The following is a tabulation of some prior art that presently appears relevant:
Scientists estimate that 70 million feral cats currently roam free in the United States. Feral cats are members of the species Felis catus, which are not naturally part of the North American ecosystem. Cats compete with other small animals for territory and food. They kill and eat millions of birds each year. With no ability to hibernate, nor means of burrowing into the ground, they confront harsh winter weather with inadequate biological protection. They often migrate to urban centers in search of food and shelter. There they meet up with another pervasive enemy—the automobile. They suffer frequent injury and illness and, too often, painful death.
Trap-Neuter-Release (TNR) programs have emerged throughout the United States in response to this problem. TNR is conceived as a humane way to reduce the feral cat population. The cats are trapped, spayed/neutered, administered a rabies shot, and returned to their colonies. Kittens under the age of 14 weeks can be socialized by humans and placed for adoption.
Unfortunately, many feral cats and kittens refuse to enter either the commercially available or homemade cat traps. Others enter only when they are starving. As a result, despite the painstaking efforts of humane societies and community cat coalitions, feral cats continue to reproduce at an alarming rate. An alternative trap option is needed.
For survival purposes, the feral mother cat instinctively teaches her young to avoid entering unfamiliar objects and spaces. The two primary trap devices currently used for trapping feral cats both require the cat to enter an unfamiliar and presumably intimidating object.
The most common trap used for TNR is a box trap U.S. Pat. No. 1,054,050 (1913). It looks like a long rectangular cage. Bait is placed in the rear of the trap. The cat enters through the front opening. On the way to the bait, it steps on a trip plate, which triggers the front door to close behind it. The box trap features two types of doors. Gravity doors fall due to gravitational force. Spring-loaded doors close with the aid of a spring.
A variety of patents have been issued or applied for, including U.S. Pat. No. 9,439,412 (2016) and US 20180325094 (2018), that attempt to improve in some way upon the box trap, including changes to the trigger mechanism and the doors.
The drop trap appears as a large rectangular cage with no base. It is commonly made of metal but can also consist of a lightweight frame covered with netting. It is propped up in front with a metal arm or a stick. Food is placed in the back. The cat must walk under the large frame to the rear of the trap to access the bait. When the cat starts eating, the trapper pulls the string, allowing the trap to drop and capturing the cat inside. The captured cat must then walk through a sliding door into a transfer cage for transport.
Many feral cats are reluctant to enter either the box trap or the drop trap. Trappers sometimes spend days and even weeks repeatedly setting and monitoring these traps, waiting for a single cat to let down its guard or become sufficiently hungry to go for the bait.
Feral cats that are successfully trapped, neutered, and released back into their colonies often become sick or injured later in life and require veterinarian medicine. Having already once been trapped in a box or drop trap, many cats remember the experience and will not enter those traps again. As a result, they suffer and die needlessly while humane societies and community cat coalitions make repeated attempts, in vain, to trap and care for them.
When both the box trap and the drop trap fail, some trappers turn to nets. Humans may attempt to lure cats into a space over which a net has been placed, then release the net. One animal net trap design U.S. Pat. No. 6,732,471 (2004) consists of a net attached to a semi-circular frame that in the open position stands perpendicular to the ground. The net is triggered mechanically upon the cat's entry and drops over the cat to enclose it. The cat must be willing to approach and walk beneath the frame of this trap to trigger it. Once inside, there is no provision for the cat's safe removal.
Another variation of an animal net trap design is U.S. Pat. No. 8,661,726 (2014). This trap has a circular base and plurality of ribs extending upward and inward to form the frame. A hollow central column with a drop weight extends upward from the center of the base. When triggered the drop weight pulls the net upward from the base to enclose the frame. Like the box and drop traps, this trap design requires the cat to approach a large unfamiliar structure that is perpendicular to the ground and cannot be even partially camouflaged. Once inside, there is no provision for the cat's safe removal.
A third type of trap that utilizes a net is the homemade “clam trap.” The clam trap is commonly composed of a metal frame and a large, heavy net. When set for trapping, it is leaned against an object, such as a tree, and looks like a traditional rectangular soccer goal resting on its side. The cat is lured into the center of the “goal” by bait, at which point the trapper pulls a string that causes the top half of the frame to collapse onto the bottom half, with the cat inside.
To enter the clam trap, the cat must walk across heavy netting and up to the large metal frame. If the cat is willing to do this and is successfully trapped in the net, it may panic immediately and attempt to free itself. In the process, the cat can get tangled in the net, risking injury to itself as well as to the trapper who must eventually remove it for transport.
The Human Animal “Venus Fly” Trap comprises stationary and moving frames attached to support blocks, with torsion springs that in the open position enable the trap to maintain a low profile mostly parallel to the ground, and in the electronically triggered closed position form a complete enclosure around the animal, preventing its escape without injuring or immobilizing the animal. A transfer tunnel, attached from an opening in the side of the trap to a transfer cage, enables a quick and safe method of removing the animal for transport.
The Humane Animal “Venus Fly” Trap creates a new trap option. Our trap is able to capture a variety of small and medium-size animals. However, it was designed with feral cats and kittens in mind.
The Humane Animal “Venus Fly” Trap is designed to enable all sides of the trap to rest in an open position that is nearly parallel to the ground. The cat is not required to walk through a cage or beneath an unfamiliar metal structure to enter the trap and access the bait in the center of the trap. He/she merely has to step across a frame that is no greater than several inches in diameter and can be partially hidden under leaves or other natural materials. In one embodiment, the trap is triggered remotely by a human once the cat is completely inside, at which point the sides of the trap spring forward and envelope the cat, much like a Venus Fly Trap envelopes an insect.
The Humane Animal “Venus Fly” Trap also offers an advantage over trapping cats in a net. Our trap allows the trapped cat to remain upright with all four feet on the ground and provides ample space for the cat to move about inside the trap, without any part of the trap restraining his or her body. These features help reduce the type of extreme panic behavior that can lead to injury of the animal or the trapper.
The embodiment of the Humane Animal “Venus Fly” Trap that is triggered remotely by humans improves upon the conventional box trap in another important respect: The box trap allow humans little control over what is trapped and may inadvertently trap another wild animal, such as a raccoon or skunk. Removing the unwanted animal from this trap can be difficult or even dangerous. Our trap gives the trapper control over what is and is not trapped.
The Humane Animal “Venus Fly” Trap offers an additional significant advantage over the commercially available box and drop traps in that the sides are composed of rip-stop or a similarly lightweight fabric, and the perimeter of the moving frame can be encased in foam. A cat that is trapped may throw its body violently against the sides of the trap in an attempt to escape. When this effort fails, the cat may begin to aggressively rub its face against the sides of the trap. If the sides of the trap are metal, as in the box and drop traps, the cat can bruise its body or bloody its nose trying to push its way through. This is not possible with the Humane Animal “Venus Fly” Trap. The soft fabric poses little threat to the cat as it searches for a way out. Foam piping around the frame can further protect the cat from injury, both when the trap is closing as well as once the cat is trapped inside.
The transfer tunnel, which is also composed of soft fabric, enables a quick and safe method of removing the animal from the trap, offering a significant advantage over trapping cats in nets. The animal can remain upright as it is lured through the tunnel into the transfer cage tunnel. No human contact is required to complete this transfer, ensuring maximum safety for both the animal and the trapper.
Referring now to the figures, illustrated in
Illustrated in
Illustrated in
Illustrated in
Illustrated in
In the first embodiment of the Humane Animal “Venus Fly” Trap, the trap is transported to the location where animal-trapping is desired. A flat section of ground is selected. The trap
The trapper moves far away from the trap, out of sight of the target animal but in good position for monitoring the trap. Then the trapper waits for the target animal to arrive. When the animal enters the trap and begins eating, the trapper presses the remote-control transmitter 10, which sends servo position command pulses 18, 19 to their respective release mechanism boxes 12. This triggers the rotating hooks 21 on the stationary frame 1 to release the stationary hooks 14 on the moving frame 3. Magnets 8 on the perimeter of the moving frame 3 join up, snapping the trap closed. The animal is trapped. The trapper waits for the animal to calm down. Then the trapper attaches the transfer cage 26 to the transfer tunnel 23. The transfer tunnel 23 is formed by an opening in the side of the trap 22 that is covered with soft fabric and extends to the perimeter of the trap's base. It can be fastened to the base with snaps 24. On the other side of the snaps, the tunnel leads away from the trap and can be secured to the front of a transfer cage with an elastic band 25. From the inside of the trap, the transfer tunnel creates the appearance to the animal of a possible escape route. Once the tunnel is connected to the transfer cage, the trapper unsnaps the tunnel and lifts the fabric. The animal mistakes this temporary movement on the side of the trap for the creation of an opening through which it can escape and is quickly lured into the transfer cage. A clear sliding door on the back end of a two-door transfer cage can further enhance the appearance to the trapped animal of an escape route through the transfer tunnel. Once inside the transfer cage, the trapper closes and locks the front sliding door on the cage. The animal is ready for transport.
In another embodiment,
A pressure-sensitive electrical switch in place of a remote-control transmitter enables an animal to be trapped without requiring the trap to be continuously monitored by a human. This can be advantageous when the daily routine of the target animal is unknown. Additionally, a pressure-sensitive electrical switch enables trappers to trap animals in pitch dark or in locations where the trapper's view of the trap is otherwise obstructed.
Thus, the reader will see that at least one embodiment of the Humane Animal “Venus Fly” Trap offers a way to trap animals with numerous significant advantages over existing traps:
This disclosure describes the concept and a design of the trap. A specific embodiment that has been built and successfully tested is described in detail as an example only. Other variations are expected. The size of the trap will be built to match the size of the animal being trapped and will vary accordingly. Therefore, no dimensions are provided. Specific choices of materials and components, (e.g. PVC pipe, fabric, torsion springs, remote-control transmitter/receiver, electronics, release hooks and servo motors) are not critical to the concept; any number of alternative materials and components, and combinations thereof, are possible.
This application claims the benefit of provisional patent application Ser. No. 63/361,156, filed 2021 Dec. 2 by the present inventors.
Number | Name | Date | Kind |
---|---|---|---|
102761 | Brooks | May 1870 | A |
433241 | Hawkins, Jr. | Jul 1890 | A |
507086 | Buntain | Oct 1893 | A |
560846 | Donato | May 1896 | A |
966213 | Jauregin | Aug 1910 | A |
1054050 | Stanberry | Feb 1913 | A |
1111521 | Berg | Sep 1914 | A |
1168316 | Korcok | Jan 1916 | A |
1551542 | Crago | Sep 1925 | A |
1553536 | Irvine | Sep 1925 | A |
1576707 | Bailey | Mar 1926 | A |
1612608 | Chamberlin | Dec 1926 | A |
1850182 | Schulke | Mar 1932 | A |
2275043 | Colwell | Mar 1942 | A |
2603031 | Haseman | Jul 1952 | A |
2707844 | Ciolli | May 1955 | A |
3823504 | Dosch | Jul 1974 | A |
3834063 | Souza | Sep 1974 | A |
3903637 | Dorsey | Sep 1975 | A |
4141172 | Prosol | Feb 1979 | A |
4434574 | Benito | Mar 1984 | A |
4565027 | Sato | Jan 1986 | A |
4774785 | Fuhrman | Oct 1988 | A |
4791753 | Fuhrman | Dec 1988 | A |
5778594 | Askins | Jul 1998 | A |
6732471 | Draper | May 2004 | B2 |
8661726 | Alfarhan | Mar 2014 | B2 |
9439412 | Kittelson | Sep 2016 | B2 |
10172343 | Radesky | Jan 2019 | B2 |
10455827 | Rich | Oct 2019 | B2 |
20090094882 | Comstock | Apr 2009 | A1 |
20170112119 | Novatney | Apr 2017 | A1 |
20180325094 | Dolshun | Nov 2018 | A1 |
20180360021 | Ziegmann | Dec 2018 | A1 |
20190166823 | Dick | Jun 2019 | A1 |
Number | Date | Country |
---|---|---|
2423004 | Aug 2006 | GB |
Number | Date | Country | |
---|---|---|---|
20230172185 A1 | Jun 2023 | US |
Number | Date | Country | |
---|---|---|---|
63361156 | Dec 2021 | US |