The present invention relates to a human-propellable vehicle. Embodiments of the present invention relate to a three or four wheeled bike which can be pushed along by a bicycle.
Four wheel gravity propelled downhill bikes are primarily aimed at disabled users. When such a bike is not rolling down a gradient, a secondary method of propulsion is required. Typically, the secondary method of propulsion is provided by the rider “self-propelling” the bike or by a second person pushing the bike. However, self-propelling the bicycle may be unsuitable for some users and significantly increase rider fatigue, while having a second person pushing the bicycle is not always practical.
Embodiments of the present invention seek to address this problem.
According to an aspect of the present invention, there is provided a human-propellable vehicle comprising a chassis and a roller assembly mounted at or towards the rear of the chassis, wherein the roller assembly is positioned to engage with a wheel of a second vehicle to permit the second vehicle to push the human-propellable vehicle.
In this way, the problem that the front-most part (the front wheel) of a second vehicle (preferably a bicycle) cannot push against the human-propellable vehicle due to rotation of the front wheel is addressed, making it easy for the rider of the bicycle to assist with propulsion of the human-propellable vehicle when required simply by riding up behind it, manoeuvring the bicycle so that the front wheel is engaged with the roller assembly, and pedalling to push along the human-propellable vehicle while maintaining contact via the rollers.
The roller assembly comprises one or more rollers. Preferably, the roller assembly comprises upper and lower rollers at different heights. Each roller is preferably mounted with its axis of rotation substantially horizontal and substantially perpendicular to the longitudinal axis of the human-propellable vehicle.
Preferably, the roller assembly is movably mounted to the chassis to damp shock impulses transmitted to the human-propellable vehicle by the wheel of the second vehicle. The roller assembly may be mounted to the human-propellable vehicle by a first mounting assembly, the first mounting assembly being arranged to permit the roller assembly to pivot about a substantially horizontal axis, the horizontal axis being perpendicular to the longitudinal axis of the vehicle. The first mounting assembly may comprise a hinge joint or a pivot joint.
The roller assembly is preferably mounted to the chassis by a second mounting assembly, the second mounting assembly comprising one or more dampers. The dampers may each comprises a spring or a resiliently compressible component. More generally, the rollers may be movably mounted so as to be displaced away from the second vehicle when a force is exerted on them by the wheel of the second vehicle.
It is advantageous if the initial engagement between the roller assembly and the wheel of the second vehicle is smooth and does not result in jolting the rider of the human-propellable vehicle. This avoids sudden unexpected physical and psychological shocks to the rider, which is particularly important in the case of disabled riders. The same applies to ongoing jolts which may occur while the roller assembly and the wheel of the second vehicle are in engagement. The arrangements mentioned generally above and in more detail below cushion the initial impact of engagement, and any ongoing jolts, between the roller assembly and the wheel of the second vehicle. Moreover, if the second vehicle starts to drift back from the human-propellable vehicle, the roller assembly will move back with it for a short distance, maintaining engagement between the human-propellable vehicle and the second vehicle. Generally, a smoother engagement between the roller assembly and the wheel of the second vehicle may be achieved if, on engagement, the rollers are displaceable away from the impact between the wheel and rollers.
It should however be understood that damping may not be required in all cases. In particular, it has been found that due to the shock absorbing qualities of a mountain bike tyre, it is not always necessary to have the rollers spring mounted.
It will be appreciated that while embodiments of the present invention are particularly beneficial for disabled riders, they can also be used by able bodied riders.
The invention will now be described by way of example with reference to the following Figures in which:
Referring first to
On impact of a front wheel of a two wheeled bicycle or other second vehicle with the rollers 5 of the roller assembly, the rollers 5 are deflected towards the chassis due to a lower portion of the roller assembly 6 pivoting about an axis defined by the hinge bolt 7 and an upper portion of the roller assembly 6 being able to move along the motion shaft 3 in a direction towards the chassis. The movement is arrested and the impact is damped by the spring 2, and the spring 2 then biases the roller assembly 6 back towards its original position. It will be appreciated that the roller assembly 6 may not return fully back to its original position while a force is being exerted by the bicycle—that is, while the bicycle is pushing the human-propellable vehicle. Following the initial engagement of the front wheel of the bicycle with the rollers 5, further shock impulses may be exerted on the rollers 5 by the wheel of the bicycle, due to changes in speed, or terrain features causing the human-propellable vehicle to suddenly slow down for example. Again, these shock impulses will be damped by the spring 2.
Referring to
Referring to
Referring to
Referring to
Number | Date | Country | Kind |
---|---|---|---|
1416610.2 | Sep 2014 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2015/052703 | 9/18/2015 | WO | 00 |