Information
-
Patent Application
-
20030211093
-
Publication Number
20030211093
-
Date Filed
January 15, 200321 years ago
-
Date Published
November 13, 200321 years ago
-
CPC
-
US Classifications
-
International Classifications
- C12Q001/68
- G01N033/53
- G01N033/567
- C12P021/04
- C12N005/06
- C07K016/40
- A61K039/395
- C12N009/12
Abstract
The invention provides human human kinases (PKIN) and polynucleotides which identify and encode PKIN. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associatedd withd abberant expression of PKIN.
Description
TECHNICAL FIELD
[0001] This invention relates to nucleic acid and amino acid sequences of human kinases and to the use of these sequences in the diagnosis, treatment, and prevention of cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of human kinases.
BACKGROUND OF THE INVENTION
[0002] Kinases comprise the largest known enzyme superfamily and vary widely in their target molecules. Kinases catalyze the transfer of high energy phosphate groups from a phosphate donor to a phosphate acceptor. Nucleotides usually serve as the phosphate donor in these reactions, with most kinases utilizing adenosine triphosphate (ATP). The phosphate acceptor can be any of a variety of molecules, including nucleosides, nucleotides, lipids, carbohydrates, and proteins. Proteins are phosphorylated on hydroxyamino acids. Addition of a phosphate group alters the local charge on the acceptor molecule, causing internal conformational changes and potentially influencing intermolecular contacts. Reversible protein phosphorylation is the primary method for regulating protein activity in eukaryotic cells. In general, proteins are activated by phosphorylation in response to extracellular signals such as hormones, neurotransmitters, and growth and differentiation factors. The activated proteins initiate the cell's intracellular response by way of intracellular signaling pathways and second messenger molecules such as cyclic nucleotides, calcium-calmodulin, inositol, and various mitogens, that regulate protein phosphorylation.
[0003] Kinases are involved in all aspects of a cell's function, from basic metabolic processes, such as glycolysis, to cell-cycle regulation, differentiation, and communication with the extracellular environment through signal transduction cascades. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle.
[0004] There are two classes of protein kinases. One class, protein tyrosine kinases (PTKs), phosphorylates tyrosine residues, and the other class, protein serine/threonine kinases (STKs), phosphorylates serine and threonine residues. Some PTKs and STKs possess structural characteristics of both families and have dual specificity for both tyrosine and serine/threonine residues. Almost all kinases contain a conserved 250-300 amino acid catalytic domain containing specific residues and sequence motifs characteristic of the kinase family. The protein kinase catalytic domain can be further divided into 11 subdomains. N-terminal subdomains I-IV fold into a two-lobed structure which binds and orients the ATP donor molecule, and subdomain V spans the two lobes. C-terminal subdonmains VI-XI bind the protein substrate and transfer the gamma phosphate from ATP to the hydroxyl group of a tyrosine, serine, or threonine residue. Each of the 11 subdomains contains specific catalytic residues or amino acid motifs characteristic of that subdomain. For example, subdomain I contains an 8-amino acid glycine-lich ATP binding consensus motif, subdomain R1 contains a critical lysine residue required for maximal catalytic activity, and subdomains VI through IX comprise the highly conserved catalytic core. PTKs and STKs also contain distinct sequence motifs in subdomains VI and VIII which may confer hydroxyamino acid specificity.
[0005] In addition, kinases may also be classified by additional amino acid sequences, generally between 5 and 100 residues, which either flank or occur within the kinase domain. These additional amino acid sequences regulate kinase activity and determine substrate specificity. (Reviewed in Hardie, G. and S. Hanks (1995) The Protein Kinase Facts Book, Vol I, pp. 17-20 Academic Press, San Diego Calif.). In particular, two protein kinase signature sequences have been identified in the kinase domain, the first containing an active site lysine residue involved in ATP binding, and the second containing an aspartate residue important for catalytic activity. If a protein analyzed includes the two protein kinase signatures, the probability of that protein being a protein kinase is close to 100% (PROSITE: PDOC00100, November 1995).
[0006] Protein Tyrosine Kinases
[0007] Protein tyrosine kinases (PTKs) may be classified as either transmembrane, receptor PTKs or nontransmembrane, nonreceptor PTK proteins. Transmembrane tyrosine kinases function as receptors for most growth factors. Growth factors bind to the receptor tyrosine kinase (RTK), which causes the receptor to phosphorylate itself (autophosphorylation) and specific intracellular second messenger proteins. Growth factors (GF) that associate with receptor PTKs include epidermal GF, platelet-derived GF, fibroblast GF, hepatocyte GF, insulin and insulin-like GFs, nerve GF, vascular endothelial GF, and macrophage colony stimulating factor.
[0008] Nontransmembrane, nonreceptor PTKs lack transmembrane regions and, instead, form signaling complexes with the cytosolic domains of plasma membrane receptors. Receptors that function through non-receptor PTKs include those for cytokines and hormones (growth hormone and prolactin), and antigen-specific receptors on T and B lymphocytes.
[0009] Many PTKs were first identified as oncogene products in cancer cells in which PTK activation was no longer subject to normal cellular controls. In fact, about one third of the known oncogenes encode PTKs. Furthermore, cellular transformation (oncogenesis) is often accompanied by increased tyrosine phosphorylation activity (Charbonneau, H. and N. K. Tonks (1992) Annu. Rev. Cell Biol. 8:463-493). Regulation of PTK activity may therefore be an important strategy in controlling some types of cancer.
[0010] Substrates for tyrosine kinases can be identified using anti-phosphotyrosine antibodies to screen tyrosine-phosphorylated cDNA expression libraries. Fish, so named for tyrosine-phosphorylated in Src-transfromed fibroblast, is a tyrosine kinase substrate which has been identified by such a technique. Fish has five SH3 domains and a phox homology (PX) domain. Fish is suggested to be involved in signalling by tyrosine kinases and have a role in the actin cytoskeleton (Lock,P. et al (1998) EMBO J. 17:4346-4357).
[0011] SBP-2, an SH2-domain-containing phosphotyrosine phosphatase, is a positive signal transducer for several receptor tyrosine kinases (RTKs) and cytokine receptors. Phosphotyrosine phosphatases are critical positive and negative regulators in the intraellular signalling pathways that result in growth-factor-specific cell responses such as mitosis, migration, differentiation, transformation, survival or death. Signal-regulatory proteins (SIRPs) comprise a new gene family of at least 15 members, consisting of two subtypes distinguished by the presence or absence of a cytoplasmic SHP-2-binding domain. The SIRP-alpha subfamily members have a cytoplasmic SHP2-binding domain and includes SIRP-alpha-1, a transmembrane protein, a substrate of activated RTKs and which binds to SH2 domains. SIRPs have a high degree of homology with immune antigen recognition molecules. The SWP-beta subfamily lacks the cytoplasmic tail. The SIRP-beta-1 gene encodes a polypeptide of 398 amino acids. SIRP family members are generally involved in regulation of signals which define differnet physiological and pathological process (Kharitonenkov,A. et al (1997) Nature 386:181-186). Two possible areas of regulation include determination of brain diversity and genetic individuality (Sano,S et al (1999) Biochem. J. 344 Pt 3:667-675) and recognition of self which fails in diseases such as hemolytic anemia (Oldenborg,P.-A et al (2000) Science 288:2051-2054).
[0012] Protein Serine/Threonine Kinases
[0013] Protein serine/threonine kinases (STKs) are nontransmembrane proteins. A subclass of STKs are known as ERKs (extracellular signal regulated kinases) or MAPs (mitogen-activated protein kinases) and are activated after cell stimulation by a variety of hormones and growth factors. Cell stimulation induces a signaling cascade leading to phosphorylation of MEK (MAP/ERK kinase) which, in turn, activates ERK via serine and threonine phosphorylation. A varied number of proteins represent the downstream effectors for the active ERK and implicate it in the control of cell proliferation and differentiation, as well as regulation of the cytoskeleton. Activation of ERK is normally transient, and cells possess dual specificity phosphatases that are responsible for its down-regulation. Also, numerous studies have shown that elevated ERK activity is associated with some cancers. Other STKs include the second messenger dependent protein kinases such as the cyclic-AMP dependent protein kinases (PKA), calcium-calmodulin (CaM) dependent protein kinases, and the mitogen-activated protein kinases (MAP); the cyclin-dependent protein kinases; checkpoint and cell cycle kinases; Numb-associated kinase (Nak); human Fused (hFu); proliferation-related kinases; 5′-AMP-activated protein kinases; and kinases involved in apoptosis.
[0014] The second messenger dependent protein kinases primarily mediate the effects of second messengers such as cyclic AMP (cAMP), cyclic GMP, inositol triphosphate, phosphatidylinositol, 3,4,5-triphosphate, cyclic ADP ribose, arachidonic acid, diacylglycerol and calcium-calmodulin. The PKAs are involved in mediating hormone-induced cellular responses and are activated by cAMP produced within the cell in response to hormone stimulation. cAMP is an intracellular mediator of hormone action in all animal cells that have been studied. Hormone-induced cellular responses include thyroid hormone secretion, cortisol secretion, progesterone secretion, glycogen breakdown, bone resorption, and regulation of heart rate and force of heart muscle contraction. PKA is found in all animal cells and is thought to account for the effects of cAMP in most of these cells. Altered PKA expression is implicated in a variety of disorders and diseases including cancer, thyroid disorders, diabetes, atherosclerosis, and cardiovascular disease (Isselbacher, K. J. et al. (1994) Harrison's Principles of Internal Medicine, McGraw-Hill, New York N.Y., pp. 416-431, 1887).
[0015] The casein kinase I (CKI) gene family is another subfamily of serine/threonine protein kinases. This continuously expanding group of kinases have been implicated in the regulation of numerous cytoplasmic and nuclear processes, including cell metabolism, and DNA replication and repair. CKI enzymes are present in the membranes, nucleus, cytoplasm and cytoskeleton of eukaryotic cells, and on the mitotic spindles of mammalian cells (Fish, K. J. et al. (1995) J. Biol. Chem. 270:14875-14883).
[0016] The CKI family members all have a short amino-terminal domain of 9-76 amino acids, a highly conserved kinase domain of 284 amino acids, and a variable carboxyl-terminal domain that ranges from 24 to over 200 amino acids in length (Cegielska, A. et al. (1998) J. Biol. Chem. 273:1357-1364). The CKI family is comprised of highly related proteins, as seen by the identification of isoforms of casein kinase I from a variety of sources. There are at least five mammalian isoforms, α, β, γ, δ, and ε. Fish et al., identified CKI-epsilon from a human placenta cDNA library. It is a basic protein of 416 amino acids and is closest to CKI-delta. Through recombinant expression, it was determined to phosphorylate known CKI substrates and was inhibited by the CKI-specific inhibitor CKI-7. The human gene for CKI-epsilon was able to rescue yeast with a slow-growth phenotype caused by deletion of the yeast CKI locus, HRR250 (Fish et al., supra).
[0017] The mammalian circadian mutation tau was found to be a semidominant autosomal allele of CKI-epsilon that markedly shortens period length of circadian rhythms in Syrian hamsters. The tau locus is encoded by casein kinase I-epsilon, which is also a homolog of the Drosophila circadian gene double-time. Studies of both the wildtype and tau mutant CKI-epsilon enzyme indicated that the mutant enzyme has a noticeable reduction in the maximum velocity and autophosphorylation state. Further, in vitro, CKI-epsilon is able to interact with mammalian PERIOD proteins, while the mutant enzyme is deficient in its ability to phosphorylate PERIOD. Lowrey et al., have proposed that CKI-epsilon plays a major role in delaying the negative feedback signal within the transcription-translation-based autoregulatory loop that composes the core of the circadian mechanism. Therefore the CKI-epsilon enzyme is an ideal target for pharmaceutical compounds influencing circadian rhythms, jet-lag and sleep, in addition to other physiologic and metabolic processes under circadian regulation (Lowrey, P. L. et al. (2000) Science 288:483-491).
[0018] Homeodomain-interacting protein kinases (HIPKs) are serine/threonine kinases and novel members of the DYRK kinase subfamily (Hofmann, T. G. et al. (2000) Biochimie 82:1123-1127). HIPKs contain a conserved protein kinase domain separated from a domain that interacts with homeoproteins. HIPKs are nuclear kinases, and HIPK2 is highly expressed in neuronal tissue (Kim, Y. H. et al. (1998) J. Biol. Chem. 273:25875-25879; Wang, Y. et al. (2001) Biochim. Biophys. Acta 1518:168-172). HIPKs act as corepressors for homeodomian transcription factors. This corepressor activity is seen in posttranslational modifications such as ubiquitination and phosphorylation, each of which are important in the regulation of cellular protein function (Kim, Y. H. et al. (1999) Proc. Natl. Acad. Sci. USA 96:12350-12355).
[0019] The murine homology to Caenorhabditis elegans UNC51, a serine/threonine kinase, has been determined to be required to signal the program of gene expression leading to axon formation from granule cells of the cerebellar cortex (Tomoda, T. et al (1999) Neuron 24:833-346. The human homolog of UNC-51, ULKI, for UNC-51 (C. elegans)-like kinase 1, is composed of 1050 amino acids, has a calculated MV of 112.6 kDa and a pI of 8.80. ULK1 has 41% overall sequence similarity to UNC-51 and is highly convserved among vertebrates including mammals, birds, reptiles, amphibians, and fish. By Northern blot analysis, Kuroyanagi et al have shown ULK1 to be ubiquitously expressed in adult tissues, including skeletal muscle, heart, pancreas, brain, placenta, liver, kidney, and lung while UNC-51 has been specifically located in the nervous system of C. elegans. Fish and RH mapping confirmed the localization of ULK1 to human chromosome 12q24.3. (Kuroyanagi, H. et al (1998) Genomics 51:76-85.
[0020] Calcium-Calmodulin Dependent Protein Kinases
[0021] Calcium-calmodulin dependent (CaM) kinases are involved in regulation of smooth muscle contraction, glycogen breakdown (phosphorylase kinase), and neurotransmission (CaM kinase I and CaM kinase II). CaM dependent protein kinases are activated by calmodulin, an intracellular calcium receptor, in response to the concentration of free calcium in the cell. Many CaM kinases are also activated by phosphorylation. Some CaM kinases are also activated by autophosphorylation or by other regulatory kinases. CaM kinase I phosphorylates a variety of substrates including the neurotransmitter-related proteins synapsin I and II, the gene transcription regulator, CREB, and the cystic fibrosis conductance regulator protein, CFTR (Haribabu, B. et al. (1995) EMBO J. 14:3679-3686). CaM kinase II also phosphorylates synapsin at different sites and controls the synthesis of catecholamines in the brain through phosphorylation and activation of tyrosine hydroxylase. CaM kinase II controls the synthesis of catecholamines and seratonin, through phosphorylation/activation of tyrosine hydroxylase and tryptophan hydroxylase, respectively (Fujisawa, H. (1990) BioEssays 12:27-29). The mRNA encoding a calmodulin-binding protein kinase-like protein was found to be enriched in mammalian forebrain. This protein is associated with vesicles in both axons and dendrites and accumulates largely postnatally. The amino acid sequence of this protein is similar to CaM-dependent STKs, and the protein binds calmodulin in the presence of calcium (Godbout, M. et al. (1994) J. Neurosci. 14:1-13).
[0022] Mitogen-Activated Protein Kinases
[0023] The mitogen-activated protein kinases (MAP) which mediate signal transduction from the cell surface to the nucleus via phosphorylation cascades are another STK family that regulates intracellular signaling pathways. Several subgroups have been identified, and each manifests different substrate specificities and responds to distinct extracellular stimuli (Egan, S. E. and R. A. Weinberg (1993) Nature 365:781-783). There are 3-kinase modules comprising the MAP kinase cascade: MAPK (MAP), MAPK kinase (MAP2K, MAPKK, or MKK), and MKK kinase (MAP3K, MAPKKK, OR MEKK) (Wang,X. S. et al (1998) Biochem. Biophys. Res. Commun. 253:33-37). The extracellular-regulated kinase (ERK) pathway is activated by growth factors and mitogens, for example, epidermal growth factor (EGF), ultraviolet light, hyperosmolar medium, heat shock, endotoxic lipopolysaccharide (LPS). The closely related though distinct parallel pathways, the c-Jun N-terminal kinase (JNK), or stress-activated kinase (SAPK) pathway, and the p38 kinase pathway are activated by stress stimuli and proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1). Altered MAP kinase expression is implicated in a variety of disease conditions including cancer, inflammation, immune disorders, and disorders affecting growth and development. MAP kinase signaling pathways are present in mammalian cells as well as in yeast.
[0024] MAPKKK6 (MAP3K6) is one of numerous MAP3Ks identified. Isolated from skeletal muscle, MAP3K6 is 1,280 amino acids in length with 11 kinase subdomains and is detected in several tissues. The highest expression has been found in heart and skeletal muscle. MAP3K6 has 45% amino acid sequence identity with MAP3K5, while their catalytic domains share 82% identity. MAP3K6 interaction with MAP3K5 in vivo was confirmed by coimmunoprecipitation. Recombinant MAP3K6 has been shown to weakly activate the JNK but not the p38 kinase or ERK pathways (Wang,X. S. et al. supra)
[0025] Cyclin-Dependent Protein Kinases
[0026] The cyclin-dependent protein kinases (CDKs) are STKs that control the progression of cells through the cell cycle. The entry and exit of a cell from mitosis are regulated by the synthesis and destruction of a family of activating proteins called cyclins. Cyclins are small regulatory proteins that bind to and activate CDKs, which then phosphorylate and activate selected proteins involved in the mitotic process. CDKs are unique in that they require multiple inputs to become activated. In addition to cyclin binding, CDK activation requires the phosphorylation of a specific threonine residue and the dephosphorylation of a specific tyrosine residue on the CDK.
[0027] Another family of STKs associated with the cell cycle are the NIMA (never in mitosis)-related kinases (Neks). Both CDKs and Neks are involved in duplication, maturation, and separation of the microtubule organizing center, the centrosome, in animal cells (Fry, A. M. et al. (1998) EMBO J. 17:470-481).
[0028] Checkpoint and Cell Cycle Kinases
[0029] In the process of cell division, the order and timing of cell cycle transitions are under control of cell cycle checkpoints, which ensure that critical events such as DNA replication and chromosome segregation are carried out with precision. If DNA is damaged, e.g. by radiation, a checkpoint pathway is activated that arrests the cell cycle to provide time for repair. If the damage is extensive, apoptosis is induced. In the absence of such checkpoints, the damaged DNA is inherited by aberrant cells which may cause proliferative disorders such as cancer. Protein kinases play an important role in this process. For example, a specific kinase, checkpoint kinase 1 (Chk1), has been identified in yeast and mammals, and is activated by DNA damage in yeast. Activation of Chk1 leads to the arrest of the cell at the G2/M transition (Sanchez, Y. et al. (1997) Science 277:1497-1501). Specifically, Chk1 phosphorylates the cell division cycle phosphatase CDC25, inhibiting its normal function which is to dephosphorylate and activate the cyclin-dependent kinase Cdc2. Cdc2 activation controls the entry of cells into mitosis (Peng, C.-Y. et al. (1997) Science 277:1501-1505). Thus, activation of Chk1 prevents the damaged cell from entering mitosis. A similar deficiency in a checkpoint kinase, such as Chk1, may also contribute to cancer by failure to arrest cells with damaged DNA at other checkpoints such as G2/M.
[0030] Proliferation-Related Kinases
[0031] Proliferation-related kinase is a serum/cytokine inducible STK that is involved in regulation of the cell cycle and cell proliferation in human megakarocytic cells (Li, B. et al. (1996) J. Biol. Chem. 271:19402-19408). Proliferation-related kinase is related to the polo (derived from Drosophila polo gene) family of STKs implicated in cell division. Proliferation-related kinase is downregulated in lung tumor tissue and may be a proto-oncogene whose deregulated expression in normal tissue leads to oncogenic transformation.
[0032] 5′-AMP-Activated Protein Kinase
[0033] A ligand-activated STK protein kinase is 5′-AMP-activated protein kinase (AMPK) (Gao, G. et al. (1996) J. Biol. Chem. 271:8675-8681). Mammalian AMPK is a regulator of fatty acid and sterol synthesis through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase and mediates responses of these pathways to cellular stresses such as heat shock and depletion of glucose and ATP. AMPK is a heterotrimeric complex comprised of a catalytic alpha subunit and two non-catalytic beta and gamma subunits that are believed to regulate the activity of the alpha subunit. Subunits of AMPK have a much wider distribution in non-lipogenic tissues such as brain, heart, spleen, and lung than expected. This distribution suggests that its role may extend beyond regulation of lipid metabolism alone.
[0034] Kinases in Apoptosis
[0035] Apoptosis is a highly regulated signaling pathway leading to cell death that plays a crucial role in tissue development and homeostasis. Deregulation of this process is associated with the pathogenesis of a number of diseases including autoimmune disease, neurodegenerative disorders, and cancer. Various STKs play key roles in this process. ZIP kinase is an STK containing a C-terminal leucine zipper domain in addition to its N-terminal protein kinase domain. This C-terminal domain appears to mediate homodimerization and activation of the kinase as well as interactions with transcription factors such as activating transcription factor, ATF4, a member of the cyclic-AMP responsive element binding protein (ATF/CREB) family of transcriptional factors (Sanjo, H. et al. (1998) J. Biol. Chem. 273:29066-29071). DRAK1 and DRAK2 are STKs that share homology with the death-associated protein kinases (DAP kinases), known to function in interferon-γ induced apoptosis (Sanjo et al., supra). Like ZIP kinase, DAP kinases contain a C-terminal protein-protein interaction domain, in the form of ankyrin repeats, in addition to the N-terminal kinase domain. ZIP, DAP, and DRAK kinases induce morphological changes associated with apoptosis when transfected into NIH3T3 cells (Sanjo et al., supra). However, deletion of either the N-terminal kinase catalytic domain or the C-terminal domain of these proteins abolishes apoptosis activity, indicating that in addition to the kinase activity, activity in the C-terminal domain is also necessary for apoptosis, possibly as an interacting domain with a regulator or a specific substrate.
[0036] RICK is another STK recently identified as mediating a specific apoptotic pathway involving the death receptor, CD95 (Inohara, N. et al. (1998) J. Biol. Chem. 273:12296-12300). CD95 is a member of the tumor necrosis factor receptor superfamily and plays a critical role in the regulation and homeostasis of the immune system (Nagata, S. (1997) Cell 88:355-365). The CD95 receptor signaling pathway involves recruitment of various intracellular molecules to a receptor complex following ligand binding. This process includes recruitment of the cysteine protease caspase-8 which, in turn, activates a caspase cascade leading to cell death. RICK is composed of an N-terminal kinase catalytic domain and a C-terminal “caspase-recruitment” domain that interacts with caspase-like domains, indicating that RICK plays a role in the recruitment of caspase-8. This interpretation is supported by the fact that the expression of RICK in human 293T cells promotes activation of caspase-8 and potentiates the induction of apoptosis by various proteins involved in the CD95 apoptosis pathway (Inohara et al., supra).
[0037] Mitochondrial Protein Kinases
[0038] A novel class of eukaryotic kinases, related by sequence to prokaryotic histidine protein kinases, are the mitochondrial protein kinases (MPKs) which seem to have no sequence similarity with other eukaryotic protein kinases. These protein kinases are located exclusively in the mitochondrial matrix space and may have evolved from genes originally present in respiration-dependent bacteria which were endocytosed by primitive eukaryotic cells. MPKs are responsible for phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase and pyruvate dehydrogenase complexes (Harris, R. A. et al. (1995) Adv. Enzyme Regul. 34:147-162). Five MPKs have been identified. Four members correspond to pyruvate dehydrogenase kinase isozymes, regulating the activity of the pyruvate dehydrogenase complex, which is an important regulatory enzyme at the interface between glycolysis and the citric acid cycle. The fifth member corresponds to a branched-chain alpha-ketoacid dehydrogenase kinase, important in the regulation of the pathway for the disposal of branched-chain amino acids. (Harris, R. A. et al. (1997) Adv. Enzyme Regul. 37:271-293). Both starvation and the diabetic state are known to result in a great increase in the activity of the pyruvate dehydrogenase kinase in the liver, heart and muscle of the rat. This increase contributes in both disease states to the phosphorylation and inactivation of the pyruvate dehydrogenase complex and conservation of pyruvate and lactate for gluconeogenesis (Harris (1995) supra).
[0039] Kinases with Non-Protein Substrates
[0040] Lipid and Inositol kinases
[0041] Lipid kinases phosphorylate hydroxyl residues on lipid head groups. A family of kinases involved in phosphorylation of phosphatidylinositol (PI) has been described, each member phosphorylating a specific carbon on the inositol ring (Leevers, S. J. et al. (1999) Curr. Opin. Cell. Biol. 11 :219-225). The phosphorylation of phosphatidylinositol is involved in activation of the protein kinase C signaling pathway. The inositol phospholipids (phosphoinositides) intracellular signaling pathway begins with binding of a signaling molecule to a G-protein linked receptor in the plasma membrane. This leads to the phosphorylation of phosphatidylinositol (PI) residues on the inner side of the plasma membrane by inositol kinases, thus converting PI residues to the biphosphate state (PIP2). PIP2 is then cleaved into inositol triphosphate (IP3) and diacylglycerol. These two products act as mediators for separate signaling pathways. Cellular responses that are mediated by these pathways are glycogen breakdown in the liver in response to vasopressin, smooth muscle contraction in response to acetylcholine, and thrombin-induced platelet aggregation.
[0042] PI 3-kinase (PI3K), which phosphorylates the D3 position of PI and its derivatives, has a central role in growth factor signal cascades involved in cell growth, differentiation, and metabolism. PI3K is a heterodimer consisting of an adapter subunit and a catalytic subunit. The adapter subunit acts as a scaffolding protein, interacting with specific tyrosine-phosphorylated proteins, lipid moieties, and other cytosolic factors. When the adapter subunit binds tyrosine phosphorylated targets, such as the insulin responsive substrate (IRS)-1, the catalytic subunit is activated and converts PI (4,5) bisphosphate (PIP2) to PI (3,4,5) P3 (PIP3). PIP3 then activates a number of other proteins, including PKA, protein kinase B (PKB), protein kinase C (PKC), glycogen synthase kinase (GSK)-3, and p70 ribosomal s6 kinase. PI3K also interacts directly with the cytoskeletal organizing proteins, Rac, rho, and cdc42 (Shepherd, P. R. et al. (1998) Biochem. J. 333:471-490). Animal models for diabetes, such as obese and fat mice, have altered P13K adapter subunit levels. Specific mutations in the adapter subunit have also been found in an insulin-resistant Danish population, suggesting a role for P13K in type-2 diabetes (Shepard, supra).
[0043] An example of lipid kinase phosphorylation activity is the phosphorylation of D-erythro-sphingosine to the sphingolipid metabolite, sphingosine-1-phosphate (SPP). SPP has emerged as a novel lipid second-messenger with both extracellular and intracellular actions (Kohama, T. et al. (1998) J. Biol. Chem. 273:23722-23728). Extracellularly, SPP is a ligand for the G-protein coupled receptor EDG-1 (endothelial-derived, G-protein coupled receptor). Intracellularly, SPP regulates cell growth, survival, motility, and cytoskeletal changes. SPP levels are regulated by sphingosine kinases that specifically phosphorylate D-erythro-sphingosine to SPP. The importance of sphingosine kinase in cell signaling is indicated by the fact that various stimuli, including platelet-derived growth factor (PDGF), nerve growth factor, and activation of protein kinase C, increase cellular levels of SPP by activation of sphingosine kinase, and the fact that competitive inhibitors of the enzyme selectively inhibit cell proliferation induced by PDGF (Kohama et al., supra).
[0044] Purine Nucleotide Kinases
[0045] The purine nucleotide kinases, adenylate kinase (ATP:AMP phosphotransferase, or AdK) and guanylate kinase (ATP:GMP phosphotransferase, or GuK) play a key role in nucleotide metabolism and are crucial to the synthesis and regulation of cellular levels of ATP and GTP, respectively. These two molecules are precursors in DNA and RNA synthesis in growing cells and provide the primary source of biochemical energy in cells (ATP), and signal transduction pathways (GTP). Inhibition of various steps in the synthesis of these two molecules has been the basis of many antiproliferative drugs for cancer and antiviral therapy (Pillwein, K. et al. (1990) Cancer Res. 50:1576-1579).
[0046] AdK is found in almost all cell types and is especially abundant in cells having high rates of ATP synthesis and utilization such as skeletal muscle. In these cells AdK is physically associated with mitochondria and myofibrils, the subcellular structures that are involved in energy production and utilization, respectively. Recent studies have demonstrated a major function for AdK in transferring high energy phosphoryls from metabolic processes generating ATP to cellular components consuming ATP (Zeleznikar, R. J. et al. (1995) J. Biol. Chem. 270:7311-7319). Thus AdK may have a pivotal role in maintaining energy production in cells, particularly those having a high rate of growth or metabolism such as cancer cells, and may provide a target for suppression of its activity to treat certain cancers. Alternatively, reduced AdK activity may be a source of various metabolic, muscle-energy disorders that can result in cardiac or respiratory failure and may be treatable by increasing AdK activity.
[0047] GuK, in addition to providing a key step in the synthesis of GTP for RNA and DNA synthesis, also fulfills an essential function in signal transduction pathways of cells through the regulation of GDP and GTP. Specifically, GTP binding to membrane associated G proteins mediates the activation of cell receptors, subsequent intracellular activation of adenyl cyclase, and production of the second messenger, cyclic AMP. GDP binding to G proteins inhibits these processes. GDP and GTP levels also control the activity of certain oncogenic proteins such as p21ras known to be involved in control of cell proliferation and oncogenesis (Bos, J. L. (1989) Cancer Res. 49:4682-4689). High ratios of GTP:GDP caused by suppression of GuK cause activation of p21ras and promote oncogenesis. Increasing GuK activity to increase levels of GDP and reduce the GTP:GDP ratio may provide a therapeutic strategy to reverse oncogenesis.
[0048] GuK is an important enzyme in the phosphorylation and activation of certain antiviral drugs useful in the treatment of herpes virus infections. These drugs include the guanine homologs acyclovir and buciclovir (Miller, W. H. and R. L. Miller (1980) J. Biol. Chem. 255:7204-7207; Stenberg, K. et al. (1986) J. Biol. Chem. 261:2134-2139). Increasing GuK activity in infected cells may provide a therapeutic strategy for augmenting the effectiveness of these drugs and possibly for reducing the necessary dosages of the drugs.
[0049] Pyrimidine Kinases
[0050] The pyrimidine kinases are deoxycytidine kinase and thymidine kinase 1 and 2. Deoxycytidine kinase is located in the nucleus, and thymidine kinase 1 and 2 are found in the cytosol (Johansson, M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:11941-11945). Phosphorylation of deoxyribonucleosides by pyrimidine kinases provides an alternative pathway for de novo synthesis of DNA precursors. The role of pyrimidine kinases, like purine kinases, in phosphorylation is critical to the activation of several chemotherapeutically important nucleoside analogues (Arner E. S. and S. Eriksson (1995) Pharmacol. Ther. 67:155-186).
[0051] The discovery of new human kinases, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of human kinases.
SUMMARY OF THE INVENTION
[0052] The invention features purified polypeptides, human kinases, referred to collectively as “PKIN” and individually as “PKIN-1,” “PKIN-2,” “PKIN-3,” “PKIN-4,” “PKIN-5,” “PKIN-6,” “PKIN-7,” “PKIN-8,” “PKIN-9,” “PKIN-10,” “PKIN-11,” “PKIN-12” “PKIN-13,” “PKIN-14,” “PKIN-15,” “PKIN-16,” “PKIN-17,” “PKIN-18,” “PKIN-19,” and “PKIN-20.” In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-20.
[0053] The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-20. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:21-40.
[0054] Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.
[0055] The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
[0056] Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20.
[0057] The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.
[0058] Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.
[0059] The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
[0060] The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-20. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional PKIN, comprising administering to a patient in need of such treatment the composition.
[0061] The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional PKIN, comprising administering to a patient in need of such treatment the composition.
[0062] Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional PKIN, comprising administering to a patient in need of such treatment the composition.
[0063] The invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
[0064] The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
[0065] The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.
[0066] The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
BRIEF DESCRIPTION OF THE TABLES
[0067] Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.
[0068] Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability score for the match between each polypeptide and its GenBank homolog is also shown.
[0069] Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
[0070] Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.
[0071] Table 5 shows the representative cDNA library for polynucleotides of the invention.
[0072] Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
[0073] Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
DESCRIPTION OF THE INVENTION
[0074] Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
[0075] It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “a host cell” includes a plurality of such host cells, and a reference to “an antibody” is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so fort.
[0076] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
[0077] Definitions
[0078] “PKIN” refers to the amino acid sequences of substantially purified PKIN obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
[0079] The term “agonist” refers to a molecule which intensifies or mimics the biological activity of PKIN. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of PKIN either by directly interacting with PKIN or by acting on components of the biological pathway in which PKIN participates.
[0080] An “allelic variant” is an alternative form of the gene encoding PKIN. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
[0081] “Altered” nucleic acid sequences encoding PKIN include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as PKIN or a polypeptide with at least one functional characteristic of PKIN. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding PKIN, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding PKIN. The encoded protein may also be “altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent PKIN. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of PKIN is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
[0082] The terms “amino acid” and “amino acid sequence” refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where “amino acid sequence” is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
[0083] “Amplification” relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
[0084] The term “antagonist” refers to a molecule which inhibits or attenuates the biological activity of PKIN. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of PKIN either by directly interacting with PKIN or by acting on components of the biological pathway in which PKIN participates.
[0085] The term “antibody” refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab′)2, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind PKIN polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
[0086] The term “antigenic determinant” refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
[0087] The term “antisense” refers to any composition capable of base-pairing with the “sense” (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2′-methoxyethyl sugars or 2′-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2′-deoxyuracil, or 7-deaza-2′-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation “negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
[0088] The term “biologically active” refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, “immunologically active” or “immunogenic” refers to the capability of the natural, recombinant, or synthetic PKIN, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
[0089] “Complementary” describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5′-AGT-3′ pairs with its complement, 3′-TCA-5′.
[0090] A “composition comprising a given polynucleotide sequence” and a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding PKIN or fragments of PKIN may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
[0091] “Consensus sequence” refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City Calif.) in the 5′ and/or the 3′ direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison Wis.) or Phrap (University of Washington, Seattle Wash.). Some sequences have been both extended and assembled to produce the consensus sequence.
[0092] “Conservative amino acid substitutions” are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
1|
|
Original ResidueConservative Substitution
|
AlaGly, Ser
ArgHis, Lys
AsnAsp, Gln, His
AspAsn, Glu
CysAla, Ser
GlnAsn, Glu, His
GluAsp, Gln, His
GlyAla
HisAsn, Arg, Gln, Glu
IleLeu, Val
LeuIle, Val
LysArg, Gln, Glu
MetLeu, Ile
PheHis, Met, Leu, Trp, Tyr
SerCys, Thr
ThrSer, Val
TrpPhe, Tyr
TyrHis, Phe, Trp
ValIle, Leu, Thr
|
[0093] Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
[0094] A “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
[0095] The term “derivative” refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
[0096] A “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
[0097] “Differential expression” refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
[0098] “Exon shuffling” refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
[0099] A “fragment” is a unique portion of PKIN or the polynucleotide encoding PKIN which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
[0100] A fragment of SEQ ID NO:21-40 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:21-40, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:21-40 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:21-40 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:21-40 and the region of SEQ ID NO:21-40 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
[0101] A fragment of SEQ ID NO:1-20 is encoded by a fragment of SEQ ID NO:21-40. A fragment of SEQ ID NO:1-20 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-20. For example, a fragment of SEQ ID NO:1-20 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-20. The precise length of a fragment of SEQ ID NO:1-20 and the region of SEQ ID NO:1-20 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
[0102] A “full length” polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A “full length” polynucleotide sequence encodes a “full length” polypeptide sequence.
[0103] “Homology” refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
[0104] The terms “percent identity” and “% identity,” as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
[0105] Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison Wis.). CLUSTAL V is described in Higgins, D. G. and P. M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D. G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and “diagonals saved”=4. The “weighted” residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the “percent similarity” between aligned polynucleotide sequences.
[0106] Alternatively, a suite of commonly used and freely available sequence comparison algorithms 15 is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S. F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, Md., and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including “blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called “BLAST 2 Sequences” that is used for direct pairwise comparison of two nucleotide sequences. “BLAST 2 Sequences” can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The “BLAST 2 Sequences” tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the “BLAST 2 Sequences” tool Version 2.0.12 (Apr. 21, 2000) set at default parameters. Such default parameters may be, for example:
[0107] Matrix: BLOSUM62
[0108] Reward for match: 1
[0109] Penalty for mismatch: −2
[0110] Open Gap: 5 and Extension Gap: 2 penalties
[0111] Gap×drop-off: 50
[0112] Expect. 10
[0113] Word Size: 11
[0114] Filter: on
[0115] Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
[0116] Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. ft is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
[0117] The phrases “percent identity” and “% identity,” as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
[0118] Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and “diagonals saved”=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the “percent similarity” between aligned polypeptide sequence pairs.
[0119] Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the “BLAST 2 Sequences” tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:
[0120] Matrix: BLOSUM62
[0121] Open Gap: 11 and Extension Gap: 1 penalties
[0122] Gap×drop-off 50
[0123] Expect: 10
[0124] Word Size: 3
[0125] Filter: on
[0126] Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ I) number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
[0127] “Human artificial chromosomes” (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.
[0128] The term “humanized antibody” refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
[0129] “Hybridization” refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the “washing” step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68° C. in the presence of about 6×SSC, about 1% (w/v) SDS, and about 100 μg/ml sheared, denatured salmon sperm DNA.
[0130] Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5° C. to 20° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tm and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview N.Y.; specifically see volume 2, chapter 9.
[0131] High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68UC in the presence of about 0.2×SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65° C., 60° C., 55° C., or 42° C. may be used. SSC concentration may be varied from about 0.1 to 2×SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 μg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
[0132] The term “hybridization complex” refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
[0133] The words “insertion” and “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
[0134] “Immune response” can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
[0135] An “immunogenic fragment” is a polypeptide or oligopeptide fragment of PKIN which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term “immunogenic fragment” also includes any polypeptide or oligopeptide fragment of PKIN which is useful in any of the antibody production methods disclosed herein or known in the art.
[0136] The term “microarray” refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.
[0137] The terms “element” and “array element” refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
[0138] The term “modulate” refers to a change in the activity of PKIN. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of PKIN.
[0139] The phrases “nucleic acid” and “nucleic acid sequence” refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
[0140] “Operably linked” refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
[0141] “Peptide nucleic acid” (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
[0142] “Post-translational modification” of an PKIN may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of PKIN.
[0143] “Probe” refers to nucleic acid sequences encoding PKIN, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. “Primers” are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
[0144] Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
[0145] Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview N.Y.; Ausubel, F. M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York N.Y.; Innis, M. et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego Calif. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge Mass.).
[0146] Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas Tex.) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge Mass.) allows the user to input a “mispriming library,” in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
[0147] A “recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
[0148] Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
[0149] A “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5′ and 3′ untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
[0150] “Reporter molecules” are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
[0151] An “RNA equivalent,” in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
[0152] The term “sample” is used in its broadest sense. A sample suspected of containing PKIN, nucleic acids encoding PKIN, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genonmic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
[0153] The terms “specific binding” and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope “A,” the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
[0154] The term “substantially purified” refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
[0155] A “substitution” refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
[0156] “Substrate” refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
[0157] A “transcript image” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
[0158] “Transformation” describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term “transformed cells” includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
[0159] A “transgenic organism,” as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
[0160] A “variant” of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the “BLAST 2 Sequences” tool Version 2.0.9 (May 7, 1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an “allelic” (as defined above), “splice,” “species,” or “polymorphic” variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass “single nucleotide polymorphisms” (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
[0161] A “variant” of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the “BLAST 2 Sequences” tool Version 2.0.9 (May 7, 1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.
[0162] The Invention
[0163] The invention is based on the discovery of new human human kinases (PKfN), the polynucleotides encoding PKIN, and the use of these compositions for the diagnosis, treatment, or prevention of cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders.
[0164] Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.
[0165] Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (Genbank ID NO:) of the nearest GenBank homolog. Column 4 shows the probability score for the match between each polypeptide and its GenBank homolog. Column 5 shows the annotation of the GenBank homolog along with relevant citations where applicable, all of which are expressly incorporated by reference herein.
[0166] Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison Wis.). Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.
[0167] Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are human kinases. For example, SEQ ID NO:2 is 97% identical to mouse tousled-like kinase (GenBank ID g2853031) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:2 also contains an eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:2 is a tousled-like kinase. In an alternative example, SEQ ID NO:10 is 63% identical to human serine/threonine protein kinase (GenBank ID g36615) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 7.7e-122, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:10 also contains an eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILES CAN analyses provide further corroborative evidence that SEQ ID NO:10 is a serine/threonine kinase. Note that “serine/theronine kinase” is a specific class of kinases. In an alternative example, SEQ ID NO:16 is 53% identical to human receptor protein-tyrosine kinase (GenBank ID g551608) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 4.1e-290, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:16 also contains an eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:16 is a receptor tyrosine kinase. In an alternative example, SEQ ID NO:19 is 93% identical to rat Calcium/calmodulin-dependent protein kinase isoform IV (GenBank ID g1836161) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 6.0e-257, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:19 also contains an eukaryotic protein kinase domain as determined by searching for statistically significant matches in the hidden Mark-ov model (HMM)-based PFAM database of conserved protein domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:19 is a protein kinase. SEQ ID NO:1, SEQ ID NO:3-9, SEQ ID NO:11-15, SEQ ID NO:17-18, and SEQ ID NO:20 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-20 are described in Table 7.
[0168] As shown in Table 4, the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention. Column 3 shows the length of each polynucleotide sequence in basepairs. Column 4 lists fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:21-40 or that distinguish between SEQ ID NO:21-40 and related polynucleotide sequences. Column 5 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention. Columns 6 and 7 of Table 4 show the nucleotide start (5′) and stop (3′) positions of the cDNA and/or genomic sequences in column 5 relative to their respective full length sequences.
[0169] The identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries. For example, 2564295H1 is the identification number of an Incyte cDNA sequence, and ADRETUT01 is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries (e.g., 71191190V1). Alternatively, the identification numbers in column 5 may refer to GenBank cDNAs or ESTs (e.g., g 1164223) which contributed to the assembly of the full length polynucleotide sequences. In addition, the identification numbers in column 5 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the designation “ENST”). Alternatively, the identification numbers in column 5 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (i.e., those sequences including the designation “NM” or “NT”) or the NCBI RefSeq Protein Sequence Records (i.e., those sequences including the designation “NP”). Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an “exon stitching” algorithm. For example, FL_XXXXXX_N1—N2—YYYYY_N3-N4 represents a “stitched” sequence in which XXXXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY is the number of the prediction generated by the algorithm, and N1,2,3, . . . , if present, represent specific exons that may have been manually edited during analysis (See Example V). Alternatively, the identification numbers in column 5 may refer to assemblages of exons brought together by an “exon-stretching” algorithm. For example, FLXXXXXX_gAAAAA_gBBBBB—1_N is the identification number of a “stretched” sequence, with XXXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the “exon-stretching” algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the “exon-stretching” algorithm, a RefSeq identifier (denoted by “NM,” “NP,” or “NT”) may be used in place of the GenBank identifier (i.e., gBBBBB).
[0170] Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example IV and Example V).
2|
|
PrefixType of analysis and/or examples of programs
|
GNN,Exon prediction from genomic sequences using, for example,
GFG,GENSCAN (Stanford University, CA, USA) or FGENES
ENST(Computer Genomics Group,
The Sanger Centre, Cambridge, UK)
GBIHand-edited analysis of genomic sequences.
FLStitched or stretched genomic sequences (see Example V).
INCYFull length transcript and exon prediction from mapping of EST
sequences to the genome.
Genomic location and EST composition
data are combined to predict the exons and resulting transcript.
|
[0171] In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.
[0172] Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.
[0173] The invention also encompasses PKIN variants. A preferred PKIN variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the PKIN amino acid sequence, and which contains at least one functional or structural characteristic of PKIN.
[0174] The invention also encompasses polynucleotides which encode PKIN. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:21-40, which encodes PKIN. The polynucleotide sequences of SEQ ID NO:21-40, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
[0175] The invention also encompasses a valiant of a polynucleotide sequence encoding PKIN. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding PKIN. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:21-40 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:21-40. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of PKIN.
[0176] It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding PKIN, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring PKIN, and all such variations are to be considered as being specifically disclosed.
[0177] Although nucleotide sequences which encode PKIN and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring PKIN under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding PKIN or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding PKIN and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.
[0178] The invention also encompasses production of DNA sequences which encode PKIN and PKIN derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding PKIN or any fragment thereof.
[0179] Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:21-40 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A. R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in “Definitions.”
[0180] Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochenical, Cleveland Ohio), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway N.J.), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg Md.). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno Nev.), PTC200 thermal cycler (MJ Research, Watertown Mass.) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale Calif.), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F. M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., unit 7.7; Meyers, R. A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York N.Y., pp. 856-853.)
[0181] The nucleic acid sequences encoding PKIN may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J. D. et al. (1991) Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto Calif.) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth Minn.) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68° C. to 72° C.
[0182] When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5′ regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5′ non-transcribed regulatory regions.
[0183] Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
[0184] In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode PKIN may be cloned in recombinant DNA molecules that direct expression of PKIN, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express PKIN.
[0185] The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter PKIN-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
[0186] The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara Calif.; described in U.S. Pat. No. 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F. C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of PKIN, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through “artificial” breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
[0187] In another embodiment, sequences encoding PKIN may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M. H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, PKIN itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, W H Freeman, New York N.Y., pp. 55-60; and Roberge, J. Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of PKIN, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.
[0188] The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R. M. and F. Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
[0189] In order to express a biologically active PKIN, the nucleotide sequences encoding PKIN or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5′ and 3′ untranslated regions in the vector and in polynucleotide sequences encoding PKIN. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding PKIN. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding PKIN and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)
[0190] Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding PKIN and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview N.Y., ch. 4, 8, and 16-17; Ausubel, F. M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York N.Y., ch. 9, 13, and 16.)
[0191] A variety of expression vector/host systems may be utilized to contain and express sequences encoding PKIN. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., T1 or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York N.Y., pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J. J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R. M. et al. (1985) Nature 317(6040):813-815; McGregor, D. P. et al. (1994) Mol. Immunol. 31(3):219-226; and Veima, I. M. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.
[0192] In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding PKIN. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding PKIN can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla Calif.) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding PKIN into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of PKIN are needed, e.g. for the production of antibodies, vectors which direct high level expression of PKIN may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
[0193] Yeast expression systems may be used for production of PKIN. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Bitter, G. A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)
[0194] Plant systems may also be used for expression of PKIN. Transcription of sequences encoding PKIN may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York N.Y., pp. 191-196.)
[0195] In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding PKIN may be ligated into an adenovirus transcription'translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses PKIN in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.
[0196] Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Hanrington, J. J. et al. (1997) Nat. Genet. 15:345-355.)
[0197] For long term production of recombinant proteins in mammalian systems, stable expression of PKIN in cell lines is preferred. For example, sequences encoding PKIN can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
[0198] Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk− and apr− cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, L et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuroindase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C. A. (1995) Methods Mol. Biol. 55:121-131.)
[0199] Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding PKIN is inserted within a marker gene sequence, transformed cells containing sequences encoding PKIN can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding PKIN under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
[0200] In general, host cells that contain the nucleic acid sequence encoding PKIN and that express PKIN may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
[0201] Immunological methods for detecting and measuring the expression of PKIN using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on PKIN is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul Minn., Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York N.Y.; and Pound, J. D. (1998) Immunochemical Protocols, Humana Press, Totowa N.J.)
[0202] A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding PKIN include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding PKIN, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison Wis.), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
[0203] Host cells transformed with nucleotide sequences encoding PKIN may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode PKIN may be designed to contain signal sequences which direct secretion of PKIN through a prokaryotic or eukaryotic cell membrane.
[0204] In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a “prepro” or “pro” form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas Va.) and may be chosen to ensure the correct modification and processing of the foreign protein.
[0205] In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding PKIN may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric PKIN protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of PKIN activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the PKIN encoding sequence and the heterologous protein sequence, so that PKIN may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
[0206] In a further embodiment of the invention, synthesis of radiolabeled PKIN may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35S-methionine.
[0207] PKIN of the present invention or fragments thereof may be used to screen for compounds that specifically bind to PKIN. At least one and up to a plurality of test compounds may be screened for specific binding to PKIN. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.
[0208] In one embodiment, the compound thus identified is closely related to the natural ligand of PKIN, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J. E. et al. (1991) Current Protocols in Immunology 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which PKfN binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express PKIN, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing PKIN or cell membrane fractions which contain PKIN are then contacted with a test compound and binding, stimulation, or inhibition of activity of either PKIN or the compound is analyzed.
[0209] An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with PKIN, either in solution or affixed to a solid support, and detecting the binding of PKIN to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.
[0210] PKIN of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of PKIN. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for PKIN activity, wherein PKIN is combined with at least one test compound, and the activity of PKIN in the presence of a test compound is compared with the activity of PKIN in the absence of the test compound. A change in the activity of PKIN in the presence of the test compound is indicative of a compound that modulates the activity of PKIN. Alternatively, a test compound is combined with an in vitro or cell-free system comprising PKIN under conditions suitable for PKIN activity, and the. assay is performed. In either of these assays, a test compound which modulates the activity of PKIN may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
[0211] In another embodiment, polynucleotides encoding PKIN or their mammalian homologs may be “knocked out” in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Pat. No. 5,175,383 and U.S. Pat. No. 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M. R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marte, J. D. (1996) Clin. Invest. 97:1999-2002; Wagner, K. U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
[0212] Polynucleotides encoding PKIN may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J. A. et al. (1998) Science 282:1145-1147).
[0213] Polynucleotides encoding PKIN can also be used to create “knockin” humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding PKIN is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress PKIN, e.g., by secreting PKIN in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74).
[0214] Therapeutics
[0215] Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of PKIN and human kinases. In addition, the expression of PKIN is closely associated with bladder cancer, prostatic, ovarian, brain, colon, ileum, penis, skin, adrenal tumor, digestive, and cancerous tissues. Therefore, PKIN appears to play a role in cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders. In the treatment of disorders associated with increased PKIN expression or activity, it is desirable to decrease the expression or activity of PKIN. In the treatment of disorders associated with decreased PKIN expression or activity, it is desirable to increase the expression or activity of PKIN.
[0216] Therefore, in one embodiment, PKIN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN. Examples of such disorders include, but are not limited to, a cancer, such as adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus, leukemias such as multiple myeloma and lymphomas such as Hodgkin's disease; an immune disorder, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a growth and developmental disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, paratmyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus, renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilnis' tumor, aniridia, genitourinaly abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a cardiovascular disease, such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophibia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, drug-induced lung disease, radiation-induced lung disease, and complications of lung transplantation; and a lipid disorder such as fatty liver, cholestasis, primary bilialy cirrhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy, adrenoleukodystrophy, GM2 gangliosidosis, and ceroid lipofuscinosis, abetalipoproteineria, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, lipoid adrenal hyperplasia, minimal change disease, lipomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphalipoproteinemia, hypothyroidism, renal disease, liver disease, lecithin:cholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay-Sachs disease, Sandhoff's disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity.
[0217] In another embodiment, a vector capable of expressing PKIN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN including, but not limited to, those described above.
[0218] In a further embodiment, a composition comprising a substantially purified PKIN in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN including, but not limited to, those provided above.
[0219] In still another embodiment, an agonist which modulates the activity of PKIN may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of PKIN including, but not limited to, those listed above.
[0220] In a further embodiment, an antagonist of PKIN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PKIN. Examples of such disorders include, but are not limited to, those cancer, immune disorders, disorders affecting growth and development, cardiovascular diseases, and lipid disorders described above. In one aspect, an antibody which specifically binds PKIN may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express PKIN.
[0221] In an additional embodiment, a vector expressing the complement of the polynucleotide encoding PKIN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of PKIN including, but not limited to, those described above.
[0222] In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
[0223] An antagonist of PKIN may be produced using methods which are generally known in the art. In particular, purified PKIN may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind PKIN. Antibodies to PKIN may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.
[0224] For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with PKIN or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, B CG (bacilli Calmette-Guerin) and Cornyebacterium parvum are especially preferable.
[0225] It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to PKIN have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of PKIN amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be produced.
[0226] Monoclonal antibodies to PKIN may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R. J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S. P. et al. (1984) Mol. Cell Biol. 62:109-120.)
[0227] In addition, techniques developed for the production of “chimeric antibodies,” such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S. L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M. S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce PKIN-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D. R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)
[0228] Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
[0229] Antibody fragments which contain specific binding sites for PKIN may also be generated. For example, such fragments include, but are not limited to, F(ab′)2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab)2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W. D. et al. (1989) Science 246:1275-1281.)
[0230] Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between PKIN and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering PKIN epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).
[0231] Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for PKIN. Affinity is expressed as an association constant, Ka, which is defined as the molar concentration of PKIN-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple PKIN epitopes, represents the average affinity, or avidity, of the antibodies for PKIN. The Ka determined for a preparation of monoclonal antibodies, which are monospecific for a particular PKIN epitope, represents a true measure of affinity. High-affinity antibody preparations with Ka ranging from about 109 to 1012 L/mole are preferred for use in immunoassays in which the PKIN-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with Ka ranging from about 106 to 107 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of PKIN, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington D.C.; Liddell, J. E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York N.Y.).
[0232] The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of PKIN-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan et al. supra.)
[0233] In another embodiment of the invention, the polynucleotides encoding PKIN, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding PKIN. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding PKIN. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa N.J.)
[0234] In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J. E. et al. (1998) J. Allergy Clin. Immumunol. 102(3):469-475; and Scanlon, K. J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A. D. (1990) Blood 76:271; Ausubel, supra; Uckeit, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J. J. (1995) Br. Med. Bull. 51(1):217-225; Boado, R. J. et al. (1998) J. Pharm. Sci. 87(1l):1308-1315; and Morris, M. C. et al. (1997) Nucleic Acids Res. 25(14):2730-2736.)
[0235] In another embodiment of the invention, polynucleotides encoding PKIN may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R. M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R. G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R. G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassanias, familial hypercholesterolemia, and hemophilia resulting from Factor VIH or Factor IX deficiencies (Crystal, R. G. (1995) Science 270:404-410; Verma, I. M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in PKIN expression or regulation causes disease, the expression of PKIN from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.
[0236] In a further embodiment of the invention, diseases or disorders caused by deficiencies in PKFN are treated by constructing mammalian expression vectors encoding PKIN and introducing these vectors by mechanical means into PKIN-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R. A. and W. F. Anderson (1993) Annu. Rev. Biochem. -62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Recipon (1998) Curr. Opin. Biotechnol. 9:445-450).
[0237] Expression vectors that may be effective for the expression of PKIN include, but are not limited to, the PcDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad Calif.), PCMV-SCRFPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla Calif.), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto Calif.). PKIN may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F. M. V. and H. M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F. M. V. and Blau, H. M. supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding PKIN from a normal individual.
[0238] Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F. L. and A. J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
[0239] In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to PKIN expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding PKIN under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M. A. et al. (1987) J. Virol. 61:1639-1646; Adam, M. A. and A. D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Pat. No. 5,910,434 to Rigg (“Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant”) discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M. L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).
[0240] In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding PKIN to cells which have one or more genetic abnormalities with respect to the expression of PKIN. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M. E. et al. (11995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Pat. No. 5,707,618 to Armentano (“Adenovirus vectors for gene therapy”), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P. A. et al. (11999) Annu. Rev. Nutr. 19:511-544 and Verma, I. M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.
[0241] In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding PKIN to target cells which have one or more genetic abnormalities with respect to the expression of PKIN. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing PKIN to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Pat. No. 5,804,413 to DeLuca (“Herpes simplex virus strains for gene transfer”), which is hereby incorporated by reference. U.S. Pat. No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W. F. et al. (11999) J. Virol. 73:519-532 and Xu, H. et al. (11994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.
[0242] In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding PKIN to target cells. The biology of the prototypic alphavirus, Semaliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (11998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for PKIN into the alphavirus genome in place of the capsid-coding region results in the production of a large number of PKIN-coding RNAs and the synthesis of high levels of PKIN in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S. A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of PKIN into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.
[0243] Oligonucleotides derived from the transcription initiation site, e.g., between about positions −10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J. E. et al. (1994) in Huber, B. E. and B. I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of M3RNA by preventing the transcript from binding to ribosomes.
[0244] Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding PKIN.
[0245] Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
[0246] Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding PKIN. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.
[0247] RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5′ and/or 3′ ends of the molecule, or the use of phosphorothioate or 2′ O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.
[0248] An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding PKIN. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased PKIN expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding PKIN may be therapeutically useful, and in the treatment of disorders associated with decreased PKIN expression or activity, a compound which specifically promotes expression of the polynucleotide encoding PKIN may be therapeutically useful.
[0249] At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding PKIN is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding PKIN are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding PKIN. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Pat. No. 5,932,435; Arndt, G. M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M. L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T. W. et al. (1997) U.S. Pat. No. 5,686,242; Bruice, T. W. et al. (2000) U.S. Pat. No. 6,022,691).
[0250] Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C. K. et al. (1997) Nat. Biotechnol. 15:462-466.)
[0251] Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
[0252] An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient. Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton Pa.). Such compositions may consist of PKIN, antibodies to PKIN, and mimetics, agonists, antagonists, or inhibitors of PKIN.
[0253] The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
[0254] Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J. S. et al., U.S. Pat. No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
[0255] Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.
[0256] Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising PKIN or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, PKIN or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S. R. et al. (1999) Science 285:1569-1572).
[0257] For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
[0258] A therapeutically effective dose refers to that amount of active ingredient, for example PKIN or fragments thereof, antibodies of PKIN, and agonists, antagonists or inhibitors of PKIN, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED50 (the dose therapeutically effective in 50% of the population) or LD50 (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD50/ED50 ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
[0259] The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.
[0260] Normal dosage amounts may vary from about 0.1 μg to 100,000 μg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
[0261] Diagnostics
[0262] In another embodiment, antibodies which specifically bind PKIN may be used for the diagnosis of disorders characterized by expression of PKIN, or in assays to monitor patients being treated with PKIN or agonists, antagonists, or inhibitors of PKIN. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for PKIN include methods which utilize the antibody and a label to detect PKIN in human body fluids or in extracts of cells or tissues. The antibodies. may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the ail and may be used.
[0263] A variety of protocols for measuring PKIN, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of PKIN expression. Normal or standard values for PKIN expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to PKIN under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of PKIN expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.
[0264] In another embodiment of the invention, the polynucleotides encoding PKIN may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of PKIN may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of PKIN, and to monitor regulation of PKIN levels during therapeutic intervention.
[0265] In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding PKIN or closely related molecules may be used to identify nucleic acid sequences which encode PKIN. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5′ regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding PKIN, allelic variants, or related sequences.
[0266] Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the PKIN encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:21-40 or from genomic sequences including promoters, enhancers, and introns of the PKIN gene.
[0267] Means for producing specific hybridization probes for DNAs encoding PKIN include the cloning of polynucleotide sequences encoding PKIN or PKIN derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
[0268] Polynucleotide sequences encoding PKIN may be used for the diagnosis of disorders associated with expression of PKIN. Examples of such disorders include, but are not limited to, a cancer, such as adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus, leukemias such as multiple myeloma and lymphomas such as Hodgkin's disease; an immune disorder, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus elythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a growth and developmental disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus, renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; a cardiovascular disease, such as arteriovenous fistula, atherosclerosis, hypertension, vasculitis, Raynaud's disease, aneurysms, arterial dissections, varicose veins, thrombophlebitis and phlebothrombosis, vascular tumors, and complications of thrombolysis, balloon angioplasty, vascular replacement, and coronary artery bypass graft surgery, congestive heart failure, ischemic heart disease, angina pectoris, myocardial infarction, hypertensive heart disease, degenerative valvular heart disease, calcific aortic valve stenosis, congenitally bicuspid aortic valve, mitral annular calcification, mitral valve prolapse, rheumatic fever and rheumatic heart disease, infective endocarditis, nonbacterial thrombotic endocarditis, endocarditis of systemic lupus erythematosus, carcinoid heart disease, cardiomyopathy, myocarditis, pericarditis, neoplastic heart disease, congenital heart disease, and complications of cardiac transplantation, congenital lung anomalies, atelectasis, pulmonary congestion and edema, pulmonary embolism, pulmonary hemorrhage, pulmonary infarction, pulmonary hypertension, vascular sclerosis, obstructive pulmonary disease, restrictive pulmonary disease, chronic obstructive pulmonary disease, emphysema, chronic bronchitis, bronchial asthma, bronchiectasis, bacterial pneumonia, viral and mycoplasmal pneumonia, lung abscess, pulmonary tuberculosis, diffuse interstitial diseases, pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemorrhage syndromes, Goodpasture's syndromes, idiopathic pulmonary hemosiderosis, pulmonary involvement in collagen-vascular disorders, pulmonary alveolar proteinosis, lung tumors, inflammatory and noninflammatory pleural effusions, pneumothorax, pleural tumors, drug-induced lung disease, radiation-induced lung disease, and complications of lung transplantation; and a lipid disorder such as fatty liver, cholestasis, primary biliary cirrhosis, carnitine deficiency, carnitine palmitoyltransferase deficiency, myoadenylate deaminase deficiency, hypertriglyceridemia, lipid storage disorders such Fabry's disease, Gaucher's disease, Niemann-Pick's disease, metachromatic leukodystrophy, adrenoleukodystrophy, GM2 gangliosidosis, and ceroid lipofuscinosis, abetalipoproteineria, Tangier disease, hyperlipoproteinemia, diabetes mellitus, lipodystrophy, lipomatoses, acute panniculitis, disseminated fat necrosis, adiposis dolorosa, lipoid adrenal hyperplasia, minimal change disease, lipomas, atherosclerosis, hypercholesterolemia, hypercholesterolemia with hypertriglyceridemia, primary hypoalphalipoproteinemia, hypothyroidism, renal disease, liver disease, lecithin:cholesterol acyltransferase deficiency, cerebrotendinous xanthomatosis, sitosterolemia, hypocholesterolemia, Tay-Sachs disease, Sandhof's disease, hyperlipidemia, hyperlipemia, lipid myopathies, and obesity. The polynucleotide sequences encoding PKIN may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered PKIN expression. Such qualitative or quantitative methods are well known in the art.
[0269] In a particular aspect, the nucleotide sequences encoding PKIN may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding PKIN may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding PKIN in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
[0270] In order to provide a basis for the diagnosis of a disorder associated with expression of PKIN, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding PKIN, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.
[0271] Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
[0272] With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
[0273] Additional diagnostic uses for oligonucleotides designed from the sequences encoding PKIN may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding PKIN, or a fragment of a polynucleotide complementary to the polynucleotide encoding PKIN, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
[0274] In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding PKIN may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding PKIN are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego Calif.).
[0275] Methods which may also be used to quantify the expression of PKIN include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P. C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
[0276] In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
[0277] In another embodiment, PKIN, fragments of PKIN, or antibodies specific for PKIN may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.
[0278] A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., “Comparative Gene Transcript Analysis,” U.S. Pat. No. 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.
[0279] Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.
[0280] Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E. F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N. L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released Feb. 29, 2000, available at http:H/www.niehs.nih.gov/oc/news/toxchip.htm.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.
[0281] In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
[0282] Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to. the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, sunra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.
[0283] A proteomic profile may also be generated using antibodies specific for PKIN to quantify the levels of PKIN expression. In one embodiment, the antibodies are used as elements. on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lucking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L. G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
[0284] Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N. L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.
[0285] In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
[0286] In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
[0287] Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T. M. et al. (1995) U.S. Pat. No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R. A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M. J. et al. (1997) U.S. Pat. No. 5,605,662.) Various types of microarrays are well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.
[0288] In another embodiment of the invention, nucleic acid sequences encoding PKIN may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J. J. et al. (1997) Nat. Genet. 15:345-355; Price, C. M. (1993) Blood Rev. 7:127-134; and Trask, B. J. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP); (See, for example, Lander, E. S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)
[0289] Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding PKIN on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
[0290] In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R. A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
[0291] In another embodiment of the invention, PKIN, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between PKIN and the agent being tested may be measured.
[0292] Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with PKIN, or fragments thereof, and washed. Bound PKIN is then detected by methods well known in the art. Purified PKIN can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
[0293] In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding PKIN specifically compete with a test compound for binding PKIN. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with PKIN.
[0294] In additional embodiments, the nucleotide sequences which encode PKIN may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
[0295] Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
[0296] The disclosures of all patents, applications, and publications mentioned above and below, including U.S. Ser. No. 60/220,038, U.S. Ser. No. 60/222,112, U.S. Ser. No. 60/222,831, and U.S. Ser. No. 60/224,729 are hereby expressly incorporated by reference.
EXAMPLES
[0297] I. Construction of cDNA Libraries
[0298] Incyte cDNAs were derived from cDNA libraries described in the LIFESEQ GOLD database (Incyte Genorics, Palo Alto Calif.) and shown in Table 4, column 5. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
[0299] Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth Calif.), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin Tex.).
[0300] In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PcDNA2. I plasmid (Invitrogen, Carlsbad Calif.), PBK-CMV plasmid (Stratagene), or pINCY (Incyte Genomics, Palo Alto Calif.), or derivatives thereof. Recombinant plasmids were transformed into competent E. coli cells including XL-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5a, DH10B, or ElectroMAX DH10B from Life Technologies.
[0301] II. Isolation of cDNA Clones
[0302] Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg Md.); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasrid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4° C.
[0303] Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V. B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene Oreg.) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
[0304] III. Sequencing and Analysis
[0305] Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.
[0306] The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as PFAM. (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S. R. (1996) Curr. Opin. Struct. Biol. 6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences were assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and hidden Markov model (HMM)-based protein family databases such as PFAM. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco Calif.) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
[0307] Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).
[0308] The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:21-40. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 4.
[0309] IV. Identification and Editing of Coding Sequences from Genomic DNA
[0310] Putative human kinases were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode human kinases, the encoded polypeptides were analyzed by querying against PFAM models for human kinases. Potential human kinases were also identified by homology to Incyte cDNA sequences that had been annotated as human kinases. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example m. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.
[0311] V. Assembly of Genomic Sequence Data with cDNA Sequence Data
[0312] “Stitched” Sequences
[0313] Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then “stitched” together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.
[0314] “Stretched” Sequences
[0315] Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III were queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenB ank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore “stretched” or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.
[0316] VI. Chromosomal Mapping of PKIN Encoding Polynucleotides
[0317] The sequences which were used to assemble SEQ ID NO:21-40 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:21-40 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.
[0318] Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI “GeneMap '99” World Wide Web site (http://www.ncbi.nlm.nih.gov/genemap/), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.
[0319] VII. Analysis of Polynucleotide Expression
[0320] Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.)
[0321] Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:
1
[0322] The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and −4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
[0323] Alternatively, polynucleotide sequences encoding PKIN are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatogmathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding PKIN. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto Calif.).
[0324] VIII. Extension of PKIN Encoding Polynucleotides
[0325] Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5′ extension of the known fragment, and the other primer was synthesized to initiate 3′ extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68° C. to about 72° C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
[0326] Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
[0327] High fidelity amplification was obtained by PCR using methods well known in the alt. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 mmol of each primer, reaction buffer containing Mg2+, (NH4)2SO4, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 68° C., 2 rain; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68° C., 5 rain; Step 7: storage at 4° C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94° C., 3 main; Step 2: 94° C., 15 sec; Step 3: 57° C., 1 min; Step 4: 68° C., 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 680C, 5 min; Step 7: storage at 40C.
[0328] The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene Oreg.) dissolved in 1×TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton Mass.), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose gel to determine which reactions were successful in extending the sequence.
[0329] The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison Wis.), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly Mass.) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37° C. in 384-well plates in LB/2× carb liquid media.
[0330] The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94° C., 3 min; Step 2: 94° C., 15 sec; Step 3: 60° C., 1 min; Step 4: 72° C., 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72° C., 5 min; Step 7: storage at 4° C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).
[0331] In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5′ regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.
[0332] IX. Labeling and Use of Individual Hybridization Probes
[0333] Hybridization probes derived from SEQ ID NO:21-40 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-32P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston Mass.). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 107 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).
[0334] The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham N.H.). Hybridization is carried out for 16 hours at 40° C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1×saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.
[0335] X. Microarrays
[0336] The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra.), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), supra). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements; (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)
[0337] Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser desorption and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.
[0338] Tissue or Cell Sample Preparation
[0339] Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)+ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)+ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/μl oligo-(dT) primer (21mer), 1× first strand buffer, 0.03 units/μl RNase inhibitor, 500 μM dATP, 500 pM dGTP, 500 PM dTTP, 40 JIM dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)+ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)+ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C. for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C. to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto Calif.) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook N.Y.) and resuspended in 14 μl 5×SSC/0.2% SDS.
[0340] Microarray Preparation
[0341] Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μg. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).
[0342] Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester Pa.), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110° C. oven.
[0343] Array elements are applied to the coated glass substrate using a procedure described in U.S. Pat. No. 5,807,522, incorporated herein by reference. 1 μl of the array element DNA, at an average concentration of 100 ng/μl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.
[0344] Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford Mass.) for 30 minutes at 60° C. followed by washes in 0.2% SDS and distilled water as before.
[0345] Hybridization
[0346] Hybridization reactions contain 9 μl of sample mixture consisting of 0.2 μg each of Cy3 and Cy5 labeled cDNA synthesis products in 5×SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65° C. for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm2 coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 μl of 5×SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60° C. The arrays are washed for 10 min at 45° C. in a first wash buffer (1×SSC, 0.1% SDS), three times for 10 minutes each at 450 C in a second wash buffer (0.1×SSC), and dried.
[0347] Detection
[0348] Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara Calif.) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20× microscope objective (Nikon, Inc., Melville N.Y.). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm×1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.
[0349] In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater N.J.) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
[0350] The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
[0351] The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood Mass.) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.
[0352] A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).
[0353] XI. Complementary Polynucleotides
[0354] Sequences complementary to the PKIN-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring PKIN. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of PKIN. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5′ sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the PKIN-encoding transcript.
[0355] XII. Expression of PKIN
[0356] Expression and purification of PKIN is achieved using bacterial or virus-based expression systems. For expression of PKIN in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the np-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21 (DE3). Antibiotic resistant bacteria express PKIN upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of PKIN in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding PKIN by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)
[0357] In most expression systems, PKIN is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from PKIN at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified PKIN obtained by these methods can be used directly in the assays shown in Examples XVI, XVII, XVIIM, and XIX where applicable.
[0358] XIII. Functional Assays
[0359] PKIN function is assessed by expressing the sequences encoding PKIN at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad Calif.), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York N.Y.
[0360] The influence of PKIN on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding PKIN and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfecteds cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding PKIN and other genes of interest can be analyzed by northern analysis or microarray techniques.
[0361] XIV. Production of PKIN Specific Antibodies
[0362] PKIN substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M. G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.
[0363] Alternatively, the PKIN amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)
[0364] Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma-Aldrich, St. Louis Mo.) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-PKIN activity by, for example, binding the peptide or PKIN to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
[0365] XV. Purification of Naturally Occurring PKIN Using Specific Antibodies
[0366] Naturally occurring or recombinant PKIN is substantially purified by immunoaffinity chromatography using antibodies specific for PKIN. An immunoaffinity column is constructed by covalently coupling anti-PKIN antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
[0367] Media containing PKIN are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of PKIN (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/PKIN binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and PKIN is collected.
[0368] XVI. Identification of Molecules Which Interact with PKIN
[0369] PKIN, or biologically active fragments thereof, are labeled with 125I Bolton-Hunter reagent. (See, e.g., Bolton A. E. and W. M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled PKIN, washed, and any wells with labeled PKIN complex are assayed. Data obtained using different concentrations of PKIN are used to calculate values for the number, affinity, and association of PKIN with the candidate molecules.
[0370] Alternatively, molecules interacting with PKIN are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
[0371] PKIN may also be used in the PATHCALLING process (CuraGen Corp., New Haven Conn.) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Pat. No. 6,057,101).
[0372] XVII. Demonstration of PKIN Activity
[0373] Generally, protein kinase activity is measured by quantifying the phosphorylation of a protein substrate by PKIN in the presence of [γ-32P]ATP. PKIN is incubated with the protein substrate, 32P-ATP, and an appropriate kinase buffer. The 32p incorporated into the substrate is separated from free 32P-ATP by electrophoresis and the incorporated 32P is counted using a radioisotope counter. The amount of incorporated 32P is proportional to the activity of PKIN. A determination of the specific amino acid residue phosphorylated is made by phosphoamino acid analysis of the hydrolyzed protein.
[0374] In one alternative, protein kinase activity is measured by quantifying the transfer of gamma phosphate from adenosine triphosphate (ATP) to a serine, threonine or tyrosine residue in a protein substrate. The reaction occurs between a protein kinase sample with a biotinylated peptide substrate and gamma 32P-ATP. Following the reaction, free avidin in solution is added for binding to the biotinylated 32P-peptide product. The binding sample then undergoes a centrifugal ultrafiltration process with a membrane which will retain the product-avidin complex and allow passage of free gamma 32P-ATP. The reservoir of the centrifuged unit containing the 32P-peptide product as retentate is then counted in a scintillation counter. This procedure allows assay of any type of protein kinase sample, depending on the peptide substrate and kinase reaction buffer selected. This assay is provided in kit form (ASUA, Affinity Ultrafiltration Separation Assay, Transbio Corporation, Baltimore Md., U.S. Pat. No. 5,869,275). Suggested substrates and their respective enzymes include but are not limited to: Histone H1 (Sigma) and p34cd2kinase, Annexin I, Angiotensin (Sigma) and EGF receptor kinase, Annexin II and src kinase, ERK1 & ERK2 substrates and MEK, and myelin basic protein and ERK (Pearson, J. D. et al. (1991) Methods Enzymol. 200:62-81).
[0375] In another alternative, protein kinase activity of PKIN is demonstrated in an assay containing PKIN, 50 μl of kinase buffer, 1 μg substrate, such as myelin basic protein (MBP) or synthetic peptide substrates, 1 mM DTT, 10 μg ATP, and 0.5 [μCi [γ-32P]ATP. The reaction is incubated at 30° C. for 30 minutes and stopped by pipetting onto P81 paper. The unincorporated fy-32P]ATP is removed by washing and the incorporated radioactivity is measured using a scintillation counter. Alternatively, the reaction is stopped by heating to 100° C. in the presence of SDS loading buffer and resolved on a 12% SDS polyacrylamide gel followed by autoradiography. The amount of incorporated 32P is proportional to the activity of PKIN.
[0376] In yet another alternative, adenylate kinase or guanylate kinase activity may be measured by the incorporation of 32p from [γ-32P]ATP into ADP or GDP using a gamma radioisotope counter. The enzyme, in a kinase buffer, is incubated together with the appropriate nucleotide mono-phosphate substrate (AMP or GMP) and 32P-labeled ATP as the phosphate donor. The reaction is incubated at 37° C. and terminated by addition of trichloroacetic acid. The acid extract is neutralized and subjected to gel electrophoresis to separate the mono-, di-, and triphosphonucleotide fractions. The diphosphonucleotide fraction is excised and counted. The radioactivity recovered is proportional to the enzyme activity.
[0377] In yet another alternative, other assays for PKIN include scintillation proximity assays (SPA), scintillation plate technology and filter binding assays. Useful substrates include recombinant proteins tagged with glutathione transferase, or synthetic peptide substrates tagged with biotin. Inhibitors of PKIN activity, such as small organic molecules, proteins or peptides, may be identified by such assays.
[0378] XVIII. Enhancement/Inhibition of Protein Kinase Activity
[0379] Agonists or antagonists of PKIN activation or inhibition may be tested using assays described in section XVI. Agonists cause an increase in PKIN activity and antagonists cause a decrease in PKIN activity.
[0380] XIX. Kinase Binding Assay
[0381] Binding of PKIN to a FLAG-CD44 cyt fusion protein can be determined by incubating PKIN to anti-PKIN-conjugated immunoaffinity beads followed by incubating portions of the beads (having 10-20 ng of protein) with 0.5 ml of a binding buffer (20 mM Tris-HCL (pH 7.4), 150 mM NaCl, 0.1% bovine serum albumin, and 0.05% Triton X-100) in the presence of 125I-labeled FLAG-CD44cyt fusion protein (5,000 cpm/ng protein) at 4° C. for 5 hours. Following binding, beads were washed thoroughly in the binding buffer and the bead-bound radioactivity measured in a scintillation counter (Bourguignon, L. Y. W. et al. (2001) J. Biol. Chem. 276:7327-7336). The amount of incorporated 32P is proportional to the amount of bound PKIN.
[0382] Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
3TABLE 1
|
|
Poly-
peptideIncyte
IncyteSEQ IDIncytePolynucleotidePolynucleotide
Project IDNO:Polypeptide IDSEQ ID NO:ID
|
|
256429512564295CD1212564295CB1
283705022837050CD1222837050CB1
747459037474590CD1237474590CB1
747459447474594CD1247474594CB1
747758557477585CD1257477585CB1
747758767477587CD1267477587CB1
759453777594537CD1277594537CB1
70467491 870467491CD12870467491CB1
747855997478559CD1297478559CB1
1698381101698381CD1301698381CB1
7474637117474637CD1317474637CB1
7170260127170260CD1327170260CB1
1797506131797506CD1331797506CB1
1851973141851973CD1341851973CB1
7474604157474604CD1357474604CB1
7474721167474721CD1367474721CB1
7478815177478815CD1377478815CB1
7477141187477141CD1387477141CB1
2190612192190612CD1392190612CB1
7477549207477549CD1407477549CB1
|
[0383]
4
TABLE 2
|
|
|
Polypeptide
Incyte
GenBank
Probability
|
SEQ ID NO:
Polypeptide ID
ID NO:
score
GenBank Homolog
|
|
|
1
2564295CD1
g186555
0.0
Insulin receptor-related receptor
|
[Homo sapiens]
|
2
2837050CD1
g2853031
0.0
Tousled-like kinase [Mus musculus]
|
3
7474590CD1
g6453611
5.1e−86
Protein kinase (mutant form)
|
[Mus musculus]
|
4
7474594CD1
g3879221
5.6e−99
Predicted using Genefinder similar to
|
casein kinase I
|
[Caenorhabditis elegans]
|
5
7477585CD1
g348245
3.5e−62
Protein serine/threonine kinase
|
[Homo sapiens]
|
6
7477587CD1
g312998
7.4e−73
Protein kinase [Homo sapiens]
|
7
7594537CD1
g485398
0.0
90 kDa-diacylglycerol kinase
|
[Rattus norvegicus]
|
8
70467491CD1
g3089349
0.0
Cdc25C associated protein kinase C-
|
TAK1 [Homo sapiens]
|
9
7478559CD1
g7960111
4.2e−114
Ethanolamine kinase [Homo sapiens]
|
g9998952
1.00E−123
[Homo sapiens] ethanolamine kinase
|
Lykidis, A. et al.
|
Overexpression of a mammalian
|
ethanolamine-specific kinase
|
accelerates the CDP-ethanolamine
|
pathway
|
J. Biol. Chem. 276, 2174-2179 (2001)
|
10
1698381CD1
g36615
7.7e−122
[Homo sapiens] serine/threonine
|
protein kinase
|
Meyerson, M. et al. (1992)
|
EMBO J. 11: 2909-2917
|
11
7474637CD1
g1181079
0.0
[Homo sapiens] diacylglycerol kinase
|
delta
|
Sakane, F. et al. (1996)
|
J. Biol. Chem. 271: 8394-8401
|
g1401232
0
[Cricetinae gen. sp.] diacylglycerol
|
kinase eta
|
Klauck, T. M. et al.
|
Cloning and characterization of a
|
glucocorticoid-induced diacylglycerol
|
kinase
|
J. Biol. Chem. 271, 19781-19788
|
(1996)
|
12
7170260CD1
g8101585
3.5e−126
[Mus musculus] testis specific serine
|
kinase-3
|
Zuercher, G. et al (2000)
|
Mech. Dev. 93: 175-177
|
13
1797506CD1
g3300094
4.5e−227
[Homo sapiens] protein
|
kinase/endoribonuclease
|
Tirasophon, W. et al. (1998)
|
Genes Dev. 12: 1812-1824
|
g12407081
0
[Homo sapiens] protein
|
kinase/ribonuclease IRE1 beta
|
Iwawaki, T. et al.
|
Translational control by the ER
|
transmembrane kinase/ribonuclease
|
IRE1 under ER stress
|
Nat. Cell Biol. 3, 158-164 (2001)
|
14
1851973CD1
g1853976
1.3e−37
[Schizosaccharomyces pombe] protein
|
kinase
|
Samejima, I., and Yanagida, M. (1994)
|
Mol Cell Biol 14: 6361-71
|
g9294489
5.00E−47
[Arabidopsis thaliana] IRE homolog;
|
protein kinase-like protein
|
Sato, S., Nakamura, Y., Kaneko, T.,
|
Katoh, T. et al.
|
Structural analysis of Arabidopsis
|
thaliana chromosome 3. I. Sequence
|
features of the regions of 4,504,864
|
bp covered by sixty P1 and TAC clones
|
DNA Res. 7, 131-135 (2000)
|
15
7474604CD1
g1171250
2.0e−218
[Mus musculus] protein kinase related
|
to Raf protein kinases
|
Therrien, M. et al. (1995)
|
Cell 83: 879-888
|
16
7474721CD1
g551608
4.1e−290
[Homo sapiens] receptor protein-
|
tyrosine kinase
|
Fox, G. M. et al. (1995)
|
Oncogene 10: 897-905
|
17
7478815CD1
g2873349
0.0
[Homo sapiens] Hexokinase I
|
Ruzzo, A. et al. (1998)
|
Biochem. J. 331(Pt 2): 607-613
|
18
7477141CD1
g7239696
1.6e−87
[Homo sapiens] myosin light chain
|
kinase
|
Garcia, J. G. et al. (1997)
|
Am. J. Respir. Cell Mol. Biol.
|
16: 489-494
|
Garcia, J. G. N. et al. (1996)
|
Biochem. Biophys. Res. Commun. 1: 1-1
|
g11385416
0
[Mus musculus] striated muscle-
|
specific serine/threonine protein
|
kinase
|
Hsieh, C. M. et al.
|
Striated Muscle Preferentially
|
Expressed Genes alpha and beta Are
|
Two Serine/Threonine Protein Kinases
|
Derived from the Same Gene as the
|
Aortic Preferentially Expressed Gene-1
|
J. Biol. Chem. 275 (47), 36966-36973
|
(2000)
|
19
2190612CD1
g1836161
6.0e−257
[Rattus sp.] Ca2+/calmodulin-
|
dependent protein kinase IV kinase
|
Okuno, S., Kitani, T. and Fujisawa, H.
|
(1996)
|
J. Biochem. 119: 1176-1181
|
20
7477549CD1
g5006445
3.6e−179
[Homo sapiens] CDC42-binding protein
|
kinase beta
|
Moncrieff, C. L. et al. (1999)
|
Genomics 57: 297-300
|
g2736151
0
[Rattus norvegicus] mytonic dystrophy
|
kinase-related Cdc42-binding kinase
|
Leung, T. et al.
|
Myotonic dystrophy kinase-related
|
Cdc42-binding kinase acts as a Cdc42
|
effector in promoting cytoskeletal
|
reorganization
|
Mol. Cell. Biol. 18, 130-140 (1998)
|
20
g2217968
1.40E−161
[Homo sapiens] myotonic dystrophy
|
protein kinase
|
Kedra, D. et al.
|
The germinal center kinase gene and a
|
novel CDC25-like gene are located in
|
the vicinity of the PYGM gene on
|
11q13
|
Hum. Genet. 100, 611-619 (1997)
|
|
[0384]
5
TABLE 3
|
|
|
A-
|
mino
|
SEQ
Incyte
Acid
Potential
Potential
Analytical
|
ID
Polypeptide
Resi-
Phosphorylation
Glycosylation
Signature Sequences,
Methods and
|
NO:
ID
dues
Sites
Sites
Domains and Motifs
Databases
|
|
|
1
2564295CD1
1297
S151 S238 S271
N311 N411
PROTEIN KINASE DOMAIN DM00004|P14617|
BLAST-DOMO
|
S49 S564 S666
N47 N492
980-1238: S980-F1239
|
S741 S758 S827
N528 N616
RECEPTOR PRECURSOR SIGNAL TRANSFERASE
BLAST-PRODOM
|
S887 S900 S93
N634 N756
TYROSINEPROTEIN KINASE TRANSMEMBRANE
|
S962 T223 T348
N885 N898
GLYCOPROTEIN ATPBINDING
|
T475 T486 T494
N949
PHOSPHORYLATION PD006834: A603-R745, F760-
|
T581 T582 T629
I818 RECEPTOR PRECURSOR SIGNAL
BLAST-PRODOM
|
T64 Y454 Y652
TRANSFERASE TYROSINEPROTEIN KINASE
|
T1014 T1020
TRANSMEMBRANE GLYCOPROTEIN ATPBINDING
|
T1063 S1163
PHOSPHORYLATION PD005347: Q466-P602
|
T1171 T1187
PUTATIVE INSULINLIKE PEPTIDE RECEPTOR
BLAST-PRODOM
|
S1245 T1275
PRECURSOR EC 2.7.1.112 TRANSFERASE
|
T1284 S1073
TYROSINEPROTEIN KINASE TRANSMEMBRANE
|
T1128 S1253
GLYCOPROTEIN ATPBINDING
|
T1145
PHOSPHORYLATION SIGNAL PD146134:
|
L344-E495, V773-G899, D513-C799, E825-R855
|
PRECURSOR SIGNAL INSULINLIKE RECEPTOR
BLAST-PRODOM
|
TRANSFERASE TYROSINEPROTEIN KINASE
|
TRANSMEMBRANE GLYCOPROTEIN ATPBINDING
|
PD004354: V330-G410
|
Receptor tyrosine kinase BL00239: G464-
BLIMPS-BLOCKS
|
P473, E1030-E1077, M1092-R1114, A1117-
|
E1142, D1144-Y1193, N1198-I1242
|
Receptor tyrosine kinase BL00240F: T1143-
BLIMPS-BLOCKS
|
E1190
|
Receptor tyrosine kinase BL00790H: S831-L856
BLIMPS-BLOCKS
|
Tyrosine kinase catalytic domain PR00109:
BLIMPS-PRINTS
|
M1059-R1072, Y1105-V1123, L1154-L1164,
|
S1173-G1195, C1217-F1239
|
Protein kinases signatures and profile
PROFILESCAN
|
protein_kinase_tyr.prf: E1091-T1143
|
Receptor tyrosine kinase class II signature
PROFILESCAN
|
receptor_tyr_kin_ii.prf: R1119-G1167
|
Signal peptide: M1-D25
HMMER
|
Transmembrane domain: V922-Y944,
HMMER
|
Furin-like cysteine rich region: G173-K329
HMMER-PFAM
|
Receptor L domain: N47-N170, G346-N472
HMMER-PFAM
|
Eukaryotic protein kinase domain pkinase:
HMMER-PFAM
|
I979-E1248
|
Protein_Kinase_Atp L985-K1013
MOTIFS
|
2
2837050CD1
718
S165 S186 S194
N340 N36
PROTEIN KINASE DOMAIN DM00004|P34314|
BLAST-DOMO
|
S238 S246 S257
N548 N630
736-1002: L409-D677
|
S275 S298 S44
N713 N714
TOUSLEDLIKE KINASE PD102959: M2-E183
BLAST-PRODOM
|
S46 S509 S605
KINASE PROTEIN TOUSLEDLIKE PD013350: M237-
BLAST-PRODOM
|
S632 T176 T269
D400, Q287-L409
|
T344 T403 T488
TOUSLEDLIKE KINASE KIAA0137 PROTEIN
BLAST-PRODOM
|
T558 T78 Y571
PD035377: K184-T236
|
Y97
TOUSLEDLIKE KINASE MULTIPLE TESTIS
BLAST-PRODOM
|
TRANSCRIPT PD026280: A682-N718
|
Tyrosine kinase catalytic domain PR00109:
BLIMPS-PRINTS
|
L490-K503, V608-N630
|
Protein kinases signatures and profile
PROFILESCAN
|
protein_kinase_tyr.prf: E512-S570
|
Eukaryotic protein kinase domain pkinase:
HMMER-PFAM
|
Y408-L687
|
Protein_Kinase_Atp: L414-K437
MOTIFS
|
Protein_Kinase_St: I534-L546
MOTIFS
|
3
7474590CD1
497
S17 S286 S291
N243
PROTEIN KINASE DOMAIN DM00004|P27448|
BLAST-DOMO
|
S3 S314 S356
58-297: V30-T265
|
S372 S375 S381
Tyrosine kinase catalytic domain PR00109:
BLIMPS-PRINTS
|
S382 S409 S440
Y136-V154, V202-S224, L244-A266
|
S447 S5 S70
Protein kinases signatures and profile
PROFILESCAN
|
T225 T265 T427
protein_kinase_tyr.prf: Q94-G174
|
T445 T461
Eukaryotic protein kinase domain pkinase:
HMMER-PFAM
|
Y28-L275
|
Protein_Kinase_St: V142-V154
MOTIFS
|
4
7474594CD1
741
S397 S402 S471
N119 N291
PROTEIN KINASE DOMAIN DM00004|P48730|
BLAST-DOMO
|
S592 S641 S652
11-265: K144-Y392
|
S656 S737 T237
SIMILAR TO CASEIN KINASES PD115501: F332-
BLAST-PRODOM
|
T274 T292 T308
D422, L130-T233
|
T388 T587
Eukaryotic protein kinase domain pkinase:
HMMER-PFAM
|
W140-F374
|
Protein_Kinase_Atp: I146-K169
MOTIFS
|
Signal cleavage: M1-L19
SPSCAN
|
5
7477585CD1
645
S251 S273 S277
N598 N71
PROTEIN KINASE DOMAIN DM00004|P51957|8-251:
BLAST-DOMO
|
S372 S414 S454
L35-S277
|
S47 S490 S522
Tyrosine kinase catalytic domain PR00109:
BLIMPS-PRINTS
|
S600 S64 S84
T108-Q121, Y148-L166, Y256-A278
|
S97 T211 T302
Protein kinases signatures and profile
PROFILESCAN
|
T329 T340 T538
protein_kinase_tyr.prf: Q134-S185
|
T547 Y368
Eukaryotic protein kinase domain pkinase:
HMMER-PFAM
|
Y29-L287
|
Protein_Kinase_St: I154-L166
MOTIFS
|
6
7477587CD1
623
S32 S393 S439
PROTEIN KINASE DOMAIN DM00004|P53350|
BLAST-DOMO
|
S54 S61 S67 S80
55-295: R99-A267, S253-L310
|
S93 T195 T367
Tyrosine kinase catalytic domain PR00109:
BLIMPS-PRINTS
|
T454 T463 T584
Y212-L230
|
Protein kinases signatures and profile
PROFILESCAN
|
protein_kinase_tyr.prf: E198-G250
|
Transmembrane domain transmem_domain: L555-
HMMER
|
S575
|
Eukaryotic protein kinase domain pkinase:
HMMER-PFAM
|
Y97-A267, S268-F319
|
Protein_Kinase_Atp: I103-K126
MOTIFS
|
Protein_Kinase_St: I218-L230
MOTIFS
|
7
7594537CD1
797
S11 S136 S165
N546 N646
PHORBOL-ESTER AND DAG BINDING DOMAIN
BLAST-DOMO
|
S208 S25 S294
N793
DM01331 |P49621|326-792: V321-K789
|
S380 S670 S675
KINASE DIACYLGLYCEROL PHORBOLESTER
BLAST-PRODOM
|
S684 S81 T2 T26
BINDING TRANSFERASE DIGLYCERIDE DAG
|
T274 T298 T312
MULTIGENE FAMILY DGK PD002939: I575-P755
|
T320 T388 T518
PROBABLE DIACYLGLYCEROL KINASE
BLAST-PRODOM
|
T62 T625 T689
EC 2.7.1.107 DIGLYCERIDE DGK DAG
|
T743 T762 T766
HYPOTHETICAL PROTEIN TRANSFERASE
|
Y449
CALCIUMBINDING PHORBOLESTER BINDING
|
PD078865: A118-G236, L10-D85, T50-S81
|
KINASE DIACYLGLYCEROL PHORBOLESTER
BLAST-PRODOM
|
BINDING PROTEIN TRANSFERASE DIGLYCERIDE
|
DAG MULTIGENE FAMILY PD002780: P431-W555
|
DIACYLGLYCEROL KINASE, BETA EC 2.7.1.107
BLAST-PRODOM
|
DIGLYCERIDE KINASE DGK DAG 90 KD
|
TRANSFERASE CALCIUMBINDING
|
PHORBOLESTER BINDING MULTIGENE
|
FAMILY PD119174: D352-H430
|
Diacylglycerol kinase catalytic domain
BLIMPS-PFAM
|
PF00781: H331-Q336 P431-Y462 R483-L497
|
P509-Y532 K539-V559 N577-Y613 L655-G668
|
L747-Q758
|
Diacylglycerol kinase catalytic domain
HMMER-PFAM
|
DAGKc: P431-W555
|
Diacylglycerol kinase accessory domain
HMMER-PFAM
|
DAGKa: I575-P755
|
Phorbol esters/diacylglycerol binding
HMMER-PFAM
|
domain d DAG_PE-gind: H238-C287, H303-C351
|
EF hand efhand: K146-M174, I191-T219
HMMER-PFAM
|
Phorbol esters/diacylglcerol binding domain
BLIMPS-BLOCKS
|
BL00479: Q264-C279, L514-L526, H238-G260
|
Phorbol esters/diacylglycerol binding
PROFILESCAN
|
domain dag_pe_binding_domain.prf: Y250-G378
|
Dag_Pe_Binding_Domain: H238-C287
MOTIFS
|
Ef_Hand: D155-L167, D200-W212
MOTIFS
|
8
70467491CD1
749
S141 S2 S24
N386 N399
PROTEIN KINASE DOMAIN DM00004|P27448|
BLAST-DOMO
|
S346 S374 S417
N400 N479
58-297: L62-L303
|
S424 S444 S456
N533 N637
KINASE SERINE/THREONINEPROTEIN PROTEIN
BLAST-PRODOM
|
S457 S461 S49
TRANSFERASE ATPBINDING SERINE/THREONINE
|
S494 S495 S516
PUTATIVE KIN1 EMK PAR1 PD004300: G633-L749
|
S634 S653 S659
KINASE SERINE/THREONINEPROTEIN
BLAST-PRODOM
|
S664 S730 T118
SERINE/THREONINE PUTATIVE TRANSFERASE
|
T283 T302 T33
ATPBINDING PROTEIN EMK P78 CDC25C
|
T36 T508 T512
PD008571: S413-E632
|
T519 T535 T614
KINASE SERINE/THREONINEPROTEIN PUTATIVE
BLAST-PRODOM
|
T618 T623 T82
SERINE/THREONINE TRANSFERASE ATPBINDING
|
T9 Y113
PROTEIN PAR1 KP78 EMK PD005838: I312-R412
|
SERINE/THREONINE KINASE PD119193: S551-
BLAST-PRODOM
|
P622
|
Tyrosine kinase catalytic domain PR00109:
BLIMPS-PRINTS
|
Y173-L191, V239-Q261
|
Protein kinases signatures and profile
PROFILESCAN
|
protein_kinase_tyr.prf: K122-G212
|
Eukaryotic protein kinase domain pkinase:
HMMER-PFAM
|
Y60-E85
|
Eukaryotic protein kinase domain pkinase:
HMMER-PFAM
|
F137-I312
|
Protein_Kinase_St: I179-L191
MOTIFS
|
9
7478559CD1
386
S237 S259 S355
N188
do CHOLINE; KINASE; YDR147W; B0285.10;
BLAST-DOMO
|
S38 S380 T20
DM01931|P35790|128-455: D258-K376, F131-
|
T322 T85 T93
P300
|
Y271
do CHOLINE; KINASE; YDR147W; B0285.10;
BLAST-DOMO
|
DM01931|P46560|1-305: E125-A289
|
KINASE CHOLINE TRANSFERASE PROTEIN
BLAST-PRODOM
|
MULTIGENE FAMILY PUTATIVE LIKE
|
CHROMOSOME III PD003547: V222-L382,
|
V109-E240 KINASE TRANSFERASE CHOLINE
BLIMPS-PRODOM
|
PD02952: V243-I256, H263-N292
|
Choline/ethanolamine kinase Choline_kinase:
HMMER-PFAM
|
T85-T356
|
10
1698381CD1
342
S180 S205 S238
N23
Eukaryotic protein kinase domain pkinase: Y4-
HMMER_PFAM
|
S284 S288 S38
F286,
|
T247 Y15 Y211
Protein kinases signatures and profile
PROFILESCAN
|
protein_kinase_tyrosine: E90-G154
|
PROTEIN KINASE DOMAIN DM00004|Q00532|7-278:
BLAST_DOMO
|
K6-C277
|
PROTEIN KINASE DOMAIN DM00004|Q00526|6-286:
BLAST_DOMO
|
K6-F286
|
PROTEIN KINASE DOMAIN DM00004|P23437|6-286:
BLAST_DOMO
|
K6-G218
|
PROTEIN KINASE DOMAIN DM00004|P51958|6-277:
BLAST_DOMO
|
K6-G218
|
KINASE TRANSFERASE PROTEIN SERINE/
BLAST_PRODOM
|
THREONINE PROTEIN ATP-BINDING II
|
PHOSPHORYLATION CASEIN ALPHA
|
CHAIN PD002608: V161-F286 Tyrosine
BLIMPS_PRINTS
|
kinase catalytic domain signature PR00109:
|
F116-I134
|
Serine/Threonine protein kinases active-site
MOTIFS
|
signature C122-I134
|
11
7474637CD1
1164
S114 S119 S152
N124 N314
Phorbol esters/diacylglycerol binding
PROFILESCAN
|
S258 S39 S399
N651 N1059
domain: F188-A259
|
S41 S432 S450
N1122
signal_cleavage: M1-A32
SPSCAN
|
S511 S56 S586
Phorbol esters/diacylglycerol binding domain
HMMER_PFAM
|
S587 S591 S608
(C1 domain): H176-C225, H248-C298
|
S623 S654 S66
PH domain: S66-T158
HMMER_PFAM
|
S664 S695 S766
DAG kinase catalytic domain: P332-W457
HMMER_PFAM
|
S820 S873 S958
DAG kinase accessory domain: V770-A927
HMMER-PFAM
|
S967 S1075 T316
PHORBOL-ESTER AND DAG BINDING DOMAIN
BLAST_DOMO
|
T419 T486 T514
DM01331|P49621|326-792: P332-H505, V770-
|
T518 T659 T678
E865, F869-L946, C279-L313, G198-C225
|
T863 T908 T955
PHORBOL-ESTER AND DAG BINDING DOMAIN
BLAST_DOMO
|
T1046 T1118
DM01331|Q09103|683-1148: V330-I459, T752-R948,
|
C279-P310, A2-I61
|
PHORBOL-ESTER AND DAG BINDING DOMAIN
BLAST-DOMO
|
DM01331|P23743|308-734:
|
P332-L500, V770-F869, P872-L946
|
PHORBOL-ESTER AND DAG BINDING DOMAIN
BLAST_DOMO
|
DM01331|I59282|352-782:
|
C279-H505, V770-L946
|
KINASE DIACYLGLYCEROL ETA
BLAST_PRODOM
|
DIGLYCERIDE DAG TRANSFERASE
|
PHORBOLESTER BINDING REPEAT MULTIGENE
|
PD040467: S458-C769 DIACYLGLYCEROL
BLAST_PRODOM
|
PHORBOLESTER BINDING KINASE ETA
|
DIGLYCERIDE DAG TRANSFERASE REPEAT
|
MULTIGENE PD038733: A927-V1130 KINASE
BLAST_PRODOM
|
DIACYLGLYCEROL PHORBOLESTER BINDING
|
TRANSFERASE DIGLYCERIDE DAG MULTIGENE
|
FAMILY DGK PD002939: V770-E926 KINASE
BLAST_PRODOM
|
DIACYLGLYCEROL PHORBOLESTER BINDING
|
PROTEIN TRANSFERASE DIGLYCERIDE DAG
|
MULTIGENE FAMILY PD002780: V330-W457
BLIMPS_BLOCKS
|
Phorbol esters/diacylglycerol binding
|
domain proteins BL00479: H176-G198, H202-
|
C217, L415-L427 Diacylglycerol kinase
BLIMPS_PFAM
|
catalytic domain (presumed) PF00781:
|
K278-K283, P332-F363, R384-L398, C410-Y433,
|
Q441-T461, N772-Y808, L848-G861, V919-Q930
|
Diacylglycerol/phorbol-ester binding
BLIMPS_PRINTS
|
signature PR00008: H202-A213, H214-K226
|
KINASE PROTEIN DOMAIN PD00584:
BLIMPS_PRODOM
|
K74-K84, L386-G395, L466-L473
|
Phorbol esters/diacylglycerol binding
MOTIFS
|
domain: H176-C225
|
12
7170260CD1
268
S161 S188 S255
Eukaryotic protein kinase domain pkinase:
HMMER_PFAM
|
S29 T15 Y124 Y21
Y10-L265
|
Protein kinases signatures and profile
PROFILESCAN
|
protein_kinase_tyrosine: G82-H162
|
PROTEIN KINASE DOMAIN DM00004|P27448|
BLAST_DOMO
|
58-297: K14-I256
|
PROTEIN KINASE DOMAIN DM00004|I48609|
BLAST_DOMO
|
55-294: K14-S255
|
PROTEIN KINASE DOMAIN DM00004|Q05512|
BLAST_DOMO
|
55-294: K14-S255
|
PROTEIN KINASE DOMAIN DM00004|JC1446|
BLAST_DOMO
|
20-261: Q11-I256
|
Tyrosine kinase catalytic domain signature
BLIMPS_PRINTS
|
PR00109: Y124-L142
|
Protein kinases ATP-binding region
MOTIFS
|
signature: I16-K39
|
13
1797506CD1
965
S234 S326 S527
N227
Eukaryotic protein kinase domain
HMMER_PFAM
|
S530 S607 S636
pkinase: F559-F820,
|
S741 S841 S879
Protein kinases signatures and profile
PROFILESCAN
|
S884 S92 T111
protein_kinase_tyr.prf: E652-G709
|
T143 T155 T174
PROTEIN KINASE DOMAIN DM00004|Q09499|
BLAST_DOMO
|
T202 T215 T229
536-784: P561-A811
|
T29 T372 T619
PROTEIN KINASE DOMAIN DM00004|P32361|
BLAST_DOMO
|
T685 T82 T922
676-970: V564-Q732, T740-A811
|
T932 T963 Y173
KINASE; THREONINE; ATP; SERINE;
BLAST_DOMO
|
DM06305|Q09499|786-924: V814-Y949
|
KINASE; THREONINE; ATP; SERINE;
BLAST_DOMO
|
DM06305|P32361|972-1114: Q813-L946
|
PROTEIN KINASE/ENDORIBONULCEASE
BLAST_PRODOM
|
PUTATIVE SERINE/THREONINE PROTEIN
|
KINASE C41C4.4 CHROMOSOME II PRECURSOR
|
TRANSFERASE PD152704: T197-L422, L88-E190
|
SERINE/THREONINE PROTEIN KINASE
BLAST_PRODOM
|
PRECURSOR TRANSMEMBRANE SIGNAL
|
TRANSFERASE ATP-BINDING PROTEIN
|
IRE1 GLYCOPROTEIN PD032590:
|
W821-Y949 Tyrosine kinase catalytic
BLIMPS_PRINTS
|
domain signature PR00109:
|
H666-I684, G721-L731, V743-D765
|
Serine/Threonine protein kinases active-
MOTIFS
|
site signature: I672-I684
|
Phosphorylase kinase family signature
BLIMPS_PRINTS
|
PR01049:
|
P812-R823
|
14
1851973CD1
329
S264 S270 S293
N73
Eukaryotic protein kinase domain pkinase:
HMMER_PFAM
|
S31 S311 S320 S7
F35-V180
|
Protein kinases signatures and profile
PROFILESCAN
|
protein_kinase_tyrosine: M132-R184
|
PROTEIN KINASE DOMAIN DM00004|P43565|
BLAST_DOMO
|
796-1240: I37-R184
|
PROTEIN KINASE DOMAIN DM00004|A56155|
BLAST_DOMO
|
714-1002: V38-L177
|
PROTEIN KINASE DOMAIN DM00004|P38679|
BLAST_DOMO
|
238-527: V38-S178
|
PROTEIN KINASE DOMAIN DM00004|P53894|
BLAST_DOMO
|
353-658: V38-S178
|
Tyrosine kinase catalytic domain signature
BLIMPS_PRINTS
|
PR00109:
|
M110-H123, Y146-I164
|
Serine/Threonine protein kinases active-
MOTIFS
|
site signature: I152-I164
|
15
7474604CD1
945
S110 S157 S193
N140 N155
Eukaryotic protein kinase domain pkinase:
HMMER_PFAM
|
S246 S289 S290
N382 N631
L661-M920
|
S31 S329 S356
N756 N888
Protein kinases signatures and profile
PROFILESCAN
|
S359 S405 S411
protein_kinase_tyrosine: K757-L801
|
S611 S623 S636
PROTEIN KINASE DOMAIN DM00004|P27966|
BLAST_DOMO
|
S645 S67 S934
85-332: I663-F916
|
T170 T2 T217 T322
PROTEIN KINASE DOMAIN DM00004|P15056|
BLAST_DOMO
|
T42 T47 T496 T712
458-705: I663-F916,
|
T839
PROTEIN KINASE DOMAIN DM00004|P10398|
BLAST_DOMO
|
312-559: I667-F916
|
PROTEIN KINASE DOMAIN DM00004|B26126|
BLAST_DOMO
|
305-552: I667-F916
|
KINASE SUPPRESSOR OF RAS1 KSR1 HB PROTEIN
BLAST_PRODOM
|
PD103125: V390-P557, K501-L661 L222-P323
|
KINASE SUPPRESSOR OF RAS KSR
BLAST_PRODOM
|
PHORBOLESTER BINDING RAS1 KSR1
|
HB PD017776: L21-E344 S485-T519
|
Tyrosine kinase catalytic domain signature
BLIMPS_PRINTS
|
PR00109:
|
Y771-Y789, W867-I877, M894-F916
|
Serine/Threonine protein kinases active-
MOTIFS
|
site signature: I777-Y789
|
16
7474721CD1
1009
S184 S203 S244
N311 N486
Eukaryotic protein kinase domain pkinase:
HMMER_PFAM
|
S293 S325 S44
V645-H897
|
S473 S62 S625
Ephrin receptor ligand binding domain
HMMER_PFAM
|
S682 S686 S805
EPH_1bd: E35-C211
|
S825 S851 S980
Protein kinases signatures and profile
PROFILESCAN
|
T108 T121 T133
protein_kinase_tyrosine: Q746-A799
|
T162 T214 T224
RECEPTOR TYROSINE KINASE CLASS V
BLAST_DOMO
|
T232 T32 T423
DM00501|S51741|33-382: V36-G394
|
T488 T551 T616
RECEPTOR TYROSINE KINASE CLASS V
BLAST_DOMO
|
T619 Y504 Y766
DM00501|P54759|33-382: V36-G394
|
Y801
RECEPTOR TYROSINE KINASE CLASS V
BLAST_DOMO
|
DM00501|I48611|34-382: I37-G394
|
RECEPTOR TYROSINE KINASE CLASS V
BLAST_DOMO
|
DM00501|I48612|34-382: I37-G394
|
KINASE RECEPTOR PRECURSOR TYROSINE
BLAST_PRODOM
|
PROTEIN EPHRIN TRANSFERASE ATP-BINDING
|
PHOSPHORYLATION TRANSMEMBRANE
|
GLYCOPROTEIN PD001495: E35-C211
|
KINASE RECEPTOR PRECURSOR TYROSINE
BLAST_PRODOM
|
PROTEIN EPHRIN TRANSFERASE ATP-BINDING
|
PHOSPHORYLATION TRANSMEMBRANE
|
GLYCOPROTEIN PD149648: A213-A284
|
EPH FAMILY PROTEIN PD002683: P339-T451
BLAST_PRODOM
|
KINASE RECEPTOR PRECURSOR TYROSINE
BLAST_PRODOM
|
PROTEIN EPHRIN TRANSFERASE ATP-BINDING
|
PHOSPHORYLATION TRANSMEMBRANE SIGNAL
|
PD001551: C285-R336
|
Receptor tyrosine kinase BL00239:
BLIMPS_BLOCKS
|
E694-Q741, L747-R769, A772-S797, E798-Y847,
|
G852-I896
|
16
74777421CD1
1009
Receptor tyrosine kinase BL00790:
BLIMPS_BLOCKS
|
L751-A772, S805-W837, E838-G862, F863-K911,
|
A955-R998, E35-N56, D65-P116, K172-A225,
|
P252-Q276, C282-P329, R351-L377, C390-S433
|
signal peptide: M1-A33
HMMER
|
transmembrane domain: V568-W589
HMMER
|
signal_cleavage: M1-A33
SPSCAN
|
17
7478815CD1
917
S243 S364 S379
N122 N208
Hexokinase hexokinase: E16-V463 Q464-L910
HMMER_PFAM
|
S449 S503 S547
N655
Hexokinases signature hexokinases:
PROFILESCAN
|
S551 S772 S787
I577-R642, V130-R195
|
S791 S810 S826
HEXOKINASES DM00597|P27881|465-915:
BLAST_DOMO
|
S896 T114 T161
Q466-A913, D17-Q464
|
T172 T275 T35
HEXOKINASES DM00597|P52789|465-915:
BLAST_DOMO
|
T508 T523 T569
Q466-A913, D17-Q464
|
T625 T722 T726
HEXOKINASES DM00597|S48809|465-915:
BLAST_DOMO
|
T811 T877 Y27
Q466-A913, D17-Q464
|
Y497
HEXOKINASES DM00597|P27595|465-915:
BLAST_DOMO
|
Q466-Q911, D17-Q466
|
HEXOKINASE TRANSFERASE KINASE
BLAST_PRODOM
|
GLYCOLYSIS ATP-BINDING TYPE ALLOSTERIC
|
ENZYME HK DUPLICATON PD001109:
|
Q466-D886, E699-A907, E16-D439, D251-R462
|
Hexokinases proteins. BL00378:
BLIMPS_BLOCKS
|
V22-K49, V509-I545, V207-G250, M255-D266,
|
Y724-G769, S892-V906
|
Hexokinase family signature PR00475:
BLIMPS_PRINTS
|
L529-I545, L597-F622, I650-Y666, V226-E240,
|
Q291-M313, V818-I840, M890-V906
|
Hexokinases L597-F622
MOTIFS
|
18
7477141CD1
2380
S143 S166 S241
N37 N1675
Eukaryotic protein kinase domain pkinase:
HMMER_PFAM
|
S277 S278 S285
N1847 N1874
Y714-F967, Y2079-L2331
|
S299 S343 S480
N2099 N2299
PROTEIN KINASE DOMAIN DM00004|S07571|5152-
BLAST_DOMO
|
S537 S553 S568
5396: D715-D952, E2083-L2322
|
S602 S711 S736
PROTEIN KINASE DOMAIN DM00004|P53355|
BLAST_DOMO
|
S996 S1033 S1035
15-257: Q718-D952, E2083-L2322
|
S1037 S1062 S1127
PROTEIN KINASE DOMAIN DM00004|JN0583|
BLAST_DOMO
|
S1523 S1571 S1245
727-969: I716-D952, L2082-L2312
|
S1435 S1468 S1506
PROTEIN KINASE DOMAIN DM00004|P07313|
BLAST_DOMO
|
S1586 S1609 S1679
298-541: Q718-R953, G2088-S2321
|
S1691 S1747 S1117
Tyrosine kinase catalytic domain signature
BLIMPS_PRINTS
|
S1527 S1557 S1578
PR00109:
|
S1594 S1613 S1736
Y822-V840
|
S1747 S1876 S1947
signal peptide: M52-A70
HMMER
|
S2137 S2171 S2253
Eukaryotic protein kinase domain pkinase:
HMMER_PFAM
|
S2321 S2058 S2062
Y2079-L2331
|
S2165 S2269 S680
Protein kinases ATP-binding region
MOTIFS
|
S754 S986 T108
signature: I720-K743
|
T153 T158 T170
Serine/Threonine protein kinases active-
MOTIFS
|
T350 T408 T476
site signature:
|
T498 T578 T614
V828-V840, V2194-L2206
|
T692 T803 T862
|
T957 T1068 T1082
|
T1311 T1493 T1802
|
T1981 T2080 T1301
|
T1856 T1901 T2069
|
T2101 T2144 T2348
|
T1608 T2343
|
Y632 Y772 Y822
|
19
2190612CD1
505
S100 S117 S160
N147
Eukaryotic protein kinase domain: Y128-V409
HMMER_PFAM
|
S330 S419 S425
Protein kinases signatures and profile
PROFILESCAN
|
S437 S458 S69
Protein_kinase_tyrosine: Q251-N303
|
S74 S82 T108
PROTEIN KINASE DOMAIN DM00004|A57156|
BLAST_DOMO
|
T26 T430 T58
130-399: L130-V400
|
PROTEIN KINASE DOMAIN DM00004|P50526|
BLAST_DOMO
|
136-399: E133-I398
|
PROTEIN KINASE DOMAIN DM00004|P38990|
BLAST_DOMO
|
135-438: E133-E320, N303-V400
|
PROTEIN KINASE DOMAIN DM00004|P43637|
BLAST_DOMO
|
52-334: I134-I378
|
KINASE PROTEIN BETA CA2+/CALMODULIN
BLAST_PRODOM
|
DEPENDENT CA+/CALMODULIN DEPENDENT
|
CAM KINASE IV ISOFORM PHOSPHORYLASE B
|
PD031900: M1-Q127 KINASE PROTEIN BETA CA2+/
BLAST_PRODOM
|
CALMODULIN DEPENDENT CA+/CALMODULIN
|
DEPENDENT CAM KINASE IV ISOFORM
|
PHOSPHORYLASE B PD019141: V409-F463
BLAST_PRODOM
|
KINASE PROTEIN CA2+/CALMODULIN
|
DEPENDENT IV ISOFORM PHOSPHORYLASE B
|
GLYCOGEN SYNTHASE A PD027014: E464-S505
BLIMPS_PRINTS
|
Tyrosine kinase catalytic domain signature
|
PR00109: Y265-L283, G312-I322 ATP/GTP-
MOTIFS
|
binding site motif A (P-loop) G485-S492
|
Protein kinases ATP-binding region signature:
MOTIFS
|
I134-K157
|
Serine/Threonine protein kinases active-site
MOTIFS
|
signature: I271-L283
|
20
7477549CD1
1572
S161 S280 S307
Phorbol esters diacylglycerol binding domain:
PROFILESCAN
|
S363 S407 S430
C900-S963
|
S471 S545 S625
Eukaryotic protein kinase domain pkinase:
HMMER_PFAM
|
S629 S646 S675
F71-F337
|
S711 S730 S737
PROTEIN KINASE DOMAIN DM00004|Q09013|
BLAST_DOMO
|
S807 S811 S815
83-336: I73-R325
|
S841 S1058
PROTEIN KINASE DOMAIN DM00004|S42867|
BLAST_DOMO
|
S1294 S1162
75-498: I73-H252, V232-Y398
|
S1500 S1405
PROTEIN KINASE DOMAIN DM00004|I38133|
BLAST_DOMO
|
S1414 S1556
90-369: E72-L220, V232-G324
|
T455 T590 T673
PROTEIN KINASE DOMAIN DM00004|P53894|
BLAST_DOMO
|
T888 T956 T1088
353-658: L74-G215, V232-R325
|
T1378
PHORBOL ESTER BINDING KINASE DYSTROPHY
BLAST_PRODOM
|
KINASE RELATED CDC42 BINDING SIMILAR
|
SERINE/THREONINE PROTEIN GENGHIS KHAN
|
PD150840: W1355-G1462
|
PHORBOL ESTER BINDING KINASE DYSTROPHY
BLAST_PRODOM
|
KINASE RELATED CDC42 BINDING SIMILAR
|
SERINE/THREONINE PROTEIN GENGHIS
|
KHAN PD151400: T1039-R1140
|
KINASE RHO ASSOCIATED COILED COIL
BLAST_PRODOM
|
PROTEIN FORMING PHORBOL ESTER
|
BINDING DYSTROPHY KINASE RELATED
|
CDC42 BINDING PD006715: T944-V1038, H433-
|
L456 PHORBOL ESTER BINDING
BLAST_PRODOM
|
DYSTROPHY KINASE RELATED CDC42
|
BINDING KINASE GENGHIS KHAN
|
MYTONIC MYOTONIC PD011252: S694-S815
BLIMPS_PRINTS
|
Tyrosine kinase catalytic domain signature
|
PR00109: C257-E279, M148-S161, S185-L203
HMMER_PFAM
|
Phorbol esters/diacylglycerol binding dom
|
DAG_PE-bind: H887-C935 Phorbol
MOTIFS
|
esters/diacylglycerol binding domain: H887-
|
C935, Protein kinases ATP-binding region
MOTIFS
|
signature I77-K100
|
Serine/Threonine protein kinases active-site
MOTIFS
|
signature: Y191-L203
|
CNH domain: L1100-K1380
HMMER_PFAM
|
Protein kinase C terminal domain: P351-D366
HMMER_PFAM
|
PH domain PH: T956-R1074
HMMER_PFAM
|
signal_cleavage: M1-S37
SPSCAN
|
|
[0385]
6
TABLE 4
|
|
|
Polynu-
Incyte
|
cleotide
Polynu-
|
SEQ
cleotide
Sequence
Selected
5′
3′
|
ID NO:
ID
Length
Fragment(s)
Sequence Fragments
Position
Position
|
|
|
21
2564295CB1
4298
701-1736,
FL2564295_g7160581_000014_g
3200
3482
|
3536-3629, 1-356,
387060_1_15-16
|
2349-2589
FL2564295_g7160581_000014_g
3253
3593
|
2589, 3956-4298,
387060_1_16-17
|
2841-3428
FL2564295_g7160581_000014_g
1938
2334
|
387060_1_7-8
|
55078393J1
37
717
|
FL2564295_g7160581_000014_g
2167
2530
|
387060_1_8-9
|
55078386J1
1
709
|
FL2564295_g7160581_000014_g
3594
3883
|
387060_1_18-19
|
2564295H1 (ADRETUT01)
4048
4298
|
g186554_CD
442
4250
|
FL2564295_g7160581_000014_g
2335
2572
|
387060_1_9-10
|
3599581H1 (DRGTNOT01)
3453
3756
|
FL2564295_g7160581_000014_g
441
1297
|
387060_1_1-2
|
FL2564295_g7160581_000014_g
2531
2793
|
387060_1_10-11
|
FL2564295_g7160581_000014_g
3884
4250
|
387060_1_20-21
|
FL2564295_g7160581_000014_g
2573
2930
|
387060_1_11-12
|
FL2564295_g7160581_000014_g
994
1440
|
387060_1_2-3
|
FL2564295_g7160581_000014_g
2794
3093
|
387060_1_12-13
|
FL2564295_g7160581_000014_g
1298
1585
|
387060_1_3-4
|
FL2564295_g7160581_000014_g
1441
1800
|
387060_1_4-5
|
FL2564295_g7160581_000014_g
3094
3252
|
387060_1_14-15
|
FL2564295_g7160581_000014_g
3754
4018
|
387060_1_19-20
|
22
2837050CB1
2863
1-430, 2346-2863
6854541H1 (BRAIFEN08)
782
1467
|
g1164223
1
496
|
71191190V1
1439
2085
|
7728560H1 (UTRCDIE01)
79
681
|
71972220V1
2227
2863
|
71972389V1
2180
2857
|
6881340H1 (BRAHTDR03)
1555
2209
|
7401101H1 (SINIDME01)
598
1293
|
23
7474590CB1
1494
1-1494
GBI.g8103343_000001.edit
1
1494
|
FL7474590_g7630344_000002_g
1
1116
|
6779549_1_1
|
24
7474594CB1
2341
682-792, 1-262,
55053685J1
1512
2341
|
1522-2341,
6949237H1 (BRAITDR02)
858
1544
|
1254-1373,
8016740J1 (BMARTXE01)
340
959
|
339-361
GNN.g8247875_000031_002
1
426
|
7278940H1 (BMARTXE01)
1281
1779
|
GNN.g6689704_000006_002
1180
1590
|
25
7477585CB1
2552
1-465, 1075-1150
71975408V1
1988
2534
|
55030002H1
612
1305
|
55030074J1
1241
1900
|
1406660F6 (LATRTUT02)
1
686
|
6329987H1 (BRANDIN01)
1384
1930
|
71987367V1
2019
2552
|
6704049H1 (DRGCNOT02)
1849
2517
|
55030089H1
679
1390
|
26
7477587CB1
2176
1276-1873, 1-286
g8671962_edit
1
1980
|
5823464F7 (PROSTUS23)
1662
2164
|
27
7594537CB1
4277
2383-2614,
7594537H1 (LIVRNOC07)
130
766
|
611-1170, 1-518,
7328693H1 (UTRCDIE01)
1
351
|
2763-2834,
|
1714-1859,
|
3119-4277
|
28
70467491CB1
2616
1717-2616, 1-425
2395018F6 (THP1AZT01)
2015
2520
|
FL70467491_g7708222_g7595800
1
2250
|
29
7478559CB1
1253
1215-1253, 1-53
g3770955
1
321
|
7661715J1 (OVARNOE02)
655
1253
|
g5769093
314
804
|
30
1698381CB1
1790
1-146, 892-1313,
1698381F6 (BLADTUT05)
523
1019
|
1659-1790,
55068293J1
1
786
|
186-237
71870273V1
1186
1790
|
1698381T6 (BLADTUT05)
774
1363
|
31
7474637CB1
4132
3420-3535, 1-377,
4129796F6 (CARGDIT01)
3639
4132
|
4035-4132,
55076747H1
2871
3468
|
1301-2486
55075847H1
1379
1783
|
55075848H1
1623
1987
|
55077477H1
1045
1472
|
GBI.g8247425_000008_000011.
504
1126
|
edit
|
55076756J1
3148
3745
|
GNN.g6648263_002.edit5p
2805
3026
|
6286993H2 (EPIPUNA01)
1041
1168
|
7721743H2 (THYRDIE01)
35
503
|
6766106H1 (BRAUNOR01)
1893
2356
|
55061367H1
2149
2841
|
6766106J1 (BRAUNOR01)
368
909
|
1752420H1 (LIVRTUT01)
1
157
|
32
7170260CB1
1137
877-1137
55046242J2
694
1137
|
3152909F6 (TLYMTXT02)
1
145
|
7659273J1 (OVARNOE02)
416
971
|
55046250H1
692
1108
|
3343082F7 (SPLNNOT09)
144
555
|
33
1797506CB1
3365
1-1032, 3340-3365,
1513994T6 (PANCTUT01)
2793
3365
|
1532-1735
FL1797506_g7458755_000012_g
1
2898
|
3766209
|
34
1851973CB1
2049
1-125, 1836-2049,
7667239H1 (URETTUC01)
1289
1800
|
806-915
55075655J1
547
1222
|
55077257J1
378
1221
|
55067487H1
1
532
|
1454205F1 (PENITUT01)
1179
1617
|
1454205T6 (PENITUT01)
1436
2049
|
35
7474604CB1
2962
1-1526, 1757-2114,
55075789J1
1760
2440
|
2481-2962
8104459J1 (MIXDDIE02)
1
746
|
55056946J2
1734
2433
|
6884701F6 (BRAHTDR03)
2255
2962
|
55067076J1
1214
1763
|
55075383J1
651
1335
|
36
7474721CB1
3112
2395-3112,
6802884F6 (COLENOR03)
2055
2826
|
1353-1459,
71976507V1
1564
2315
|
2014-2280
55057353J1
314
980
|
GBI:g6996165_000001.raw
1910
3112
|
GBI:g6996165.raw
140
1735
|
55062828H1
1
712
|
71980671V1
1418
2051
|
37
7478815CB1
3650
862-1366,
55076655H1
1
658
|
1826-1999, 1-787,
6934749H1 (SINTTMR02)
1710
2388
|
3623-3650
238539R6 (SINTNOT02)
3159
3647
|
614864T6 (COLNTUT02)
3004
3614
|
70845065V1
1862
2441
|
70842842V1
2420
3073
|
72026676V1
966
1742
|
55075416J1)
358
926
|
g657793
919
1011
|
70863076V1
2471
3154
|
2605255F6 (LUNGTUT07)
3378
3650
|
38
7477141CB1
7789
1-699, 6785-6880,
7355120H1 (HEARNON03)
7201
7767
|
7767-7789,
GBI:g8014664
1
260
|
7184-7214,
g7242948_CD
63
6763
|
1237-6218
3012344H1 (MUSCNOT07)
7488
7772
|
71179707V1
6783
7436
|
7642405J1 (SEMVTDE01)
6728
7294
|
39
2190612CB1
1937
727-1188, 1-643,
70775995V1
1
498
|
1731-1761
55024095J1 (PKINDNV04) 914
1558
|
6854667H1 (BRAIFEN08)
1441
1937
|
7188730H2 (BRATDIC01)
1353
1820
|
70780513V1
500
981
|
70780809V1
384
919
|
40
7477549CB1
5373
4983-5373, 1-1612,
55121415H1
4574
5373
|
2046-2470,
55121423J1
4413
5274
|
4414-4442,
7992167H1 (UTRSDIC01)
3402
4043
|
2596-2647,
71999521V1
1448
1590
|
2814-3056
6822270H1 (SINTNOR01)
857
1407
|
GNN.g4755212_010.edit
1
4567
|
6594083H1 (LUNGFER02)
2835
3147
|
7164493R8 (PLACNOR01)
3204
3711
|
71583419V1
713
1385
|
7402224H1 (SINIDME01)
289
795
|
7694930H1 (LNODTUE01)
1082
1448
|
7978995H1 (LSUBDMC01)
1478
2186
|
|
[0386]
7
TABLE 5
|
|
|
Polynucleotide
Incyte
|
SEQ ID NO:
Project ID
Representative Library
|
|
21
2564295CB1
ADRETUT01
|
22
2837050CB1
THYRNOT03
|
24
7474594CB1
BMARTXE01
|
25
7477585CB1
BRALNON02
|
26
7477587CB1
PROSTUS23
|
27
7594537CB1
LIVRNOC07
|
28
70467491CB1
PROSNOT18
|
29
7478559CB1
OVARNOE02
|
30
1698381CB1
BLADTUT05
|
31
7474637CB1
EPIPUNA01
|
32
7170260CB1
OVARNOE02
|
33
1797506CB1
COLENOR03
|
34
1851973CB1
PENITUT01
|
35
7474604CB1
BRAHTDR03
|
36
7474721CB1
COLENOR03
|
37
7478815CB1
SINITUT03
|
38
7477141CB1
SKIRNOR01
|
39
2190612CB1
ADRETUT07
|
40
7477549CB1
SINTNOR01
|
|
[0387]
8
TABLE 6
|
|
|
Library
Vector
Library Description
|
|
ADRETUT01
PSPORT
Library was constructed using RNA isolated from right adrenal tumor tissue removed from
|
a 50-year-old Turkish male during aunilateral adrenalectomy. Pathology indicated a
|
metastatic renal cell carcinoma that formed a circumscribed, spongy, hemorrhagic nodule
|
situated in the region of the medulla. The patient presented with corticoadrenal
|
insufficiency, incisional hernia, and non-alcoholic steato hepatitis. Patient history
|
included renal cell carcinoma. Family history included liver cancer.
|
ADRETUT07
pINCY
Library was constructed using RNA isolated from adrenal tumor tissue removed from a 43-
|
year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated
|
pheochromocytoma.
|
BLADTUT05
pINCY
Library was constructed using RNA isolated from bladder tumor tissue removed from a 66-
|
year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary
|
diversion. Pathology indicated grade 3 transitional cell carcinoma on the anterior wall
|
of the bladder. Patient history included lung neoplasm and tobacco abuse in remission.
|
Family history included malignant breast neoplasm, tuberculosis, cerebrovascular
|
disease, atherosclerotic coronary artery disease, and lung cancer.
|
BMARTXE01
pINCY
This 5′ biased random primed library was constructed using RNA isolated from treated SH-
|
SY5Y cells derived from a metastatic bone marrow neuroblastoma, removed from a 4-year-
|
old Caucasian female (Schering AG) . The medium was MEM/HAM'S F12 with 10% fetal calf
|
serum. After reaching about 80% confluency cells were treated with 6-Hydroxydopamine (6-
|
OHDA) at 100 microM for 8 hours.
|
BRAHTDR03
PCDNA2.1
This random primed library was constructed using RNA isolated from archaecortex,
|
anterior hippocampus tissue removed from a 55-year-old Caucasian female who died from
|
cholangiocarcinoma. Pathology indicated mild meningeal fibrosis predominately over the
|
convexities, scattered axonal spheroids in the white matter of the cingulate cortex and
|
the thalamus, and a few scattered neurofibrillary tangles in the entorhinal cortex and
|
the periaqueductal gray region. Pathology for the associated tumor tissue indicated
|
well-differentiated cholangiocarcinoma of the liver with residual or relapsed tumor.
|
Patient history included cholangiocarcinoma, post-operative Budd-Chiari syndrome,
|
biliary ascites, hydorthorax, dehydration, malnutrition, oliguria and acute renal
|
failure. Previous surgeries included cholecystectomy and resection of 85% of the liver.
|
BRALNON02
pINCY
This thalamus tissue library was constructed from 4.24 million independent clones from a
|
thalamus tissue library. Starting RNA was made from thalamus tissue removed from a 35-
|
year-old Caucasian male who died from cardiac failure. Pathology indicated moderate
|
leptomeningeal fibrosis and multiple microinfarctions of the cerebral neocortex.
|
Microscopically, the cerebral hemisphere revealed moderate fibrosis of the leptomeninges
|
with focal calcifications. There was evidence of shrunken and slightly eosinophilic
|
pyramidal neurons throughout the cerebral hemispheres. Scattered throughout the cerebral
|
cortex, there were multiple small microscopic areas of cavitation with surrounding
|
gliosis. Patient history included dilated cardiomyopathy, congestive heart failure,
|
cardiomegaly and an enlarged spleen and liver The library was normalized in two rounds
|
using conditions adapted from Soares et al., PNAS (1994) 91: 9228-9232 and Bonaldo et
|
al., Genome Research (1996) 6: 791, except that a significantly longer (48 hours/round)
|
reannealing hybridization was used
|
COLENOR03
PCDNA2.1
Library was constructed using RNA isolated from colon epithelium tissue removed from a
|
13-year-old Caucasian female who died from a motor vehicle accident.
|
EPIPUNA01
PSPORT
Library was constructed using RNA isolated from untreated prostatic epithelial cell
|
tissue removed from a 17-year-old Hispanic male. Serologies were negative
|
LIVRNOC07
pINCY
Library was constructed using pooled cDNA from two different donors. cDNA was generated
|
using RNA isolated from liver tissue removed from a 20-week-old Caucasian male fetus who
|
died from Patau′s Syndrome (donor A) and 16-week-old Caucasian female fetus who died
|
from anencephaly (donor B). Family history included mitral valve prolapse in the mother
|
of donor B.
|
OVARNOE02
PCDNA2.1
This 5′ biased random primed library was constructed using RNA isolated from right ovary
|
tissue removed from a 47-year-old Caucasian female during total abdominal hysterectomy,
|
bilateral salpingo-oophorectomy, incisional hernia repair, and panniculectomy. The
|
patient presented with premenopausal menorrhagia. Patient history included
|
osteoarthritis, tubal pregnancy, and polio osteopathy of the left leg. Previous
|
surgeries included gastroenterostomy, plastic repair of the palate, adenotonsillectomy,
|
dilation and curettage, cholecystectomy, and bladder reconstruction. Patient medications
|
included vitamins, iron, and zinc. Family history included benign hypertension and type
|
II diabetes in the father; and type II diabetes in the sibling(s).
|
PENITUT01
pINCY
Library was constructed using RNA isolated from tumor tissue removed from the penis of a
|
64-year-old Caucasian male during penile amputation. Pathology indicated a fungating
|
invasive grade 4 squamous cell carcinoma involving the inner wall of the foreskin and
|
extending onto the glans penis. Patient history included benign neoplasm of the large
|
bowel, atherosclerotic coronary artery disease, angina pectoris, gout, and obesity.
|
Family history included malignant pharyngeal neoplasm, chronic lymphocytic leukemia, and
|
chronic liver disease.
|
PROSNOT18
pINCY
Library was constructed using RNA isolated from diseased prostate tissue removed from a
|
58-year-old Caucasian male during a radical cystectomy, radical prostatectomy, and
|
gastrostomy. Pathology indicated adenofibromatous hyperplasia; this tissue was
|
associated with a grade 3 transitional cell carcinoma. Patient history included angina
|
and emphysema. Family history included acute myocardial infarction, atherosclerotic
|
coronary artery disease, and type II diabetes.
|
PROSTUS23
pINCY
This subtracted prostate tumor library was constructed using 10 million clones from a
|
pooled prostate tumor library that was subjected to 2 rounds of subtractive
|
hybridization with 10 million clones from a pooled prostate tissue library. The starting
|
library for subtraction was constructed by pooling equal numbers of clones from 4
|
prostate tumor libraries using mRNA isolated from prostate tumor removed from Caucasian
|
males at ages 58 (A), 61 (B), 66 (C), and 68 (D) during prostatectomy with lymph node
|
excision. Pathology indicated adenocarcinoma in all donors. History included elevated
|
PSA, induration and tobacco abuse in donor A; elevated PSA, induration, prostate
|
hyperplasia, renal failure, osteoarthritis, renal artery stenosis, benign HTN,
|
thrombocytopenia, hyperlipidemia, tobacco/alcohol abuse and hepatitis C (carrier) in
|
donor B; elevated PSA, induration, and tobacco abuse in donor C; and elevated PSA,
|
induration, hypercholesterolemia, and kidney calculus in donor D. The hybridization
|
probe for subtraction was constructed by pooling equal numbers of cDNA clones from 3
|
prostate tissue libraries derived from prostate tissue, prostate epithelial cells, and
|
fibroblasts from prostate stroma from 3 different donors. Subtractive hybridization
|
conditions were based on the methodologies of Swaroop et al., NAR 19 (1991): 1954 and
|
Bonaldo, et al. Genome Research 6 (1996): 791.
|
SKIRNOR01
PCDNA2.1
Random-primed library was constructed using RNA isolated from skin tissue removed from
|
the breast of a 17-year-old Caucasian female during bilateral reduction mammoplasty.
|
Patient history included breast hypertrophy. Family history included benign
|
hypertension.
|
SINITUT03
pINCY
Library was constructed using RNA isolated from ileal tumor tissue obtained from a 49-
|
year-old Caucasian female during destruction of peritoneal tissue, peritoneal
|
adhesiolysis, ileum resection, and permanent colostomy. Pathology indicated grade 4
|
adenocarcinoma. Patient history included benign hypertension. Previous surgeries
|
included total abdominal hysterectomy, bilateral salpingo-oophorectomy, regional lymph
|
node excision, an incidental appendectomy, and dilation and curettage. Family history
|
included benign hypertension, cerebrovascular disease, hyperlipidemia, atherosclerotic
|
coronary artery disease, hyperlipidemia, type II diabetes, and stomach cancer.
|
SINTNOR01
PCDNA2.1
This random primed library was constructed using RNA isolated from small intestine
|
tissue removed from a 31-year-old Caucasian female during Roux-en-Y gastric bypass.
|
Patient history included clinical obesity.
|
THYRNOT03
pINCY
Library was constructed using RNA isolated from thyroid tissue removed from the left
|
thyroid of a 28-year-old Caucasian female during a complete thyroidectomy. Pathology
|
indicated a small nodule of adenomatous hyperplasia present in the left thyroid.
|
Pathology for the associated tumor tissue indicated dominant follicular adenoma, forming
|
a well-encapsulated mass in the left thyroid.
|
|
[0388]
9
TABLE 7
|
|
|
Program
Description
Reference
Parameter Threshold
|
|
ABI
A program that removes vector sequences and masks
Applied Biosystems,
|
FACTURA
ambiguous bases in nucleic acid sequences.
Foster City, CA.
|
ABI/
A Fast Data Finder useful in
Applied Biosystems,
Mismatch < 50%
|
PARACEL
comparing and annotating amino
Foster City, CA;
|
FDF
acid or nucleic acid sequences.
Paracel Inc., Pasadena, CA.
|
ABI
A program that assembles nucleic acid sequences.
Applied Biosystems,
|
AutoAssembler
Foster City, CA.
|
BLAST
A Basic Local Alignment Search Tool useful in
Altschul, S.F. et al. (1990)
ESTs: Probability
|
sequence similarity search for amino acid and nucleic
J. Mol. Biol. 215: 403-410;
value = 1.0E−8
|
acid sequences. BLAST includes five functions:
Altschul, S.F. et al. (1997)
or less;
|
blastp, blastn, blastx, tblastn, and tblastx.
Nucleic Acids Res. 25: 3389-3402.
Full Length sequences:
|
Probability value =
|
1.0E−10 or less
|
FASTA
A Pearson and Lipman algorithm that searches for
Pearson, W. R. and
ESTs: fasta E
|
similarity between a query sequence and a group of
D. J. Lipman (1988) Proc. Natl.
value = 1.06E−6;
|
sequences of the same type. FASTA comprises as
Acad Sci. USA 85: 2444-2448;
Assembled ESTs: fasta
|
least five functions: fasta, tfasta, fastx, tfastx, and
Pearson, W. R. (1990) Methods Enzymol. 183: 63-98;
Identity = 95% or
|
ssearch.
and Smith, T. F. and M. S. Waterman (1981)
greater and
|
Adv. Appl. Math. 2: 482-489.
Match length =
|
200 bases or greater;
|
fastx E value =
|
1.0E−8 or less;
|
Full Length sequences:
|
fastx score =
|
100 or greater
|
BLIMPS
A BLocks IMProved Searcher that matches a
Henikoff, S. and J. G. Henikoff (1991)
Probability value =
|
sequence against those in BLOCKS, PRINTS,
Nucleic Acids Res. 19: 6565-6572; Henikoff,
1.0E−3 or less
|
DOMO, PRODOM, and PFAM databases to search
J. G. and S. Henikoff (1996) Methods
|
for gene families, sequence homology, and structural
Enzymol. 266: 88-105; and Attwood, T. K. et
|
fingerprint regions.
al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.
|
HMMER
An algorithm for searching a query sequence against
Krogh, A. et al. (1994) J. Mol. Biol.
PFAM
|
hidden Markov model (HMM)-based databases of
235: 1501-1531; Sonnhammer, E. L. L. et al.
hits:
|
protein family consensus sequences, such as PFAM.
(1988) Nucleic Acids Res. 26: 320-322;
Probability value =
|
Durbin, R. et al. (1998) Our World View, in
1.0E−3 or less
|
a Nutshell, Cambridge Univ. Press, pp. 1-350.
Signal peptide hits:
|
Score = 0 or greater
|
ProfileScan
An algorithm that searches for structural and
Gribskov, M. et al. (1988) CABIOS 4: 61-66;
Normalized quality
|
sequence motifs in protein sequences that match
Gribskov, M. et al. (1989) Methods
score ≧ GCG
|
sequence patterns defined in Prosite.
Enzymol. 183: 146-159; Bairoch, A. et al.
specified “HIGH”
|
(1997) Nucleic Acids Res. 25: 217-221.
value for that
|
particular
|
Prosite motif.
|
Generally, score =
|
1.4-2.1.
|
Phred
A base-calling algorithm that examines automated
Ewing, B. et al. (1998) Genome Res. 8: 175-185;
|
sequencer traces with high sensitivity and probability.
Ewing, B. and P. Green (1998) Genome
|
Res. 8: 186-194.
|
Phrap
A Phils Revised Assembly Program including
Smith, T. F. and M. S. Waterman (1981) Adv.
Score = 120 or greater;
|
SWAT and CrossMatch, programs based on efficient
Appl. Math. 2: 482-489; Smith, T. F. and
Match length =
|
implementation of the Smith-Waterman algorithm,
M. S. Waterman (1981) J. Mol. Biol. 147: 195-197;
56 or greater
|
useful in searching sequence homology and
and Green, P., University of
|
assembling DNA sequences.
Washington, Seattle, WA.
|
Consed
A graphical tool for viewing and editing Phrap
Gordon, D. et al. (1998) Genome Res. 8: 195-202.
|
assemblies.
|
SPScan
A weight matrix analysis program that scans protein
Nielson, H. et al. (1997) Protein Engineering
Score = 3.5 or greater
|
sequences for the presence of secretory signal
10: 1-6; Claverie, J. M. and S. Audic (1997)
|
peptides.
CABIOS 12: 431-439.
|
TMAP
A program that uses weight matrices to delineate
Persson, B. and P. Argos (1994) J. Mol. Biol.
|
transmembrane segments on protein sequences and
237: 182-192; Persson, B. and P. Argos
|
determine orientation.
(1996) Protein Sci. 5: 363-371.
|
TMHMMER
A program that uses a hidden Markov model (HMM)
Sonnhammer, E.L. et al. (1998) Proc. Sixth
|
to delineate transmembrane segments on protein
Intl. Conf. on Intelligent Systems for Mol.
|
sequences and determine orientation.
Biol., Glasgow et al., eds., The Am. Assoc.
|
for Artificial Intelligence Press,
|
Menlo Park, CA,
|
pp. 175-182.
|
Motifs
A program that searches amino acid sequences for
Bairoch, A. et al. (1997) Nucleic Acids Res.
|
patterns that matched those defined in Prosite.
25: 217-221; Wisconsin Package Program
|
Manual, version 9, page M51-59, Genetics
|
Computer Group, Madison, WI.
|
|
[0389]
Claims
- 1. An isolated polypeptide selected from the group consisting of:
a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20.
- 2. An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1-20.
- 3. An isolated polynucleotide encoding a polypeptide of claim 1.
- 4. An isolated polynucleotide encoding a polypeptide of claim 2.
- 5. An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:21-40.
- 6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
- 7. A cell transformed with a recombinant polynucleotide of claim 6.
- 8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
- 9. A method for producing a polypeptide of claim 1, the method comprising:
a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and b) recovering the polypeptide so expressed.
- 10. An isolated antibody which specifically binds to a polypeptide of claim 1.
- 11. An isolated polynucleotide selected from the group consisting of:
a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:21-40, c) a polynucleotide complementary to a polynucleotide of a), d) a polynucleotide complementary to a polynucleotide of b), and e) an RNA equivalent of a)-d).
- 12. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 11.
- 13. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:
a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
- 14. A method of claim 13, wherein the probe comprises at least 60 contiguous nucleotides.
- 15. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:
a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
- 16. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
- 17. A composition of claim 16, wherein the polypeptide has an amino acid sequence selected from the group consisting of SEQ ID NO:1-20.
- 18. A method for treating a disease or condition associated with decreased expression of functional PKfN, comprising administering to a patient in need of such treatment the composition of claim 16.
- 19. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting agonist activity in the sample.
- 20. A composition comprising an agonist compound identified by a method of claim 19 and a pharmaceutically acceptable excipient.
- 21. A method for treating a disease or condition associated with decreased expression of functional PKIN, comprising administering to a patient in need of such treatment a composition of claim 20.
- 22. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting antagonist activity in the sample.
- 23. A composition comprising an antagonist compound identified by a method of claim 22 and a pharmaceutically acceptable excipient.
- 24. A method for treating a disease or condition associated with overexpression of functional PKIN, comprising administering to a patient in need of such treatment a composition of claim 23.
- 25. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of:
a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
- 26. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, said method comprising:
a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1, b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
- 27. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:
a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
- 28. A method for assessing toxicity of a test compound, said method comprising:
a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 11 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 11 or fragment thereof; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
- 29. A diagnostic test for a condition or disease associated with the expression of PKIN in a biological sample comprising the steps of:
a) combining the biological sample with an antibody of claim 10, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex; and b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
- 30. The antibody of claim 10, wherein the antibody is:
a) a chimeric antibody, b) a single chain antibody, c) a Fab fragment, d) a F(ab′)2 fragment, or e) a humanized antibody.
- 31. A composition comprising an antibody of claim 10 and an acceptable excipient.
- 32. A method of diagnosing a condition or disease associated with the expression of PKIN in a subject, comprising administering to said subject an effective amount of the composition of claim 31.
- 33. A composition of claim 31, wherein the antibody is labeled.
- 34. A method of diagnosing a condition or disease associated with the expression of PKIN in a subject, comprising administering to said subject an effective amount of the composition of claim 33.
- 35. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 10 comprising:
a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, or an immunogenic fragment thereof, under conditions to elicit an antibody response; b) isolating antibodies from said animal; and c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20.
- 36. An antibody produced by a method of claim 35.
- 37. A composition comprising the antibody of claim 36 and a suitable carrier.
- 38. A method of making a monoclonal antibody with the specificity of the antibody of claim 10 comprising:
a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20, or an immunogenic fragment thereof, under conditions to elicit an antibody response; b) isolating antibody producing cells from the animal; c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells; d) culturing the hybridoma cells; and e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20.
- 39. A monoclonal antibody produced by a method of claim 38.
- 40. A composition comprising the antibody of claim 39 and a suitable carrier.
- 41. The antibody of claim 10, wherein the antibody is produced by screening a Fab expression library.
- 42. The antibody of claim 10, wherein the antibody is produced by screening a recombinant immunoglobulin library.
- 43. A method for detecting a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20 in a sample, comprising the steps of:
a) incubating the antibody of claim 10 with a sample under conditions to allow specific binding of the antibody and the polypeptide; and b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20 in the sample.
- 44. A method of purifying a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20 from a sample, the method comprising:
a) incubating the antibody of claim 10 with a sample under conditions to allow specific binding of the antibody and the polypeptide; and b) separating the antibody from the sample and obtaining the purified polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-20.
- 45. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:1.
- 46. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.
- 47. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:3.
- 48. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:4.
- 49. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.
- 50. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:6.
- 51. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:7.
- 52. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:8.
- 53. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:9.
- 54. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:10.
- 55. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ED NO:11.
- 56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:12.
- 57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:13.
- 58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:14.
- 59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:15.
- 60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:16.
- 61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:17.
- 62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:18.
- 63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:19.
- 64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:20.
- 65. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:21.
- 66. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:22.
- 67. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:23.
- 68. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:24.
- 69. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:25.
- 70. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:26.
- 71. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:27.
- 72. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:28.
- 73. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:29.
- 74. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:30.
- 75. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:31.
- 76. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:32.
- 77. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:33.
- 78. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:34.
- 79. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:35.
- 80. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:36.
- 81. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:37.
- 82. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:38.
- 83. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:39.
- 84. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:40.
- 85. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:1.
- 86. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:2.
- 87. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:3.
- 88. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:4.
- 89. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:5.
- 90. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:6.
- 91. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:7.
- 92. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:8.
- 93. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:9.
- 94. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:10.
- 95. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:11.
- 96. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:12.
- 97. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:13.
- 98. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:14.
- 99. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:15.
- 100. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:16.
- 101. A method of claim 9, wherein the polypeptide has tie sequence of SEQ ID NO:17.
- 102. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:18.
- 103. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:19.
- 104. A method of claim 9, wherein the polypeptide has the sequence of SEQ ID NO:20.
- 105. A microarray wherein at least one element of the microarray is a polynucleotide of claim 12.
- 106. A method for generating a transcript image of a sample which contains polynucleotides, the method comprising the steps of:
a) labeling the polynucleotides of the sample, b) contacting the elements of the microarray of claim 105 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and c) quantifying the expression of the polynucleotides in the sample.
- 107. An array comprising different nucleotide molecules affixed in distinct physical locations on a solid substrate, wherein at least one of said nucleotide molecules comprises a first oligonucleotide or polynucleotide sequence specifically hybridizable with at least 30 contiguous nucleotides of a target polynucleotide, said target polynucleotide having a sequence of claim 11.
- 108. An array of claim 107, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 30 contiguous nucleotides of said target polynucleotide.
- 109. An array of claim 107, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 60 contiguous nucleotides of said target polynucleotide.
- 110. An array of claim 107, which is a microarray.
- 111. An array of claim 107, further comprising said target polynucleotide hybridized to said first oligonucleotide or polynucleotide.
- 112. An array of claim 107, wherein a linker joins at least one of said nucleotide molecules to said solid substrate.
- 113. An array of claim 107, wherein each distinct physical location on the substrate contains multiple nucleotide molecules having the same sequence, and each distinct physical location on the substrate contains nucleotide molecules having a sequence which differs from the sequence of nucleotide molecules at another physical location on the substrate.
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/US01/23092 |
7/20/2001 |
WO |
|