Search report regarding Seq. Id. 7, 18 and 24 re. Hastings et al. and Bromme et al., Feb. 2000.* |
Blair, Harry C., et al., “Extracellular-matrix Degradation at Acid pH Avian Osteoclast Acid Collagenase Isolation and Characterization”, Biochemical Journal 290(3):873-884 (1993). |
Tezuka, Ken-Ichi, et al., “Identification of Osteopontin in Isolated Rabbit Osteoclasts”, Biochemical and Biophysical Research Communications 186(2):911-917 (1992). |
Davies, John, et al., “The Osteoclast Functional Antigen, Implicated in the Regulation of Bone Resorption, is Biochemically Related to the Vitronectin Receptor”, The Journal of Cell Biology 109(4):1817-1826 (1989). |
Tezuka, Ken-Ichi, et al., “Molecular Cloning of a Possible Cysteine Proteinase Predominantly Expressed in Osteoclasts”, Journal of Biological Chemistry 269(2):1106-1109 (1994). |
Maciewicz, R.A. and Etherington, D.J., “Comparison of Four Cathepsin (B, L, N and S) with Collagenolytic Activity From Rabbit Spleen”, Biochem. J. 256:433-440 (1988). |
Rifkin, B.R. et al., “Cathepsin B and L Activities in Isolated osteoclasts”, Biochem. Biophys. Res. Comm. 179:63-69 (1991). |
Goto, T. et al., “Immunohistochemical Localization of Cathepsins B, D and L in the Rat Osteoclast”, Histochemistry 99:411-414 (1993). |
Karhukorpi, E.K. et al., “A Difference in the Enzyme Contents of Resorption Lecunac and Secondary Lysosomes of Osteoclasts”, Acta. Histochemical 92:1-11 (1992). |
Sasaki, T., Ueno-Matsuda, E., “Cystein-proteinase Localization in Osteoclasts: An Immunocytochemical Study”, Cell Tissue Res. 271:177-179 (1993). |
Delaisse, J.M. et al., “Collagenolytic Cysteine Proteinases of Bone Tissue”, Biochem. J. 279:167-174 (1991). |
Page, A.E. et al., “Human Osteoclastomas Contain Multiple Forms of Cathepsin B”, Biochem. Biophys. Acta. 1116:57-66 (1992). |
Van Noorden, C.J.F., et al., “Selective Inhibition of Cysteine Proteinases by Z-Phe-AlaCH2F Suppresses Digestion of Collagen by Fibroblasts and Osteoclasts”, Biochem. Biophys. Res. Comm. 178:178-184 (1991). |
Van Noorden, C.J.F., et al., “Localization of Cathepsin B Activity in Fibroblasts and Chondrocytes by Continous Monitoring of the Formation of a Final Fluorescent Reaction Product Using 5-Nitrosalicylaldehyde”, Histochemical Journal 19:483-487 (1987). |
Horton, M.A. et al., “Monoclonal Antibodies to Osteoclastomas (Giant Cell Bone Tumors): Definition of Osteoclast-specific Cellular Antigens”, Cancer Research 45:5663-5669 (1985). |
Hayman, A.R. et al., “Purification and Characterization of a Tartrate-resistant Acid Phosphatase from Human Osteoclastomas”, Biochem. J. 261:601-609 (1989). |
Sandberg, M. et al., “Localization of the Expression of Types I, III, and IV Collagen, TGF-β1 and c-fos Genes in Developing Human Calvarial Bones”, Developmental Biology 130:324-334 (1988). |
Sandberg, M. et al., “Enhanced Expression of the TGF-β and c-fos mRNAs in the Growth Plates of Developing Human Long Bones”, Development 102: 461-470 (1988). |
Ek-Rylander, B. et al., “Cloning, Sequence, and Developmental Expression of a Type 5, Tartrate-Resistant, Acid Phosphatase of Rat Bone”, The J. of Biological Chem. 266:24684-24689 (1991). |
Peng, et al., “Alternative mRNA Splicing Generates Tissue-specific Isoforms of 116-kDA Polypeptide of Vacuolar Proton Pump”, J. of Biol. Chem. 269(25):17262-17266 (1994). |
Crider, et al., “Bafilomycin Inhibits Proton Flow through the H+ Channel of Vacuolar Proton Pumps”, J. of Biol. Chem. 269:(26)17379-17381 (1994). |
Perin, et al., “Structure of the 116-kDa Polypeptide of the Clathrin-coated Vesicle/Synaptic Vesicle Proton Pump”, J. of Biol. Chem. 266(6):3877-3881 (1991). |
Li, Y-P. et al., “Molecular Cloning and Characterization of a Putative Novel Human Osteoclast-Specific 116-kDa Vacuolar Proton Pump Subunit”, Biochemical and Biophysical Research Communications, 218:813-821 (1996). |
Shapiro, L.H. et al., “Carbonic Anhydrase II is Induced in HL-60 Cells by 1,25-Dihydroxyvitamin D3: a Model for Osteoclast Gene Regulation”, FEBS Letters, 249(2):307-310 (1989). |
Ketcham, C.M. et al., “Molecular Cloning of the Type 5, Iron-Containing, Tartrate-Resistant Acid Phosphatase from Human Placenta”, The Journal of Biological Chemistry, 264(1):557-563 (1989). |
Wilhelm, S.M. et al., “SV40-Transformed Human Lung Fibroblasts Secrete a 92-kDa Type IV Collagenas, Which Is Identical to That Secreted by Normal Human Macrophages”, The Journal of Biological Chemistry, 264(29):17213-17221 (1989). |