H94 and L1-L100, variable region domains VL1-VL100 and VH1-VH94, and CDRs provided herein, including those in Tables 1, 2, 3, and 4. Thus, as a specific example, the antigen binding proteins that are provided include those that compete with an antibody comprising:


(a) 1, 2, 3, 4, 5 or all 6 of the CDRs listed for an antigen binding protein listed in Tables 3A and 3B, and 4A and 4B, infra;


(b) a VH and a VL selected from VL1-VL100 and VH1-VH94 and listed for an antigen binding protein listed in Tables 2A and 2B; or


(c) two light chains and two heavy chains as specified for an antigen binding protein listed in Tables 1A and 1B, infra.


Thus, in one embodiment, the present disclosure provides antigen binding proteins, including human antibodies, that competes for binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with a reference antibody, wherein the reference antibody comprises a combination of light chain and heavy chain variable domain sequences selected from the group consisting of VL1 with VH1, VL2 with VH1, VL3 with VH2 or VH3, VL4 with VH4, VL5 with VH5, VL6 with VH6, VL7 with VH6, VL8 with VH7 or VH8, VL9 with VH9, VL10 with VH9, VL11 with VH 10, VL12 with VH11, VL13 with VH12, VL13 with VH14, VL14 with VH13, VL15 with VH14, VL16 with VH15, VL17 with VH16, VL18 with VH17, VL19 with VH18, VL20 with VH19, VL21 with VH20, VL22 with VH21, VL23 with VH22, VL24 with VH23, VL25 with VH24, VL26 with VH25, VL27 with VH26, VL28 with VH27, VL29 with VH28, VL30 with VH29, VL31 with VH30, VL32 with VH31, VL33 with VH32, VL34 with VH33, VL35 with VH34, VL36 with VH35, VL37 with VH36, VL38 with VH37, VL39 with VH38, VL40 with VH39, VL41 with VH40, VL42 with VH41, VL43 with VH42, VL44 with VH43, VL45 with VH44, VL46 with VH45, VL47 with VH46, VL48 with VH47, VL49 with VH48, VL50 with VH49, VL51 with VH50, 52 with VH51, VL53 with VH52, VL54 with VH53, VL55 with 54, and VL56 with VH54, VL57 with VH54, VL58 with VH55, VL59 with VH56, VL60 with VH57, VL61 with VH58, VL62 with VH59, VL63 with VH60, VL64 with VH1, VL65 with VH62, VL66 with VH63, VL67 with VH64, VL68 with VH65, VL69 with VH66, VL70 with VH67, VL71 with VH68, VL72 with VH69, VL73 with VH70, VL74 with VH70, and VL75 with VH70, VL76 with VH71, VL77 with VH72, VL78 with VH73, VL79 with VH74, VL80 with VH75, VL81 with VH76, VL82 with VH77, VL83 with VH78, VL84 with VH79, VL85 with VH80, VL86 with VH81, VL87 with VH82, VL88 with VH86, VL89 with VH83, VL90 with VH84, VL91 with VH85, VL 92 with VH 87, VL 93 with VH 88, VL 94 with VH 88, VL 95 with VH 89, VL 96 with VH 90, VL 97 with VH 91, VL 98 with VH 92, VL 99 with VH 93, and VL 100 with VH 94.


In another embodiment, the present disclosure provides antigen binding proteins, including human antibodies, that compete for binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with a reference antibody, wherein the reference antibody is 63G8, 64A8, 67B4, 68D3, 64E6, 65E8, 65F11, 67G7, 63B6, 64D4, 65C3, 68D5, 63E6, 66F7, 64H5, 65G4, 67G10v1, 67G10v2, 66B4, 66G2, 68G5, 63F5, 66F6, 65C1, 64A7, 66D4, 65B1, 67A4, 65B4, 63A10, 65H11, 64C8, 65E3, 65D4, 65D1, 67G8, 65B7, 64A6, 65F9, 67F5, 64B10, 68C8, 67A5, 67C10, 64H6, 63F9, 67F6, 48H11, 52A8, 52F8, 49H12, 54A1, 55G9, 49C8, 52H1, 60G5.2, 49G3, 59A10, 48F8, 53B9, 56B4, 57E7, 57F11, 59C9, 58A5, 57A4, 57F9, 51G2, 56A7, 56E4, 54H10, 55D1, 48H3, 53C11, 59G10.3, 51C10.1, 59D10v1, 59D10v2, 60F9, 48B4, 52D6, 61G5, 59G10.2, 51A8, 53H5.2, 53F6, 56C11, 49A10, 48D4, 49G2, 50C12, 55G11, 52C1, 55E9, 60D7, 51C10.2, 55D3, 57B12, 52C5, 60G5.1, 55E4, 49B11, 50H10, 53C1, 56G1, 48F3, 48C9, 49A12, 51E2, 51E5, 53H5.3, 56G3.3, 55B10, 52B8, 55G5, 52H2, 56G3.2, 6E7, 57D9, 61H5, 48G4, 50G1, 58C2, 50D4, 50G5v1, 50G5v2, 51C1, 53C3.2, 54H10.3, 55A7, 55E6, 61E1, 53C3.1, 49H4, and 51E2.


In a further embodiment, an isolated antigen binding protein, such as a human antibody, is provided that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with substantially the same Kd as a reference antibody; initiates FGF21-like signaling in an in vitro ELK-Luciferase assay to the same degree as a reference antibody; lowers blood glucose; lowers serum lipid levels; and/or competes for binding with said reference antibody to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, wherein the reference antibody is selected from the group consisting of 63G8, 64A8, 67B4, 68D3, 64E6, 65E8, 65F11, 67G7, 63B6, 64D4, 65C3, 68D5, 63E6, 66F7, 64H5, 65G4, 67G10v1, 67G10v2, 66B4, 66G2, 68G5, 63F5, 66F6, 65C1, 64A7, 66D4, 65B1, 67A4, 65B4, 63A10, 65H11, 64C8, 65E3, 65D4, 65D1, 67G8, 65B7, 64A6, 65F9, 67F5, 64B10, 68C8, 67A5, 67C10, 64H6, 63F9, 67F6, 48H11, 52A8, 52F8, 49H12, 54A1, 55G9, 49C8, 52H1, 60G5.2, 49G3, 59A10, 48F8, 53B9, 56B4, 57E7, 57F11, 59C9, 58A5, 57A4, 57F9, 51G2, 56A7, 56E4, 54H10, 55D1, 48H3, 53C11, 59G10.3, 51C10.1, 59D10v1, 59D10v2, 60F9, 48B4, 52D6, 61G5, 59G10.2, 51A8, 53H5.2, 53F6, 56C11, 49A10, 48D4, 49G2, 50C12, 55G11, 52C1, 55E9, 60D7, 51C10.2, 55D3, 57B12, 52C5, 60G5.1, 55E4, 49B11, 50H10, 53C1, 56G1, 48F3, 48C9, 49A12, 51E2, 51E5, 53H5.3, 56G3.3, 55B10, 52B8, 55G5, 52H2, 56G3.2, 6E7, 57D9, 61H5, 48G4, 50G1, 58C2, 50D4, 50G5v1, 50G5v2, 51C1, 53C3.2, 54H10.3, 55A7, 55E6, 61E1, 53C3.1, 49H4, and 51E2.


The ability to compete with an antibody can be determined using any suitable assay, such as those described herein, in which antigen binding proteins 63G8, 64A8, 67B4, 68D3, 64E6, 65E8, 65F11, 67G7, 63B6, 64D4, 65C3, 68D5, 63E6, 66F7, 64H5, 65G4, 67G10v1, 67G10v2, 66B4, 66G2, 68G5, 63F5, 66F6, 65C1, 64A7, 66D4, 65B1, 67A4, 65B4, 63A10, 65H11, 64C8, 65E3, 65D4, 65D1, 67G8, 65B7, 64A6, 65F9, 67F5, 64B10, 68C8, 67A5, 67C10, 64H6, 63F9, 67F6, 48H11, 52A8, 52F8, 49H12, 54A1, 55G9, 49C8, 52H1, 60G5.2, 49G3, 59A10, 48F8, 53B9, 56B4, 57E7, 57F11, 59C9, 58A5, 57A4, 57F9, 51G2, 56A7, 56E4, 54H10, 55D1, 48H3, 53C11, 59G10.3, 51C10.1, 59D10v1, 59D10v2, 60F9, 48B4, 52D6, 61G5, 59G10.2, 51A8, 53H5.2, 53F6, 56C11, 49A10, 48D4, 49G2, 50C12, 55G11, 52C1, 55E9, 60D7, 51C10.2, 55D3, 57B12, 52C5, 60G5.1, 55E4, 49B11, 50H10, 53C1, 56G1, 48F3, 48C9, 49A12, 51E2, 51E5, 53H5.3, 56G3.3, 55B10, 52B8, 55G5, 52H2, 56G3.2, 6E7, 57D9, 61H5, 48G4, 50G1, 58C2, 50D4, 50G5v1, 50G5v2, 51C1, 53C3.2, 54H10.3, 55A7, 55E6, 61E1, 53C3.1, 49H4, and 51E2 can be used as the reference antibody.


Monoclonal Antibodies

The antigen binding proteins that are provided include monoclonal antibodies that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and induce FGF21-like signaling to various degrees. Monoclonal antibodies can be produced using any technique known in the art, e.g., by immortalizing spleen cells harvested from the transgenic animal after completion of the immunization schedule. The spleen cells can be immortalized using any technique known in the art, e.g., by fusing them with myeloma cells to produce hybridomas. Myeloma cells for use in hybridoma-producing fusion procedures preferably are non-antibody-producing, have high fusion efficiency, and enzyme deficiencies that render them incapable of growing in certain selective media which support the growth of only the desired fused cells (hybridomas). Examples of suitable cell lines for use in mouse fusions include Sp-20, P3-X63/Ag8, P3-X63-Ag8.653, NS1/1.Ag 4 1, Sp210-Ag14, FO, NSO/U, MPC-11, MPC11-X45-GTG 1.7 and S194/5XXO Bul; examples of cell lines used in rat fusions include R210.RCY3, Y3-Ag 1.2.3, IR983F and 4B210. Other cell lines useful for cell fusions are U-266, GM1500-GRG2, LICR-LON-HMy2 and UC729-6.


In some instances, a hybridoma cell line is produced by immunizing an animal (e.g., a transgenic animal having human immunoglobulin sequences) with an immunogen comprising (1) cell-bound receptor of CHO transfectants expressing full length human FGFR1c and β-Klotho at the cell surface, obtained by transfecting CHO cells with cDNA encoding a human full length FGFR1c polypeptide of SEQ ID NO: 4 and cDNA encoding a human β-Klotho polypeptide of SEQ ID NO: 7 with cells incubated with FGF21 prior to freezing (as shown in Example 2); or (2) cell-bound receptor of 293T transfectants expressing full length human β-Klotho and an N-terminal truncated form of human FGFR1c encompassing amino acid residue #141 to #822 polypeptide of SEQ ID NO: 4 (as shown in Example 2); harvesting spleen cells from the immunized animal; fusing the harvested spleen cells to a myeloma cell line, thereby generating hybridoma cells; establishing hybridoma cell lines from the hybridoma cells, and identifying a hybridoma cell line that produces an antibody that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and can induce FGF21-like signaling (e.g., as described in Example 4). Such hybridoma cell lines, and the monoclonal antibodies produced by them, form aspects of the present disclosure.


Monoclonal antibodies secreted by a hybridoma cell line can be purified using any technique known in the art. Hybridomas or mAbs can be further screened to identify mAbs with particular properties, such as the ability to induce FGF21-like signaling. Examples of such screens are provided herein.


Chimeric and Humanized Antibodies

Chimeric and humanized antibodies based upon the foregoing sequences can readily be generated. One example is a chimeric antibody, which is an antibody composed of protein segments from different antibodies that are covalently joined to produce functional immunoglobulin light or heavy chains or immunologically functional portions thereof. Generally, a portion of the heavy chain and/or light chain is identical with or homologous to a corresponding sequence in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass. For methods relating to chimeric antibodies, see, for example, U.S. Pat. No. 4,816,567; and Morrison et al., (1985) Proc. Natl. Acad. Sci. USA 81:6851-6855, which are hereby incorporated by reference. CDR grafting is described, for example, in U.S. Pat. No. 6,180,370, U.S. Pat. No. 5,693,762, U.S. Pat. No. 5,693,761, U.S. Pat. No. 5,585,089, and U.S. Pat. No. 5,530,101.


Generally, a goal of making a chimeric antibody is to create a chimera in which the number of amino acids from the intended patient/recipient species is maximized. One example is the “CDR-grafted” antibody, in which the antibody comprises one or more complementarity determining regions (CDRs) from a particular species or belonging to a particular antibody class or subclass, while the remainder of the antibody chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass. For use in humans, the variable region or selected CDRs from a rodent antibody often are grafted into a human antibody, replacing the naturally-occurring variable regions or CDRs of the human antibody.


One useful type of chimeric antibody is a “humanized” antibody. Generally, a humanized antibody is produced from a monoclonal antibody raised initially in a non-human animal. Certain amino acid residues in this monoclonal antibody, typically from non-antigen recognizing portions of the antibody, are modified to be homologous to corresponding residues in a human antibody of corresponding isotype. Humanization can be performed, for example, using various methods by substituting at least a portion of a rodent variable region for the corresponding regions of a human antibody (see, e.g., U.S. Pat. No. 5,585,089, and U.S. Pat. No. 5,693,762; Jones et al., (1986) Nature 321:522-525; Riechmann et al., (1988) Nature 332:323-27; Verhoeyen et al., (1988) Science 239:1534-1536).


In one aspect, the CDRs of the light and heavy chain variable regions of the antibodies provided herein (e.g., in Tables 3-4 and 21-23) are grafted to framework regions (FRs) from antibodies from the same, or a different, phylogenetic species. For example, the CDRs of the heavy and light chain variable regions VH1, VH2, VH3, VH4, VH5, VH6, VH7, VH8, VH9, VH10, VH11, VH12, VH13, VH14, VH15, VH16, VH17, VH18, VH19, VH20, VH21 VH22, VH23, VH24, VH25, VH26, VH27, VH28, VH29, VH30, VH31, VH32, VH33, VH34, VH35, VH36, VH37, VH38, VH39, VH40, VH41, VH42, VH43, VH44, VH45, VH46, VH47, VH48, VH49, VH50, VH51, VH52, VH53, VH54, VH55, VH56, VH57, VH58, VH59, VH60, VH61, VH62, VH63, VH64, VH65, VH66, VH67, VH68, VH69, VH70, VH71, VH72, VH73, VH74, VH75, VH76, VH77, VH78, VH79, VH80, 81, VH82, VH83, VH84, VH85, VH 86, VH 87, VH88, VH89, VH90, VH91, VH92, VH93, and VH94 and/or VL1, VL2, VL3, VL4, VL5, VL6, VL7, VL8, VL9, VL10, VL11, VL12, VL13, VL14, VL15, VL16, VL17, VL18, VL19, VL20, VL21, VL22, VL23, VL24, VL25, VL26, VL27, VL28, VL29, VL30, VL31, VL32, VL33, VL34, VL35, VL36, VL37, VL38, VL39, VL40, VL41, VL42, VL43, VL44, VL45, VL46, VL47, VL48, VL49, VL50, VL51, VL52, VL53, VL54, VL55, VL56, VL57, VL58, VL59, VL60, VL61, VL62, VL63, VL64, VL65, VL66, VL67, VL68, VL69, VL70, VL71, VL72, VL73, VL74, VL75, VL76, VL77, VL78, VL79, VL80, VL81, VL82, VL83, VL84, VL85, VL86, VL87, VL88, VL89, VL90, VL91, VL92, VL93, VL94, VL95, VL96, VL97, VL98, VL99 and VL100 can be grafted to consensus human FRs. To create consensus human FRs, FRs from several human heavy chain or light chain amino acid sequences can be aligned to identify a consensus amino acid sequence. In other embodiments, the FRs of a heavy chain or light chain disclosed herein are replaced with the FRs from a different heavy chain or light chain. In one aspect, rare amino acids in the FRs of the heavy and light chains of an antigen binding protein (e.g., an antibody) that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are not replaced, while the rest of the FR amino acids are replaced. A “rare amino acid” is a specific amino acid that is in a position in which this particular amino acid is not usually found in an FR. Alternatively, the grafted variable regions from the one heavy or light chain can be used with a constant region that is different from the constant region of that particular heavy or light chain as disclosed herein. In other embodiments, the grafted variable regions are part of a single chain Fv antibody.


In certain embodiments, constant regions from species other than human can be used along with the human variable region(s) to produce hybrid antibodies.


Fully Human Antibodies

Fully human antibodies are provided by the instant disclosure. Methods are available for making fully human antibodies specific for a given antigen without exposing human beings to the antigen (“fully human antibodies”). One specific means provided for implementing the production of fully human antibodies is the “humanization” of the mouse humoral immune system. Introduction of human immunoglobulin (Ig) loci into mice in which the endogenous Ig genes have been inactivated is one means of producing fully human monoclonal antibodies (mAbs) in mouse, an animal that can be immunized with any desirable antigen. Using fully human antibodies can minimize the immunogenic and allergic responses that can sometimes be caused by administering mouse or mouse-derived mAbs to humans as therapeutic agents.


Fully human antibodies can be produced by immunizing transgenic animals (typically mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production. Antigens for this purpose typically have six or more contiguous amino acids, and optionally are conjugated to a carrier, such as a hapten. See, e.g., Jakobovits et al., (1993) Proc. Natl. Acad. Sci. USA 90:2551-2555; Jakobovits et al., (1993) Nature 362:255-258; and Bruggermann et al., (1993) Year in Immunol. 7:33. In one example of such a method, transgenic animals are produced by incapacitating the endogenous mouse immunoglobulin loci encoding the mouse heavy and light immunoglobulin chains therein, and inserting into the mouse genome large fragments of human genome DNA containing loci that encode human heavy and light chain proteins. Partially modified animals, which have less than the full complement of human immunoglobulin loci, are then cross-bred to obtain an animal having all of the desired immune system modifications. When administered an immunogen, these transgenic animals produce antibodies that are immunospecific for the immunogen but have human rather than murine amino acid sequences, including the variable regions. For further details of such methods, see, e.g., WO96/33735 and WO94/02602. Additional methods relating to transgenic mice for making human antibodies are described in U.S. Pat. No. 5,545,807; U.S. Pat. No. 6,713,610; U.S. Pat. No. 6,673,986; U.S. Pat. No. 6,162,963; U.S. Pat. No. 5,545,807; U.S. Pat. No. 6,300,129; U.S. Pat. No. 6,255,458; U.S. Pat. No. 5,877,397; U.S. Pat. No. 5,874,299 and U.S. Pat. No. 5,545,806; in PCT publications WO91/10741, WO90/04036, and in EP 546073 and EP 546073.


According to certain embodiments, antibodies of the invention can be prepared through the utilization of a transgenic mouse that has a substantial portion of the human antibody producing genome inserted but that is rendered deficient in the production of endogenous, murine antibodies. Such mice, then, are capable of producing human immunoglobulin molecules and antibodies and are deficient in the production of murine immunoglobulin molecules and antibodies. Technologies utilized for achieving this result are disclosed in the patents, applications and references disclosed in the specification, herein. In certain embodiments, one can employ methods such as those disclosed in PCT Published Application No. WO 98/24893 or in Mendez et al., (1997) Nature Genetics, 15:146-156, which are hereby incorporated by reference for any purpose.


Generally, fully human monoclonal antibodies specific for a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR1c can be produced as follows. Transgenic mice containing human immunoglobulin genes are immunized with the antigen of interest, e.g. those described herein, lymphatic cells (such as B-cells) from the mice that express antibodies are obtained. Such recovered cells are fused with a myeloid-type cell line to prepare immortal hybridoma cell lines, and such hybridoma cell lines are screened and selected to identify hybridoma cell lines that produce antibodies specific to the antigen of interest. In certain embodiments, the production of a hybridoma cell line that produces antibodies specific to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR1c is provided.


In certain embodiments, fully human antibodies can be produced by exposing human splenocytes (B or T cells) to an antigen in vitro, and then reconstituting the exposed cells in an immunocompromised mouse, e.g. SCID or nod/SCID. See, e.g., Brams et al., J. Immunol. 160: 2051-2058 (1998); Carballido et al., Nat. Med., 6: 103-106 (2000). In certain such approaches, engraftment of human fetal tissue into SCID mice (SCID-hu) results in long-term hematopoiesis and human T-cell development. See, e.g., McCune et al., Science, 241:1532-1639 (1988); Ifversen et al., Sem. Immunol., 8:243-248 (1996). In certain instances, humoral immune response in such chimeric mice is dependent on co-development of human T-cells in the animals. See, e.g., Martensson et al., Immunol., 83:1271-179 (1994). In certain approaches, human peripheral blood lymphocytes are transplanted into SCID mice. See, e.g., Mosier et al., Nature, 335:256-259 (1988). In certain such embodiments, when such transplanted cells are treated either with a priming agent, such as Staphylococcal Enterotoxin A (SEA), or with anti-human CD40 monoclonal antibodies, higher levels of B cell production is detected. See, e.g., Martensson et al., Immunol., 84: 224-230 (1995); Murphy et al., Blood, 86:1946-1953 (1995).


Thus, in certain embodiments, fully human antibodies can be produced by the expression of recombinant DNA in host cells or by expression in hybridoma cells. In other embodiments, antibodies can be produced using the phage display techniques described herein.


The antibodies described herein were prepared through the utilization of the XENOMOUSE® technology, as described herein. Such mice, then, are capable of producing human immunoglobulin molecules and antibodies and are deficient in the production of murine immunoglobulin molecules and antibodies. Technologies utilized for achieving the same are disclosed in the patents, applications, and references disclosed in the background section herein. In particular, however, a preferred embodiment of transgenic production of mice and antibodies therefrom is disclosed in U.S. patent application Ser. No. 08/759,620, filed Dec. 3, 1996 and International Patent Application Nos. WO 98/24893, published Jun. 11, 1998 and WO 00/76310, published Dec. 21, 2000, the disclosures of which are hereby incorporated by reference. See also Mendez et al., Nature Genetics, 15:146-156 (1997), the disclosure of which is hereby incorporated by reference.


Through the use of such technology, fully human monoclonal antibodies to a variety of antigens have been produced. Essentially, XENOMOUSE® lines of mice are immunized with an antigen of interest (e.g. an antigen provided herein), lymphatic cells (such as B-cells) are recovered from the hyper-immunized mice, and the recovered lymphocytes are fused with a myeloid-type cell line to prepare immortal hybridoma cell lines. These hybridoma cell lines are screened and selected to identify hybridoma cell lines that produced antibodies specific to the antigen of interest. Provided herein are methods for the production of multiple hybridoma cell lines that produce antibodies specific to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR1c. Further, provided herein are characterization of the antibodies produced by such cell lines, including nucleotide and amino acid sequence analyses of the heavy and light chains of such antibodies.


The production of the XENOMOUSE® strains of mice is further discussed and delineated in U.S. patent application Ser. No. 07/466,008, filed Jan. 12, 1990, Ser. No. 07/610,515, filed Nov. 8, 1990, Ser. No. 07/919,297, filed Jul. 24, 1992, Ser. No. 07/922,649, filed Jul. 30, 1992, Ser. No. 08/031,801, filed Mar. 15, 1993, Ser. No. 08/112,848, filed Aug. 27, 1993, Ser. No. 08/234,145, filed Apr. 28, 1994, Ser. No. 08/376,279, filed Jan. 20, 1995, 08/430,938, filed Apr. 27, 1995, Ser. No. 08/464,584, filed Jun. 5, 1995, Ser. No. 08/464,582, filed Jun. 5, 1995, Ser. No. 08/463,191, filed Jun. 5, 1995, Ser. No. 08/462,837, filed Jun. 5, 1995, Ser. No. 08/486,853, filed Jun. 5, 1995, Ser. No. 08/486,857, filed Jun. 5, 1995, Ser. No. 08/486,859, filed Jun. 5, 1995, Ser. No. 08/462,513, filed Jun. 5, 1995, Ser. No. 08/724,752, filed Oct. 2, 1996, Ser. No. 08/759,620, filed Dec. 3, 1996, U.S. Publication 2003/0093820, filed Nov. 30, 2001 and U.S. Pat. Nos. 6,162,963, 6,150,584, 6,114,598, 6,075,181, and 5,939,598 and Japanese Patent Nos. 3 068 180 B2, 3 068 506 B2, and 3 068 507 B2. See also European Patent No., EP 0 463 151 B1, grant published Jun. 12, 1996, International Patent Application No., WO 94/02602, published Feb. 3, 1994, International Patent Application No., WO 96/34096, published Oct. 31, 1996, WO 98/24893, published Jun. 11, 1998, WO 00/76310, published Dec. 21, 2000. The disclosures of each of the above-cited patents, applications, and references are hereby incorporated by reference in their entirety.


Using hybridoma technology, antigen-specific human mAbs with the desired specificity can be produced and selected from the transgenic mice such as those described herein. Such antibodies can be cloned and expressed using a suitable vector and host cell, or the antibodies can be harvested from cultured hybridoma cells.


Fully human antibodies can also be derived from phage-display libraries (as described in Hoogenboom et al., (1991) J. Mol. Biol. 227:381; and Marks et al., (1991) J. Mol. Biol. 222:581). Phage display techniques mimic immune selection through the display of antibody repertoires on the surface of filamentous bacteriophage, and subsequent selection of phage by their binding to an antigen of choice. One such technique is described in PCT Publication No. WO 99/10494 (hereby incorporated by reference), which describes the isolation of high affinity and functional agonistic antibodies for MPL- and msk-receptors using such an approach.


Bispecific or Bifunctional Antigen Binding Proteins

Also provided are bispecific and bifunctional antibodies that include one or more CDRs or one or more variable regions as described above. A bispecific or bifunctional antibody in some instances can be an artificial hybrid antibody having two different heavy/light chain pairs and two different binding sites. Bispecific antibodies can be produced by a variety of methods including, but not limited to, fusion of hybridomas or linking of Fab′ fragments. See, e.g., Songsivilai & Lachmann, (1990) Clin. Exp. Immunol. 79:315-321; Kostelny et al., (1992) J. Immunol. 148:1547-1553. When an antigen binding protein of the instant disclosure binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, the binding may lead to the activation of FGF21-like activity as measured by the FGF21-like functional and signaling assays described in Examples 4-6; when such an antigen binding protein is an antibody it is referred to as an agonistic antibody.


Various Other Forms

Some of the antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are provided in the present disclosure include variant forms of the antigen binding proteins disclosed herein (e.g., those having the sequences listed in Tables 1-4 and 6-23).


In various embodiments, the antigen binding proteins disclosed herein can comprise one or more non-naturally occurring/encoded amino acids. For instance, some of the antigen binding proteins have one or more non-naturally occurring/encoded amino acid substitutions in one or more of the heavy or light chains, variable regions or CDRs listed in Tables 1-23. Examples of non-naturally occurring/encoded amino acids (which can be substituted for any naturally-occurring amino acid found in any sequence disclosed herein, as desired) include: 4-hydroxyproline, γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, σ-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the left-hand direction is the amino terminal direction and the right-hand direction is the carboxyl-terminal direction, in accordance with standard usage and convention. A non-limiting lists of examples of non-naturally occurring/encoded amino acids that can be inserted into an antigen binding protein sequence or substituted for a wild-type residue in an antigen binding sequence include β-amino acids, homoamino acids, cyclic amino acids and amino acids with derivatized side chains. Examples include (in the L-form or D-form; abbreviated as in parentheses): citrulline (Cit), homocitrulline (hCit), Nα-methylcitrulline (NMeCit), Nα-methylhomocitrulline (Nα-MeHoCit), ornithine (Orn), Nα-Methylornithine (Nα-MeOrn or NMeOrn), sarcosine (Sar), homolysine (hLys or hK), homoarginine (hArg or hR), homoglutamine (hQ), Nα-methylarginine (NMeR), Nα-methylleucine (Nα-MeL or NMeL), N-methylhomolysine (NMeHoK), Nα-methylglutamine (NMeQ), norleucine (Nle), norvaline (Nva), 1,2,3,4-tetrahydroisoquinoline (Tic), Octahydroindole-2-carboxylic acid (Oic), 3-(1-naphthy)alanine (1-Nal), 3-(2-naphthyl)alanine (2-Nal), 1,2,3,4-tetrahydroisoquinoline (Tic), 2-indanylglycine (IgI), para-iodophenylalanine (pI-Phe), para-aminophenylalanine (4AmP or 4-Amino-Phe), 4-guanidino phenylalanine (Guf), glycyllysine (abbreviated “K(Nε-glycyl)” or “K(glycyl)” or “K(gly)”), nitrophenylalanine (nitrophe), aminophenylalanine (aminophe or Amino-Phe), benzylphenylalanine (benzylphe), γ-carboxyglutamic acid (γ-carboxyglu), hydroxyproline (hydroxypro), p-carboxyl-phenylalanine (Cpa), α-aminoadipic acid (Aad), Nα-methyl valine (NMeVal), N-α-methyl leucine (NMeLeu), Nα-methylnorleucine (NMeNle), cyclopentylglycine (Cpg), cyclohexylglycine (Chg), acetylarginine (acetylarg), α, β-diaminopropionoic acid (Dpr), α, γ-diaminobutyric acid (Dab), diaminopropionic acid (Dap), cyclohexylalanine (Cha), 4-methyl-phenylalanine (MePhe), β, β-diphenyl-alanine (BiPhA), aminobutyric acid (Abu), 4-phenyl-phenylalanine (or biphenylalanine; 4Bip), α-amino-isobutyric acid (Aib), beta-alanine, beta-aminopropionic acid, piperidinic acid, aminocaprioic acid, aminoheptanoic acid, aminopimelic acid, desmosine, diaminopimelic acid, N-ethylglycine, N-ethylaspargine, hydroxylysine, allo-hydroxylysine, isodesmosine, allo-isoleucine, N-methylglycine, N-methylisoleucine, N-methylvaline, 4-hydroxyproline (Hyp), γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, 0-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, ω-methylarginine, 4-Amino-O-Phthalic Acid (4APA), and other similar amino acids, and derivatized forms of any of those specifically listed.


Additionally, the antigen binding proteins can have one or more conservative amino acid substitutions in one or more of the heavy or light chains, variable regions or CDRs listed in Tables 1-4 and 6-23. Naturally-occurring amino acids can be divided into classes based on common side chain properties:


1) hydrophobic: norleucine, Met, Ala, Val, Leu, Ile;


2) neutral hydrophilic: Cys, Ser, Thr, Asn, Gln;


3) acidic: Asp, Glu;


4) basic: His, Lys, Arg;


5) residues that influence chain orientation: Gly, Pro; and


6) aromatic: Trp, Tyr, Phe.


Conservative amino acid substitutions can involve exchange of a member of one of these classes with another member of the same class. Conservative amino acid substitutions can encompass non-naturally occurring/encoded amino acid residues, which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. See Table 8, infra. These include peptidomimetics and other reversed or inverted forms of amino acid moieties.


Non-conservative substitutions can involve the exchange of a member of one of the above classes for a member from another class. Such substituted residues can be introduced into regions of the antibody that are homologous with human antibodies, or into the non-homologous regions of the molecule.


In making such changes, according to certain embodiments, the hydropathic index of amino acids can be considered. The hydropathic profile of a protein is calculated by assigning each amino acid a numerical value (“hydropathy index”) and then repetitively averaging these values along the peptide chain. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. They are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (−0.4); threonine (−0.7); serine (−0.8); tryptophan (−0.9); tyrosine (−1.3); proline (−1.6); histidine (−3.2); glutamate (−3.5); glutamine (−3.5); aspartate (−3.5); asparagine (−3.5); lysine (−3.9); and arginine (−4.5).


The importance of the hydropathic profile in conferring interactive biological function on a protein is understood in the art (see, e.g., Kyte et al., 1982, J. Mol. Biol. 157:105-131). It is known that certain amino acids can be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, in certain embodiments, the substitution of amino acids whose hydropathic indices are within ±2 is included. In some aspects, those which are within ±1 are included, and in other aspects, those within ±0.5 are included.


It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity, particularly where the biologically functional protein or peptide thereby created is intended for use in immunological embodiments, as in the present case. In certain embodiments, the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigen-binding or immunogenicity, that is, with a biological property of the protein.


The following hydrophilicity values have been assigned to these amino acid residues: arginine (+3.0); lysine (+3.0); aspartate (+3.0±1); glutamate (+3.0±1); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (−0.4); proline (−0.5±1); alanine (−0.5); histidine (−0.5); cysteine (−1.0); methionine (−1.3); valine (−1.5); leucine (−1.8); isoleucine (−1.8); tyrosine (−2.3); phenylalanine (−2.5) and tryptophan (−3.4). In making changes based upon similar hydrophilicity values, in certain embodiments, the substitution of amino acids whose hydrophilicity values are within ±2 is included, in other embodiments, those which are within ±1 are included, and in still other embodiments, those within ±0.5 are included. In some instances, one can also identify epitopes from primary amino acid sequences on the basis of hydrophilicity. These regions are also referred to as “epitopic core regions.”


Exemplary conservative amino acid substitutions are set forth in Table 8.









TABLE 8







Conservative Amino Acid Substitutions










Original Residue
Exemplary Substitutions







Ala
Ser



Arg
Lys



Asn
Gln, His



Asp
Glu



Cys
Ser



Gln
Asn



Glu
Asp



Gly
Pro



His
Asn, Gln



Ile
Leu, Val



Leu
Ile, Val



Lys
Arg, Gln, Glu



Met
Leu, Ile



Phe
Met, Leu, Tyr



Ser
Thr



Thr
Ser



Trp
Tyr



Tyr
Trp, Phe



Val
Ile, Leu










A skilled artisan will be able to determine suitable variants of polypeptides as set forth herein using well-known techniques coupled with the information provided herein. One skilled in the art can identify suitable areas of the molecule that can be changed without destroying activity by targeting regions not believed to be important for activity. The skilled artisan also will be able to identify residues and portions of the molecules that are conserved among similar polypeptides. In further embodiments, even areas that can be important for biological activity or for structure can be subject to conservative amino acid substitutions without destroying the biological activity or without adversely affecting the polypeptide structure.


Additionally, one skilled in the art can review structure-function studies identifying residues in similar polypeptides that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a protein that correspond to amino acid residues important for activity or structure in similar proteins. One skilled in the art can opt for chemically similar amino acid substitutions for such predicted important amino acid residues.


One skilled in the art can also analyze the three-dimensional structure and amino acid sequence in relation to that structure in similar polypeptides. In view of such information, one skilled in the art can predict the alignment of amino acid residues of an antibody with respect to its three dimensional structure. One skilled in the art can choose not to make radical changes to amino acid residues predicted to be on the surface of the protein, since such residues can be involved in important interactions with other molecules. Moreover, one skilled in the art can generate test variants containing a single amino acid substitution at each desired amino acid residue. These variants can then be screened using assays for FGF21-like signaling, (including those described in the Examples provided herein) thus yielding information regarding which amino acids can be changed and which must not be changed. In other words, based on information gathered from such routine experiments, one skilled in the art can readily determine the amino acid positions where further substitutions should be avoided either alone or in combination with other mutations.


A number of scientific publications have been devoted to the prediction of secondary structure. See, Moult, (1996) Curr. Op. in Biotech. 7:422-427; Chou et al., (1974) Biochem. 13:222-245; Chou et al., (1974) Biochemistry 113:211-222; Chou et al., (1978) Adv. Enzymol. Relat Areas Mol. Biol. 47:45-148; Chou et al., (1979) Ann. Rev. Biochem. 47:251-276; and Chou et al., (1979) Biophys. J. 26:367-384. Moreover, computer programs are currently available to assist with predicting secondary structure. One method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins that have a sequence identity of greater than 30%, or similarity greater than 40% can have similar structural topologies. The growth of the protein structural database (PDB) has provided enhanced predictability of secondary structure, including the potential number of folds within a polypeptide's or protein's structure. See, Holm et al., (1999) Nucl. Acid. Res. 27:244-247. It has been suggested (Brenner et al., (1997) Curr. Op. Struct. Biol. 7:369-376) that there are a limited number of folds in a given polypeptide or protein and that once a critical number of structures have been resolved, structural prediction will become dramatically more accurate.


Additional methods of predicting secondary structure include “threading” (Jones, (1997) Curr. Opin. Struct. Biol. 7:377-387; Sippl et al., (1996) Structure 4:15-19), “profile analysis” (Bowie et al., (1991) Science 253:164-170; Gribskov et al., (1990) Meth. Enzym. 183:146-159; Gribskov et al., (1987) Proc. Nat. Acad. Sci. 84:4355-4358), and “evolutionary linkage” (See, Holm, (1999) supra; and Brenner, (1997) supra).


In some embodiments, amino acid substitutions are made that: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter ligand or antigen binding affinities, and/or (4) confer or modify other physicochemical or functional properties on such polypeptides. For example, single or multiple amino acid substitutions (in some embodiments, conservative amino acid substitutions) can be made in the naturally-occurring sequence. Substitutions can be made in that portion of the antibody that lies outside the domain(s) forming intermolecular contacts. In such embodiments, conservative amino acid substitutions can be used that do not substantially change the structural characteristics of the parent sequence (e.g., one or more replacement amino acids that do not disrupt the secondary structure that characterizes the parent or native antigen binding protein). Examples of art-recognized polypeptide secondary and tertiary structures are described in Creighton, Proteins: Structures and Molecular Properties 2nd edition, 1992, W. H. Freeman & Company; Creighton, Proteins: Structures and Molecular Principles, 1984, W. H. Freeman & Company; Introduction to Protein Structure (Branden and Tooze, eds.), 2nd edition, 1999, Garland Publishing; Petsko & Ringe, Protein Structure and Function, 2004, New Science Press Ltd; and Thornton et al., (1991) Nature 354:105, which are each incorporated herein by reference.


Additional preferred antibody variants include cysteine variants wherein one or more cysteine residues in the parent or native amino acid sequence are deleted from or substituted with another amino acid (e.g., serine). Cysteine variants are useful, inter alia when antibodies must be refolded into a biologically active conformation. Cysteine variants can have fewer cysteine residues than the native antibody, and typically have an even number to minimize interactions resulting from unpaired cysteines.


The heavy and light chains, variable regions domains and CDRs that are disclosed can be used to prepare polypeptides that contain an antigen binding region that can specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and may induce FGF21-like signaling. For example, one or more of the CDRs listed in Tables 3-4 and 21-23 can be incorporated into a molecule (e.g., a polypeptide) covalently or noncovalently to make an immunoadhesion. An immunoadhesion can incorporate the CDR(s) as part of a larger polypeptide chain, can covalently link the CDR(s) to another polypeptide chain, or can incorporate the CDR(s) noncovalently. The CDR(s) enable the immunoadhesion to bind specifically to a particular antigen of interest (e.g., to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c or an epitope thereon).


The heavy and light chains, variable regions domains and CDRs that are disclosed can be used to prepare polypeptides that contain an antigen binding region that can specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and may induce FGF21-like signaling. For example, one or more of the CDRs listed in Tables 3-4 and 21-23 can be incorporated into a molecule (e.g., a polypeptide) that is structurally similar to a “half” antibody comprising the heavy chain, the light chain of an antigen binding protein paired with a Fc fragment so that the antigen binding region is monovalent (like a Fab fragment) but with a dimeric Fc moiety.


Mimetics (e.g., “peptide mimetics” or “peptidomimetics”) based upon the variable region domains and CDRs that are described herein are also provided. These analogs can be peptides, non-peptides or combinations of peptide and non-peptide regions. Fauchere, (1986) Adv. Drug Res. 15:29; Veber and Freidinger, (1985) TINS p. 392; and Evans et al., (1987) J. Med. Chem. 30:1229, which are incorporated herein by reference for any purpose. Peptide mimetics that are structurally similar to therapeutically useful peptides can be used to produce a similar therapeutic or prophylactic effect. Such compounds are often developed with the aid of computerized molecular modeling. Generally, peptidomimetics are proteins that are structurally similar to an antibody displaying a desired biological activity, such as here the ability to specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, but have one or more peptide linkages optionally replaced by a linkage selected from: —CH2NH—, —CH2S—, —CH2—CH2—, —CH—CH-(cis and trans), —COCH2—, —CH(OH)CH2—, and —CH2SO—, by methods well known in the art. Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) can be used in certain embodiments to generate more stable proteins. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation can be generated by methods known in the art (Rizo and Gierasch, (1992) Ann. Rev. Biochem. 61:387), incorporated herein by reference), for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.


Derivatives of the antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are described herein are also provided. The derivatized antigen binding proteins can comprise any molecule or substance that imparts a desired property to the antibody or fragment, such as increased half-life in a particular use. The derivatized antigen binding protein can comprise, for example, a detectable (or labeling) moiety (e.g., a radioactive, colorimetric, antigenic or enzymatic molecule, a detectable bead (such as a magnetic or electrodense (e.g., gold) bead), or a molecule that binds to another molecule (e.g., biotin or streptavidin), a therapeutic or diagnostic moiety (e.g., a radioactive, cytotoxic, or pharmaceutically active moiety), or a molecule that increases the suitability of the antigen binding protein for a particular use (e.g., administration to a subject, such as a human subject, or other in vivo or in vitro uses). Examples of molecules that can be used to derivatize an antigen binding protein include albumin (e.g., human serum albumin) and polyethylene glycol (PEG). Albumin-linked and PEGylated derivatives of antigen binding proteins can be prepared using techniques well known in the art. Certain antigen binding proteins include a PEGylated single chain polypeptide as described herein. In one embodiment, the antigen binding protein is conjugated or otherwise linked to transthyretin (“TTR”) or a TTR variant. The TTR or TTR variant can be chemically modified with, for example, a chemical selected from the group consisting of dextran, poly(n-vinyl pyrrolidone), polyethylene glycols, propropylene glycol homopolymers, polypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols and polyvinyl alcohols.


Other derivatives include covalent or aggregative conjugates of the antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are disclosed herein with other proteins or polypeptides, such as by expression of recombinant fusion proteins comprising heterologous polypeptides fused to the N-terminus or C-terminus of an antigen binding protein that induces FGF21-like signaling. For example, the conjugated peptide can be a heterologous signal (or leader) polypeptide, e.g., the yeast alpha-factor leader, or a peptide such as an epitope tag. An antigen binding protein-containing fusion protein of the present disclosure can comprise peptides added to facilitate purification or identification of an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c (e.g., a poly-His tag) and that can induce FGF21-like signaling. An antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c also can be linked to the FLAG peptide as described in Hopp et al., (1988) Bio/Technology 6:1204; and U.S. Pat. No. 5,011,912. The FLAG peptide is highly antigenic and provides an epitope reversibly bound by a specific monoclonal antibody (mAb), enabling rapid assay and facile purification of expressed recombinant protein. Reagents useful for preparing fusion proteins in which the FLAG peptide is fused to a given polypeptide are commercially available (Sigma, St. Louis, Mo.).


Multimers that comprise one or more antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c form another aspect of the present disclosure. Multimers can take the form of covalently-linked or non-covalently-linked dimers, trimers, or higher multimers. Multimers comprising two or more antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and which may induce FGF21-like signaling are contemplated for use as therapeutics, diagnostics and for other uses as well, with one example of such a multimer being a homodimer. Other exemplary multimers include heterodimers, homotrimers, heterotrimers, homotetramers, heterotetramers, etc.


One embodiment is directed to multimers comprising multiple antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c joined via covalent or non-covalent interactions between peptide moieties fused to an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Such peptides can be peptide linkers (spacers), or peptides that have the property of promoting multimerization. Leucine zippers and certain polypeptides derived from antibodies are among the peptides that can promote multimerization of antigen binding proteins attached thereto, as described in more detail herein.


In particular embodiments, the multimers comprise from two to four antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. The antigen binding protein moieties of the multimer can be in any of the forms described above, e.g., variants or fragments. Preferably, the multimers comprise antigen binding proteins that have the ability to specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c.


In one embodiment, an oligomer is prepared using polypeptides derived from immunoglobulins. Preparation of fusion proteins comprising certain heterologous polypeptides fused to various portions of antibody-derived polypeptides (including the Fc domain) has been described, e.g., by Ashkenazi et al., (1991) Proc. Natl. Acad. Sci. USA 88:10535; Byrn et al., (1990) Nature 344:677; and Hollenbaugh et al., (1992) Current Protocols in Immunology, Suppl. 4, pages 10.19.1-10.19.11.


One embodiment comprises a dimer comprising two fusion proteins created by fusing an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c to the Fc region of an antibody. The dimer can be made by, for example, inserting a gene fusion encoding the fusion protein into an appropriate expression vector, expressing the gene fusion in host cells transformed with the recombinant expression vector, and allowing the expressed fusion protein to assemble much like antibody molecules, whereupon interchain disulfide bonds form between the Fc moieties to yield the dimer.


The term “Fc polypeptide” as used herein includes native and mutein forms of polypeptides derived from the Fc region of an antibody. Truncated forms of such polypeptides containing the hinge region that promotes dimerization also are included. Fusion proteins comprising Fc moieties (and oligomers formed therefrom) offer the advantage of facile purification by affinity chromatography over Protein A or Protein G columns.


One suitable Fc polypeptide, described in PCT application WO 93/10151 and U.S. Pat. No. 5,426,048 and U.S. Pat. No. 5,262,522, is a single chain polypeptide extending from the N-terminal hinge region to the native C-terminus of the Fc region of a human IgG1 antibody. Another useful Fc polypeptide is the Fc mutein described in U.S. Pat. No. 5,457,035, and in Baum et al., (1994) EMBO J. 13:3992-4001. The amino acid sequence of this mutein is identical to that of the native Fc sequence presented in WO 93/10151, except that amino acid 19 has been changed from Leu to Ala, amino acid 20 has been changed from Leu to Glu, and amino acid 22 has been changed from Gly to Ala. The mutein exhibits reduced affinity for Fc receptors.


In other embodiments, the variable portion of the heavy and/or light chains of a antigen binding protein such as disclosed herein can be substituted for the variable portion of an antibody heavy and/or light chain.


Alternatively, the oligomer is a fusion protein comprising multiple antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with or without peptide linkers (spacer peptides). Among the suitable peptide linkers are those described in U.S. Pat. No. 4,751,180 and U.S. Pat. No. 4,935,233.


Another method for preparing oligomeric derivatives comprising that antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c involves use of a leucine zipper. Leucine zipper domains are peptides that promote oligomerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA-binding proteins (Landschultz et al., (1988) Science 240:1759-64), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize. Examples of leucine zipper domains suitable for producing soluble oligomeric proteins are described in PCT application WO 94/10308, and the leucine zipper derived from lung surfactant protein D (SPD) described in Hoppe et al., (1994) FEBS Letters 344:191, hereby incorporated by reference. The use of a modified leucine zipper that allows for stable trimerization of a heterologous protein fused thereto is described in Fanslow et al., (1994) Semin. Immunol. 6:267-278. In one approach, recombinant fusion proteins comprising an antigen binding protein fragment or derivative that specifically binds to a complex comprising β-Klotho and an FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) is fused to a leucine zipper peptide are expressed in suitable host cells, and the soluble oligomeric antigen binding protein fragments or derivatives that form are recovered from the culture supernatant.


In certain embodiments, the antigen binding protein has a KD (equilibrium binding affinity) of less than 1 pM, 10 pM, 100 pM, 1 nM, 2 nM, 5 nM, 10 nM, 25 nM or 50 nM.


In another aspect the instant disclosure provides an antigen binding protein having a half-life of at least one day in vitro or in vivo (e.g., when administered to a human subject). In one embodiment, the antigen binding protein has a half-life of at least three days. In another embodiment, the antibody or portion thereof has a half-life of four days or longer. In another embodiment, the antibody or portion thereof has a half-life of eight days or longer. In another embodiment, the antibody or portion thereof has a half-life of ten days or longer. In another embodiment, the antibody or portion thereof has a half-life of eleven days or longer. In another embodiment, the antibody or portion thereof has a half-life of fifteen days or longer. In another embodiment, the antibody or antigen-binding portion thereof is derivatized or modified such that it has a longer half-life as compared to the underivatized or unmodified antibody. In another embodiment, an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c contains point mutations to increase serum half life, such as described in WO 00/09560, published Feb. 24, 2000, incorporated by reference.


Glycosylation

An antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can have a glycosylation pattern that is different or altered from that found in the native species. As is known in the art, glycosylation patterns can depend on both the sequence of the protein (e.g., the presence or absence of particular glycosylation amino acid residues, discussed below), or the host cell or organism in which the protein is produced. Particular expression systems are discussed below.


Glycosylation of polypeptides is typically either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tri-peptide sequences asparagine-X-serine and asparagine-X-threonine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the carbohydrate moiety to the asparagine side chain. Thus, the presence of either of these tri-peptide sequences in a polypeptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose, to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5-hydroxylysine can also be used.


Addition of glycosylation sites to the antigen binding protein is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above-described tri-peptide sequences (for N-linked glycosylation sites). The alteration can also be made by the addition of, or substitution by, one or more serine or threonine residues to the starting sequence (for O-linked glycosylation sites). For ease, the antigen binding protein amino acid sequence can be altered through changes at the DNA level, particularly by mutating the DNA encoding the target polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.


Another means of increasing the number of carbohydrate moieties on the antigen binding protein is by chemical or enzymatic coupling of glycosides to the protein. These procedures are advantageous in that they do not require production of the protein in a host cell that has glycosylation capabilities for N- and O-linked glycosylation. Depending on the coupling mode used, the sugar(s) can be attached to (a) arginine and histidine; (b) free carboxyl groups; (c) free sulfhydryl groups such as those of cysteine; (d) free hydroxyl groups such as those of serine, threonine, or hydroxyproline; (e) aromatic residues such as those of phenylalanine, tyrosine, or tryptophan; or (0 the amide group of glutamine. These methods are described in WO 87/05330 and in Aplin & Wriston, (1981) CRC Crit. Rev. Biochem. 10:259-306.


Removal of carbohydrate moieties present on the starting antigen binding protein can be accomplished chemically or enzymatically. Chemical deglycosylation requires exposure of the protein to the compound trifluoromethanesulfonic acid, or an equivalent compound. This treatment results in the cleavage of most or all sugars except the linking sugar (N-acetylglucosamine or N-acetylgalactosamine), while leaving the polypeptide intact. Chemical deglycosylation is described by Hakimuddin et al., (1987) Arch. Biochem. Biophys. 259:52-57 and by Edge et al., (1981) Anal. Biochem. 118:131-37. Enzymatic cleavage of carbohydrate moieties on polypeptides can be achieved by the use of a variety of endo- and exo-glycosidases as described by Thotakura et al., (1987) Meth. Enzymol. 138:350-59. Glycosylation at potential glycosylation sites can be prevented by the use of the compound tunicamycin as described by Duskin et al., (1982) J. Biol. Chem. 257:3105-09. Tunicamycin blocks the formation of protein-N-glycoside linkages.


Hence, aspects of the present disclosure include glycosylation variants of antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c wherein the number and/or type of glycosylation site(s) has been altered compared to the amino acid sequences of the parent polypeptide. In certain embodiments, antibody protein variants comprise a greater or a lesser number of N-linked glycosylation sites than the native antibody. An N-linked glycosylation site is characterized by the sequence: Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X can be any amino acid residue except proline. The substitution of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions that eliminate or alter this sequence will prevent addition of an N-linked carbohydrate chain present in the native polypeptide. For example, the glycosylation can be reduced by the deletion of an Asn or by substituting the Asn with a different amino acid. In other embodiments, one or more new N-linked sites are created. Antibodies typically have a N-linked glycosylation site in the Fc region.


Labels and Effector Groups

In some embodiments, an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c comprises one or more labels. The term “labeling group” or “label” means any detectable label. Examples of suitable labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, 111In, 125I, 131I) fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art and can be used as is seen fit.


The term “effector group” means any group coupled to an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c and that acts as a cytotoxic agent. Examples for suitable effector groups are radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, 111In, 125I, 131I) Other suitable groups include toxins, therapeutic groups, or chemotherapeutic groups. Examples of suitable groups include calicheamicin, auristatins, geldanamycin and cantansine. In some embodiments, the effector group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance.


In general, labels fall into a variety of classes, depending on the assay in which they are to be detected: a) isotopic labels, which can be radioactive or heavy isotopes; b) magnetic labels (e.g., magnetic particles); c) redox active moieties; d) optical dyes; enzymatic groups (e.g. horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase); e) biotinylated groups; and f) predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags, etc.). In some embodiments, the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art.


Specific labels include optical dyes, including, but not limited to, chromophores, phosphors and fluorophores, with the latter being specific in many instances. Fluorophores can be either “small molecule” fluores, or proteinaceous fluores.


By “fluorescent label” is meant any molecule that can be detected via its inherent fluorescent properties. Suitable fluorescent labels include, but are not limited to, fluorescein, rhodamine, tetramethylrhodamine, eosin, erythrosin, coumarin, methyl-coumarins, pyrene, Malacite green, stilbene, Lucifer Yellow, Cascade Blue, Texas Red, IAEDANS, EDANS, BODIPY FL, LC Red 640, Cy 5, Cy 5.5, LC Red 705, Oregon green, the Alexa-Fluor dyes (Alexa Fluor 350, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 568, Alexa Fluor 594, Alexa Fluor 633, Alexa Fluor 647, Alexa Fluor 660, Alexa Fluor 680), Cascade Blue, Cascade Yellow and R-phycoerythrin (PE) (Molecular Probes, Eugene, Oreg.), FITC, Rhodamine, and Texas Red (Pierce, Rockford, Ill.), CyS, Cy5.5, Cy7 (Amersham Life Science, Pittsburgh, Pa.). Suitable optical dyes, including fluorophores, are described in Molecular Probes Handbook by Richard P. Haugland and in subsequent editions, including Molecular Probes Handbook, A Guide to Fluorescent Probes and Labeling Technologies, 11th edition, Johnson and Spence (eds), hereby expressly incorporated by reference.


Suitable proteinaceous fluorescent labels also include, but are not limited to, green fluorescent protein, including a Renilla, Ptilosarcus, or Aequorea species of GFP (Chalfie et al., (1994) Science 263:802-805), eGFP (Clontech Labs., Inc., Genbank Accession Number U55762), blue fluorescent protein (BFP, Quantum Biotechnologies, Inc., Quebec, Canada; Stauber, (1998) Biotechniques 24:462-71; Heim et al., (1996) Curr. Biol. 6:178-82), enhanced yellow fluorescent protein (EYFP, Clontech Labs., Inc.), luciferase (Ichiki et al., (1993) J. Immunol. 150:5408-17), β-galactosidase (Nolan et al., (1988) Proc. Natl. Acad. Sci. U.S.A. 85:2603-07) and Renilla (WO92/15673, WO95/07463, WO98/14605, WO98/26277, WO99/49019, U.S. Pat. Nos. 5,292,658, 5,418,155, 5,683,888, 5,741,668, 5,777,079, 5,804,387, 5,874,304, 5,876,995 and 5,925,558).


Preparing of Antigen Binding Proteins

Non-human antibodies that are provided can be, for example, derived from any antibody-producing animal, such as a mouse, rat, rabbit, goat, donkey, or non-human primate (such as a monkey, (e.g., cynomolgus or rhesus monkey) or an ape (e.g., chimpanzee)). Non-human antibodies can be used, for instance, in in vitro cell culture and cell-culture based applications, or any other application where an immune response to the antibody does not occur or is insignificant, can be prevented, is not a concern, or is desired. In certain embodiments, the antibodies can be produced by immunizing with cell bound receptor from CHO transfectants expressing full length human FGFR1c and β-Klotho at the cell surface following incubated with FGF21; or with cell bound receptor of 293T transfectants expressing full length human β-Klotho and an N-terminal truncated version of human FGFR1c encompassing amino acid residues 141 to 822 of the polypeptide of SEQ ID NO: 4; or with full-length β-Klotho, FGFR1c, FGFR2c or FGFR3c; or with the extracellular domain of β-Klotho, FGFR1c, FGFR2c or FGFR3c; or with two of β-Klotho, FGFR1c, FGFR2c, and FGFR3c; or with whole cells expressing FGFR1c, β-Klotho or both FGFR1c and β-Klotho; or with membranes prepared from cells expressing FGFR1c, β-Klotho or both FGFR1c and β-Klotho; or with fusion proteins, e.g., Fc fusions comprising FGFR1c, β-Klotho or FGFR1c and β-Klotho (or extracellular domains thereof) fused to Fc, and other methods known in the art, e.g., as described in the Examples presented herein. Alternatively, the certain non-human antibodies can be raised by immunizing with amino acids which are segments of one or more of β-Klotho, FGFR1c, FGFR2c or FGFR3c that form part of the epitope to which certain antibodies provided herein bind. The antibodies can be polyclonal, monoclonal, or can be synthesized in host cells by expressing recombinant DNA.


Fully human antibodies can be prepared as described above by immunizing transgenic animals containing human immunoglobulin loci or by selecting a phage display library that is expressing a repertoire of human antibodies.


The monoclonal antibodies (mAbs) can be produced by a variety of techniques, including conventional monoclonal antibody methodology, e.g., the standard somatic cell hybridization technique of Kohler & Milstein, (1975) Nature 256:495-97. Alternatively, other techniques for producing monoclonal antibodies can be employed, for example, the viral or oncogenic transformation of B-lymphocytes. One suitable animal system for preparing hybridomas is the murine system, which is a very well established procedure. Immunization protocols and techniques for isolation of immunized splenocytes for fusion are known in the art. For such procedures, B cells from immunized mice are fused with a suitable immortalized fusion partner, such as a murine myeloma cell line. If desired, rats or other mammals besides can be immunized instead of mice and B cells from such animals can be fused with the murine myeloma cell line to form hybridomas. Alternatively, a myeloma cell line from a source other than mouse can be used. Fusion procedures for making hybridomas also are well known. SLAM technology can also be employed in the production of antibodies.


The single chain antibodies that are provided can be formed by linking heavy and light chain variable domain (Fv region) fragments via an amino acid bridge (short peptide linker), resulting in a single polypeptide chain. Such single-chain Fvs (scFvs) can be prepared by fusing DNA encoding a peptide linker between DNAs encoding the two variable domain polypeptides (VL and VH). The resulting polypeptides can fold back on themselves to form antigen-binding monomers, or they can form multimers (e.g., dimers, trimers, or tetramers), depending on the length of a flexible linker between the two variable domains (Kortt et al., (1997) Prot. Eng. 10:423; Kortt et al., (2001) Biomol. Eng. 18:95-108). By combining different VL and VH-comprising polypeptides, one can form multimeric scFvs that bind to different epitopes (Kriangkum et al., (2001) Biomol. Eng. 18:31-40). Techniques developed for the production of single chain antibodies include those described in U.S. Pat. No. 4,946,778; Bird et al., (1988) Science 242:423-26; Huston et al., (1988) Proc. Natl. Acad. Sci. U.S.A. 85:5879-83; Ward et al., (1989) Nature 334:544-46, de Graaf et al., (2002)Methods Mol Biol. 178:379-387. Single chain antibodies derived from antibodies provided herein include, but are not limited to scFvs comprising the variable domain combinations of the heavy and light chain variable regions depicted in Table 2, or combinations of light and heavy chain variable domains which include the CDRs depicted in Tables 3-4 and 6-23.


Antibodies provided herein that are of one subclass can be changed to antibodies from a different subclass using subclass switching methods. Thus, IgG antibodies can be derived from an IgM antibody, for example, and vice versa. Such techniques allow the preparation of new antibodies that possess the antigen binding properties of a given antibody (the parent antibody), but also exhibit biological properties associated with an antibody isotype or subclass different from that of the parent antibody. Recombinant DNA techniques can be employed. Cloned DNA encoding particular antibody polypeptides can be employed in such procedures, e.g., DNA encoding the constant domain of an antibody of the desired isotype. See, e.g., Lantto et al., (2002) Methods Mol. Biol. 178:303-16.


Accordingly, the antibodies that are provided include those comprising, for example, the variable domain combinations described, supra., having a desired isotype (for example, IgA, IgG1, IgG2, IgG3, IgG4, IgE, and IgD) as well as Fab or F(ab′)2 fragments thereof. Moreover, if an IgG4 is desired, it can also be desired to introduce a point mutation (e.g., a mutation from CPSCP to CPPCP (SEQ ID NOs 1828 and 1829, respectively, in order of appearance) in the hinge region as described in Bloom et al., (1997) Protein Science 6:407-15, incorporated by reference herein) to alleviate a tendency to form intra-H chain disulfide bonds that can lead to heterogeneity in the IgG4 antibodies.


Moreover, techniques for deriving antibodies having different properties (i.e., varying affinities for the antigen to which they bind) are also known. One such technique, referred to as chain shuffling, involves displaying immunoglobulin variable domain gene repertoires on the surface of filamentous bacteriophage, often referred to as phage display. Chain shuffling has been used to prepare high affinity antibodies to the hapten 2-phenyloxazol-5-one, as described by Marks et al., (1992) Nature Biotechnology 10:779-83.


Conservative modifications can be made to the heavy and light chain variable regions described in Table 2, or the CDRs described in Tables 3A and 3B, 4A and 4B, and Tables 6-23 (and corresponding modifications to the encoding nucleic acids) to produce an antigen binding protein having functional and biochemical characteristics. Methods for achieving such modifications are described herein.


Antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be further modified in various ways. For example, if they are to be used for therapeutic purposes, they can be conjugated with polyethylene glycol (PEGylated) to prolong the serum half-life or to enhance protein delivery. PEG can be attached directly to the antigen binding protein or it can be attached via a linker, such as a glycosidic linkage.


Alternatively, the V region of the subject antibodies or fragments thereof can be fused with the Fc region of a different antibody molecule. The Fc region used for this purpose can be modified so that it does not bind complement, thus reducing the likelihood of inducing cell lysis in the patient when the fusion protein is used as a therapeutic agent. In addition, the subject antibodies or functional fragments thereof can be conjugated with human serum albumin to enhance the serum half-life of the antibody or fragment thereof. Another useful fusion partner for the antigen binding proteins or fragments thereof is transthyretin (TTR). TTR has the capacity to form a tetramer, thus an antibody-TTR fusion protein can form a multivalent antibody which can increase its binding avidity.


Alternatively, substantial modifications in the functional and/or biochemical characteristics of the antigen binding proteins described herein can be achieved by creating substitutions in the amino acid sequence of the heavy and light chains that differ significantly in their effect on maintaining (a) the structure of the molecular backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulkiness of the side chain. A “conservative amino acid substitution” can involve a substitution of a native amino acid residue with a nonnative residue that has little or no effect on the polarity or charge of the amino acid residue at that position. See, Table 8, supra. Furthermore, any native residue in the polypeptide can also be substituted with alanine, as has been previously described for alanine scanning mutagenesis.


Amino acid substitutions (whether conservative or non-conservative) of the subject antibodies can be implemented by those skilled in the art by applying routine techniques. Amino acid substitutions can be used to identify important residues of the antibodies provided herein, or to increase or decrease the affinity of these antibodies for a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c or for modifying the binding affinity of other antigen-binding proteins described herein.


Methods of Expressing Antigen Binding Proteins

Expression systems and constructs in the form of plasmids, expression vectors, transcription or expression cassettes that comprise at least one polynucleotide as described above are also provided herein, as well host cells comprising such expression systems or constructs.


The antigen binding proteins provided herein can be prepared by any of a number of conventional techniques. For example, antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be produced by recombinant expression systems, using any technique known in the art. See, e.g., Monoclonal Antibodies, Hybridomas: A New Dimension in Biological Analyses, (Kennet et al., eds.) Plenum Press (1980) and subsequent editions; and Harlow & Lane, (1988) supra.


Antigen binding proteins can be expressed in hybridoma cell lines (e.g., in particular antibodies can be expressed in hybridomas) or in cell lines other than hybridomas. Expression constructs encoding the antibodies can be used to transform a mammalian, insect or microbial host cell. Transformation can be performed using any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus or bacteriophage and transducing a host cell with the construct by transfection procedures known in the art, as exemplified by U.S. Pat. Nos. 4,399,216; 4,912,040; 4,740,461; and 4,959,455. The optimal transformation procedure used will depend upon which type of host cell is being transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are well known in the art and include, but are not limited to, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, mixing nucleic acid with positively-charged lipids, and direct microinjection of the DNA into nuclei.


Recombinant expression constructs typically comprise a nucleic acid molecule encoding a polypeptide comprising one or more of the following: one or more CDRs provided herein; a light chain constant region; a light chain variable region; a heavy chain constant region (e.g., CH1, CH2 and/or CH3); and/or another scaffold portion of an antigen binding protein. These nucleic acid sequences are inserted into an appropriate expression vector using standard ligation techniques. In one embodiment, the heavy or light chain constant region is appended to the C-terminus of the anti-β-Klotho/FGFR (e.g., FGFR1c, FGFR2c or FGFR3c) complex-specific heavy or light chain variable region and is ligated into an expression vector. The vector is typically selected to be functional in the particular host cell employed (i.e., the vector is compatible with the host cell machinery, permitting amplification and/or expression of the gene can occur). In some embodiments, vectors are used that employ protein-fragment complementation assays using protein reporters, such as dihydrofolate reductase (see, for example, U.S. Pat. No. 6,270,964, which is hereby incorporated by reference). Suitable expression vectors can be purchased, for example, from Invitrogen Life Technologies or BD Biosciences. Other useful vectors for cloning and expressing the antibodies and fragments include those described in Bianchi and McGrew, (2003) Biotech. Biotechnol. Bioeng. 84:439-44, which is hereby incorporated by reference. Additional suitable expression vectors are discussed, for example, in “Gene Expression Technology,” Methods Enzymol., vol. 185, (Goeddel et al., ed.), (1990), Academic Press.


Typically, expression vectors used in any of the host cells will contain sequences for plasmid maintenance and for cloning and expression of exogenous nucleotide sequences. Such sequences, collectively referred to as “flanking sequences” in certain embodiments will typically include one or more of the following nucleotide sequences: a promoter, one or more enhancer sequences, an origin of replication, a transcriptional termination sequence, a complete intron sequence containing a donor and acceptor splice site, a sequence encoding a leader sequence for polypeptide secretion, a ribosome binding site, a polyadenylation sequence, a polylinker region for inserting the nucleic acid encoding the polypeptide to be expressed, and a selectable marker element.


Optionally, an expression vector can contain a “tag”-encoding sequence, i.e., an oligonucleotide molecule located at the 5′ or 3′ end of an antigen binding protein coding sequence; the oligonucleotide sequence encodes polyHis (such as hexaHis, HHHHHH (SEQ ID NO: 1830)), or another “tag” such as FLAG, HA (hemaglutinin influenza virus), or myc, for which commercially available antibodies exist. This tag is typically fused to the polypeptide upon expression of the polypeptide, and can serve as a means for affinity purification or detection of the antigen binding protein from the host cell. Affinity purification can be accomplished, for example, by column chromatography using antibodies against the tag as an affinity matrix. Optionally, the tag can subsequently be removed from the purified antigen binding protein by various means such as using certain peptidases for cleavage.


Flanking sequences can be homologous (i.e., from the same species and/or strain as the host cell), heterologous (i.e., from a species other than the host cell species or strain), hybrid (i.e., a combination of flanking sequences from more than one source), synthetic or native. As such, the source of a flanking sequence can be any prokaryotic or eukaryotic organism, any vertebrate or invertebrate organism, or any plant, provided that the flanking sequence is functional in, and can be activated by, the host cell machinery.


Flanking sequences useful in the vectors can be obtained by any of several methods well known in the art. Typically, flanking sequences useful herein will have been previously identified by mapping and/or by restriction endonuclease digestion and can thus be isolated from the proper tissue source using the appropriate restriction endonucleases. In some cases, the full nucleotide sequence of a flanking sequence can be known. Here, the flanking sequence can be synthesized using the methods described herein for nucleic acid synthesis or cloning.


Whether all or only a portion of the flanking sequence is known, it can be obtained using polymerase chain reaction (PCR) and/or by screening a genomic library with a suitable probe such as an oligonucleotide and/or flanking sequence fragment from the same or another species. Where the flanking sequence is not known, a fragment of DNA containing a flanking sequence can be isolated from a larger piece of DNA that can contain, for example, a coding sequence or even another gene or genes. Isolation can be accomplished by restriction endonuclease digestion to produce the proper DNA fragment followed by isolation using agarose gel purification, column chromatography or other methods known to the skilled artisan. The selection of suitable enzymes to accomplish this purpose will be readily apparent to one of ordinary skill in the art.


An origin of replication is typically a part of those prokaryotic expression vectors purchased commercially, and the origin aids in the amplification of the vector in a host cell. If the vector of choice does not contain an origin of replication site, one can be chemically synthesized based on a known sequence, and ligated into the vector. For example, the origin of replication from the plasmid pBR322 (GenBank Accession # J01749, New England Biolabs, Beverly, Mass.) is suitable for most gram-negative bacteria, and various viral origins (e.g., SV40, polyoma, adenovirus, vesicular stomatitus virus (VSV), or papillomaviruses such as HPV or BPV) are useful for cloning vectors in mammalian cells. Generally, the origin of replication component is not needed for mammalian expression vectors (for example, the SV40 origin is often used only because it also contains the virus early promoter).


A transcription termination sequence is typically located 3′ to the end of a polypeptide coding region and serves to terminate transcription. Usually, a transcription termination sequence in prokaryotic cells is a G-C rich fragment followed by a poly-T sequence. While the sequence is easily cloned from a library or even purchased commercially as part of a vector, it can also be readily synthesized using methods for nucleic acid synthesis such as those described herein.


A selectable marker gene encodes a protein necessary for the survival and growth of a host cell grown in a selective culture medium. Typical selection marker genes encode proteins that (a) confer resistance to antibiotics or other toxins, e.g., ampicillin, tetracycline, or kanamycin for prokaryotic host cells; (b) complement auxotrophic deficiencies of the cell; or (c) supply critical nutrients not available from complex or defined media. Specific selectable markers are the kanamycin resistance gene, the ampicillin resistance gene, and the tetracycline resistance gene. Advantageously, a neomycin resistance gene can also be used for selection in both prokaryotic and eukaryotic host cells.


Other selectable genes can be used to amplify the gene that will be expressed. Amplification is the process wherein genes that are required for production of a protein critical for growth or cell survival are reiterated in tandem within the chromosomes of successive generations of recombinant cells. Examples of suitable selectable markers for mammalian cells include dihydrofolate reductase (DHFR) and promoterless thymidine kinase genes. Mammalian cell transformants are placed under selection pressure wherein only the transformants are uniquely adapted to survive by virtue of the selectable gene present in the vector. Selection pressure is imposed by culturing the transformed cells under conditions in which the concentration of selection agent in the medium is successively increased, thereby leading to the amplification of both the selectable gene and the DNA that encodes another gene, such as an antigen binding protein that binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. As a result, increased quantities of a polypeptide such as an antigen binding protein are synthesized from the amplified DNA.


A ribosome-binding site is usually necessary for translation initiation of mRNA and is characterized by a Shine-Dalgarno sequence (prokaryotes) or a Kozak sequence (eukaryotes). The element is typically located 3′ to the promoter and 5′ to the coding sequence of the polypeptide to be expressed.


In some cases, such as where glycosylation is desired in a eukaryotic host cell expression system, one can manipulate the various pre- or pro-sequences to improve glycosylation or yield. For example, one can alter the peptidase cleavage site of a particular signal peptide, or add prosequences, which also can affect glycosylation. The final protein product can have, in the −1 position (relative to the first amino acid of the mature protein), one or more additional amino acids incident to expression, which may not have been totally removed. For example, the final protein product can have one or two amino acid residues found in the peptidase cleavage site, attached to the amino-terminus. Alternatively, use of some enzyme cleavage sites can result in a slightly truncated form of the desired polypeptide, if the enzyme cuts at such area within the mature polypeptide.


Expression and cloning will typically contain a promoter that is recognized by the host organism and operably linked to the molecule encoding an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Promoters are untranscribed sequences located upstream (i.e., 5′) to the start codon of a structural gene (generally within about 100 to 1000 bp) that control transcription of the structural gene. Promoters are conventionally grouped into one of two classes: inducible promoters and constitutive promoters. Inducible promoters initiate increased levels of transcription from DNA under their control in response to some change in culture conditions, such as the presence or absence of a nutrient or a change in temperature. Constitutive promoters, on the other hand, uniformly transcribe a gene to which they are operably linked, that is, with little or no control over gene expression. A large number of promoters, recognized by a variety of potential host cells, are well known. A suitable promoter is operably linked to the DNA encoding heavy chain or light chain comprising an antigen binding protein by removing the promoter from the source DNA by restriction enzyme digestion and inserting the desired promoter sequence into the vector.


Suitable promoters for use with yeast hosts are also well known in the art. Yeast enhancers are advantageously used with yeast promoters. Suitable promoters for use with mammalian host cells are well known and include, but are not limited to, those obtained from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, retroviruses, hepatitis-B virus, and Simian Virus 40 (SV40). Other suitable mammalian promoters include heterologous mammalian promoters, for example, heat-shock promoters and the actin promoter.


Additional promoters which can be of interest include, but are not limited to: SV40 early promoter (Benoist & Chambon, (1981) Nature 290:304-310); CMV promoter (Thomsen et al., (1984) Proc. Natl. Acad. U.S.A. 81:659-663); the promoter contained in the 3′ long terminal repeat of Rous sarcoma virus (Yamamoto et al., (1980) Cell 22:787-97); herpes thymidine kinase promoter (Wagner et al., (1981) Proc. Natl. Acad. Sci. U.S.A. 78:1444-45); promoter and regulatory sequences from the metallothionine gene (Prinster et al., (1982) Nature 296:39-42); and prokaryotic promoters such as the beta-lactamase promoter (Villa-Kamaroff et al., (1978) Proc. Natl. Acad. Sci. U.S.A. 75:3727-31); or the tac promoter (DeBoer et al., (1983) Proc. Natl. Acad. Sci. U.S.A. 80:21-25). Also of interest are the following animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals: the elastase I gene control region that is active in pancreatic acinar cells (Swift et al., (1984) Cell 38:639-46; Ornitz et al., (1986) Cold Spring Harbor Symp. Quant. Biol. 50:399-409; MacDonald, (1987) Hepatology 7:425-515); the insulin gene control region that is active in pancreatic beta cells (Hanahan, (1985) Nature 315:115-22); the immunoglobulin gene control region that is active in lymphoid cells (Grosschedl et al., (1984) Cell 38:647-58; Adames et al., (1985) Nature 318:533-38; Alexander et al., (1987) Mol. Cell. Biol. 7:1436-44); the mouse mammary tumor virus control region that is active in testicular, breast, lymphoid and mast cells (Leder et al., (1986) Cell 45:485-95); the albumin gene control region that is active in liver (Pinkert et al., (1987) Genes and Devel. 1:268-76); the alpha-feto-protein gene control region that is active in liver (Krumlauf et al., (1985) Mol. Cell. Biol. 5:1639-48; Hammer et al., (1987) Science 253:53-58); the alpha 1-antitrypsin gene control region that is active in liver (Kelsey et al., (1987) Genes and Devel. 1:161-71); the beta-globin gene control region that is active in myeloid cells (Mogram et al., (1985) Nature 315:338-40; Kollias et al., (1986) Cell 46:89-94); the myelin basic protein gene control region that is active in oligodendrocyte cells in the brain (Readhead et al., (1987) Cell 48:703-12); the myosin light chain-2 gene control region that is active in skeletal muscle (Sani, (1985) Nature 314:283-86); and the gonadotropic releasing hormone gene control region that is active in the hypothalamus (Mason et al., (1986) Science 234:1372-78).


An enhancer sequence can be inserted into the vector to increase transcription of DNA encoding light chain or heavy chain comprising an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c by higher eukaryotes, e.g., a human antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Enhancers are cis-acting elements of DNA, usually about 10-300 bp in length, that act on the promoter to increase transcription. Enhancers are relatively orientation and position independent, having been found at positions both 5′ and 3′ to the transcription unit. Several enhancer sequences available from mammalian genes are known (e.g., globin, elastase, albumin, alpha-feto-protein and insulin). Typically, however, an enhancer from a virus is used. The SV40 enhancer, the cytomegalovirus early promoter enhancer, the polyoma enhancer, and adenovirus enhancers known in the art are exemplary enhancing elements for the activation of eukaryotic promoters. While an enhancer can be positioned in the vector either 5′ or 3′ to a coding sequence, it is typically located at a site 5′ from the promoter. A sequence encoding an appropriate native or heterologous signal sequence (leader sequence or signal peptide) can be incorporated into an expression vector, to promote extracellular secretion of the antibody. The choice of signal peptide or leader depends on the type of host cells in which the antibody is to be produced, and a heterologous signal sequence can replace the native signal sequence. Examples of signal peptides that are functional in mammalian host cells include the following: the signal sequence for interleukin-7 (IL-7) described in U.S. Pat. No. 4,965,195; the signal sequence for interleukin-2 receptor described in Cosman et al., (1984) Nature 312:768-71; the interleukin-4 receptor signal peptide described in EP Patent No. 0367 566; the type I interleukin-1 receptor signal peptide described in U.S. Pat. No. 4,968,607; the type II interleukin-1 receptor signal peptide described in EP Patent No. 0 460 846.


Expression vectors can be constructed from a starting vector such as a commercially available vector. Such vectors can but need not contain all of the desired flanking sequences. Where one or more of the flanking sequences are not already present in the vector, they can be individually obtained and ligated into the vector. Methods used for obtaining each of the flanking sequences are well known to one skilled in the art.


After the vector has been constructed and a nucleic acid molecule encoding light chain, a heavy chain, or a light chain and a heavy chain comprising an antigen binding protein that specifically binds to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c has been inserted into the proper site of the vector, the completed vector can be inserted into a suitable host cell for amplification and/or polypeptide expression. The transformation of an expression vector for an antigen binding protein into a selected host cell can be accomplished by well known methods including transfection, infection, calcium phosphate co-precipitation, electroporation, microinjection, lipofection, DEAE-dextran mediated transfection, or other known techniques. The method selected will in part be a function of the type of host cell to be used. These methods and other suitable methods are well known to the skilled artisan, and are set forth, for example, in Sambrook et al., (2001), supra.


A host cell, when cultured under appropriate conditions, synthesizes an antigen binding protein that can subsequently be collected from the culture medium (if the host cell secretes it into the medium) or directly from the host cell producing it (if it is not secreted). The selection of an appropriate host cell will depend upon various factors, such as desired expression levels, polypeptide modifications that are desirable or necessary for activity (such as glycosylation or phosphorylation) and ease of folding into a biologically active molecule.


Mammalian cell lines available as hosts for expression are well known in the art and include, but are not limited to, immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to HeLa cells, Human Embryonic Kidney 293 cells (HEK293 cells), Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (e.g., Hep G2), and a number of other cell lines. In certain embodiments, cell lines can be selected through determining which cell lines have high expression levels and constitutively produce antigen binding proteins with desirable binding properties (e.g., the ability to bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c). In another embodiment, a cell line from the B cell lineage that does not make its own antibody but has a capacity to make and secrete a heterologous antibody can be selected. The ability to induce FGF21-like signaling can also form a selection criterion.


Uses of Antigen Binding Proteins for Diagnostic and Therapeutic Purposes

The antigen binding proteins disclosed herein are useful for detecting to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in biological samples and identification of cells or tissues that produce one or more of β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. For instance, the antigen binding proteins disclosed herein can be used in diagnostic assays, e.g., binding assays to detect and/or quantify a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c expressed in a tissue or cell.


Antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can also be used in treatment of diseases related to FGF21-like signaling in a patient in need thereof, such as type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome. By forming a signaling complex comprising an antigen binding protein and a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, the natural in vivo activity of FGF21, which associates with a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in vivo to initiate signaling, can be mimicked and/or enhanced, leading to therapeutic effects.


Indications

A disease or condition associated with human FGF21 includes any disease or condition whose onset in a patient is influenced by, at least in part, the lack of or therapeutically insufficient induction of FGF21-like signaling, which is initiated in vivo by the formation of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. The severity of the disease or condition can also be decreased by the induction of FGF21-like signaling. Examples of diseases and conditions that can be treated with the antigen binding proteins provided herein include type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome.


The antigen binding proteins described herein can be used to treat type 2 diabetes, obesity, dyslipidemia, NASH, cardiovascular disease, and metabolic syndrome, or can be employed as a prophylactic treatment administered, e.g., daily, weekly, biweekly, monthly, bimonthly, biannually, etc to prevent or reduce the frequency and/or severity of symptoms, e.g., elevated plasma glucose levels, elevated triglycerides and/or cholesterol levels, thereby providing an improved glycemic and cardiovascular risk factor profile.


Diagnostic Methods

The antigen binding proteins described herein can be used for diagnostic purposes to detect, diagnose, or monitor diseases and/or conditions associated with FGFR1c, FGFR2c, FGFR3c, β-Klotho, FGF21 and/or complexes comprising combinations thereof. Also provided are methods for the detection of the presence of to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in a sample using classical immunohistological methods known to those of skill in the art (e.g., Tijssen, (1985) “Practice and Theory of Enzyme Immunoassays” in Laboratory Techniques in Biochemistry and Molecular Biology, 15 (Burdon & van Knippenberg, eds.), Elsevier Biomedical); Zola, (1987) Monoclonal Antibodies: A Manual of Techniques, pp. 147-58 (CRC Press, Inc.); Jalkanen et al., (1985) J. Cell. Biol. 101:976-85; Jalkanen et al., (1987) J. Cell Biol. 105:3087-96). The detection of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be performed in vivo or in vitro.


Diagnostic applications provided herein include use of the antigen binding proteins to detect expression/formation of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c, and/or binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. Examples of methods useful in the detection of the presence of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA).


For diagnostic applications, the antigen binding protein typically will be labeled with a detectable labeling group. Suitable labeling groups include, but are not limited to, the following: radioisotopes or radionuclides (e.g., 3H, 14C, 15N, 35S, 90Y, 99Tc, 111In, 125I, 131I), fluorescent groups (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic groups (e.g., horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase), chemiluminescent groups, biotinyl groups, or predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, the labeling group is coupled to the antigen binding protein via spacer arms of various lengths to reduce potential steric hindrance. Various methods for labeling proteins are known in the art and can be used.


In another aspect, an antigen binding protein can be used to identify a cell or cells that express a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c. In a specific embodiment, the antigen binding protein is labeled with a labeling group and the binding of the labeled antigen binding protein to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c is detected. In a further specific embodiment, the binding of the antigen binding protein to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c detected in vivo. In a further specific embodiment, the antigen binding protein is isolated and measured using techniques known in the art. See, for example, Harlow & Lane, (1988) supra; Current Protocols In Immunology (John E. Coligan, ed), John Wiley & Sons (1993 ed., and supplements and/or updates). Another aspect provides for detecting the presence of a test molecule that competes for binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with the antigen binding proteins provided, as disclosed herein. An example of one such assay could involve detecting the amount of free antigen binding protein in a solution containing an amount of a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in the presence or absence of the test molecule. An increase in the amount of free antigen binding protein (i.e., the antigen binding protein not bound to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c) would indicate that the test molecule is capable of competing for binding to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c with the antigen binding protein. In one embodiment, the antigen binding protein is labeled with a labeling group. Alternatively, the test molecule is labeled and the amount of free test molecule is monitored in the presence and absence of an antigen binding protein.


Methods of Treatment: Pharmaceutical Formulations and Routes of Administration

Methods of using the disclosed antigen binding proteins are also provided. In some methods, an antigen binding protein is provided to a patient, which induces FGF21-like signaling.


Pharmaceutical compositions that comprise a therapeutically effective amount of one or a plurality of the antigen binding proteins and a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative, and/or adjuvant are also provided. In addition, methods of treating a patient by administering such pharmaceutical composition are included. The term “patient” includes human patients.


Acceptable formulation materials are nontoxic to recipients at the dosages and concentrations employed. In specific embodiments, pharmaceutical compositions comprising a therapeutically effective amount of human antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are provided.


In certain embodiments, acceptable formulation materials preferably are nontoxic to recipients at the dosages and concentrations employed. In certain embodiments, the pharmaceutical composition can contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition. In such embodiments, suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates or other organic acids); bulking agents (such as mannitol or glycine); chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides; disaccharides; and other carbohydrates (such as glucose, mannose or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins); coloring, flavoring and diluting agents; emulsifying agents; hydrophilic polymers (such as polyvinylpyrrolidone); low molecular weight polypeptides; salt-forming counterions (such as sodium); preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide); solvents (such as glycerin, propylene glycol or polyethylene glycol); sugar alcohols (such as mannitol or sorbitol); suspending agents; surfactants or wetting agents (such as Pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate, triton, tromethamine, lecithin, cholesterol, tyloxapal); stability enhancing agents (such as sucrose or sorbitol); tonicity enhancing agents (such as alkali metal halides, preferably sodium or potassium chloride, mannitol sorbitol); delivery vehicles; diluents; excipients and/or pharmaceutical adjuvants. See, e.g., Remington's Pharmaceutical Sciences, 18th Edition, (A. R. Gennaro, ed.), 1990, Mack Publishing Company, and subsequent editions.


In certain embodiments, the optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format and desired dosage. See, for example, Remington's Pharmaceutical Sciences, supra. In certain embodiments, such compositions can influence the physical state, stability, rate of in vivo release and rate of in vivo clearance of the antigen binding proteins disclosed. In certain embodiments, the primary vehicle or carrier in a pharmaceutical composition can be either aqueous or non-aqueous in nature. For example, a suitable vehicle or carrier can be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. In specific embodiments, pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, and can further include sorbitol or a suitable substitute. In certain embodiments, compositions comprising antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (see, Remington's Pharmaceutical Sciences, supra for examples of suitable formulation agents) in the form of a lyophilized cake or an aqueous solution. Further, in certain embodiments, antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be formulated as a lyophilizate using appropriate excipients such as sucrose. The pharmaceutical compositions can be selected for parenteral delivery.


Alternatively, the compositions can be selected for inhalation or for delivery through the digestive tract, such as orally. Preparation of such pharmaceutically acceptable compositions is within the skill of the art.


The formulation components are present preferably in concentrations that are acceptable to the site of administration. In certain embodiments, buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8.


When parenteral administration is contemplated, the therapeutic compositions can be provided in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired antigen binding protein in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which the antigen binding protein is formulated as a sterile, isotonic solution, properly preserved. In certain embodiments, the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that can provide controlled or sustained release of the product which can be delivered via depot injection. In certain embodiments, hyaluronic acid can also be used, which can have the effect of promoting sustained duration in the circulation. In certain embodiments, implantable drug delivery devices can be used to introduce the desired antigen binding protein.


Certain pharmaceutical compositions are formulated for inhalation. In some embodiments, antigen binding proteins that bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c are formulated as a dry, inhalable powder. In specific embodiments, antigen binding protein inhalation solutions can also be formulated with a propellant for aerosol delivery. In certain embodiments, solutions can be nebulized. Pulmonary administration and formulation methods therefore are further described in International Patent Application No. PCT/US94/001875, which is incorporated by reference and describes pulmonary delivery of chemically modified proteins. Some formulations can be administered orally. Antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c that are administered in this fashion can be formulated with or without carriers customarily used in the compounding of solid dosage forms such as tablets and capsules. In certain embodiments, a capsule can be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized. Additional agents can be included to facilitate absorption of an antigen binding protein. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders can also be employed.


Some pharmaceutical compositions comprise an effective quantity of one or a plurality of human antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in a mixture with non-toxic excipients that are suitable for the manufacture of tablets. By dissolving the tablets in sterile water, or another appropriate vehicle, solutions can be prepared in unit-dose form. Suitable excipients include, but are not limited to, inert diluents, such as calcium carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate; or binding agents, such as starch, gelatin, or acacia; or lubricating agents such as magnesium stearate, stearic acid, or talc.


Additional pharmaceutical compositions will be evident to those skilled in the art, including formulations involving antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c in sustained- or controlled-delivery formulations. Techniques for formulating a variety of other sustained- or controlled-delivery means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See, for example, International Patent Application No. PCT/US93/00829, which is incorporated by reference and describes controlled release of porous polymeric microparticles for delivery of pharmaceutical compositions. Sustained-release preparations can include semipermeable polymer matrices in the form of shaped articles, e.g., films, or microcapsules. Sustained release matrices can include polyesters, hydrogels, polylactides (as disclosed in U.S. Pat. No. 3,773,919 and European Patent Application Publication No. EP 058481, each of which is incorporated by reference), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., (1983) Biopolymers 2:547-556), poly (2-hydroxyethyl-inethacrylate) (Langer et al., (1981) J. Biomed. Mater. Res. 15:167-277 and Langer, (1982) Chem. Tech. 12:98-105), ethylene vinyl acetate (Langer et al., (1981) supra) or poly-D(−)-3-hydroxybutyric acid (European Patent Application Publication No. EP 133988). Sustained release compositions can also include liposomes that can be prepared by any of several methods known in the art. See, e.g., Eppstein et al., (1985) Proc. Natl. Acad. Sci. U.S.A. 82:3688-3692; European Patent Application Publication Nos. EP 036676; EP 088046 and EP 143949, incorporated by reference.


Pharmaceutical compositions used for in vivo administration are typically provided as sterile preparations. Sterilization can be accomplished by filtration through sterile filtration membranes. When the composition is lyophilized, sterilization using this method can be conducted either prior to or following lyophilization and reconstitution. Compositions for parenteral administration can be stored in lyophilized form or in a solution. Parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.


In certain embodiments, cells expressing a recombinant antigen binding protein as disclosed herein are encapsulated for delivery (see, Tao et al., Invest. Ophthalmol Vis Sci (2002) 43:3292-3298 and Sieving et al., Proc. Natl. Acad. Sciences USA (2006) 103:3896-3901).


In certain formulations, an antigen binding protein has a concentration of between 10 mg/ml and 150 mg/ml. Some formulations contain a buffer, sucrose and polysorbate. An example of a formulation is one containing 50-100 mg/ml of antigen binding protein, 5-20 mM sodium acetate, 5-10% w/v sucrose, and 0.002-0.008% w/v polysorbate. Certain, formulations, for instance, contain 1-100 mg/ml of an antigen binding protein in 9-11 mM sodium acetate buffer, 8-10% w/v sucrose, and 0.005-0.006% w/v polysorbate. The pH of certain such formulations is in the range of 4.5-6. Other formulations can have a pH of 5.0-5.5.


Once the pharmaceutical composition has been formulated, it can be stored in sterile vials as a solution, suspension, gel, emulsion, solid, crystal, or as a dehydrated or lyophilized powder. Such formulations can be stored either in a ready-to-use form or in a form (e.g., lyophilized) that is reconstituted prior to administration. Kits for producing a single-dose administration unit are also provided. Certain kits contain a first container having a dried protein and a second container having an aqueous formulation. In certain embodiments, kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes) are provided. The therapeutically effective amount of an antigen binding protein-containing pharmaceutical composition to be employed will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will vary depending, in part, upon the molecule delivered, the indication for which the antigen binding protein is being used, the route of administration, and the size (body weight, body surface or organ size) and/or condition (the age and general health) of the patient. In certain embodiments, the clinician can titer the dosage and modify the route of administration to obtain the optimal therapeutic effect.


A typical dosage can range from about 1 μg/kg to up to about 30 mg/kg or more, depending on the factors mentioned above. In specific embodiments, the dosage can range from 10 μg/kg up to about 35 mg/kg, optionally from 0.1 mg/kg up to about 35 mg/kg, alternatively from 0.3 mg/kg up to about 20 mg/kg. In some applications, the dosage is from 0.5 mg/kg to 20 mg/kg and in other applications the dosage is from 21-100 mg/kg. In some instances, an antigen binding protein is dosed at 0.3-20 mg/kg. The dosage schedule in some treatment regimes is at a dose of 0.3 mg/kg qW-20 mg/kg qW.


Dosing frequency will depend upon the pharmacokinetic parameters of the particular antigen binding protein in the formulation used. Typically, a clinician administers the composition until a dosage is reached that achieves the desired effect. The composition can therefore be administered as a single dose, or as two or more doses (which can but need not contain the same amount of the desired molecule) over time, or as a continuous infusion via an implantation device or catheter. Appropriate dosages can be ascertained through use of appropriate dose-response data. In certain embodiments, the antigen binding proteins can be administered to patients throughout an extended time period. Chronic administration of an antigen binding protein minimizes the adverse immune or allergic response commonly associated with antigen binding proteins that are not fully human, for example an antibody raised against a human antigen in a non-human animal, for example, a non-fully human antibody or non-human antibody produced in a non-human species.


The route of administration of the pharmaceutical composition is in accord with known methods, e.g., orally, through injection by intravenous, intraperitoneal, intracerebral (intra-parenchymal), intracerebroventricular, intramuscular, intra-ocular, intraarterial, intraportal, or intralesional routes; by sustained release systems or by implantation devices. In certain embodiments, the compositions can be administered by bolus injection or continuously by infusion, or by implantation device.


The composition also can be administered locally via implantation of a membrane, sponge or another appropriate material onto which the desired molecule has been absorbed or encapsulated. In certain embodiments, where an implantation device is used, the device can be implanted into any suitable tissue or organ, and delivery of the desired molecule can be via diffusion, timed-release bolus, or continuous administration.


It also can be desirable to use antigen binding protein pharmaceutical compositions ex vivo. In such instances, cells, tissues or organs that have been removed from the patient are exposed to antigen binding protein pharmaceutical compositions after which the cells, tissues and/or organs are subsequently implanted back into the patient.


In particular, antigen binding proteins that specifically bind to a complex comprising β-Klotho and at least one of (i) FGFR1c, (ii) FGFR2c and (iii) FGFR3c can be delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein and known in the art, to express and secrete the polypeptide. In certain embodiments, such cells can be animal or human cells, and can be autologous, heterologous, or xenogeneic. In certain embodiments, the cells can be immortalized. In other embodiments, in order to decrease the chance of an immunological response, the cells can be encapsulated to avoid infiltration of surrounding tissues. In further embodiments, the encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.


Combination Therapies

In another aspect, the present disclosure provides a method of treating a subject for diabetes with a therapeutic antigen binding protein of the present disclosure, such as the fully human therapeutic antibodies described herein, together with one or more other treatments. In one embodiment, such a combination therapy achieves an additive or synergistic effect. The antigen binding proteins can be administered in combination with one or more of the type 2 diabetes or obesity treatments currently available. These treatments for diabetes include biguanide (metaformin), and sulfonylureas (such as glyburide, glipizide). Additional treatments directed at maintaining glucose homeostasis include PPAR gamma agonists (pioglitazone, rosiglitazone); glinides (meglitinide, repaglinide, and nateglinide); DPP-4 inhibitors (Januvia® and Onglyza®) and alpha glucosidase inhibitors (acarbose, voglibose).


Additional combination treatments for diabetes include injectable treatments such as insulin and incretin mimetics (Byetta®, Exenatide®), other GLP-1 (glucagon-like peptide) analogs such as Victoza® (liraglutide), other GLP-1R agonists and Symlin® (pramlintide).


Additional combination treatments directed at weight loss include Meridia® and Xenical®.


EXAMPLES

The following examples, including the experiments conducted and the results achieved, are provided for illustrative purposes only and are not to be construed as limiting.


Example 1
Preparation of FGFR1c and β-Klotho Over Expressing Cells for Use as an Antigen

Nucleic acid sequences encoding the full length human FGFR1c polypepetide (SEQ ID NO: 4; FIGS. 1A-1B) and a separate sequence encoding the full length human β-Klotho polypeptide (SEQ ID NO: 7; FIGS. 2A-2C) were subcloned into suitable mammalian cell expression vectors (e.g., pcDNA3.1 Zeo, pcDNA3.1 Hyg (Invitrogen, Carlsbad, Calif.) or pDSRa24. The pDSRa24 vector contains SV40 early promoter/enhancer for expressing the gene of interest and a mouse DHFR expression cassette for selection in CHO DHFR (−) host cells such as AM1/D CHO (a derivative of DG44, CHO DHFR (−)).


AM-1/D CHO cells were transfected with linearized DNAs of huFGFR1c and hufβ-Klotho in standard mammalian cell expression vectors e.g. pcDNA3.1 puro and pcDNA3.1 Hyg with Lipofectamine 2000 (Invitrogen, Carlsbad Calif.). The transfected cells were trypsinized 2 days after transfection and seeded into media containing the corresponding selection drugs i.e. puromycin and hygromycin. After 2 weeks, the resulting transfected colonies were trypsinized and pooled. Single cell clones from the pools were isolated and screened with antibodies to huFGFR1c and huβKlotho in FACS and Clone 16 was selected due to the high level and balanced expression of the two receptor components.


2×10e9 fresh cells from Clone 16 were harvested from roller bottles into a smaller volume in PBS and incubated with 10 μg/ml recombinant FGF21 (Amgen, Thousand Oaks Calif.) at 4 C for 1 hours to form complex with the cell surface receptors. The cells were washed twice with cold PBS, pelleted by centrifugation and frozen in individual vials at 2×10e8 cells for immunization.


HEK 293T cells were transfected with DNA expressing a truncated version of huFGFR1c (a signal peptide VH21 was joined to the remaining FGFR1c from amino acid residue #141 to #822 (in SEQ ID NO: 4) with a deletion that removed both the D1 domain and the acidic box (AB) and DNA expressing the full length huβ-Klotho in pcDNA3.1 series or pTT5 (an expression vector developed by Durocher, NRCC, with CMV promoter and EBV ori) based vector for transient expression. The removal of the D1-AB on FGFR1c was designed to expose epitopes on FGFR1c (e.g., in the D2 and D3 domains) that may be masked by this auto-inhibitory domain (see Mohammadi et al., (2005) Cytokine Growth Factor Reviews, 16, 107-137; Gupte et al., (2011) J. Mol. Biol. 408:491-502).


The expression of β-Klotho and truncated FGFR1c in the transfected 293T cells was verified by the respective specific antibodies in FACS and cells were harvested on day 3 post-transfection and frozen as cell pellet into aliquots for immunization.


Stable CHO or transiently transfected HEK 293T cells expressing FGFR1c and β-Klotho individually or together were also generated and used for titering mouse sera by FACS after immunization and for binding screens of the hybridoma supernatants by FMAT (see Example 3).


Example 2
Preparation of Monoclonal Antibodies

Immunizations were conducted using one or more suitable forms of FGF21 receptor antigen, including: (1) cell-bound receptor of CHO transfectants expressing full length human FGFR1c and β-Klotho at the cell surface, obtained by transfecting CHO cells with cDNA encoding a human full length FGFR1c polypeptide of SEQ ID NO: 4 (see also FIGS. 1a-b) and cDNA encoding a human β-Klotho polypeptide of SEQ ID NO: 7 (see also FIGS. 2a-c) in a balanced ratio with cells and incubated with FGF21 prior to freezing; (2) cell-bound receptor of 293T transfectants expressing full length human β-Klotho and an N-terminal truncated form of human FGFR1c encompassing amino acid residues 141-822 polypeptide of SEQ ID NO: 4 (D1 domain of FGFR1c deleted).


A suitable amount of immunogen (i.e., 3-4×106 cells/mouse of stably transfected CHO cells or transiently transfected 293T cells mentioned above was used for initial immunization in XENOMOUSE® according to the methods disclosed in U.S. patent application Ser. No. 08/759,620, filed Dec. 3, 1996 and International Patent Application Nos. WO 98/24893, and WO 00/76310, the disclosures of which are incorporated by reference. Following the initial immunization, subsequent boost immunizations of immunogen (1.7×106 FGF21R transfected cells/mouse) were administered on a schedule and for the duration necessary to induce a suitable anti-FGF21R titer in the mice. Titers were determined by a suitable method, for example, by enzyme immunoassay, fluorescence activated cell sorting (FACS), or by other methods (including combinations of enzyme immunoassays and FACS).


Animals exhibiting suitable titers were identified, and lymphocytes were obtained from draining lymph nodes and, if necessary, pooled for each cohort. Lymphocytes were dissociated from lymphoid tissue by grinding in a suitable medium (for example, Dulbecco's Modified Eagle Medium; DMEM; obtainable from Invitrogen, Carlsbad, Calif.) to release the cells from the tissues, and suspended in DMEM. B cells were selected and/or expanded using standard methods, and fused with suitable fusion partner, for example, nonsecretory myeloma P3X63Ag8.653 cells (American Type Culture Collection CRL 1580; Kearney et al, (1979) J. Immunol. 123:1548-1550), using techniques that were known in the art.


In one suitable fusion method, lymphocytes were mixed with fusion partner cells at a ratio of 1:4. The cell mixture was gently pelleted by centrifugation at 400×g for 4 minutes, the supernatant decanted, and the cell mixture gently mixed (for example, by using a 1 ml pipette). Fusion was induced with PEG/DMSO (polyethylene glycol/dimethyl sulfoxide; obtained from Sigma-Aldrich, St. Louis Mo.; 1 ml per million of lymphocytes). PEG/DMSO was slowly added with gentle agitation over one minute followed, by one minute of mixing. IDMEM (DMEM without glutamine; 2 ml per million of B cells), was then added over 2 minutes with gentle agitation, followed by additional IDMEM (8 ml per million B-cells) which was added over 3 minutes.


The fused cells were pelleted (400×g 6 minutes) and resuspended in 20 ml Selection media (for example, DMEM containing Azaserine and Hypoxanthine [HA] and other supplemental materials as necessary) per million B-cells. Cells were incubated for 20-30 minutes at 37° C. and then resuspended in 200 ml selection media and cultured for three to four days in T175 flasks prior to 96 well plating.


Cells were distributed into 96-well plates using standard techniques to maximize clonality of the resulting colonies. An alternative method was also employed and the fused cells were directly plated clonally into 384-well plates to ensure monoclonality from the start. After several days of culture, supernatants were collected and subjected to screening assays as detailed in the examples below, including confirmation of binding to human FGF21 receptor, specificity and/or cross-species reactivity. Positive cells were further selected and subjected to standard cloning and subcloning techniques. Clonal lines were expanded in vitro, and the secreted human antibodies obtained for analysis.


In this manner, mice were immunized with cells expressing full length FGF21R cells mixed with FGF21, or cells expressing a truncated FGFR1c and full length β-Klotho, with a range of 11-17 immunizations over a period of approximately one to three and one-half months. Several cell lines secreting FGF21R-specific antibodies were obtained, and the antibodies were further characterized. The sequences thereof are presented herein and in the Sequence Listing, and results of various tests using these antibodies are provided.


Example 3
Selection of Binding Antibodies by FMAT

After 14 days of culture, hybridoma supernatants were screened for FGF21R-specific monoclonal antibodies by Fluorometric Microvolume Assay Technology (FMAT) by screening against either the CHO AM1/D/huFGF21R cell line or recombinant HEK293 cells that were transfected with human FGF21R and counter-screening against parental CHO or HEK293 cells. Briefly the cells in Freestyle media (Invitrogen) were seeded into 384-well FMAT plates in a volume of 50 μL/well at a density of 4,000 cells/well for the stable transfectants, and at a density of 16,000 cells/well for the parental cells, and cells were incubated overnight at 37° C. 10 μL/well of supernatant was then added, and the plates were incubated for approximately one hour at 4° C., after which 10 μL/well of anti-human IgG-Cy5 secondary antibody was added at a concentration of 2.8 μg/ml (400 ng/ml final concentration). Plates were then incubated for one hour at 4° C., and fluorescence was read using an FMAT Cellular Detection System (Applied Biosystems).


In total, over 1,500 hybridoma supernatants were identified as binding to the FGF21 receptor expressing cells but not to parental cells by the FMAT method. These supernatants were then tested in the FGF21 functional assays as described below.


Example 4
Selection of Antibodies that Induce FGF21-Like Signaling

Experiments were performed to identify functional antibodies that mimic wild-type FGF21 activity (e.g., the ability to induce FGF21-like signaling) using a suitable FGF21 reporter assay. The disclosed FGF21 reporter assay measures activation of FGFR signaling via a MAPK pathway readout. β-Klotho is a co-receptor for FGF21 signaling, and although it is believed not to have any inherent signaling capability due to its very short cytoplasmic domain, it is required for FGF21 to induce signaling through FGFRs.


Example 4.1
ELK-Luciferase Reporter Assay

ELK-luciferase assays were performed using a recombinant human 293T kidney cell or CHO cell system. Specifically, the host cells were engineered to over-express β-Klotho and luciferase reporter constructs. The reporter constructs contain sequences encoding GAL4-ELK1 and 5×UAS-Luc, a luciferase reporter driven by a promoter containing five tandem copies of the Gal4 binding site. Activation of the FGF21 receptor complex in these recombinant reporter cell lines induces intracellular signal transduction, which in turn leads to ERK and ELK phosphorylation. Luciferase activity is regulated by the level of phosphorylated ELK, and is used to indirectly monitor and quantify FGF21 activity.


In one example, CHO cells were transfected sequentially using the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer's protocol with the receptor constructs expressing β-Klotho, FGFR1c and the reporter plasmids: 5×Gal4-Luciferase (minimal TK promoter with 5×Gal4 binding sites upstream of luciferase) and Gal4-ELK1. Gal4-ELK1 binds to the Gal4 binding sites and activates transcription when it is phosphorylated by ERK. Luciferase transcription, and thereby the corresponding enzymatic activity in this context is regulated by the level of phosphorylated ELK1, and is used to indirectly monitor and quantify FGF21 activity.


Clone 16 was selected as the FGF21 luciferase reporter cell line based on the optimal assay window of 10-20 fold with native FGF21 exhibiting an EC50 in the single nM range.


For the assay, the ELK-luciferase reporter cells were plated in 96 well assay plates, and serum starved overnight. FGF21 or test samples were added for 6 hours at 37 degrees. The plates were then allowed to cool to room temperature and the luciferase activity in the cell lysates was measured with Bright-Glo (Promega).


Example 4.2
ERK-Phosphorylation Assay

Alternative host cell lines specifically L6 (a rat myoblastic cell line) was developed and applied to identify antibodies with FGF21-like signaling activity. The rat L6 cell line is a desirable host cell line for the activity assay because it is known to express minimal levels of endogeneous FGF receptors. The L6 cells do not respond to FGF21 even when transfected with β-Klotho expression vector and therefore provides a cleaner background. (Kurosu et al., (2007) J. Biol. Chem. 282, 26687-26695).


Human primary preadipocytes isolated from subcutaneous adipose tissues of multiple healthy nondiabetic donors were purchased from Zen-Bio, Inc. The preadipocytes were plated in 24-well plates and differentiated for 18 days into mature adipocytes. After a 3-hour starvation period, adipocytes were treated with different concentrations of test molecules for 10 minutes. Following treatment, the media was aspirated and cells were snap-frozen in liquid nitrogen. Cell lysates were prepared and ERK phosphorylation was measured using the Phospho-ERK1/2(Thr202/Tyr204; Thr185/Tyr187)/Total ERK1/2 Assay Whole Cell Lysate Kit from Meso Scale Discovery.”


L6 cells were maintained in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum and penicillin/streptomycin. Cells were transfected with plasmids expressing β-Klotho and individual FGFR using the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer's protocol.


Analysis of FGF signaling in L6 cells was performed as described in the literature (Kurosu et al., (2007) J. Biol. Chem. 282, 26687-26695). Cell cultures were collected 10 min after the treatment of FGF21 or test molecules and snap frozen in liquid nitrogen, homogenized in the lysis buffer and ERK phosphorylation was measured using the Phospho-ERK1/2(Thr202/Tyr204; Thr185/Tyr187)/Total ERK1/2 Assay Whole Cell Lysate Kit from Meso Scale Discovery.”


In addition, the factor-dependent mouse BaF3 cell-based proliferation assay used frequently for cytokine receptors can also be developed and applied.


Among the hybridoma supernatants tested in the CHO cell (Clone 16) based human FGF21 ELK-luciferase reporter assay, over 140 were identified as positive (>20% of the activity of FGF21) when compared to 20 nM FGF21 as the positive control (FIGS. 3 and 4).


Antibodies can be purified from the conditioned media of the hybridoma cultures of these positives and tested again in the CHO cell based ELK-luciferase reporter assay to assess the potency of the representative antibodies in the dose-responsive assay and determine the EC50. The activities and potency can be confirmed in the L6 cell based ERK1/2-phosphrylation assay. The EC50 is expected to be consistent to the ELK-luciferase assay in the CHO stable cell line Clone 16.


Example 5
Determining that Induction of FGF21-Like Signaling is Specific to the FGFR/13Klotho Complex

FGF21 has been reported to signal through multiple receptor complexes including FGFR1c, 2c, 3c, and 4 when paired with β-Klotho. The selectivity of the FGF21 agonistic antibodies can be determined in the rat myoblastic L6 cells transfected with vectors expressing the respective FGFRs and β-Klotho as described in Example 4.2.


Observed selectivity would be strongly suggestive that the action of these antibodies is β-Klotho-dependent yet it must also involve the FGFR component of the signaling complex. The results are set forth in Table 6 below.









TABLE 9







FGFR Selectivity











Molecule
FGFR1c
FGFR2c
FGFR3c
FGFR4





Fgf21
+
+
+



FGF19
+
+
+
+


16H7 D58A
+





49H12.1
+





51A8.1
+





51E5.1
+





54A1.1
+





60D7.1
+





63A10.1
+





64B10.1
+





65C3.1
+





66G2.1
+





67F5.1
+





67C10.1
+





68C8.1
+





49C8.1
+





49G3.3
+





56E7.3
+





52A8.1
+












Example 5.1
Binding Specificity is Exclusively β-Klotho Dependent

The binding specificity of the reporter assay positive antibodies in the hybridoma supernatants was determined by FACS using 293T cells transiently transfected to express full length FGFR1c alone, β-Klotho alone or FGFR1c and β-Klotho together. Over 98% (141 out of 143 hybridomas) bind β-Klotho alone whereas none bind FGFR1c alone.


Example 6
Activity in Primary Human Adipocytes

FGF21 stimulates glucose uptake and lipolysis in cultured adipocytes, and adipocytes are considered to be more physiologically relevant than the recombinant reporter cell system.


A panel of the antibodies were tested in the human adipocyte assay for Erk-phosphorylation activity as described in Example 4.2 and compared with FGF21 for their EC50. The results are set forth below in Table 10 below.









TABLE 10







Activity of Antibodies on pERK Human Adipocyte Assay










Molecule
EC50














Fgf21
0.623



16H7
0.280



49H12.1
0.254



51A8.1
0.213



51E5.1
3.221



54A1.1
0.206



60D7.1
0.496



63A10.1
0.435



64B10.1
0.955



65C3.1
6.387



66G2.1
3.529



67F5.1
1.438



67C10.1
5.789



68C8.1
1.216



49C8.1
0.243



49G3.3
1.424



56E7.3
0.916



58C2.1
0.317










Example 7
Competition Binding and Epitope Binning

To compare the similarity of the binding sites of the antibodies on the FGF21 receptor, a series of competition binding experiments can be performed and measured by Biacore. In one example, representative agonistic FGF21 receptor antibodies (and any controls) can be immobilized on the sensor chip surface. Soluble human FGFR1c/β-Klotho ECD-Fc complex or β-Klotho can then be captured on the immobilized antibody surfaces. Finally, several of the test FGF21 receptor antibodies can be injected individually over the captured soluble human FGF21 receptor or β-Klotho. If the injected antibody recognizes a distinct binding site relative to that recognized by the immobilized antibody, a second binding event will be observed. If the antibodies recognize very similar binding site, no more binding will be observed.


Alternatively or additionally, a Biacore analysis can be carried out with biotinylated-FGF21 immobilized on the sensor ship. 10 nM soluble β-Klotho is then passed over the chip alone or mixed with the individual test antibodies at 100 nM. The results are set forth below in Table 11 below.









TABLE 11





Epitope Binning Summary

















Bin 1:


2
nd
Campaign - 24H11, 17C3, 16H7, 20D4, 21B4, 22H5, 23F8,





21H2, 18B11;





3
rd
Campaign - 40D2, 46D11





Current - 49H12, 51A8, 54A1, 60D7, 49C8, 49G3, 56E7,





63A10, 64B10 (64B10.1), 67C8, 68C8.1




Bin 2:


2
nd
Campaign - 17D8, 12C11, 26H11, 12E4, 18G1;





3
rd
Campaign - 37D3




Bin 3:


3
rd
Campaign - 39F7, 38F2, 39F11, 39G5




Bin 4:


3
rd
Campaign - 20E8




Bin 5:


current - 51E5



Bin 6:
current - 52A8 (52A8.1), 67F5 (67F5.1), 67C10 (67C10.1),




65C3.1, 66G2.1






Bold samples in bold are recombinant mAbs


Italicized samples are from hybridoma supernatants.






Example 8
Recognition of Native and Denatured Structures

The ability of disclosed antigen binding proteins to recognize denatured and native structures was investigated. The procedure and results were as follows.


Example 8.1
FGF21 Receptor Agonistic Antibodies do not Recognize Denatured Structures

Cell lysates from CHO cells stably expressing FGF21 receptor (FGFR1c and β-Klotho) or CHO parental cells were diluted with sample buffer without beta-mercaptoethanol (non-reducing conditions). 20 μl of cell lysate were loaded per lane on adjacent lanes separated with a molecular weight marker lane on 4-20% SDS-PAGE gels. Following electrophoresis, the gels were blotted onto 0.2μ nitrocellulose filters. The blots were treated with Tris-buffered saline/Triton-X (TBST) plus 5% non-fat milk (blocking buffer) for 30 minutes. The blots were then cut along the molecular weight marker lanes. The strips were probed with commercial goat anti-murine βKlotho or mouse anti-huFGFR1 (R&D Diagnostics) in TBST/5% milk. Blots were incubated with the antibodies for one hour at room temperature, followed by three washes with TBST+1% milk. The blots were then probed with anti-human or anti-goat IgG-HRP secondary antibodies for 20 min. Blots were given three 15 minute washes with TBST followed by treatment with Pierce Supersignal West Dura developing reagent (1 minute) and exposure to Kodak Biomax X-ray film.


The commercial anti-β-Klotho and anti-FGFR1 antibodies detected the corresponding receptor proteins in the SDS-PAGE indicating they bind to denatured receptor proteins.


Example 8.2

FGF21 Receptor Agonistic Antibodies Bind to Native Receptor Structure


A FACS binding assay was performed with several commercially available FGFR1c and β-Klotho antibodies, and several of the disclosed FGF21 receptor agonistic antibodies. The experiments were performed as follows.


CHO cells stably expressing FGF21 receptor were treated with R&D Systems mouse anti-huFGFR1, goat anti-mu β-Klotho (1 μg per 1×106 cells in 100 μl PBS/0.5% BSA). Cells were incubated with the antibodies at 4° C. followed by two washes with PBS/BSA. Cells were then treated with FITC-labeled secondary antibodies at 4° C. followed by two washes. The cells were resuspended in 1 ml PBS/BSA and antibody binding was analyzed using a FACSCalibur™ instrument.


None of the commercial anti-β-Klotho or anti-FGFR1 antibodies tested bind well to cell surface FGF21 receptor, as determined by FACS. This observation further confirmed that the commercial antibodies to the receptor components bind to denatured and non-native structure whereas all of the agonistic antibodies described herein bind receptors on cell surface as shown by FACS or FMAT which were the initial screens.


Example 9
Arginine Scanning

As described above, antigen binding proteins that bind a complex comprising b-Klotho and one of FGFR1c, FGFR2c and FGFR3c can be created and characterized. To determine the neutralizing determinants on human FGFR1c and/or β-Klotho that these various antigen binding proteins bound, a number of mutant FGFR1c and/or β-Klotho proteins can be constructed having arginine substitutions at select amino acid residues of human FGFR1c and/or β-Klotho. Arginine scanning is an art-recognized method of evaluating where antibodies, or other proteins, bind to another protein, see, e.g., Nanevicz et al., (1995) J. Biol. Chem., 270:37, 21619-25 and Zupnick et al., (2006) J. Biol. Chem., 281:29, 20464-73. In general, the arginine sidechain is positively charged and relatively bulky as compared to other amino acids, which can disrupt antibody binding to a region of the antigen where the mutation is introduced. Arginine scanning is a method that determines if a residue is part of a neutralizing determinant and/or an epitope.


Various amino acids distributed throughout the human FGFR1c and/or β-Klotho extracellular domains can be selected for mutation to arginine. The selection can be biased towards charged or polar amino acids to maximize the possibility of the residue being on the surface and reduce the likelihood of the mutation resulting in misfolded protein. Using standard techniques known in the art, sense and anti-sense oligonucleotides containing the mutated residues can be designed based on criteria provided by Stratagene Quickchange® II protocol kit (Stratagene/Agilent, Santa Clara, Calif.). Mutagenesis of the wild-type (WT) FGFR1c and/or β-Klotho sequences can be performed using a Quickchange® II kit (Stratagene). Chimeric constructs can be engineered to encode a FLAG-histidine tag (six histidines (SEQ ID NO: 1830)) on the carboxy terminus of the extracellular domain to facilitate purification via the poly-His tag.


Multiplex analysis using the Bio-Plex Workstation and software (BioRad, Hercules, Calif.) can be performed to determine neutralizing determinants on human FGFR1c and/or β-Klotho by analyzing exemplary human FGFR1c and/or β-Klotho mAbs differential binding to arginine mutants versus wild-type FGFR1c and/or β-Klotho proteins. Any number of bead codes of pentaHis-coated beads (“penta-His” disclosed as SEQ ID NO: 1831) (Qiagen, Valencia, Calif.) can be used to capture histidine-tagged protein. The bead codes can allow the multiplexing of FGFR1c and/or β-Klotho arginine mutants and wild-type human FGFR1c and/or β-Klotho.


To prepare the beads, 100 ul of wild-type FGFR1c and/or β-Klotho and FGFR1c and/or β-Klotho arginine mutant supernatants from transient expression culture are bound to penta-His-coated beads (“penta-His” disclosed as SEQ ID NO: 1831) overnight at 4° C. or 2 hours at room temperature with vigorous shaking. The beads are then washed as per the manufacturer's protocol and the bead set pooled and aliquoted into 2 or 3 columns of a 96-well filter plate (Millipore, Billerica, Mass., product #MSBVN1250) for duplicate or triplicate assay points, respectively. 100 μl anti-FGFR1c and/or anti-β-Klotho antibodies in 4-fold dilutions are added to the wells, incubated for 1 hour at room temperature, and washed. 100 μl of a 1:100 dilution of PE-conjugated anti-human IgG Fc (Jackson Labs., Bar Harbor, Me.) is added to each well, incubated for 1 hour at room temperature and washed. Beads are resuspended in 1% BSA, shaken for 3 minutes, and read on the Bio-Plex workstation. Antibody binding to FGFR1c and/or β-Klotho arginine mutant protein is compared to antibody binding to the human FGFR1c and/or β-Klotho wild-type from the same pool. A titration of antibody over approximately a 5 log scale can be performed. Median Fluorescence Intensity (MFI) of FGFR1c and/or β-Klotho arginine mutant proteins can be graphed as a percent of maximum wild-type human FGFR1c and/or β-Klotho signal. Those mutants for which signal from all the antibodies are below a cut-off value, e.g., 30% of wild-type FGFR1c and/or β-Klotho can be deemed to be either of too low a protein concentration on the bead due to poor expression in the transient culture or possibly misfolded and can be excluded from analysis. Mutations (i.e., arginine substitutions) that increase the EC50 for the FGFR1c and/or β-Klotho mAb by a cut-off value, e.g., 3-fold or greater (as calculated by, e.g., GraphPad Prism®) can be considered to have negatively affected FGFR1c and/or β-Klotho mAb binding. Through these methods, neutralizing determinants and epitopes for various FGFR1c and/or β-Klotho antibodies are elucidated.


Example 10
Protease Protection Analysis

Regions of the human FGF21 receptor bound by the antigen binding proteins that bind human FGF21 receptor, e.g., FGFR1c, β-Klotho or FGFR1c and β-Klotho complex can be identified by fragmenting human FGF21 receptor into peptides with specific proteases, e.g., AspN, Lys-C, chymotrypsin or trypsin. The sequence of the resulting human FGF21 receptor peptides (i.e., both disulfide- and non-disulfide-containing peptide fragments from FGFR1c and β-Klotho portions) can then be determined. In one example, soluble forms of a human FGF21 receptor, e.g., a complex comprising the FGFR1c ECD-Fc and β-Klotho ECD-Fc heterodimer described herein can be digested with AspN (which cleaves after aspartic acid and some glutamic acid residues at the amino end) by incubating about 100 μg of soluble FGF21 receptor at 1.0 mg/ml in 0.1M sodium phosphate (pH 6.5) for 20 hrs at 37° C. with 2 μg of AspN.


A peptide profile of the AspN digests can then be generated on HPLC chromatography while a control digestion with a similar amount of antibody is expected to be essentially resistant to AspN endoprotease. A protease protection assay can then be performed to determine the proteolytic digestion of human FGF21 receptor in the presence of the antigen binding proteins. The general principle of this assay is that binding of an antigen binding protein to the FGF21 receptor can result in protection of certain specific protease cleavage sites and this information can be used to determine the region or portion of FGF21 receptor where the antigen binding protein binds.


Briefly, the peptide digests can be subjected to HPLC peptide mapping; the individual peaks are collected, and the peptides are identified and mapped by on-line electrospray ionization LC-MS (ESI-LC-MS) analyses and/or by N-terminal sequencing. HPLC analyses for these studies can be performed using a narrow bore reverse-phase C18 column (Agilent Technologies) for off-line analysis and using a capillary reverse phase C18 column (The Separation Group) for LC-MS. HPLC peptide mapping can be performed with a linear gradient from 0.05% trifluoroacetic acid (mobile phase A) to 90% acetonitrile in 0.05% trifluoroacetic acid. Columns can be developed at desirable flow rate for narrow bore HPLC for off-line or on-line LC-MS analyses, and for capillary HPLC for on-line LC-MS analyses.


Sequence analyses can be conducted by on-line LC-MS/MS and by Edman sequencing on the peptide peaks recovered from HPLC. On-line ESI LC-MS analyses of the peptide digest can be performed to determine the precise mass and sequence of the peptides that are separated by HPLC. The identities of selected peptides present in the peptide peaks from the protease digestion can thus be determined.


Example 11
Construction of Chimeric Receptors

An additional method of determining activation determinants on which these various antigen binding proteins bind is as follows. Specific chimeric FGFR1c and/or β-Klotho proteins between human and mouse species can be constructed, expressed in transient or stable 293 or CHO cells (as described herein) and tested. For example, a chimeric FGF21 receptor can be constructed comprising native human FGFR1c, FGFR2c, FGFR3c or FGFR4 receptors. By way of example, FGFR1c can be paired with chimeric human/mouse β-Klotho in which selected regions or sequences on the human β-Klotho are systematically replaced by the corresponding mouse-specific residues (see, e.g., FIG. 2A-2C). Similarly, native human β-Klotho can be paired with chimeric human/mouse FGFR1c, FGFR2c, FGFR3c or FGFR4. Here, selected regions or sequences on the human FGFR1c are systematically replaced by the corresponding mouse-specific residues (see, e.g., the alignments of FIGS. 1A-1B). The critical sequences involved in the binding and/or activity of the antigen binding proteins can be derived through binding assay or activity measurements described in previous Examples 4, 5, 6, and 7 based on the chimeric FGF21 receptors.


Example 11.1 Construction of Specific Chimeras

Human-mouse β-Klotho chimeras were constructed using the methodology described above. A schematic of the chimeras constructed is presented in FIG. 4. In summary, the chimeras generated comprised (from N- to C-terminus) a fusion of a human β-Klotho sequence fused to a murine β-Klotho sequence fused to a human β-Klotho sequence. Human β-Klotho Klotho (SEQ ID NO: 7) was used as a framework into which regions of murine β-Klotho (full length sequence shown in SEQ ID NO:468) were inserted. The regions of murine β-Klotho that were inserted were as follows:









Murine Residues 82P-520P







(amino acids 82 to 520 of SEQ ID NO: 10)







PKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSY





IFLEKDLLALDFLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDS





LVLRNIEPIVTLYHWDLPLTLQEEYGGWKNATMIDLFNDYATYCFQTFGD





RVKYWITIHNPYLVAWHGFGTGMHAPGEKGNLTAVYTVGHNLIKAHSKVW





HNYDKNFRPHQKGWLSITLGSHWIEPNRTDNMEDVINCQHSMSSVLGWFA





NPIHGDGDYPEFMKTGAMIPEFSEAEKEEVRGTADFFAFSFGPNNFRPSN





TVVKMGQNVSLNLRQVLNWIKLEYDDPQILISENGWFTDSYIKTEDTTAI





YMMKNFLNQVLQAIKFDEIRVFGYTAWTLLDGFEWQDAYTTRRGLFYVDF





NSEQKERKPKSSAHYYKQIIQDNGFPLKESTPDMKGRFP





Murine Residues 506F-1043S







(amino acids 506 to 1043 of SEQ ID NO: 10)







FPLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTG





NRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFALDWTSIL





PTGNLSKVNRQVLRYYRCVVSEGLKLGVFPMVTLYHPTHSHLGLPLPLLS





SGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDMYNRTSND





TYRAAHNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHCDWAEPANPFVDSH





WKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSSSVLPRFT





AKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFLQDITRLS





SPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDDQIRKYYL





EKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFRAKSSVQF





YSKLISSSGLPAENRSPACGQPAEDTDCTICSFLVEKKPLIFFGCCFIST





LAVLLSITVFHHQKRRKFQKARNLQNIPLKKGHSRVFS





Murine Residues 1M-193L







(amino acids 506 to 1043 of SEQ NO: 10)







MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAV





TGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFSWGVGTGAFQVEGSW





KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ





FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTL





Murine Residues 82P-302S







(amino acids 82 to 302 of SEQ ID NO: 10)







PKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSY





IFLEKDLLALDFLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDS





LVLRNIEPIVTLYHWDLPLTLQEEYGGWKNATMIDLFNDYATYCFQTFGD





RVKYWITIHNPYLVAWHGFGTGMHAPGEKGNLTAVYTVGHNLIKAHSKVW





HNYDKNFRPHQKGWLSITLGS





Murine Residues 194Y-416G







(amino acids 194 to 416 of SEQ ID NO: 10)







YHWDLPLTLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPY








LVAWHGFGTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQK





GWLSITLGSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEF





MKTGAMIPEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLN





LRQVLNWIKLEYDDPQILISENG





Murine Residues 302S-506F







(amino acids 302 to 506 of SEQ ID NO: 10)







SHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMIP





EFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNWI





KLEYDDPQILISENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEIR





VFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQII





QDNGF





Murine Residues 416G-519P







(amino acids 416 to 519 of SEQ ID NO: 10)







GWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEIRVFGYTAWTLLDGFE





WQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQIIQDNGFPLKESTPDM





KGRF





Murine Residues 507P-632G







(amino acids 507 to 632 of SEQ NO: 10)







PLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTGN





RLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFALDWTSILP








TGNLSKVNRQVLRYYRCVVSEGLKLG





Murine Residues 520P-735A







(amino acids 520 to 735 of SEQ ID NO: 10)







PCDFSWGVTESVLKPEFTVSSPQFTDPHLYVWNVTGNRLLYRVEGVRLKT





RPSQCTDYVSIKKRVEMLAKMKVTHYQFALDWTSILPTGNLSKVNRQVLR





YYRCVVSEGLKLGVFPMVTLYHPTHSHLGLPLPLLSSGGWLNMNTAKAFQ





DYAELCFRELGDLVKLWITINEPNRLSDMYNRTSNDTYRAAHNLMIAHAQ





VWHLYDRQYRPVQHGA





Murine Residues 632G-849Q







(amino acids 632 to 849 of SEQ ID NO: 10)







GVFPMVTLYHPTHSHLGLPLPLLSSGGWLNMNTAKAFQDYAELCFRELGD





LVKLWITINEPNRLSDMYNRTSNDTYRAAHNLMIAHAQVWHLYDRQYRPV





QHGAVSLSLHCDWAEPANPFVDSHWKAAERFLQFEIAWFADPLFKTGDYP





SVMKEYIASKNQRGLSSSVLPRFTAKESRLVKGTVDFYALNHFTTRFVIH





KQLNTNRSVADRDVQFLQ





Murine Residues 735A-963S







(amino acids 735 to 963 of SEQ ID NO: 10)







AVSLSLHCDWAEPANPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVM





KEYIASKNQRGLSSSVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQL





NTNRSVADRDVQFLQDITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIY





ITANGIDDLALEDDQIRKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEE





KSKPRFGFFTSDFRAKSSVQFYSKLISSS





Murine Residues 1M-81F







(amino acids 1 to 81 of SEQ ID NO: 10)







MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAV





TGFSGDGKAIWDKKQYVSPVNPSQLFLYDTF





Murine Residues 82P-193L







(amino acids 82 to 193 of SEQ ID NO: 10)







PKNFSWGVGTGAFQVEGSWKTDGRGPSIWDRYVYSHLRGVNGTDRSTDSY





IFLEKDLLALDFLGVSFYQFSISWPRLFPNGTVAAVNAQGLRYYRALLDS





LVLRNIEPIVTL






The chimeras that were generated using the murine β-Klotho sequences comprised the following:














TABLE 12








N-terminal

C-terminal




SEQ.
Human β-
Mouse β-
Human β-


Con-
Construct
ID
Klotho
Klotho
Klotho


struct
Identifier
NO.
Residues
Residues
Residues




















1
huBeta_Klotho (1-

1-81 
 82-520
523-1044



81, 523-1044)



(muBetaKLOTHO



82-520)


2
huBeta_Klotho (1-

1-507
 506-1043



507)



(muBetaKLOTHO



506F-1045S)


3
huBeta_Klotho


 1-193
194-1044



(194-1044)



(muBetaKLOTHO



1-L193)


4
huBeta_Klotho (1-

1-81 
 82-302
303-1044



81, 303-1044)



(muBetaKLOTHO



82P-302S)


5
huBeta_Klotho (1-

1-193
194-416
419-1044



193, 419-1044)



(muBetaKLOTHO



Y194-416G)


6
huBeta_Klotho(1-

1-301
302-506
509-1044



301, 509-1044)



(muBetaKLOTHO



S302-F506)


7
huBeta_Klotho(1-

1-417
416-519
522-1044



417, 522-1044)



(muBetaKLOTHO



G416-F519)


8
huBeta_Klotho (1-

1-508
507-632
635-1044



507, 635-1044)



(muBeta KLOTHO



F06-G632)


9
huBeta_Klotho (1-

1-521
520-735
738-1044



521, 738-1044)



(muBeta KLOTHO



520P-735A)


10
huBeta_Klotho (1-

1-633
632-849
852-1044



633, 852-1044)



(muBeta KLOTHO



632G-849Q)


11
huBeta_Klotho (1-

1-736
735-963
967-1044



736, 967-1044)



(muBeta KLOTHO



735A-963S)


12
huBeta_Klotho


 1-81
 82-1044



(82-1044) (muBeta



KLOTHO 1-81F)


13
huBeta_Klotho (1-

1-81 
 82-193
194-1044



81, 194-1044)



(muBeta KLOTHO



82P-193L)


14
huBeta_Klotho (1-

1-301
 302-506,
967-1044



301, 509-743, 967-


742-964



1044) (muBeta



KLOTHO 302-



506, 742-964)










The generated chimeras comprised the following amino acid sequences:









(i) huBeta_Klotho(1-81, 523-1044)(muBetaKLOTHO


82-520)







(SEQ ID NO: 1898)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFSWGVGTGAFQVEGSW





KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ





FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL





TLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGF





GTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITL





GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI





PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW





IKLEYDDPQILISENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEI





RVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQI





IQDNGFPLKESTPDMKGRFPCDFSWGVTESVLKPESVASSPQFSDPHLYV





WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD





WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLP





EPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN





RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPANP





YADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSA





LPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQD





ITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRL





RKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK





SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC





CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(ii) huBeta_Klotho(1-507)(muBetaKLOTHO 506F-1045S)







(SEQ ID NO: 1899)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW





KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ





FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS





VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL





NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD





EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK





QIIRENGFPLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHL





YVWNVTGNRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFA





LDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGVFPMVTLYHPTHSHLG





LPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDM





YNRTSNDTYRAAHNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHCDWAEPA





NPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSS





SVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFL





QDITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDD





QIRKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFR





AKSSVQFYSKLISSSGLPAENRSPACGQPAEDTDCTICSFLVEKKPLIFF





GCCFISTLAVLLSITVFHHQKRRKFQKARNLQNIPLKKGHSRVFS





(iii) huBeta_Klotho(194-1044)(muBetaKLOTHO 1-L193)







(SEQ ID NO: 1900)







MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAV





TGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFSWGVGTGAFQVEGSW





KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ





FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS





VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL





NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD





EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK





QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL





YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA





LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG





LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI





YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA





NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS





SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL





QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD





RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK





AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL





GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(iv) huBeta_Klotho(1-81, 303-1044)(muBetaKLOTHO


82P-302S)







(SEQ ID NO: 1901)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFSWGVGTGAFQVEGSW





KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ





FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL





TLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGF





GTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITL





GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS





VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL





NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD





EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK





QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL





YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA





LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG





LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI





YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA





NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS





SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL





QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD





RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK





AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL





GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(v) huBeta_Klotho(1-193, 419-1044)(muBetaKLOTHO


Y194-416G)







(SEQ ID NO: 1902)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW





KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ





FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL





TLQEEYGGWKNATMIDLFNDYATYCFQTFGDRVKYWITIHNPYLVAWHGF





GTGMHAPGEKGNLTAVYTVGHNLIKAHSKVWHNYDKNFRPHQKGWLSITL





GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI





PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW





IKLEYDDPQILISENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLDEI





RVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYKQI





IRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHLYV





WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD





WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLP





EPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN





RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPANP





YADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSA





LPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQD





ITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRL





RKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK





SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC





CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(vi) huBeta_Klotho(1-301, 509-1044)(muBetaKLOTHO


S302-F506)







(SEQ ID NO: 1903)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW





KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ





FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI





PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW





IKLEYDDPQILISENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEI





RVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQI





IQDNGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHLYV





WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD





WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLP





EPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN





RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPANP





YADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSSSA





LPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFLQD





ITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDDRL





RKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFKAK





SSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC





CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(vii) huBeta_Klotho(1-417, 522-1044)(muBetaKLOTHO


G416-F519)







(SEQ ID NO: 1904)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW





KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ





FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS





VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL





NWIKLEYNNPRILIAENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFD





EIRVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYK





QIIQDNGFPLKESTPDMKGRFPCDFSWGVTESVLKPESVASSPQFSDPHL





YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA





LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG





LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI





YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA





NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS





SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL





QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD





RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK





AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL





GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(viii) huBeta_Klotho(1-507, 635-1044)(muBeta KLOTHO


F06-G632)







(SEQ ID NO: 1905)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW





KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ





FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS





VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL





NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD





EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK





QIIRENGFPLKESTPDMKGRFPCDFSWGVTESVLKPEFTVSSPQFTDPHL





YVWNVTGNRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFA





LDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGISAMVTLYYPTHAHLG





LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI





YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA





NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS





SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL





QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD





RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK





AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL





GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(ix) huBeta_Klotho(1-521, 738-1044)(muBeta KLOTHO


520P-735A)







(SEQ ID NO: 1906)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW





KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ





FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS





VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL





NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD





EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK





QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPEFTVSSPQFTDPHL





YVWNVTGNRLLYRVEGVRLKTRPSQCTDYVSIKKRVEMLAKMKVTHYQFA





LDWTSILPTGNLSKVNRQVLRYYRCVVSEGLKLGVFPMVTLYHPTHSHLG





LPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDM





YNRTSNDTYRAAHNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHADWAEPA





NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS





SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL





QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD





RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK





AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL





GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(x) huBeta_Klotho(1-633, 852-1044)(muBeta KLOTHO


632G-849Q)







(SEQ ID NO: 1907)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW





KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ





FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS





VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL





NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD





EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK





QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL





YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA





LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGVFPMVTLYHPTHSHLG





LPLPLLSSGGWLNMNTAKAFQDYAELCFRELGDLVKLWITINEPNRLSDM





YNRTSNDTYRAAHNLMIAHAQVWHLYDRQYRPVQHGAVSLSLHCDWAEPA





NPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSS





SVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFL





QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD





RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK





AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL





GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(xi) huBeta_Klotho(1-736, 967-1044)(muBeta KLOTHO


735A-963S)







(SEQ ID NO: 1908)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW





KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ





FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS





VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL





NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD





EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK





QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL





YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA





LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG





LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI





YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHCDWAEPA





NPFVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSS





SVLPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFL





QDITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDD





QIRKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFR





AKSSVQFYSKLISSSGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL





GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(xii) huBeta_Klotho(82-1044)(muBeta KLOTHO 1-81F)







(SEQ ID NO: 1909)







MKTGCAAGSPGNEWIFFSSDERNTRSRKTMSNRALQRSAVLSAFVLLRAV





TGFSGDGKAIWDKKQYVSPVNPSQLFLYDTFPKNFFWGIGTGALQVEGSW





KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ





FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS





VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL





NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD





EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK





QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL





YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA





LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG





LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI





YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA





NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS





SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL





QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD





RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK





AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL





GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(xiii) huBeta_Klotho(1-81, 194-1044)(muBeta KLOTHO


82P-193L)







(SEQ ID NO: 1910)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFSWGVGTGAFQVEGSW





KTDGRGPSIWDRYVYSHLRGVNGTDRSTDSYIFLEKDLLALDFLGVSFYQ





FSISWPRLFPNGTVAAVNAQGLRYYRALLDSLVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRSENTMDIFKCQQSMVSVLGWFANPIHGDGDYPEGMRKKLFS





VLPIFSEAEKHEMRGTADFFAFSFGPNNFKPLNTMAKMGQNVSLNLREAL





NWIKLEYNNPRILIAENGWFTDSRVKTEDTTAIYMMKNFLSQVLQAIRLD





EIRVFGYTAWSLLDGFEWQDAYTIRRGLFYVDFNSKQKERKPKSSAHYYK





QIIRENGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHL





YVWNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFA





LDWASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLG





LPEPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDI





YNRSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHADWAEPA





NPYADSHWRAAERFLQFEIAWFAEPLFKTGDYPAAMREYIASKHRRGLSS





SALPRLTEAERRLLKGTVDFCALNHFTTRFVMHEQLAGSRYDSDRDIQFL





QDITRLSSPTRLAVIPWGVRKLLRWVRRNYGDMDIYITASGIDDQALEDD





RLRKYYLGKYLQEVLKAYLIDKVRIKGYYAFKLAEEKSKPRFGFFTSDFK





AKSSIQFYNKVISSRGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFL





GCCFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS





(xiv) huBeta_Klotho (1-301, 509-743, 967-1044)


(muBetaKLOTHO 302-506, 742-964)







(SEQ ID NO: 1911)







MKPGCAAGSPGNEWIFFSTDEITTRYRNTMSNGGLQRSVILSALILLRAV





TGFSGDGRAIWSKNPNFTPVNESQLFLYDTFPKNFFWGIGTGALQVEGSW





KKDGKGPSIWDHFIHTHLKNVSSTNGSSDSYIFLEKDLSALDFIGVSFYQ





FSISWPRLFPDGIVTVANAKGLQYYSTLLDALVLRNIEPIVTLYHWDLPL





ALQEKYGGWKNDTIIDIFNDYATYCFQMFGDRVKYWITIHNPYLVAWHGY





GTGMHAPGEKGNLAAVYTVGHNLIKAHSKVWHNYNTHFRPHQKGWLSITL





GSHWIEPNRTDNMEDVINCQHSMSSVLGWFANPIHGDGDYPEFMKTGAMI





PEFSEAEKEEVRGTADFFAFSFGPNNFRPSNTVVKMGQNVSLNLRQVLNW





IKLEYDDPQILISENGWFTDSYIKTEDTTAIYMMKNFLNQVLQAIKFDEI





RVFGYTAWTLLDGFEWQDAYTTRRGLFYVDFNSEQKERKPKSSAHYYKQI





IQDNGFSLKESTPDVQGQFPCDFSWGVTESVLKPESVASSPQFSDPHLYV





WNATGNRLLHRVEGVRLKTRPAQCTDFVNIKKQLEMLARMKVTHYRFALD





WASVLPTGNLSAVNRQALRYYRCVVSEGLKLGISAMVTLYYPTHAHLGLP





EPLLHADGWLNPSTAEAFQAYAGLCFQELGDLVKLWITINEPNRLSDIYN





RSGNDTYGAAHNLLVAHALAWRLYDQQFRPSQRGAVSLSLHCDWAEPANP





FVDSHWKAAERFLQFEIAWFADPLFKTGDYPSVMKEYIASKNQRGLSSSV





LPRFTAKESRLVKGTVDFYALNHFTTRFVIHKQLNTNRSVADRDVQFLQD





ITRLSSPSRLAVTPWGVRKLLAWIRRNYRDRDIYITANGIDDLALEDDQI





RKYYLEKYVQEALKAYLIDKVKIKGYYAFKLTEEKSKPRFGFFTSDFRAK





SSVQFYSKLISSSGFPFENSSSRCSQTQENTECTVCLFLVQKKPLIFLGC





CFFSTLVLLLSIAIFQRQKRRKFWKAKNLQHIPLKKGKRVVS






Various antigen binding proteins provided herein, as well as human FGF21, were tested for the ability to activate chimeras in L6 cells. FIG. 5 shows the observed results with each tested molecule.


These data indicate that while human FGF21 was able to activate FGFR1c combined with all of the human/mouse β-Klotho chimeras (the “+” sign indicates activity on the receptor), the substitutions of mouse sequences into human β-Klotho affected the activities of 16H7, 37D3, and 39F7 (See FIG. 5). These results suggest that β-Klotho sequences 1-81, 302-522, and 849-1044 are important for the activities of agonistic antigen binding proteins and may represent an important epitope for their function.


In addition, various antigen binding proteins were also tested for binding to the various human/mouse β-Klotho chimeras transiently expressed on the surface of HEK-293T cells by flow cytometry. Transfection and flow-cytometry was performed as described in Example 12. It will be appreciated that antibodies which do not have the ability to cross-bind full length murine β-Klotho are unable to bind the human/mouse β-Klotho chimera if the chimera spans a region of the antibody's binding site. In this manner, the binding profile of each antibody on the panel of chimeras reveals epitope information for the antibody. Data is shown below in Table 10. The anti-β-Klotho antibody 2G10 (which binds both human and mouse β-Klotho) was used as the positive control for expression of each human/mouse chimera. Using this positive control it was determine the expression level of chimeras 7 and 8 were not high enough to provide robust data and therefore they were eliminated from the analysis. One antibody, 26H11, was found to bind to full-length mouse β-Klotho and therefore could not be assigned an epitope in this analysis. Other antibodies which did not cross-bind to mouse β-Klotho could be group into epitope clusters. The first cluster included antibodies 16H7, 46D11, and 49G3.3, which antibodies did not bind to chimera #3 and chimera #12, indicating that the epitope includes the 1-81 region. Additionally, this group of antibodies also lacked observed binding to chimeras 1, 5, 6 and 14, which indicates that the epitope also includes the 294-506 region. Taken together, this data suggests that these antibodies have a complex non-linear type of epitope.


A second cluster included only antibody 65C3.1. This antibody lacked binding to chimeras #2, #11, and #14, indicating an epitope in the region of 849-936. A third cluster, including antibodies 49H12.1, 54A1.1, 49C8.1, 51A8.1, 63A10.1, 64B10.1, 68C8.1 and 39F7, lacked binding to chimera #1, #5, and #6, indicating that their epitope is in the 302-416 region. The forth cluster included antibodies 67C10.1, 51E5.1, 52A8.1, 66G2, 167F5.1, which lacked binding on chimeras #2, #8, #9, #10, #11, and #14 indicating that the epitope for these antibodies lies within region 506-1045. A “+” or “−” symbol in the chart below indicates binding of the respective antibody (“+”), or lack of binding (“−”) to the chimera and/or the respective ortholog of β-Klotho, or Mock Cells (negative control).









TABLE 13







Chimera Binding














Mock






cells


CHIMERA #
hu β-
mu β-
(Neg.
Epitope
























1
2
3
4
5
6
9
10
11
12
13
14
Klotho
klotho
Cont.)
Region



























2G10
+
+
+
+
+
+
+
+
+
+
+
+
+
+




26H11
+
+
+
+
+
+
+
+
+
+
+
+
+
+



16H7

+

+


+
+
+

+

+


1-81 &


49G3.3

+

+


+
+
+

+

+


302-416


46D11

+

+


+
+
+

+

+




49H12.1

+
+
+


+
+
+
+
+

+


302-416


54A1.1

+
+
+


+
+
+
+
+

+




49C8.1

+
+
+


+
+
+
+
+

+




51A8.1

+
+
+


+
+
+
+
+

+




63A10.1

+
+
+


+
+
+
+
+

+




64B10.1

+
+
+


+
+
+
+
+

+




68C8.1

+
+
+


+
+
+
+
+

+




39F7

+
+
+


+
+
+
+
+

+




65C3.1
+

+
+
+
+
+
+

+
+

+


849-936


67C10.1
+

+
+
+
+



+
+

+


 506-1045


51E5.1
+

+
+
+
+



+
+

+




52A8.1
+

+
+
+
+



+
+

+




66G2.1
+

+
+
+
+



+
+

+




67F5.1
+

+
+
+
+



+
+

+




IgG2/K

















Control


IgG4/K

















Control


Secondary

















Only









Example 12
FGF21 Receptor Agonistic Antibodies Binding Selectivity

A panel of FGF21 receptor agonistic antibodies were assayed using flow cytometry for the binding to human FGFR1/human β-klotho transiently co-transfected HEK293T cells, human FGFR1c transiently transfected HEK293T cells and β-klotho transiently transfected HEK293T cells. In addition, binding was also tested on HEK-293T cells transiently transfected with cynomologous monkey orthologs of FGFR1c and β-klotho. Cells were transfected by preparing bug plasmid DNA in 500 ul OptiMEM™ media (Invitrogen™) and mixing this with 10 ul of 293fectin™ in 500 ul OptiMEM™ media, and then incubating the solution for 5 minutes at room temperature. This solution was then added dropwise to 10 million HEK293T cells in 10 ml of media. 24 hours following transfection, the cells were washed and 50,000 cells were stained with each primary antibody, 50 ul of unpurified hybridoma supernatant was diluted 1:2 and used for staining cells. After a one hour incubation at 4° c., the cells were washed and an anti-Human Fc-specific secondary was added. Stained cells were then analyzed on a flow cytometer. The panel of hybridoma supernatants tested all bound specifically to human β-Klotho/human FGFR1c co-transfected cells as well as human β-Klotho transfected alone. Data is shown below in Table 11. No staining was detected for any of the antibodies on cells transfected with FGFR1c alone. All antibodies except 64B10.1 and 68C8.1 specifically detected cynomologous β-Klotho/cynoFGFR1c co-transfected cells.









TABLE 14







FGFR Antibody Selectivity














Human
Human β-
HuFGFR1c/Hu
Cyno



Mock
FGFR1c
Klotho
β-Klotho Co-
FGFR1c/Cyno



Transfected
Transfect
Tranfected
transfected
β-Klotho Co-



293T cells
293T cells
293T Cells
293T Cells
transfected Cells


Antibody
GeoMean
GeoMean
GeoMean
GeoMean
GeoMean















49G3.3
648
706
14891
17919
25947


49H12.1
581
719
16213
21731
20870


51E5.1
723
747
16900
20951
36536


51A8.1
728
795
17799
22826
18476


54A1.1
709
770
14317
18701
11106


59G10.3
686
780
15669
21105
33464


63A10.1
648
834
17442
20432
32558


64B10.1
624
691
14939
19850
701


65C3.1
705
719
13720
18835
24564


66G2.1
695
780
12671
16715
21566


67F5.1
632
757
13482
13948
15784


67C10.1
688
780
15114
18896
4063


68C8.1
592
798
15905
20622
750


16H7 @
723
869
16335
20686
31319


5 ug/ml









Example 13
Hotspot/Covariant Mutants

A total of 17 antibodies were analyzed for potential hotspots and covariance violations. The designed variants (shown below) outline amino acid substitutions capable of reducing and/or avoiding isomerization, deamidation, oxidation, covariance violations, and the like. In the data below, “02 49C8.1_VK: [F21I]” refers to a variant of the parental antibody 49C8.1 that has a mutation at position 21, from F (Phe) to I (Isoleucine). Note that a structure-based numbering scheme is followed for designating amino acid positions. It will be appreciated that these single point mutations can be combined in any combinatorial manner in order to arrive at a final desired molecule. The data are shown below in Table 15 and Table 16.









TABLE 15







Antibody 49C8.1








02
49C8.1_VK: [F21I]


03
49C8.1_VK: [F91L]


04
49C8.1_VK: [I101F]


05
49C8.1_VK: [I101V]


06
49C8.1_VK: [P141Q]


07
49C8.1_VK: [P141G]


08
49C8.1_VH: [T48P]


09
49C8.1_VH: [N61Q]


10
49C8.1_VH: [G65T]







Antibody 49H12_N83D








01
49H12_N83D_VK: [F91L]


02
49H12_N83D_VK: [I101F]


03
49H12_N83D_VK: [I101V]


04
49H12_N83D_VH: [M24K]


05
49H12_N83D_VH: [I30T]


06
49H12_N83D_VH: [T48P]


07
49H12_N83D_VH: [W57Y]


08
49H12_N83D_VH: [W111Y]







Antibody 49G3.3








01
49G3.3_VK: [F91L]


02
49G3.3_VK: [I101F]


03
49G3.3_VK: [I101V]


04
49G3.3_VK: [G141Q]


05
49G3.3_VH: [E17Q]


06
49G3.3_VH: [V25F]


07
49G3.3_VH: [T56A]


08
49G3.3_VH: [T56G]


09
49G3.3_VH: [T144L]


10
49G3.3_VH: [T144M]







Antibody 51A8.1








01
51A8.1_VL: [I98T]


02
51A8.1_VL: [I98A]


03
51A8.1_VH: [R17G]


04
51A8.1_VH: [D61E]


05
51A8.1_VH: [D72E]


06
51A8.1_VH: [D110E]







Antibody 51E5.1








01
51E5.1_VK: [N53K]


02
51E5.1_VK: [R54L]


03
51E5.1_VK: [R54S]


04
51E5.1_VK: [G141Q]


05
51E5.1_VH: [D59E]


06
51E5.1_VH: [H60T]







Antibody 52A8.1








01
52A8.1_VK: [F10S]


02
52A8.1_VK: [H44Y]


03
52A8.1_VK: [H44F]


04
52A8.1_VK: [G141Q]


05
52A8.1_VH: [W57Y]


06
52A8.1_VH: [R95S]


07
52A8.1_VH: [W135Y]







Antibody 54A1.1_N83D








01
54A1.1_N83D_VK: [A5T]


02
54A1.1_N83D_VK: [L46Q]


03
54A1.1_N83D_VK: [G81S]


04
54A1.1_N83D_VK: [F91L]


05
54A1.1_N83D_VK: [I101F]


06
54A1.1_N83D_VK: [I101V]


07
54A1.1_N83D_VK: [P141G]


08
54A1.1_N83D_VK: [P141Q]


09
54A1.1_N83D_VH: [T48P]


10
54A1.1_N83D_VH: [W57Y]


11
54A1.1_N83D_VH: [W111Y]







Antibody 56E7.3








01
56E7.3_VK: [N53K]


02
56E7.3_VK: [F91L]


03
56E7.3_VK: [I101F]


04
56E7.3_VK: [P141Q]


05
56E7.3_VK: [P141G]


06
56E7.3_VK: [T144K]


07
56E7.3_VK: [T144R]


08
56E7.3_VH: [L31F]


09
56E7.3_VH: [D65E]


10
56E7.3_VH: [T84K]


11
56E7.3_VH: [R95S]







Antibody 58C2.1








01
58C2.1_VK: [D36E]


02
58C2.1_VH: [R17G]


03
58C2.1_VH: [D61E]


04
58C2.1_VH: [D72E]


05
58C2.1_VH: [N116Q]







Antibody 60D7.1_N30T








01
60D7.1_N30T_VK: [D33E]


02
60D7.1_N30T_VK: [D36E]


03
60D7.1_N30T_VH: [R17G]


04
60D7.1_N30T_VH: [D61E]


05
60D7.1_N30T_VH: [D72E]


06
60D7.1_N30T_VH: [W115Y]







Antibody 63A10.1_C58S








01
63A10.1_C58S_VL: [H9L]


02
63A10.1_C58S_VL: [H9P]


03
63A10.1_C58S_VL: [T15L]


04
63A10.1_C58S_VL: [T15P]


05
63A10.1_C58S_VL: [A16G]


06
63A10.1_C58S_VL: [M18T]


07
63A10.1_C58S_VL: [D51A]


08
63A10.1_C58S_VL: [D51S]


09
63A10.1_C58S_VL: [D51F]


10
63A10.1_C58S_VL: [D67E]


11
63A10.1_C58S_VL: [P83S]


12
63A10.1_C58S_VL: [E97Q]


13
63A10.1_C58S_VL: [D110E]


14
63A10.1_C58S_VL: [D136E]


15
63A10.1_C58S_VH: [D11G]


16
63A10.1_C58S_VH: [K14Q]


17
63A10.1_C58S_VH: [I29F]


18
63A10.1_C58S_VH: [G56S]


19
63A10.1_C58S_VH: [D64E]


20
63A10.1_C58S_VH: [G84D]


21
63A10.1_C58S_VH: [G84N]


22
63A10.1_C58S_VH: [T98A]


23
63A10.1_C58S_VH: [T107A]


24
63A10.1_C58S_VH: [T108R]


25
63A10.1_C58S_VH: [D109E]


26
63A10.1_C58S_VL: [W109Y]







Antibody 63A10.3_N20R_C42S








01
63A10.3_N20R_C42S_VL: [W109Y]


02
63A10.3_N20R_C42S_VL: [D67E]


03
63A10.3_N20R_C42S_VL: [D110E]


04
63A10.3_N20R_C42S_VH: [D11G]


05
63A10.3_N20R_C42S_VH: [K14Q]


06
63A10.3_N20R_C42S_VH: [I29F]


07
63A10.3_N20R_C42S_VH: [G56S]


08
63A10.3_N20R_C42S_VH: [D64E]


09
63A10.3_N20R_C42S_VH: [G84N]


10
63A10.3_N20R_C42S_VH: [T98A]


11
63A10.3_N20R_C42S_VH: [T107A]


12
63A10.3_N20R_C42S_VH: [T108R]


13
63A10.3_N20R_C42S_VH: [D109E]


14
63A10.3_N20R_C42S_VL: [W109Y]







Antibody 64B10.1








01
64B10.1_VL: [G92A]


02
64B10.1_VL: [G99E]


03
64B10.1_VL: [D110E]


04
64B10.1_VH: [L5Q]


05
64B10.1_VH: [T144L]


06
64B10.1_VH: [T144M]


07
64B10.1_VL: [W109Y]


08
64B10.1_VH: [W113Y]







Antibody 66G2








01
66G2_VK: [R54L]


02
66G2_VK: [K88E]


03
66G2_VK: [K88D]


04
66G2_VK: [N110Q]


05
66G2_VH: [R17G]


06
66G2_VH: [D61E]


07
66G2_VH: [D72E]


08
66G2_VH: [I78F]


09
66G2_VH: [T108K]


10
66G2_VH: [T108R]







Antibody 67F5








1. 01
67F5_VK: [H57Y]


2. 02
67F5_VK: [Q97E]


3. 03
67F5_VK: [S98P]


4. 04
67F5_VK: [A99E]


5. 05
67F5_VK: [N105Y]


6. 06
67F5_VH: [K5Q]


7. 07
67F5_VK: [W135Y]


8. 08
67F5_VK: [W137Y]







Antibody 67C10








1. 01
67C10_VK: [F2I]


2. 02
67C10_VK: [D36E]


3. 03
67C10_VH: [Q24K]


4. 04
67C10_VH: [D65E]







Antibody 68C8








1. 01
68C8_VL: [G92A]


2. 02
68C8_VL: [G99E]


3. 03
68C8_VL: [D110E]


4. 04
68C8_VH: [D29G]


5. 05
68C8_VH: [H83D]


6. 06
68C8_VH: [G107A]


7. 07
68C8_VH: [T144L]


8. 08
68C8_VH: [T144M]


9. 09
68C8_VL: [W109Y]


10. 10 
68C8_VH: [W113Y]
















TABLE 16





Exemplary Substitutions















>49C8.1 VK


DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ ID


NO: 1912)





>49C8.1 VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN


GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW


GQGTLVTVSS (SEQ ID NO: 1913)





>49H12 N83D VK


DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID


NO: 1914)





>49H12 N83D VH


QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGWMNPY


SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1915)





>49G3.3 VK


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID


NO: 1916)





>49G3.3 VH


QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1917)





>51A8.1 VL


NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV


PDRFSGSIDSSSNSASLTISGLKIEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID


NO: 1918)





>51A8.1 VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYY


GMDVWGQGTTVTVSS (SEQ ID NO: 1919)





>51E5.1 VK


DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNRLIYAASSLQFG


VPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID


NO: 1920)





>51E5.1 VH


QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDHSGSI


NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT


VSS (SEQ ID NO: 1921)





>52A8.1 VK


DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV


PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID


NO: 1922)





>52A8.1 VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN


SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG


QGTLVTVSS (SEQ ID NO: 1923)





>54A1.1 N83D VK


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID


NO: 1924)





>54A1.1 N83D VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1925)





>56E7.3 VK


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID


NO: 1926)





>56E7.3 VH


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV


TVSS (SEQ ID NO: 1927)





>58C2.1 VK


ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ


ID NO: 1928)





>58C2.1 VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWND


GNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWNGYP


YYFYYGMDVWGQGTTVTVSS (SEQ ID NO: 1929)





>60D7.1 N30T VK


DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ


ID NO: 1930)





>60D7.1 N30T VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF


YYYGMDVWGQGTTVTVSS (SEQ ID NO: 1931)





>63A10.1 C58S VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1 C58S VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.3 N20R C42S VL


SYELTQPPSVSVSPGQTARITCSGDKLGNRYTSWYQQKSGQSPVLVIYQDSERPSGIP


ERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSTTVVFGGGTKLTVLG (SEQ ID


NO: 1934)





>63A10.3 N20R C42S VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1935)





>64B10.1 VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1936)





>64B10.1 VH


QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG


TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG


QGTTVTVSS (SEQ ID NO: 1937)





>66G2 VK


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG


VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ


ID NO: 1938)





>66G2 VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG


SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM


DVWGQGTTVTVSS (SEQ ID NO: 1939)





>67F5 VK


ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP


ARFSGSGSGTEFTLTISSLQSADFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID


NO: 1940)





>67F5 VH


QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN


YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL


VTVSS (SEQ ID NO: 1941)





>67C10 VK


DFVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGNTYLDWYLQKPGQSPQLLIYTLS


YRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQGTRLEIKR


(SEQ ID NO: 1942)





>67C10 VH


EVQLVQSGAEVKKPGESLKISCQGSGYSFSSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCARRASRGYRYGLAFAIW


GQGTMVTVSS (SEQ ID NO: 1943)





>68C8 VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1944)





>68C8 VH


QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1945)





>49C8.1 VK.02


DIQMTQSPSSLSASVGDRVTITCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETGV


PSRFSGSGSGTDFTLTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ ID


NO: 1946)





>49C8.1 VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN


GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW


GQGTLVTVSS (SEQ ID NO: 1913)





>49C8.1 VK.03


DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG


VPSRFSGSGSGTDFTLTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ


ID NO: 1947)





>49C8.1 VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN


GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW


GQGTLVTVSS (SEQ ID NO: 1913)





>49C8.1 VK.04


DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG


VPSRFSGSGSGTDFTFTISSLQPEDFATYFCQQYDNLPFTFGPGTKVDLKR (SEQ


ID NO: 1948)





>49C8.1 VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN


GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW


GQGTLVTVSS (SEQ ID NO: 1913)





>49C8.1 VK.05


DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG


VPSRFSGSGSGTDFTFTISSLQPEDVATYFCQQYDNLPFTFGPGTKVDLKR (SEQ


ID NO: 1949)





>49C8.1 VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN


GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW


GQGTLVTVSS (SEQ ID NO: 1913)





>49C8.1 VK.06


DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGQGTKVDLKR (SEQ


ID NO: 1950)





>49C8.1 VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN


GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW


GQGTLVTVSS (SEQ ID NO: 1913)





>49C8.1 VK.07


DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGGGTKVDLKR (SEQ


ID NO: 1951)





>49C8.1 VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPN


GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW


GQGTLVTVSS (SEQ ID NO: 1913)





>49C8.1 VK


DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ


ID NO: 1912)





>49C8.1 VH.08


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQAPGQGLEWMGWMNPN


GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW


GQGTLVTVSS (SEQ ID NO: 1952)





>49C8.1 VK


DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ


ID NO: 1912)





>49C8.1 VH.09


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDIDWVRQATGQGLEWMGWMNPQ


GGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW


GQGTLVTVSS (SEQ ID NO: 1953)





>49C8.1 VK


DIQMTQSPSSLSASVGDRVTFTCQASQDINIYLNWYQQKPGKAPKLLIYDVSNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYFCQQYDNLPFTFGPGTKVDLKR (SEQ


ID NO: 1912)





>49C8.1 VH.10


TGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAIYYCARGKEFSRAEFDYW


GQGTLVTVSS (SEQ ID NO: 1954)





>49H12 N83D VK.01


DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV


PSRFSGSGSGTDFTLTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ


ID NO: 1955)





>49H12 N83D VH


QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGWMNPY


SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1915)





>49H12 N83D VK.02


DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV


PSRFSGSGSGTDFTFTISSLQPEDFATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID


NO: 1956)





>49H12 N83D VH


QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGWMNPY


SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1915)





>49H12 N83D VK.03


DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV


PSRFSGSGSGTDFTFTISSLQPEDVATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID


NO: 1957)





>49H12 N83D VH


QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGWMNPY


SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1915)





>49H12 N83D VK


DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID


NO: 1914)





>49H12 N83D VH.04


QVQLVQSGAEVKKPGASVKVSCKASGYIFTSYDINWVRQATGQGPEWMGWMNPYS


GSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFWG


QGTMVTVSS (SEQ ID NO: 1958)





>49H12 N83D VK


DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID


NO: 1914)





>49H12 N83D VH.05


QVQLVQSGAEVKKPGASVKVSCMASGYTFTSYDINWVRQATGQGPEWMGWMNPY


SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1959)





>49H12 N83D VK


DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID


NO: 1914)





>49H12 N83D VH.06


QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQAPGQGPEWMGWMNPY


SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1960)





>49H12 N83D VK


DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID


NO: 1914)





>49H12 N83D VH.07


QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGYMNPYS


GSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFWG


QGTMVTVSS (SEQ ID NO: 1961)





>49H12 N83D VK


DIQMTQSPSSLSASVGDRVTITCQASQDITKYLNWYQQKPGKAPKLLIYDTFILETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTRLEIKR (SEQ ID


NO: 1914)





>49H12 N83D VH.08


QVQLVQSGAEVKKPGASVKVSCMASGYIFTSYDINWVRQATGQGPEWMGWMNPY


SGSTGYAQNFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNYNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1962)





>49G3.3 VK.01


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTLTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID


NO: 1963)





>49G3.3 VH


QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1917)





>49G3.3 VK.02


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTFTISSLQPEDFATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID


NO: 1964)





>49G3.3 VH


QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1917)





>49G3.3 VK.03


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTFTISSLQPEDVATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID


NO: 1965)





>49G3.3 VH


QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1917)





>49G3.3 VK.04


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGQGTKVEIRR (SEQ ID


NO: 1966)





>49G3.3 VH


QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1917)





>49G3.3 VK


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID


NO: 1916)





>49G3.3 VH.05


QVTLKESGPVLVKPTQTLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1967)





>49G3.3 VK


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID


NO: 1916)





>49G3.3 VH.06


QVTLKESGPVLVKPTETLTLTCTFSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1968)





>49G3.3 VK


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID


NO: 1916)





>49G3.3 VH.07


QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLAHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1969)





>49G3.3_VK


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID


NO: 1916)





>49G3.3_VH.08


QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLGHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1970)





>49G3.3_VK


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID


NO: 1916)





>49G3.3_VH.09


QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTLVTVSS (SEQ ID NO: 1971)





>49G3.3_VK


DIQMTQSPSSLSASIGDRVTITCQASQGISNYLNWYQQKPGKAPKLLIYDASNLETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCHQYDDLPLTFGGGTKVEIRR (SEQ ID


NO: 1916)





>49G3.3_VH.10


QVTLKESGPVLVKPTETLTLTCTVSGFSLSNPRMGVSWIRQPPGKALEWLTHIFSNDE


KSYSTSLKSRLTISKDTSKSQVVLSMTNMDPVDTATYYCVRVDTLNYHYYGMDVW


GQGTMVTVSS (SEQ ID NO: 1972)





>51A8.1_VL.01


NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV


PDRFSGSIDSSSNSASLTISGLKTEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID


NO: 1973)





>51A8.1_VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYY


GMDVWGQGTTVTVSS (SEQ ID NO: 1919)





>51A8.1_VL.02


NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV


PDRFSGSIDSSSNSASLTISGLKAEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID


NO: 1974)





>51A8.1_VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYY


GMDVWGQGTTVTVSS (SEQ ID NO: 1919)





>51A8.1_VL


NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV


PDRFSGSIDSSSNSASLTISGLKIEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID


NO: 1918)





>51A8.1_VH.03


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYY


GMDVWGQGTTVTVSS (SEQ ID NO: 1975)





>51A8.1_VL


NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV


PDRFSGSIDSSSNSASLTISGLKIEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID


NO: 1918)





>51A8.1_VH.04


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYEGS


NKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYYG


MDVWGQGTTVTVSS (SEQ ID NO: 1976)





>51A8.1_VL


NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV


PDRFSGSIDSSSNSASLTISGLKIEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID


NO: 1918)





>51A8.1_VH.05


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG


SNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARADGDYPYYYYYY


GMDVWGQGTTVTVSS (SEQ ID NO: 1977)





>51A8.1_VL


NFILTQPHSVSESPGKTVTISCTRSSGSIASDYVQWYQQRPGSSPTTVIYEDKERSSGV


PDRFSGSIDSSSNSASLTISGLKIEDEADYYCQSYDRNNHVVFGGGTKLTVLG (SEQ ID


NO: 1918)





>51A8.1_VH.06


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARAEGDYPYYYYYY


GMDVWGQGTTVTVSS (SEQ ID NO: 1978)





>51E5.1_VK.01


DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPKRLIYAASSLQFG


VPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID


NO: 1979)





>51E5.1_VH


QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDHSGSI


NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT


VSS (SEQ ID NO: 1921)





>51E5.1_VK.02


DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNLLIYAASSLQFGV


PSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID


NO: 1980)





>51E5.1_VH


QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDHSGSI


NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT


VSS (SEQ ID NO: 1921)





>51E5.1_VK.03


DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNSLIYAASSLQFGV


PSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID


NO: 1981)





>51E5.1_VH


QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDHSGSI


NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT


VSS (SEQ ID NO: 1921)





>51E5.1_VK.04


DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNRLIYAASSLQFG


VPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGQGTRVEIKR (SEQ ID


NO: 1982)





>51E5.1_VH


QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDHSGSI


NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT


VSS (SEQ ID NO: 1921)





>51E5.1_VK


DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNRLIYAASSLQFG


VPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID


NO: 1920)





>51E5.1_VH.05


QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELEHSGSI


NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT


VSS (SEQ ID NO: 1983)





>51E5.1_VK


DIQMTQSPSSLSASVGDRVTITCRASQDIRNDLGWYQQKPGKAPNRLIYAASSLQFG


VPSRFSGSGSGTEFTLTISSLQPEDFATYYCLQHSSYPLTFGGGTRVEIKR (SEQ ID


NO: 1920)





>51E5.1_VH.06


QVQLQQWGAGLLKPSETLSLTCAVYGGSFSGYYWSWIRQPPGKGLEWIGELDTSGSI


NYNPSLKSRVTISVDTSKNQFSLKLTSVTAADTAVYYCARVLGSTLDYWGQGTLVT


VSS (SEQ ID NO: 1984)





>52A8.1_VK.01


DIQMTQSPSSLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV


PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID


NO: 1985)





>52A8.1_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN


SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG


QGTLVTVSS (SEQ ID NO: 1923)





>52A8.1_VK.02


DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWYQQKPGKAPKLLIYAASSLQSGV


PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID


NO: 1986)





>52A8.1_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN


SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG


QGTLVTVSS (SEQ ID NO: 1923)





>52A8.1_VK.03


DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWFQQKPGKAPKLLIYAASSLQSGVP


SRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID


NO: 1987)





>52A8.1_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN


SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG


QGTLVTVSS (SEQ ID NO: 1923)





>52A8.1_VK.04


DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV


PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGQGTKVEIKR (SEQ ID


NO: 1988)





>52A8.1_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN


SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG


QGTLVTVSS (SEQ ID NO: 1923)





>52A8.1_VK


DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV


PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID


NO: 1922)





>52A8.1_VH.05


QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGYINPNS


AATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNWFDPWG


QGTLVTVSS (SEQ ID NO: 1989)





>52A8.1_VK


DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV


PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID


NO: 1922)





>52A8.1_VH.06


QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN


SAATNYAPKFQGRVTVTRDTSISTAYMELSSLRSDDTAVYYCAREGGTYNWFDPWG


QGTLVTVSS (SEQ ID NO: 1990)





>52A8.1_VK


DIQMTQSPSFLSASVGDRVTITCRASQTISSYLNWHQQKPGKAPKLLIYAASSLQSGV


PSRFSGSGSGTDFSLTISSLQPEDFATYYCQQSYSTPLTFGGGTKVEIKR (SEQ ID


NO: 1922)





>52A8.1_VH.07


QVQLVQSGAEVKKPGASVKVSCKASGYTFTGYYLHWVRQAPGQGLEWMGWINPN


SAATNYAPKFQGRVTVTRDTSISTAYMELSRLRSDDTAVYYCAREGGTYNYFDPWG


QGTLVTVSS (SEQ ID NO: 1991)





>54A1.1_N83D_VK.01


DIQMTQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID


NO: 1992)





>54A1.1_N83D_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1925)





>54A1.1_N83D_VK.02


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQQKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID


NO: 1993)





>54A1.1_N83D_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1925)





>54A1.1_N83D_VK.03


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID


NO: 1994)





>54A1.1_N83D_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1925)





>54A1.1_N83D_VK.04


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTLTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID


NO: 1995)





>54A1.1_N83D_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1925)





>54A1.1_N83D_VK.05


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTFTISSLQPEDFATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID


NO: 1996)





>54A1.1_N83D_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1925)





>54A1.1_N83D_VK.06


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTFTISSLQPEDVATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID


NO: 1997)





>54A1.1_N83D_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1925)





>54A1.1_N83D_VK.07


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGGGTKVDIKR (SEQ ID


NO: 1998)





>54A1.1_N83D_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1925)





>54A1.1_N83D_VK.08


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGQGTKVDIKR (SEQ ID


NO: 1999)





>54A1.1_N83D_VH


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 1925)





>54A1.1_N83D_VK


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID


NO: 1924)





>54A1.1_N83D_VH.09


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQAPGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 2000)





>54A1.1_N83D_VK


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID


NO: 1924)





>54A1.1_N83D_VH.10


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGYMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNWNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 2001)





>54A1.1_N83D_VK


DIQMAQSPSSLSASVGDRVTITCQASQDISIYLNWYQLKPGKAPKLLIYDVSNLETGV


PSRFSGGGSGTDFTFTISSLQPEDIATYYCQQYDNLPLTFGPGTKVDIKR (SEQ ID


NO: 1924)





>54A1.1_N83D_VH.11


QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYDINWVRQATGQGLEWMGWMNPH


SGNTGYAQKFQGRVTMTRDTSINTAYMELSSLRSEDTAVYYCAKYNYNYGAFDFW


GQGTMVTVSS (SEQ ID NO: 2002)





>58C2.1_VK.01


ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDEGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ


ID NO: 2003)





>58C2.1_VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWND


GNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWNGYP


YYFYYGMDVWGQGTTVTVSS (SEQ ID NO: 1929)





>58C2.1_VK


ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ


ID NO: 1928)





>58C2.1_VH.02


QVQLVESGGGVVQPGGSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWND


GNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWNGYP


YYFYYGMDVWGQGTTVTVSS (SEQ ID NO: 2004)





>58C2.1_VK


ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ


ID NO: 1928)





>58C2.1_VH.03


QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWNEG


NNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWNGYPY


YFYYGMDVWGQGTTVTVSS (SEQ ID NO: 2005)





>58C2.1_VK


ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ


ID NO: 1928)





>58C2.1_VH.04


QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWND


GNNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWNGYP


YYFYYGMDVWGQGTTVTVSS (SEQ ID NO: 2006)





>58C2.1_VK


ENMTQTPLSLPVTPGEPASISCRSSQSLFDNDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRLEFPITFGQGTRLEIKR (SEQ


ID NO: 1928)





>58C2.1_VH.05


QVQLVESGGGVVQPGRSLRLSCAASGFTFSNYGMHWVRQAPGKGLEWVAVIWND


GNNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQNYDFWQGYP


YYFYYGMDVWGQGTTVTVSS (SEQ ID NO: 2007)





>56E7.3_VK.01


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPKLLIYDASNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID


NO: 2008)





>56E7.3_VH


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV


TVSS (SEQ ID NO: 1927)





>56E7.3_VK.02


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG


VPSRFSGSGSGTDFTLTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID


NO: 2009)





>56E7.3_VH


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV


TVSS (SEQ ID NO: 1927)





>56E7.3_VK.03


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG


VPSRFSGSGSGTDFTFTISSLQPEDFATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID


NO: 2010)





>56E7.3_VH


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV


TVSS (SEQ ID NO: 1927)





>56E7.3_VK.04


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGGGTTVDIKR (SEQ ID


NO: 2011)





>56E7.3_VH


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV


TVSS (SEQ ID NO: 1927)





>56E7.3_VK.05


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGQGTTVDIKR (SEQ ID


NO: 2012)





>56E7.3_VH


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV


TVSS (SEQ ID NO: 1927)





>56E7.3_VK.06


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTKVDIKR (SEQ ID


NO: 2013)





>56E7.3_VH


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV


TVSS (SEQ ID NO: 1927)





>56E7.3_VK.07


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTRVDIKR (SEQ ID


NO: 2014)





>56E7.3_VH


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV


TVSS (SEQ ID NO: 1927)





>56E7.3_VK


378DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLE


TGVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ


ID NO: 1926)





>56E7.3_VH.08


EVQLVQSGPEVKKPGESLKISCKGSGYSFTSYWIGWVRQMPGKGLEWMGIIYPGDSD


TRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLVT


VSS (SEQ ID NO: 2015)





>56E7.3_VK


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLET


GVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ


ID NO: 1926)





>56E7.3_VH.09


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGESD


TRYSPSFQGQVTISADTSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLVT


VSS (SEQ ID NO: 2016)





>56E7.3_VK


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID


NO: 1926)





>56E7.3_VH.10


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADKSISTAYLQWSRLKASDTAVYYCARAQLGIFDYWGQGTLV


TVSS (SEQ ID NO: 2017)





>56E7.3_VK


DLQMTQSPSSLSASVGDRVTITCQASQDIKKFLNWYQQKPGKAPNLLIYDASNLETG


VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQYAILPFTFGPGTTVDIKR (SEQ ID


NO: 1926)





>56E7.3_VH.11


EVQLVQSGPEVKKPGESLKISCKGSGYSLTSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADTSISTAYLQWSSLKASDTAVYYCARAQLGIFDYWGQGTLV


TVSS (SEQ ID NO: 2018)





>60D7.1_N30T_VK.01


DIVLTQTPLSLPVTPGEPASISCRSSQSLLESDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ


ID NO: 2019)





>60D7.1_N30T_VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF


YYYGMDVWGQGTTVTVSS (SEQ ID NO: 1931)





>60D7.1_N30T_VK.02


DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDEGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ


ID NO: 2020)





>60D7.1_N30T_VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF


YYYGMDVWGQGTTVTVSS (SEQ ID NO: 1931)





>60D7.1_N30T_VK


DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ


ID NO: 2021)





>60D7.1_N30T_VH.03


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF


YYYGMDVWGQGTTVTVSS (SEQ ID NO: 2022)





>60D7.1_N30T_VK


DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ


ID NO: 2021)





>60D7.1_N30T_VH.04


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYEG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF


YYYGMDVWGQGTTVTVSS (SEQ ID NO: 2023)





>60D7.1_N30T_VK


DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ


ID NO: 2021)





>60D7.1_N30T_VH.05


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG


SNKYYAESVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFWSGYPFF


YYYGMDVWGQGTTVTVSS (SEQ ID NO: 2024)





>60D7.1_N30T_VK


DIVLTQTPLSLPVTPGEPASISCRSSQSLLDSDDGDTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPLTFGGGTKVEIKR (SEQ


ID NO: 2021)





>60D7.1_N30T_VH.06


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDG


SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVFYCARDQYFDFYSGYPFF


YYYGMDVWGQGTTVTVSS (SEQ ID NO: 2025)





>63A10.1_C58S_VL.01


SYELTQPLSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2026)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.02


SYELTQPPSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2027)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.03


SYELTQPHSVSVALAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2028)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.04


SYELTQPHSVSVAPAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2029)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.05


SYELTQPHSVSVATGQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2030)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.06


SYELTQPHSVSVATAQTARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGIP


ERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2031)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.07


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQAPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2032)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.08


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQSPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2033)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.09


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQFPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2034)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.10


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSESNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2035)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.11


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNSGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2036)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.12


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIQAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2037)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.13


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWESSSDGVFGGGTKLTVLG (SEQ ID


NO: 2038)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL.14


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSEGVFGGGTKLTVLG (SEQ ID


NO: 2039)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.15


EVQLVESGGGLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 2040)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.16


EVQLVESGGDLVQPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 2041)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.17


EVQLVESGGDLVKPGGSLRLSCAVSGFTFSNAWMSWVRQAPGKGLEWVGRIKSKT


DGGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVED


YFDYWGQGTLVTVSS (SEQ ID NO: 2042)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.18


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVSRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 2043)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.19


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTE


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 2044)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.20


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDDSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 2045)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.21


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDNSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 2046)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.22


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKAEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 2047)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.23


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCATDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 2048)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.24


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTRDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 2049)





>63A10.1_C58S_VL


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVWDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 1932)





>63A10.1_C58S_VH.25


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTESSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 2050)





>63A10.1_C58S_VL.26


SYELTQPHSVSVATAQMARITCGGNNIGSKAVHWYQQKPGQDPVLVIYSDSNRPSGI


PERFSGSNPGNTATLTISRIEAGDEADYYCQVYDSSSDGVFGGGTKLTVLG (SEQ ID


NO: 2051)





>63A10.1_C58S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1933)





>63A10.3_N20R_C42S_VL.01


SYELTQPPSVSVSPGQTARITCSGDKLGNRYTSWYQQKPGQSPVLVIYQDSERPSGIP


ERFSGSNSGNTATLTISGTQAMDEADYYCQAWDSTTVVFGGGTKLTVLG (SEQ ID


NO: 2052)





>63A10.3_N20R_C42S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1935)





>63A10.3_N20R_C42S_VL.02


SYELTQPPSVSVSPGQTARITCSGDKLGNRYTSWYQQKSGQSPVLVIYQESERPSGIPE


RFSGSNSGNTATLTISGTQAMDEADYYCQAWDSTTVVFGGGTKLTVLG (SEQ ID


NO: 2053)





>63A10.3_N20R_C42S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1935)





>63A10.3_N20R_C42S_VL.03


SYELTQPPSVSVSPGQTARITCSGDKLGNRYTSWYQQKSGQSPVLVIYQDSERPSGIP


ERFSGSNSGNTATLTISGTQAMDEADYYCQAWESTTVVFGGGTKLTVLG (SEQ ID


NO: 2054)





>63A10.3_N20R_C42S_VH


EVQLVESGGDLVKPGGSLRLSCAVSGITFSNAWMSWVRQAPGKGLEWVGRIKSKTD


GGTTDYAAPVKGRFTVSRDGSKNTLYLQMNSLKTEDTAVYYCTTDSSGSYYVEDYF


DYWGQGTLVTVSS (SEQ ID NO: 1935)





>64B10.1_VL.01


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG


IPDRFSGSKSGTSATLAITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 2055)





>64B10.1_VH


QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG


TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG


QGTTVTVSS (SEQ ID NO: 1937)





>64B10.1_VL.02


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG


20


IPDRFSGSKSGTSATLGITGLQTEDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 2056)





>64B10.1_VH


QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG


TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG


QGTTVTVSS (SEQ ID NO: 1937)





>64B10.1_VL.03


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWESSLSAVVFGGGTKLTVLG (SEQ


ID NO: 2057)





>64B10.1_VH


QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG


TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG


QGTTVTVSS (SEQ ID NO: 1937)





>64B10.1_VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1936)





>64B10.1_VH.04


QIQLQESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG


TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG


QGTTVTVSS (SEQ ID NO: 2058)





>64B10.1_VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1935)





>64B10.1_VH.05


QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG


TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG


QGTLVTVSS (SEQ ID NO: 2059)





>64B10.1_VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1935)





>64B10.1_VH.06


QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG


TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG


QGTMVTVSS (SEQ ID NO: 2060)





>64B10.1_VL.07


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTYDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 2061)





>64B10.1_VH


QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG


TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTWDYYYGVDVWG


QGTTVTVSS (SEQ ID NO: 1937)





>64B10.1_VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVAWYQQLPGTAPKLLIYDNDKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1935)





>64B10.1_VH.08


QIQLLESGPGLVKPSETLSLTCTVSGGSVSSGDYYWSWIRQPPGKGLEWIGFIYYSGG


TNYNPSLKSRVTISIDTSKNQFSLKLNSVTAADTAVYYCARYSSTYDYYYGVDVWG


QGTTVTVSS (SEQ ID NO: 2062)





>66G2_VK.01


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASNLQSG


VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID


NO: 2063)





>66G2_VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG


SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM


DVWGQGTTVTVSS (SEQ ID NO: 1939)





>66G2_VK.02


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG


VPSRFSGSGSGTEFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID


NO: 2064)





>66G2_VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG


SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM


DVWGQGTTVTVSS (SEQ ID NO: 1939)





>66G2_VK.03


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG


VPSRFSGSGSGTDFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID


NO: 2065)





>66G2_VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG


SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM


DVWGQGTTVTVSS (SEQ ID NO: 1939)





>66G2_VK.04


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG


VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLQGYPLTFGGGTKVEIKR (SEQ ID


NO: 2066)





>66G2_VH


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG


SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM


DVWGQGTTVTVSS (SEQ ID NO: 1939)





>66G2_VK


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG


VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID


NO: 1938)





>66G2_VH.05


QVQLVESGGGVVQPGGSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG


SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM


DVWGQGTTVTVSS (SEQ ID NO: 2067)





>66G2_VK


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG


VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID


NO: 1938)





>66G2_VH.06


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYEGS


NKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGMD


VWGQGTTVTVSS (SEQ ID NO: 2068)





>66G2_VK


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG


VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID


NO: 1938)





>66G2_VH.07


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG


SNKNYAESVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGMD


VWGQGTTVTVSS (SEQ ID NO: 2068)





>66G2_VK


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG


VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID


NO: 1938)





>66G2_VH.08


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG


SNKNYADSVKGRFTISRDNPKNTLYLQMNSLRAEDTAVYYCATTVTKEDYYYYGM


DVWGQGTTVTVSS (SEQ ID NO: 2070)





>66G2_VK


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG


VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID


NO: 1938)





>66G2_VH.09


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG


SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCAKTVTKEDYYYYGM


DVWGQGTTVTVSS (SEQ ID NO: 2071)





>66G2_VK


DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASNLQSG


VPSRFSGSGSGTKFTLTINSLQPEDFATYYCLQLNGYPLTFGGGTKVEIKR (SEQ ID


NO: 1938)





>66G2_VH.10


QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAGISYDG


SNKNYADSVKGRITISRDNPKNTLYLQMNSLRAEDTAVYYCARTVTKEDYYYYGM


DVWGQGTTVTVSS (SEQ ID NO: 2072)





>67F5_VK.01


ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIYGSSNRAIGIP


ARFSGSGSGTEFTLTISSLQSADFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID


NO: 2073)





>67F5_VH


QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN


YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL


VTVSS (SEQ ID NO: 1941)





>67F5_VK.02


ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP


ARFSGSGSGTEFTLTISSLESADFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID


NO: 2074)





>67F5_VH


QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN


YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL


VTVSS (SEQ ID NO: 1941)





>67F5_VK.03


ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP


ARFSGSGSGTEFTLTISSLQPADFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID


NO: 2075)





>67F5_VH


QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN


YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL


VTVSS (SEQ ID NO: 1941)





>67F5_VK.04


ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP


ARFSGSGSGTEFTLTISSLQSEDFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID


NO: 2076)





>67F5_VH


QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN


YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL


VTVSS (SEQ ID NO: 1941)





>67F5_VK.05


ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP


ARFSGSGSGTEFTLTISSLQSADFAVYYCQQYEIWPWTFGQGTKVEIKR (SEQ ID


NO: 2077)





>67F5_VH


QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN


YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL


VTVSS (SEQ ID NO: 1941)





>67F5_VK


ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP


ARFSGSGSGTEFTLTISSLQSADFAVYNCQQYEIWPWTFGQGTKVEIKR (SEQ ID


NO: 1940)





>67F5_VH.06


QVQLQESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN


YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL


VTVSS (SEQ ID NO: 2078)





>67F5_VK.07


ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP


ARFSGSGSGTEFTLTISSLQSADFAVYNCQQYEIYPWTFGQGTKVEIKR (SEQ ID


NO: 2079)





>67F5_VH


QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN


YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL


VTVSS (SEQ ID NO: 1941)





>67F5_VK.08


ENMTQSPATLSVSPGERVTLSCRASQSVSSNLAWYQQKPGQAPRLLIHGSSNRAIGIP


ARFSGSGSGTEFTLTISSLQSADFAVYNCQQYEIWPYTFGQGTKVEIKR (SEQ ID


NO: 2080)





>67F5_VH


QVQLKESGPGLVKPSETLSLTCTVSGGSISSYYWSWIRQPPGKGLEWIGYIYYSGNTN


YNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAREYYYGSGSYYPWGQGTL


VTVSS (SEQ ID NO: 1941)





>67C10_VK.01


DIVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGNTYLDWYLQKPGQSPQLLIYTLSY


RASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQGTRLEIKR (SEQ


ID NO: 2081)





>67C10_VH


EVQLVQSGAEVKKPGESLKISCQGSGYSFSSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCARRASRGYRYGLAFAIW


GQGTMVTVSS (SEQ ID NO: 1943)





>67C10_VK.02


DFVMTQTPLSLPVTPGEPASISCRSSQSLLNSDEGNTYLDWYLQKPGQSPQLLIYTLS


YRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQGTRLEIKR (SEQ


ID NO: 2082)





>67C10_VH


EVQLVQSGAEVKKPGESLKISCQGSGYSFSSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCARRASRGYRYGLAFAIW


GQGTMVTVSS (SEQ ID NO: 1943)





>67C10_VK


DFVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGNTYLDWYLQKPGQSPQLLIYTLS


YRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQGTRLEIKR (SEQ


ID NO: 1942)





>67C10_VH.03


EVQLVQSGAEVKKPGESLKISCKGSGYSFSSYWIGWVRQMPGKGLEWMGIIYPGDS


DTRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCARRASRGYRYGLAFAIW


GQGTMVTVSS (SEQ ID NO: 2083)





>67C10_VK


DFVMTQTPLSLPVTPGEPASISCRSSQSLLNSDDGNTYLDWYLQKPGQSPQLLIYTLS


YRASGVPDRFSGSGSGTDFTLKISRVEAEDVGVYYCMQRIEFPITFGQGTRLEIKR (SEQ


ID NO: 1942)





>67C10_VH.04


EVQLVQSGAEVKKPGESLKISCQGSGYSFSSYWIGWVRQMPGKGLEWMGIIYPGESD


TRYSPSFQGQVTISADKSINTAYLQWSSLKASDTAIYYCARRASRGYRYGLAFAIWG


QGTMVTVSS (SEQ ID NO: 2084)





>68C8_VL.01


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLAITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 2085)





>68C8_VH


QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1945)





>68C8_VL.02


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLGITGLQTEDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 2086)





>68C8_VH


QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1945)





>68C8_VL.03


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWESSLSAVVFGGGTKLTVLG (SEQ


ID NO: 2087)





>68C8_VH


QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1945)





>68C8_VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1944)





>68C8_VH.04


QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW


GQGTTVTVSS (SEQ ID NO: 2088)





>68C8_VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1944)





>68C8_VH.05


QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLDTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW


GQGTTVTVSS (SEQ ID NO: 2089)





>68C8_VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1944)





>68C8_VH.06


QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCARYRSDWDYYYGMDVW


GQGTTVTVSS (SEQ ID NO: 2090)





>68C8_VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1944)





>68C8_VH.07


QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW


GQGTLVTVSS (SEQ ID NO: 2091)





>68C8_VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1944)





>68C8_VH.08


QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW


GQGTMVTVSS (SEQ ID NO: 2092)





>68C8_VL.09


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTYDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 2093)





>68C8_VH


QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDWDYYYGMDVW


GQGTTVTVSS (SEQ ID NO: 1945)





>68C8_VL


QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRPSG


IPDRFSGSKSGTSATLGITGLQTGDEADYYCGTWDSSLSAVVFGGGTKLTVLG (SEQ


ID NO: 1944)





>68C8_VH.10


QVQLQESGPGLVKPSETLSLTCTVSGDSVSSGDNYWSWIRQPPGKGLEWIGFMFYSG


STNYNPSLKSRVTISLHTSKNQFSLRLSSVTAADTAVYYCGRYRSDYDYYYGMDVW


GQGTTVTVSS (SEQ ID NO: 2094)









Example 14
Immunogenicity Prediction

Immune responses against proteins are enhanced by antigen processing and presentation in the major histocompatability complex (MHC) class II binding site. This interaction is required for T cell help in maturation of antibodies that recognize the protein. Since the binding sites of MHC class II molecules have been characterized, it is possible to predict whether proteins have specific sequences that can bind to a series of common human alleles. Computer algorithms have been created based on literature references and MHC class II crystal structures to determine whether linear 9 amino acid peptide sequences have the potential to break immune tolerance. We used the TEPITOPE™ program called to determine if point mutations of FGF21 are predicted to increase antigen specific T-cells in a majority of humans. Based on the linear protein sequence, none of the mutations examined are expected enhance immunogenicity. Results are shown in Table 17A and Table 17B below.










TABLE 17A





Protein
Predicted Immunogenicity







Met-FGF21
Low


Met-hFGF21(N106D)
Low


Met-FGF21 (N122D)
Low


hFc(R4).L15.hFGF21(G170E)
Low


hFc(R4).L15.hFGF21(P171A)
Low


hFc(R4).L15.hFGF21(S172L)
Low


p30.hFc.L15.hFGF21(A45K, G170E)
Low


p30.hFc.L15.hFGF21 (L98R, P171G)
Low

























TABLE 17B










LC



HC







Non-



Non-





LC
LC Non-
Tolerant

HC
HC Non-
tolerant



Predicted
LC Total
Tolerant
Tolerant
HLA
HC Total
Tolerant
tolerant
HLA


Clone
immunogenicity
Agretopes
Agretopes
Agretopes
DRB1
Agretopes
Agretopes
Agretopes
DRB1







68C8
Tier 1
3
3
0
NA
12
12
0
NA


63A10
Tier 1
1
1
0
NA
12
12
0
NA


51A8
Tier 2
3
2
1
0101
16
16
0
NA







0701


51E5
Tier 2
6
6
0
NA
11
10
1
0401











0701


64B10
Tier 2
2
2
0
NA
12
11
1
0801


49H12
Tier 3
7
5
2
0101
13
13
0
NA







0701







0801







1301







1501


54A1
Tier 3
6
4
2
0301
14
14
0
NA







0801







1501


52A8
Tier 3
6
5
1
0701
13
12
1
1301


60D7
Tier 4
8
7
1
0301
16
14
2
0401







0401



1501







1101


49C8
Tier 4
7
5
2
0801
14
13
1
0401







1501


67C10
Tier 4
8
7
1
0301
14
12
2
0101







0401



 701







1101









Each reference cited herein is incorporated by reference in its entirety for all that it teaches and for all purposes.


The present disclosure is not to be limited in scope by the specific embodiments described herein, which are intended as illustrations of individual aspects of the disclosure, and functionally equivalent methods and components form aspects of the disclosure. Indeed, various modifications of the disclosure, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

Claims
  • 1-23. (canceled)
  • 24. A method of preventing or treating a condition in a subject in need of such treatment comprising administering a therapeutically effective amount of isolated antigen binding protein that induces FGF21-mediated signaling, wherein the antigen binding protein comprises a light chain CDR1 comprising a sequence of SEQ ID NO: 821, a light chain CDR2 comprising a sequence of SEQ ID NO: 900, a light chain CDR3 comprising a sequence of SEQ ID NO: 954, a heavy chain CDR1 comprising a sequence of SEQ ID NO: 611, a heavy chain CDR2 comprising a sequence of SEQ ID NO: 664, and a heavy chain CDR3 comprising a sequence of SEQ ID NO: 741 to the subject, wherein the condition is treatable by lowering one or more of blood glucose, insulin or serum lipid levels.
  • 25. The method of claim 24, wherein the antigen binding protein comprises one or more of: (a) a light chain variable domain sequence comprising VL47 of Table 2A (SEQ ID NO. 263);(b) a heavy chain variable domain sequence comprising VH46 of Table 2B (SEQ ID NO: 361); or(c) a combination comprising a light chain variable domain of (a) and a heavy chain variable domain of (b).
  • 26. The method of claim 25, wherein the light chain variable domain and the heavy chain variable domain comprise VL47 and VH46.
  • 27. The method of claim 26, wherein the antigen binding protein comprises: (a) a kappa light chain constant sequence of SEQ ID NO: 12(b) a lambda light chain constant sequence of SEQ ID NO: 13(c) a heavy chain constant sequence of SEQ ID NO: 11; or(d) (i) the kappa light chain constant sequence of SEQ ID NO: 12 or the lambda light chain constant sequence of SEQ ID NO: 13, and (ii) the heavy chain constant sequence of SEQ ID NO: 11.
  • 28. The method of claim 24, wherein the antigen binding protein is a human antibody, a humanized antibody, chimeric antibody, a monoclonal antibody, a polyclonal antibody, a recombinant antibody, an antigen-binding antibody fragment, a single chain antibody, a diabody, a triabody, a tetrabody, a Fab fragment, an F(fab′)2 fragment, an IgD antibody, an IgE antibody, an IgM antibody, an IgG1 antibody, an IgG2 antibody, an IgG3 antibody, an IgG4 antibody, or an IgG4 antibody having at least one mutation in the hinge region.
  • 29. The method of claim 24, wherein the condition is diabetes, obesity, dyslipidemia, NASH, cardiovascular disease or metabolic syndrome.
  • 30. The method of claim 29, wherein the condition is type 2 diabetes.
Parent Case Info

This application is a division of U.S. application Ser. No. 13/487,061 (filed Jun. 1, 2012), which claims the benefit of U.S. Provisional Application Nos. 61/493,933 (filed Jun. 6, 2011), 61/501,133 (filed Jun. 24, 2011), and 61/537,998 (filed Sep. 22, 2011), the contents of each of which are hereby incorporated in their entirety.

Provisional Applications (3)
Number Date Country
61537998 Sep 2011 US
61501133 Jun 2011 US
61493933 Jun 2011 US
Divisions (1)
Number Date Country
Parent 13487061 Jun 2012 US
Child 15400800 US