Other than for confidential and/or necessary use inside the Patent and Trademark Office, this authorization is denied until the Nonprovisional Patent Application is published (pending any request for delay of publication), at which time it may be taken to state:
The entirety of this application, specification, claims, abstract, drawings, tables, formulae etc., is protected by copyright: © 2017 Donald L. Baker dba android originals LLC. The (copyright or mask work) owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all (copyright or mask work) rights whatsoever.
This application is related to U.S. Pat. No. 9,401,134 B2, filed Jul. 23, 2014 and granted Jul. 26, 2016, and the related Provisional Patent Applications, No. 62/355,852, filed Jun. 28, 2016, and No. 62/370,197, filed Aug. 2, 2016 by this inventor, Donald L. Baker dba android originals LC, Tulsa Okla. USA
Not Applicable
Not Applicable
Not Applicable
Some material may have been disclosed in tutorial articles on the web site TulsaSoundGuitars.com and the sub-site HumbuckingPairs.com. This is a matter for the Patent Office to decide.
This invention relates to the electronic design of stringed instruments, including guitars, sitars, basses, viols and in some cases pianos, including the areas of the control of the timbre of electromagnetic and other transducers by means of combinatorial switching and analog signal processing. Some of the principles will also apply to combinations of other vibration sensors, such as microphone and piezoelectric pickups, placed in or on different parts of a musical instrument, stringed or not.
Please find here a brief description of prior art, and a longer description of the mathematical background which determines the systematic construction of topologies and combinations of electromagnetic string vibration sensors, which determine the possible number and types of such with unique tonal signatures.
Humbuckinq Pickups
The previous patent, (U.S. Pat. No. 9,401,134, 2016, Baker) from which this application and development derives, established the concept of humbucking pairs and switching systems for single-coil electromagnetic pickups with coils of equal, matched turns. Dual-coil humbucking pickups also have coils of equal matched turns, as demonstrated in the patents of Lesti (U.S. Pat. No. 2,026,841, 1936), Lover (U.S. Pat. No. 2,896,491, 1959), Blucher (U.S. Pat. No. 4,501,185, 1985) and Fender (U.S. Pat. No. 2,976,755, 1961). At least one patent describes a dual-coil humbucker with one coil and poles adjacent the strings, and the other vertically in line and below (Anderson, U.S. Pat. No. 5,168,117, 1992), sometimes called “stacked coils”. Either can be used with this patent, but the discussion generally refers to side-by-side humbucking pickups with two coil of opposite poles pointed up at the strings. Pickups designated as “matched” must extend to those which have the same response to external magnetic fields, whether the number of turns are matched or not.
Humbuckers with two matched coils can have those coils connected in either series or parallel. Individual humbuckers commonly have either 4 wires, 2 for each coil, or 2 wires, with the coils connected in series for maximum voltage output, often with a shield wire connected to the metal parts of the humbucker and the pickup cable shield. Guitars with two humbuckers commonly have a 3-way switch, which offers for output the bridge humbucker, the neck humbucker, and the two connected in parallel. Some guitars combine two humbuckers, one and the neck and one at the bridge, with a single-coil pickup mounted in between them. Some use as many as 3 humbuckers. Electric bass guitars are another matter, often containing only two single-coil pickups.
The standard 5-way switch on an electric guitar with 3 single-coil pickups typically provides to the output: the neck coil, the neck and middle coils in parallel, the middle coil, the middle and bridge coils in parallel, and the bridge coil. Typically, in a 3-coil guitar, the middle pickup has the opposite pole up from the other two, the middle and neck coils have roughly equal numbers of turns, and the bridge coil has more turns than the other two to produce a roughly equal signal from the smaller physical vibrations of the strings nearer the bridge. This inventor could find no patent which specified or claimed humbucking for the neck-middle and middle-bridge combinations, but those connections are more humbucking than single coils alone.
Electromechanical Pickup Switching Systems
The Fender Marauder guitar (Fender, U.S. Pat. No. 3,290,424, 1966) had four single-coil pickups with alternating north and south poles up (i.e., N,S,N,S from bridge to neck, or S,N,S,N), connected in parallel to the output with 2P3T switches, such that each pickup could be connected either in-phase, or out-of-phase (contra-phase), or not at all. This amounted to 34=81 different possible parallel connections, of which one of those outputs had no connection to any of the pickups, leaving 80 with outputs.
The Fender switches allow for basic circuit topologies with single pickups connected to the output, and parallel connections between 2, 3 and 4 pickups connected to the output. Ignoring phases, this means 4 things taken 1 at time, or 4 choices, 4 things taken 2 at a time, or 6 choices, 4 things taken 3 at a time, or 6 choices, and 4 things taken 4 at a time, or 1 choice. According to the Specification of this patent below, the human ear can detect only 1 unique phase for 1 pickup, 2 unique phase connections for a circuit of 2 pickups, 4 unique phase connections for a circuit with 3 pickups, and 8 unique phase connections for a circuit of 4 pickups. The products then show 4*1+6*2+6*4+1*8=48 possibly unique tones out of the 80 switch combinations with outputs, leaving 32 duplicate tones.
If the pickups are placed and designated as (N1, S1, N2, S2) from bridge to neck respectively, humbucking pairs analysis, according to U.S. Pat. No. 9,401,134 (Baker, 2016), predicts the following 8 unique humbucking parallel outputs with potentially unique tones: (N1, S1), (N1, −N2), (N1, S2), (S1, N2), (S1, −S2), (N2, S2), (N1, S1, N2, S2), (N1, S1, −N2, −S2), where a minus sign indicates an inverted phase. An additional 8 outputs are humbucking, but merely of inverted relative phase, and thus indistinguishable to the human ear. The remaining 80−16=64 outputs (which actually have an output) allow hum from external sources. As far as can be determined, Fender never provided a switching map to the humbucking outputs. Reportedly for this reason, the Marauder gained a reputation for noisy outputs and failed in the marketplace.
Krozack, et al., (US 2005/0150364A1, 2005) developed for Paul Reed Smith Guitars a switching system for two humbuckers, one each at the neck and bridge, and a single-coil pickup in between, presumably for the PRS 513 guitar, which boasts 13 distinct outputs from five coils. It uses a switching system based upon individual taps on each coil of each humbucker, to obtain nearly equal levels of output for all the switch positions. But it includes single-coil outputs and makes no claim that all outputs are humbucking. Nor does it seem to make any claim on the total number of possible outputs.
Wronowski (U.S. Pat. No. 6,998,529 B2, 2006) patented a switching system for 3 pickups, use 3 DP3T (center-off) switches to set the polarity or phase of each pickups and connection to the circuit. It then uses 3 DPDT switches to connect the chosen pickups in various series and parallel combinations. This produces 33*23=216 possible switch positions. If all the pickups are connected, regardless of phase, it has 7 basic topologies: (1+2+3), (1+2), (2+3), (1)∥(2+3), (2)∥(1+3), (3)∥(1+2) and (1)∥(2)∥(3), where “+” means series connection and “∥” means a parallel connection. If any pickup in a series connection is not connected, then the entire series connection is broken, removing that output. Removing a pickup from a parallel connection leaves the other pickup(s) connected to the output.
Without regard to phase, this leaves the following 14 valid connections to the output: (1), (2), (3), (1+2), (1+3), (2+3), (1+2+3), (1)∥(2)∥(3), (1)∥(2), (1)∥(3), (2)∥(3), (1)∥(2+3), (2)∥(1+3), (3)∥(1+2). According to the presentation in the Specification here, the human ear can detect only 1 unique phase from one pickup, 2 unique phases from two pickups, and 4 unique phases from 3 pickups. This produces 1, 1, 1, 2, 2, 2, 4, 4, 2, 2, 2, 4, 4, & 4 unique tone/phase combinations, respectively, for a total of 35 unique outputs out of 216 different switch combinations. Of all the other 181 combinations about 21 will have no output, and the rest duplicate tones.
Of the 14 unique topologies, only those with two pickups can be humbucking, if only the pickups have equal responses to external hum, with just one valid phase per combination, depending on the orientation of the magnetic poles of the pickups. This leaves 6 possibilities out of 216. Wronowski's switch table in his FIG. 7 does not indicate this complexity. Thus the 2006 Wronowski patent shares similar switching qualities, and then some, of the 1996 Fender patent, with which no guitar is currently made.
In a patent application for dual humbucker guitar, Jacob (US 2009/0308233 A1, 2009) describes a “programmable switch”, and claims an improvement upon the Krozack patent, disclosing a “bug”, with only minimal reference to tapped coils. Jacob splits his programmable switch into two functions, a selector which chooses the pickup elements to be combined, and a connector which “configures those selected elements in to a wide range of topologies”. Jacob makes no claim for concatenating selector switches, and no analysis of which outputs are tonally distinct, apparently assuming that all are.
In his FIG. 11, making use of a set of jumpers and switches, Jacob claims 24 outputs for 2 humbuckers, considering the individual coils singly and in pairs, without making any overall claim for humbucking outputs. Let one describe his pickup coils to be in order, from top to bottom, N1, S1, N2 & S2, for the coil poles up in humbuckers 1, top and 2, bottom, the rows of his FIG. 11 to be 1, 2, 3, 4, 5a, 5b, and the columns to be a, b, c &d. In this space, only 1a, 1b, 2d, 3a, 3b, 4a, 4b, 5a-d, 5b-a & 5b-b are humbucking, for a total of 10, or 41.7%. Of the single-coil choices in column c, 4c duplicates 1a, and 5a-c & 5b-c duplicate 3c.
The close physical spacing of the coils in each humbucker, plus the fact that they share the same magnetic circuit and field and can act as a transformer, will produce close tonal outputs for the humbucking pairs (3a,4a), (3b,4b), and (2d,5a-d), and for the non-humbucking pairs (2a,5a-a), (2b,5a-b) and (3d,4d). This leaves only 15 distinct tones out of the 24, or 62.5%, and only 7 distinct humbucking tones out of 24 outputs, or 29.2%. According to the analysis below, even discarding choices for matched pickups which circuit theory rates as equivalent, two humbuckers could have produced up to 20 distinct humbucking tones, taking the humbuckers connected separately and in pairs, with internal coils connected either in series or parallel. Jacob makes no claims in this regard, thus his range of topologies cannot be a wide as possible, even including non-humbucking choices.
In his FIGS. 8 & 9, Jacob shows two programmable switches, one for “Element Selection” connected to one for “Topology Selection”. It seems that “XPMT” and “YPMT” indicate x-pole and y-pole multiple throw, or MT, mechanical switches. Although he presents solid state switches in his FIG. 5, he does not apply them to any cross-point switching, but instead to a “program bank”. Separate “element” and “topology” selection switches are not necessary. Baker (U.S. Pat. No. 9,401,134, 2016, FIG. 30) combines both switches in a single cross-point patch board, as noted in claim 37, simplifying the switching and allowing a more flexible way to choose diverse humbucking topologies. Using a 6P6T switch for 4 matched single-coil pickups, it had sufficient cross-point connections to allow for combinations of any 6 of many of the 45 humbucking pairs and quads shown below in Math 31, excluding a number of cases of humbucking quads, especially those involving sub-pairs in quads with inverted signals, i.e., (−AB), which would have required a 7-pole switch for item 375 (U.S. Pat. No. 9,401,134), 7 lines of input for each section of the cross-point board, 377 (U.S. Pat. No. 9,401,134), and 4 interconnection lines instead of the 3 shown (387, U.S. Pat. No. 9,401,134).
Microcontrollers in Guitar Pickup Switching
Ball, et al. (U.S. Pat. No. 9,196,235, 2015; U.S. Pat. No. 9,640,162, 2017) describe a “Microcprocessor” controlling a “Switching Matrix”, with a wide number of pickups, preamps and controls hung onto those two boxes without much specification as to how the individual parts are connected together to function in which manners. It makes no mention or claim of any connections to produce humbucking combinations, and could just as well be describing analog-digital controls for a radio, or record player or MPEG device. It states, “On board controls are similar to or exactly the same as conventional guitar/bass controls.” This does not allow for any other possible human interface devices, such as up-down tone-shift levers, touch-sensors, mouse-type scroll wheels, status lights or digital matrix pixel displays.
These two patents seem to be related to the Music Man “Game Changer” guitar, which has two humbuckers, one each at neck and bridge, and a single-coil pickup in between them. For which Ernie Ball/Music Man has claimed “over 250,000” choices of pickup tonal output combinations from five coils, without any known claim that all such outputs are humbucking. By contrast, Math 11 shows the actual number of potential tonally distinct interconnections of 5 coils to be only 8512, humbucking or not.
Claiming precedence from PPA 62/355,852, this patent expands the concepts of humbucking pairs of matched single coils to combinations of different poles in different positions, using the example of four matched pickups with (N, S, S, N) poles up, (N, S, N, N) poles up and (N, N, N, N) poles up to examine the maximum possible changes in tonal output, and offers a way to concatenate ordinary electromechanical switches to any number of humbucking pairs.
Claiming precedence from PPA 62/370,197, this patent extends the concepts of humbucking pairs of matched single-coil pickups (U.S. Pat. No. 9,401,134, 2016, Baker) to humbucking quads, hexes, octets and above, by constructing more complex orders of combinations from lower orders in series and parallel, and by systematic reversal of connections for out-of-phase contributions. Also by connecting dual-coil humbuckers together into larger quads, hexes, etc., using the same methods. It uses reasonable conjecture and inductive mathematical proof to develop formulas for the numbers of potential tonally distinct humbucking combinations of single-coil and dual-coil humbucker pickups.
This invention makes the point that all possible and potentially useful two-terminal sensor or pickup circuits can be determined, so that switching systems can be designed that don't produce either a lot of duplicated tones, or tones that are non-humbucking, and thus noisy. This invention develops the math, phases and topologies necessary to determine just how many unique tones one may get from the numbers of pickups that can reasonably fit on or in a stringed instrument, particularly guitars. This increases the number of possible tones up to orders of magnitude over current choices using 3-way and 5-way electromechanical switches. Then applies these developments to describe switching systems which may be constructed with commonly-available electromechanical switches, and commonly-available micro-controllers and crosspoint switches. It also describes a new approach to micro-controller and crosspoint switch switching, which introduces the concept of a tonal shift lever, for going nearly monotonically from bright to warm tones. This allows very simple control inputs which relieve the user from having to memorize and know the combinations of pickups needed to produce desired tones. This patent application claims all topologies and tonalities developed for any number sensors of number J from 1 to infinity, constructed by the methods shown here, except for those already in the public domain and/or protected by patent.
Technical Problems Found and Resolved
The vast majority of current electric guitars with electromagnetic pickups use either 3-way or 5-way pickup switches, failing to take advantage of the number of possible humbucking pickup combinations. A dual-humbucker guitar with a 3-way switch misses up to 17 more possible outputs. A 3-coil guitar with a 5-way switch produces only 2 potentially humbucking outputs, when it could have 6. Other patented guitars claim from 80 to over 250,000 separate tonal outputs, when in fact from 50% up to 96% of those are tonal duplicates, and a small fraction of the remaining are humbucking. The math and topology developed here establish the potential number and connections of tonally different humbucking outputs, in pairs, quads, hextets and octets of matched single-coil pickups, and pairs, triples and quads for dual-coil humbuckers, raising the possible number of potential humbucking outputs up to an order of magnitude or more. For example, up to 6 humbucking combinations for 3 matched single-coil pickups, 48 for 4 pickups, 200 for 5 pickups, 3130 for 6 pickups, 19,222 for 7 pickups and 394,452 for 8 pickups; and up to 20 for 2 dual-coil humbuckers, 310 for 3 humbuckers and 8552 for 4 humbuckers.
With so many possible different tonal combinations of pickups, electromechanical switches soon reach their limits for any arrangement above 3 single-coil or 2 humbucking pickups. This virtually mandates the use of a digitally-controlled, analog crosspoint switch. Furthermore, guitars which have incorporated digital signal processing, such as digital string tuning, interfere with the magic between the fingers and the strings. Even as some electric guitars move to digital electronic switching, they offer no map to the tonal qualities of each output, and the high number of claimed outputs and multiple selection switches are potentially confusing. This invention simplifies the human interface, reducing the selection of tones to a simple up-down selection on a range of bright to warm tones with no need to know which pickups in what combinations are being used. Other communication modes and preset sequences of tones are possible and enabled. Although the switching between pickup combinations in this invention is controlled by a digital micro-controller, the signal path from fingers to output is analog.
Tones which are high up upper harmonics are considered “bright”. Tones which are low in upper harmonics are considered “warm”. To this inventor's knowledge, no one has developed a means of sorting tonal outputs of any given guitar into sequence from bright to warm tones. This invention does so using the analog-to-digital converter common on many micro-controllers to perform spectral analyses of different pickup combinations, and produce the moments of the resulting frequency spectral density functions, such as the first moment, or mean.frequency, and the second and third moments. An experiment taking Fast Fourier Transforms of the outputs of a dual-humbucker guitar with an effective 20-way switch demonstrates that by mean.frequency, up to 17 of those humbucking outputs can be considered tonally different. This inventor could find no reference to any similar measurements to demonstrate tonal distinctions for any other enhanced-output guitar.
These are standard electronic terms and/or terms declared here for the purpose keeping track of separate objects and concepts:
Base topology—a collection of one or more sensors all connected in series between two terminals or nodes of a circuit or topology, or alternatively all connected in parallel between two terminals, such that the mere order of connection of sensors in the topology, without changing phases, cannot change the output of the collection in any manner that the human ear or electrical measuring instrument can detect.
Category—the size of a topology, i.e., the number of sensors in a topology, usually designated here by (J) or (M). or a number in parentheses, i.e., (3)
Parallel connection—two or more two-terminal sensors with one terminal each connected to one circuit node or output terminal, and the other terminal each connected to another circuit node or output terminal.
Phase—the relative reversal of terminals of a sensor or group of sensors in a topology, compared to other sensors in the circuit, such that the human ear can detect a difference.
Series connection—two or more sensors of two terminals each with one terminal of each sensor connected to the next sensor in a line, which in turn is connected to the next, et cetera, until only the outer two terminals are connected either to the circuit output or to two nodes inside a larger circuit.
Signs&pairs—the number of potentially unique outputs due to the use of humbucking pairs, for any number of pairs more than 1, JP≥2.
Sub-category—a number or sum of numbers, enclosed here in brackets or parentheses, such as (M1+M2+M3) or [4+1] or (3+2+1) or (2+1+1+1), indicating a topology of size M=J or category (M=M1+ . . . +MN), which is comprised of N number of base topologies, each of size Mi, i=1 to N. The order of Mi number of sensors inside the associated base topology cannot affect the output of the whole, but the reversal of terminal connections of the base topology, or any sensor within it may.
Topology—the electrical connections of sensors or groups of sensors, particularly two-terminal sensors in series or parallel with respect to each other, such that the output also has two terminals.
Versions—in this context, the number of possible topologies within a sub-category in which replacing a single sensor or changing its phase will change the output without changing the topology.
ab, using the example of 3 single-coil pickups, 2 in parallel with north poles up connected in series and in-phase to 1 with a south pole up in
This is necessary for understanding, to avoid pickup switching combinations that are either tonal duplicates or, if one desires, non-humbucking. It is necessary to understand why previous inventions are flawed, and why this approach is novel. To this inventor's knowledge, no one has yet fully and systematically described how to determine the number of unique tonal combinations of K single-coil pickups taken J at a time, or KK humbucking dual-coil pickups taken JJ at a time. Or how to determine the potential number of unique humbucking tones, using combinations of humbucking pairs (Baker, U.S. Pat. No. 9,401,134, 2016) in larger assemblies of 4, 6, 8 or 10 matched single-coil pickups. This discussion includes certain prototype experiments and prior art as seemed necessary to illustrate the impact of these developments.
Note that while this development focuses on coil and magnet sensors, such principles can also apply to other types of vibration sensors, such as piezoelectric, optical, proximity, hall-effect and other pickups. Since hall-effect sensors also depend upon magnetic field disturbances, they can also be made as matched single device string vibration sensors, or dual device humbucking sensors. They are typically not used in electric guitars because the signals they provide are thus far small enough to require auxiliary amplification, preferable inside the guitar to avoid line noise.
Unique Tonal Combinations of K Sensors Taken J at a Time
Combinations of K Sensors Taken J at a Time
Let us start with two-terminal sensors, such as piezoelectric elements, microphones and single-coil pickups. First topologies, then phases, later combinations of single-coil and dual coil guitar pickups in humbucking combinations. Math 1a-b shows to calculate the number of ways you can choose K things J at a time, where J≤K are both integers. For example, if you have 5 sensors and pick 2 of them to connect in series, you can do this 10 different ways. If you have 3 sensors, A, B & C, you can connect two of them in parallel 3 different ways as: A∥B, A∥C and B∥C, where B∥A is the same as A∥B. This kind of calculation is basic to this discussion.
Unique Tonal Interconnection Topologies of J Things
For this discussion, consider just the topologies of J things connected either in series or parallel, or some combination thereof. For J=1, there are no interconnections and the number of topologies is only J=(1), where (1) represents a category of only 1 sensor connected between two terminals, as shown in
For J=3, we construct in
Label the 3 sensors in
Math 2a shows how this is done for each sub-category. For J=3, sub-category (3), there is only 1 combination of 3 things taken 3 at a time. For a sub-category like (2+1) with multiple basic topologies, the combination calculations must be split up and multiplied together. First the (2) part is calculated by taking 3 things 2 at a time, then 2 is subtracted from 3, leaving 1 thing taken 1 at a time. Math 2b shows the combinations in each sub-category multiplied by the number of version in each sub-category, adding up to JT=8 total unique topologies, comprising of
We find that in doing so, the topologies for category (2+1+1) are also constructed. For category (2+1+1), two single sensors are connected to a serial or parallel pair of sensors in such a way that the order of choice of the single coils matters to the tone, which we can see by inspection. Math 3a shows the number of tonal combinations of J=4 sensors for each version of topology in a subcategory in
Without further mathematical demonstration or proof, one may offer the conjecture that in constructing topologies, i.e., for J number of sensors, using topological categories for (J) and smaller, that one only need to make the constructions from pairs of smaller categories, i.e., (J) and (1), then (J−1) and (2), down to (J−n) and (n), where n is an integer greater than or equal to J/2. That from these combinations, all the other sub-categories with 3 or more basic topologies are created, i.e, ((J−2)+1+1), ((J−3)+2+1), ((J−3)+1+1+1), and others.
For J=6, the topologies have been constructed, but are not shown in figures here. The construction from combining category (5) topologies with the category (1) topology, (4) with (2) and (3) with (3), produced 2 versions of subcategory (6), 2 of (5+1), 5 of (4+2), 2 of (4+1+1), 4 of (3+3), 18 of (3+2+1), 2 of (3+1+1+1), 15 of (2+2+2+2), 20 of (2+2+1+1) and 2 of (2+1+1+1+1), for a total of 72 versions of J=6 topologies. Math 5a shows numbers of combinations of J=6 sensors for each of the subcategories, and Math 5b shows their products times the number of versions in each subcategory, for a total of JT=7219 unique topologies, from 10 subcategories.
For J=7, no topologies have been constructed here, but it is reasonable to suppose that they may be constructed from combining category (6) topologies with category (1), (5) with (2), and (4) with (3), producing the 14 subcategories (7), (6+1), (5+2), (4+3), (5+1+1), (4+2+1), (4+1+1+1), (3+3+1), (3+2+2), (3+2+1+1), (3+1+1+1+1), (2+2+2+1), (2+2+1+1+1), and (2+1+1+1+1+1). Let C denote the number of subcategories for J, and JV the number of versions for J. Math 6 shows C, JV and JT for the topologies already constructed.
When JV and JT are plotted against C in log-log space, the last three points, for C=4, 6 & 10 plot in nearly a straight line, suggesting JV=exp(a+b*ln(C)) and JT=exp(c+d*ln(C)). When these functions are fitted and calculated for J=7 and C=14, JV is estimated to be about 148, and JT about 43,000. However, this may be a moot point for small, portable stringed instruments like guitars. With more sensors closer together, the separation of adjacent unique tones decreases, so that it may not be either practical nor necessary to get a good range of tones with a lot of sensors. More sensors along the strings may make more sense with non-fingered stringed instruments like pianos, where the whole length of any string can be used to generate electronic tones.
Unique Tonal Phase Combinations of J Things
Without any other reference signal, neither the human ear nor electronics can determine the phase of a signal of a single frequency. The human ear cannot hear tonal difference between the signal sin(ωt) and the signal −sin(ωt)=sin(−ωt), where ω=2πf, and f is the frequency in Hertz or cycles per second. If the phase is designated as (+) for the signal sin(ωt) and (−) for the signal −sin(ωt), then without any other reference signal there is no tonal difference between (+) and (−). If there are two signals, the phase combinations can be designated (+,+), (+,−), (−,+) and (−,−), but only two are tonally unique for the human ear, since −(+,−)=(−,+) and −(+.+)=(−,−).
We can construct a diagram of unique phases for J things:
Math 7 shows one embodiment of unique phases for sensors with J=1, 2, 3, 4 & 5, indicated by the letters A to E. The first column begins with all “+” values, indicating that the terminal connections of all the sensors set phases of all the sensors to align with the output. A “−” value indicates a reversed phase, achieved by reversing the terminals of the individual sensor within the circuit. This affects the spectral density of tones at the output of the circuit, since some tones will at least partially cancel out, and others will at least partially add in signal strength.
If one looks closely, one can see that the pattern of terminal switching follows the combinations of J sensors taken L at a time. The first column is J things taken 0 at a time, or all “+”. The next column is J sensors taken 1 at a time, or J different terminal reversals, as the “−” value moves down the column. The next column shows J sensors taken 2 at a time, as a pair of “−” values moves down the column. And so on. Note the sequence of moves. It is clear visually, but less easy to describe. The sequence stops just before the very next column is the reverse of the one before it. That is the same as reversing the output terminals of the entire circuit, which causes a phase difference which we reasonably supposed that the human ear cannot detect. In each case for J sensors, the number of possible sign reversals is 2J-1.
If J is odd, then the combinations of sign reversals are satisfied by J sensors taken i at a time, for i=0 to (J−1)/2. J taken 0 at a time is 1, or the first column of all “+”. If J=2, there is only the first column (+,+) and a second column, either (−,+) or (+,−). If J is even and greater than 2, it's more complicated. First the combinations (columns) extend from J sensors taken i at a time, for i=0 to (J−2)/2. Then the combinations of J sensors taken ((J−2)/2+1) at a time, to the limit of the number of combinations of {(J−1) taken ((J−2)/2) times}. So, for the example of J=6, the combinations are 1 set of (6 taken 0 at a time), then 6 sets of (6 taken 1 at a time), then 15 sets of (6 taken 2 at a time), then finally {5 taken 2 at a time} sets of (6 taken 3 at a time). There is even a mathematical expression for this, Math 8a, which shows how the combinations relate to 2J-1.
Note that past the vertical lines for each set of J sensors, every column to the right is the negative of the column to the left, reflected about the vertical line, making that set of phases duplicates to the human ear. Therefore, we can surmise without further example, that for J sensors, there are 2J-1 possible unique tonal phases. We can extend this to the basic serial and parallel topologies in any given topology. In each basic topology of size Ji, with i=1 to n such that J1+J2+ . . . +Jn=J, the sensors in the size Ji basic topology can have 2Ji-1 unique tonal phases, and that change the phase of each of the n basic topologies together can have 2n-1 unique tonal phases. Math 9a shows that the product of all these separate changes of phase equals 2J-1.
2J
Math 9b shows an embodiment for how this works for J1=3 and J2=2, using the letters A to E to identify sensors. In the bottom rows for J2=2, sensors D & E go through the 22−1=2 changes, then the inverse of those changes to show the (2) basic topology itself being inverted. Since there are only 2 basic topologies (3) and (2), producing 22−1=2 phase changes at the basic topology level, only basic topology (2) has to be inverted. In this case, D+E->(−,+) is not the same as D+E->(+,−), because the ear has the signal from A, B & C as a reference. Basic topology (3) cycles through the phase changes indicated in Math 7 for J=3. This demonstrates 16 unique phases, confirming that this method agrees with 2J-1=24=16. By induction, the maximum number of tonally unique phases for J sensors, NSGN is:
N
SGN=2J-1 Math 10.
Collecting Categories, Versions, Combinations and Phases
Math 11 shows the characteristics of the topologies of size J discussed so far, where Cs is the number of subcategories, JV is the cumulative number of versions of topologies for all subcategories, JT is the resulting total of unique combinatorial topologies, and NSGN is the number of unique phases. The values for J=7 are estimates.
Let KJT be the total number of possibly distinct tonal combinations for K single coil pickups, or single sensors, taken J at a time. And let KT be the total number of possibly distinct tonal combinations for K such pickups for all numbers of J. Math 12a shows the appropriate calculations. Recall the table of combinations in Math 1b. The inner cells of Math 12b show the values of KJT, while the column on the right shows the sum KT.
The standard 6-string electric guitar has about 7 inches (178 mm) between the bridge and the bottom of the neck, which would allow for a maximum of about 8 or 9 standard single-coil electromagnetic pickups with end wires. Consider what the maximum difference in tones might be by taking a pickup at the bridge of a guitar, and adding it out of phase to the signal from a pickup closer to the neck, or for any combination of pickups. Now compare that brightest of tones to the warmest of tones obtained by summing all of the signals of all of the pickups together. For 8 pickups, taken in topologies of J=1 to 6 at a time, there are a possible 6,979,286 tones in between the brightest and warmest.
For 5 separated pickups, there are a possible 11,197 tone circuits. For the 5 coils of two humbuckers and a single, there are less, due to the fact that the coils in a humbucker sit next to each other and share a single magnetic field. The 32nd harmonic of a string fundamental on a 25.5 inch base length (top of the neck to the bridge), and the 16th harmonic of the same string held at fret 12 is about 0.80 inch, roughly the distance between the two poles of a humbucker pickup.
Not only will the magnetic fields of 8 pickups likely be entangled producing transformer effects between them, and likely similar tones, the adjacent separation of those nearly 7 million tones will likely be mostly indistinguishable to the human ear. What's more, only a few percent of those tones will be humbucking, as we shall see below. To a lesser extent, this may also be true of the possibly unique 11,197 tones of just 5 pickups, taken 1 to 5 at a time. As noted before, this may make more sense with non-fingered stringed instruments like pianos, where the whole length of any string can be used to generate electronic tones from pickups.
Note that if the sensors are single-coil electromagnetic pickups, Math 12 does not assume that any of the pickups are in any way equivalent in response to hum or string vibration. We shall see below that requiring that any of the sensors or their combinations be either matched or humbucking reduces these numbers significantly.
Unique Tonal Combinations of KK Humbucking Pickups Taken JJ at a Time
If one considers using only humbucking electromagnetic pickups, without combining single coils from different humbuckers, it is possible to use the same topologies developed above, replacing each sensor or single coil pickup with a dual-coil humbucker, as in
Compare the KKT results in Math 14 with current and past commercial entries. The standard dual humbucker guitar has a 3-way switch, when with a few more switches, it could have up to 20 tonal outputs. The Fender Marauder (Fender, U.S. Pat. No. 3,290,424, 1966) used four single-coil pickups, each about the size of a mini-humbucker with two lines of poles. It had 80 tonal outputs, of which only 48 were unique, and only 8 were unique and humbucking. With four mini-humbuckers, it could have had 8552 possibly unique humbucking tones. The Music Man “St. Vincent” guitar has three humbuckers and a 5-way switch, when it could have 310 humbucking outputs. The Music Man “Game Changer” will be discussed below. Again this begs the question of how many tones are usable, something which can be determined only by experiment and measurement.
A Dual-Humbucker Experiment
A desktop computer microphone input received the guitar output. FFT software, SpecAn_3v97c.exe, Simple Audio Spectrum Analyzer v3.9 ©W. A. Steer 2001-2016, accumulated the audio data and produced an FFT amplitude spectrum. The software was set to: Amplitude scale=135 dBFS; zero-weighted; Freq scale=log; Visualize=Spectrograph w/avg; Sample rate=44.1 kHz; FFT size=4096; FFT window=Hann cosine. The audio volume pot on the guitar was set to avoid clipping. Each FFT spectral average was exported to a text file with a *.csv suffix filename, then imported into an MS Excel spreadsheet.
In the spreadsheet, each import file produced 2048 frequency “buckets”, from 0 to 21,039 Hz, with an average value in dB for each amplitude and a frequency resolution of about 10.7 Hz. Math 15 shows how the data was processed to obtain the 1st, 2nd & 3rd frequency distribution moments. The average spectral amplitude was converted from log to linear voltage, linVn, n going from 1 to 2048. From this a frequency spectral density function, PV(fn) was constructed by dividing each value of lin V by the sum of the values. The 1st moment, or mean frequency, mean.f, was then the sum of the product of fn times PV(fn). The second moment is the sum of the product of (fn−mean.f)2 times the spectral density. And the 3rd moment is the sum of the cube of (fn−mean.f) times the spectral density. Only mean.f is plotted in
The differences in frequency between adjacent values of mean frequency run from 0.44 Hz to 326.5 Hz, with an average difference of 65.9 Hz and a standard deviation of 75.8. The smallest differences, less than the resolution of the FFT, occur at 7.5 Hz between points 1&2, 0.44 Hz between 3 & 4, 9.0 Hz between 13 & 14, and 0.51 Hz between 17 & 18. The three largest differences are 102.1 Hz between points 4 & 5, 326.5 Hz between 18 & 19, and 154.0 Hz between 19 & 20. Removing these points changes the mean difference to 54.3 Hz with a standard deviation of 29.5. If one removes the 4 points with the smallest difference to the one above it, one could argue that there are only 16 effectively different tones, out of a 20-way switching system with 24 switch positions. But at least they are all humbucking.
Six data points in the plot correspond to a 3-way switch, 3 designated by circles for 2 humbuckers with their internal coils connected together in series, and 3 by triangles for 2 humbuckers with their internal coils connected together in parallel. Often, the bridge humbucker may be “hotter”, with a stronger signal output, than the neck humbucker, because of the smaller relative motion of the strings near the bridge. The humbuckers used here had equal outputs, which may account for the bunching together of two circles and two triangles in the lower range of each.
Note that the mean frequencies seem much larger than one might expect from the octave range of a guitar. This may be explained by the method of the experiment. The FFT measurement range went to 22 kHz, far above the octave range of a guitar, introducing noise as well as guitar output. Strumming over six frets to produce as wide as possible a range of frequencies, with a frequency resolution of 10.7 Hz would also have broadened any spectral peaks of fundamentals and harmonics. If the frequency resolution had instead been 1 Hz, and only one string strummed on one fret, the spectral peaks would have been sharper and the mean frequencies much lower, as confirmed by later experiment. So the results can only be taken to demonstrate that the 20-way switching circuit has relatively wider range and finer tonal distinctions than a 3-way switching circuit.
Note: In the case of humbuckers, since individual coils within each humbucker are matched in turns to each other, the number of turns from humbucker to humbucker do not have to be matched in the KKJJT combinations shown in Math 14 for the whole to remain humbucking. The practical limits for how many pickups, single-coil or humbucker, can be placed along the strings is limited for most electric guitars, but not pianos, to the space between the bridge and neck. Besides which, the closer individual coils come to each other in space, the more their fields interact, and transfer vibrational energy between them, causing tonal and phase effects which cannot be addressed here.
Humbucking Pairs, Quads, Hexes, Octets, Etc.
Baker (U.S. Pat. No. 9,401,134, 2016) developed the concept of humbucking pairs. This patent extends the concept to humbucking pairs, quads and octets by methods that can be applied to higher orders. Coils now represent pickup sensors in the Figures, to represent electromagnetic coil guitar pickups, because, other than perhaps electromagnetic coil microphones and hall-effect sensors, sensors such as piezoelectric, optical, capacitive proximity and capacitive microphone sensors do not respond in the same way to low-frequency external magnetic fields, or “hum”. The patent applied to pairs of K number of single-coil pickups, all with matched numbers of turns in their coils, and equally responsive to a uniform external hum field.
There may be some tradeoff between the number of coil turns and the size and configuration of the pole pieces, so for this discussion the “matched pickups” are assumed to be clones. For if the number of turns or size of wire changes the resistance and inductance of the coil can change, and between dissimilar pickups, the difference in phases will mean that a dissimilar pair, even if responding equally to one frequency of external hum, will not be exactly in-phase or contra-phase over the whole range of string frequencies. To recap, two single-coil pickups connected together, in series or parallel, can only be humbucking if when they have different magnetic poles up, or towards the strings, they are connected in-phase. If they have the same magnetic pole up, they must be connected out-of-phase, or contra-phase, to be humbucking.
The math changes with humbucking pairs, quads, hexes, octets and up. Because pickups are paired together and only the pairs can reverse connections together, the calculation of phases changes. The issue of symmetry, where circuit topologies are symmetrical both left-right and up-down, has an effect. Because the pickups are all clones, except for the direction of magnetic field, any pickup can be placed at any position in a symmetrical topology and produce the same signal at the output when it has the same phase with respect to the output. In the net result, humbucking pairs connected so that an entire topology of size J has a humbucking output have far fewer possible outputs for the same number of pickups as non-humbucking topologies, typically one or more orders of magnitude less. Yet the numbers are still potentially much larger than current 3-way and 5-way switches can produce.
It is also possible to use humbucking pairs where the pickups in each pair are clones and the pickups between pairs are not. Because the matched pickups have to be kept together, either in series or parallel pairs, this would reduce the number of potentially unique outputs compared to those of sets of different dual-coil humbuckers.
Humbucking Pairs
Consider again
For reasons which will become apparent, the serial-parallel multiplier, JJSP, is not used as it was for humbucking pairs as it was for dual-coil humbuckers in Math 13ab and Math 14. Math 16 shows the number of combinations of humbucking pairs, KCP, for K things taken 2 at a time for both versions of subcategory (2) topologies in
Humbucking Quads
Two humbucking pairs, JP=2, connected together to form one topology with two output wires, makes a humbucking quad.
Here we have assumed that series and parallel combinations of the same two pickups will produce different tonal outputs. That may not always be true in practice. The tonal difference between parallel and series connected pairs derives from the low-pass or low-pass/peak filter created when the pairs are connected to a resistive or capacitive load. When series and parallel pairs are connected to a high-impedance load, the differences in tone are far higher in frequency than human hearing.
It is also possible that in some circumstances, topologies like
As shown in
All category (4) topologies have up-down, left-right symmetry, and circuit theory shows that exchanging the position of any pickup with any other cannot change the signal at the terminals of the topology.
Consider this, if there are only 2 + signs and 2 − signs for the signal outputs, then there are only 3 choices of signal, b, c & d, to have the same sign as signal “a”. The duplicate pairs are (AB,CD) & (−AD,BC), (−AB,CD) & (−AC,BD), and (AC,BD) & (AD,BC). Choose any one of each for the three potentially unique tones.
What if not all the same poles are up? Math 18 shows the results for pickup A with the south pole up, as designated by the underscore, A. Any of the remaining north-up coils must be in-phase with A, with respect to string vibrations, to be humbucking. Here again, we characterize the sub-combinations by picking all the signal with the same sign as “a”. There are only 3; the in-phase pairs designated by signals a-b, a-c & a-d, with the remaining pair connected contra-phase. We can offer the conjecture, without proof, that this will be true of any number of north and south poles up. The others are duplicates. In this case, the duplicate pairs are (AB,CD) & (AC,BD), (−AB,CD) & (AD,BC), and (−AC,BD) & (−AD,BC). So for this kind of analysis, a category (4) topology is considered one entity with 3 phase versions, setting NSGN-HP or NSGN-HQ=1.
One might question whether or not contra-phase can ever be the same as reversing output connections on a humbucking pair. Consider six matched single-coil pickups A, B, C, D, E and F, where A and C have south poles up and the other four have north poles up. Math 19 shows that even if C had the same signal as E and D the same signal as F, the four different connections produce four different sums. So reversing the output connections of a contra-phase humbucking pair cannot make it in-phase with the other pairs.
AB→a+b; CD→c+d; EF→e−f
AB+CD→a+b+c+d; ĀB−CD→a+b−c−d
AB+EF→a+b+e−f; ĀB−EF→a+b−e+f Math 19.
The (2+2) category can be calculated by ordinary combinatorial math and NSGN-HP=2JP−1=22−1=2, as shown in Math 20. By this math, the total number of tonal topologies for humbucking quads, NT-HQ=48, and the total number of humbucking quads for K≥4, KCQ, is 48 times K things taken 4 at a time. Note that any switching system using 4 matched single-coil pickups, either in series or parallel, will have to map and identify each set of three distinct humbucking tonal combinations of pairs and signs. This will require knowing which poles are up on which pickups. Note that if
To check the math for K=5, consider Math 21, which show an additional 5th pickup, E, in each position for A, B, C & D. This produces (5 things taken 4 at a time) times (4 versions of (4)) times (3 pairs&signs)=60 potentially unique tones. Using combinatorial math for the (2+2) category topologies, it is (5 things taken 2 at a time) times (2 topological versions) times (3 things taken 2 at a time) times (NSGN-HP=2). Math 22 shows the confirming calculations.
For K=5 matched pickups, Math 23 shows the number of possibly tonally different humbucking pairs and quads is 200. For two humbuckers and one single-coil pickup, as in the Music Man “Game Changer” guitar, even if the single-coil pickup is matched to each of the coils of the humbuckers, this may diminished by the fact that the coils in the humbuckers are so close together and have the same field, and some number of pair and quad combinations will produce essentially duplicate tones. And note that of the 11,197 potentially different tonal combinations of 5 pickups that are possible in Math 12b, only 200, or about 1.79% may be humbucking, if and only if the coils are matched. Compare this to the Fender Marauder, which had a “noisy” reputation and failed in the market, of which 16 of 80 outputs, or 20%, were potentially humbucking, and half of those duplicates. This illustrates the importance of accurately assessing connections with humbucking outputs.
The Limits of Theory
It's all very well to say that
The connections corresponding to
For the supposed duplicates in Math 24, according to mean.f, not predicted by the theory above, the square roots of the 2nd moments and the cube roots of the 3rd moments are not quite equal by 100 to 200 Hz. It would take a musically trained ear to determine if they sound the same or not. Nevertheless, it is better for honest and successful marketing to underestimate the number of distinct tones, and provide a pleasant surprise, than the converse. The only proof of theory is experiment. All possible combinations should be tried before removing those which prove to be tonal duplicates.
Due to this, the preferred implementation of the electronic switching system, to be described below, includes the means to analyze the outputs of all possible switch combinations for humbucking, mean frequency, and the 2nd and 3rd moments of frequencies of a strummed stringed instrument. This implies and requires that the electronics include software switching control, analog-to-digital conversion, and FFT generation, preferably to 1 Hz resolution from about 10 Hz to 10 kHz.
Humbucking Hexes
To analyze the potential “pairs & signs” of category (6), another topology of left-right, up-down symmetry, consider the single-coil pickups A, B, C, D, E and F connected in series, as in
Suppose that A, B, C, D, E and F are all matched single-coil pickups with north poles up, and a, b, c, d, e and f represent the signal levels in each coil. Then each pair will be contra-phase, i.e., AB will have a signal a-b. That means that will all humbucking hex combinations in Math 25, there will be 3 + signal terms and 3 − signal terms. The outputs of the series hex can then be characterized by the signals with the same sign as signal a.
Math 26 shows the pairs and signs calculations for 4 of the 15 sets in Math 25, following the method of Math 17. For example, we take 6 coils in series as the pairs (AB,CD,EF) and calculate the signs of the signals. Then we reverse the connections of pair AB, i.e., (−AB,CD,EF), and CD and EF in turn to calculate the signs of the signals. So for each of the 15 sets, there might be 4 potentially different tones or a total of 60. Here the sets are distinguished in the bottom 4 rows, according to which signal outputs have the same sign as signal “a” from pickup A, as noted in the bottom row by assigning a number to each new combination, and the same number for each duplicate. Note that for 16 potentially distinct humbucking tonal outputs, half are duplicates.
A pattern emerges. If all of the different tonal outputs are characterized by the two signals which have the same sign as signal “a”, then there are 5 remaining signals, b, c, d, e and f, taken 2 at a time. Which means that there can only be 10 tonally distinct pair and sign outputs of six coils in series, or in parallel, with the other 4×15−10=50 potential outputs being duplicates. When the full mapping is done, they turn out to be abc, abd, abe, abf, acd, ace, acf, ade, adf, & aef. One can offer the conjecture, without proof, that for any combination of north-up and south-up pole pickups adding up to K=6, there will also be only 10 different pair & sign choices for a category (6) topology.
Math 27 shows the total number of humbucking hex topologies, NT_HH, for 4 topology categories of (6), 12 categories of (4+2) and 4 categories of (2+2+2), and thus the total number of possible tonally distinct humbucking hexes, KCH, given K matched single-coil pickups, for K≥6. Again, NSGN-HP is determined by the number of entities which can be connected in reverse to the circuit, 1 for category (6) topologies, 2 for (2+4) and 4 for (2+2+2).
Note the second line of Math 27, for (4+2)=(2+4) subcategories. It doesn't matter which number (4) or (2) is taken first in the calculation, which here takes (2) first to calculate the number of combination of 6 things taken 2 at a time. This leaves a unique set of (4) pickups, or 4 things taken 4 at a time, which has only 3 possible humbucking combinations of those four pickups due to the pairs and signs symmetry. The number of entities, subcategory topologies (4) and (2) in the (4+2) or (2+4), allows for 22−1=2 different phases by inverting connections to the whole.
NOTE: A Hofner-style mini-humbucker is about 1.2 inches wide, or about 0.6 inch per coil. Standard single-coil pickups with center connections are about 0.93″ wide, and with end connections about 0.72″ wide. For a guitar with a nominal base length of 25.5 inches, there are about 5.75 inches of usable pickup mounting space between the neck and bridge. Six matched mini-single-coil pickups of 0.6 inch width will fit in that space with a center-to-center spacing of about 1.03 inches. A 5.75 inch space would be completely filled with about 4.8 mini-humbuckers or at most 8 or 9 redesigned standard single-coil pickups.
According to Math 16, 20 & 27, for K=6, KCP+KCQ+KCH=30+540+2560=3130 potentially distinct humbucking tones, or ˜1.08% of the 289,746 possible connections of 6 pickups shown in Math 12ab. Less, if some of the topologies turn out to be electrically equivalent, and/or produce the same tones. However, the dual-humbucker experiment cited above indicates that some tones might have such small distinctions between them as to be duplicates, potentially reducing the total. At that pickup spacing, one might also suspect that the pickup electromagnetic fields may interact, potentially smearing such distinctions, further reducing the number of distinct tones.
Humbucking Octets
Humbucking octets are constructed by replacing the single matched sensors in
Recall from Math 10 that 4 pickups, or 4 humbucking pairs, have 8 possible sign combinations. Suppose a series-connected octet of 8 matched single-coil pickups, A, B, C, D, E, F, and H, with respective signals a, b, c, d, e, f, g and h, and all the pickup poles are north up. That means that all the (2+2+2+2) versions of those pickups are contra-phase pairs, with 4 signals with + signs, and 4 signals with − signs. If the same rules hold true as for category (6), one could take signal “a” and choose the seven remaining signals taken 3 at a time. There will be 35 sets of signals, all with the same sign as “a”, starting with a+b+c+d and ending with a+e+f+g. Math 29 shows the pattern for a parallel, series or symmetrical topology with a number of matched pickups, Je=4, 6 & 8, with the extension by induction to Je=10, with a conjecture for the number of humbucking pairs & signs for their corresponding topological categories.
If this holds, then Math 30a&b show the analysis deriving NT-HOCT and KCOCT from Math 28 and 29.
Note that to get anywhere near 250,000 potentially different humbucking tone outputs with switched topological combinations of matched single-coil pickups, one needs at least 8 pickups with connections including humbucking pairs, quads, hextets and octets. Even at that, the pickups will be so close together that their fields will likely be entangled and change the results, possibly producing fewer distinct tones. Only experiment can tell.
Compilation of Theoretical Results
Using Math 16, 20, 27 & 30, Math 31 shows the numbers of potentially distinct humbucking tones for K=2 to 8 matched single-coil pickups, reduced by those deemed duplicates by circuit theory. Since at most about 8 single-coil pickups will completely fill the available space between the neck and bridge of an ordinary guitar, K>8 is not considered. For example, if K=6, up to 30 humbucking pairs, 495 humbucking quads and 568 humbucking hexes can be switched to the output, for a total of 1093 humbucking outputs. Math 32 shows the percentage of potentially distinct humbucking tones for the figures in Math 11.
Clearly the larger the number of pickups and number of possibly different topologies and sub-combinations, the smaller the percentage of output that are humbucking with potentially distinct tones.
According to circuit theory, treating Z as a resistance at a single frequency, should work so long as all the pickups generate the same frequency and level of hum voltage, i.e., Va=Vb=Vc=VH, for a uniform external electromagnetic hum field, and the coil resistances and impedances are equal for all frequencies of external hum. Then one or more pickups with north-up poles can be connected in parallel with each other, and in series with a group of one or more parallel south-up poles, to produce a humbucking circuit. This will work for any number of matched pickups, odd or even. A group of pickups with north-up poles can be connected in parallel, and in-phase with respect to string vibration signals. A second group of pickups with south-up poles can be connected together in parallel and in-phase with respect to string vibration signals. So long as all the pickups are constructed to have the same internal impedance and resistance, and to generate the same amplitude of signal from a uniform external hum field, the two groups can be connected in series and in phase with respect to string vibration signals and the whole circuit will still be humbucking.
In this way humbucking circuits can be constructed for odd numbers of matched single coil pickups, so long as there is at least one north pole up and at least one south pole up. This would add 3-coil circuits, as in
Suppose that there is a dual-coil neck humbucker, a dual-coil bridge humbucker and a single-coil pickup in the middle, and that all the coils are matched in resistance, inductance, and response to external hum. Suppose that the coils are labeled NN for the neck coil with a north up (N-up) magnetic field, SN for the neck coil with south up (N-up), NM for the middle coil with N-up, NB for the bridge coil with N-up, and SB for the bridge coil with S-up. Here we us “∥” to indicate parallel connection, and “+” to indicate series connection. According to the special case approach, we can have the 9 humbucking triples: (SN∥SB)+NM, NN & NB, (NN∥NM)+SN & SB, (NN∥NB)+SN & SB, and (NM∥NB)+SN & SB. We can have the 3 humbucking quads: (SN∥SB)+(NN∥NM), (NN∥NB) & (NM∥NB). We can have the 1 humbucking quintuple: (SN∥SB)+(NN∥NM∥NB). Those are all in-phase combinations.
By extension of the method, we can also 3 contra-phase humbucking triple combinations: NN−(NM|NB), NM−(NN∥NB) and NB−(NN∥NM). If the special case holds, This would add 15 humbucking circuits to the 20 for 2 humbuckers in Math 14, for a total of 35 potentially unique tones, as compared to 200 potentially unique tones for 5 separated and matched coils, shown in Math 31. It remains to be seen how many of those tones are distinct from each other.
Although one may not patent mathematical equations, one can patent the combinations of physical objects described and predicted by math and topology in the sections above. The following uses the math and topology developed above to more concretely discuss such combinations. Note that in the matter of electric guitars with dual humbuckers with a 3-way switch, and three single coils with a 5-way switch, some of the simpler pickup circuit combinations presented here have been long in use and are not novel. But the development of methods to clearly identify which simple and complex combinations of vibrations sensors are tonally distinct and which are humbucking is novel, and renders patentable all other circuits predicted and described those methods.
Recall that dual-coil humbucking pickups commonly comprise of one magnet between two coils with poles in their centers. In some versions, one pole is up and one down. When the poles of both coils are pointed up, one must be magnetic north and the other must be south. In Jacob's FIG. 11 (US2009-0308233-A1), he combines equal and opposite poles, one each of two dual-coil humbuckers, in Throw 2, 3, 4 and 5. This also occurs in his FIG. 12 in throws 2, 3 and 4. This requires taking 2 wires for each coil, 4 for each humbucker, into the switching network, where the series and parallel connections are made. Does it make more sense to make the series and parallel connections between the two coils of a single humbucker, and bring only 2 wires into a switching network?
Recall that the 32nd harmonic of the fundamental of the 0 fret and the 16th harmonic of the fundamental of the 12th fret on an average guitar span a distance of about 0.8″, about the same as the distance between the centers of humbucker pickup poles and coils. This means that for most if not all the vibration frequencies of interest, both poles of a single humbucker see essentially the same string vibration signal. If this holds true, then circuit theory says that the output signal of two humbuckers in-phase and in parallel is effectively equal to the string vibration signal from the north pole of one humbucker and the south pole of the other, connected in-phase and in parallel.
Likewise, the output signal of two humbuckers connected in parallel and out of phase, or contra-phase, is effectively equal to the signal of the north pole of one humbucker connected in parallel and contra-phase with the north pole of the other. The same holds true for the south poles from each humbucker connected in parallel and contra-phase, which is also equal in signal to the north pole contra-phase connection. Likewise, one can reasonably expect the same to hold true of coils and humbuckers connected in series. So a fair number of the connections shown in Jacob's FIGS. 11 & 12 are tonal duplicates.
Thus, as far as mechanical switches are concerned, it is easier to organize and combine the signals from two humbuckers if the coils in each one are connected in series and parallel before subsequent switching, leaving just two wires for each humbucker connected to subsequent switches. This makes the use of existing mechanical switches for subsequent switching more feasible, such as a common and inexpensive, 2-wafer, 4P6T rotary switch.
Without R1 and R2, when the coils are in parallel and series, and if there is no load on the output voltage, Vop and Vos, respectively, then Math 33 shows the output voltage and the source impedances, Zop and Zos, seen at the output.
Parallel w/o R1 & R2: VOP=VAB; ZOP=Z/2
Series w/o R1 & R2: VOS=2*VAB;ZOS=2*Z Math 33.
Obviously, serial connections of internal humbucker coils, and even single coils in general, tend to have higher output signals, which are evident in switching between them. The split coils of Krozack, et al., (US 2005/0150364A1, 2005) meant to address this problem. But it can also be addressed with resistive voltage divider circuits, even if the overall result requires manual adjustment of the resistors, or a potentiometer, until the volumes seem equal.
Impedance Z is actually a complex number, but for the purpose of this discussion, it will be treated as a resistance at a given frequency of string vibration. One might choose the mean frequency of six strings strummed on fret 0, but this would be an iterative experiment, because the interaction between the coil impedance and resistors would affect the result. The fundamental of the first string at the 12th fret in standard EADGBE tuning is 659.2 Hz. For example, if the coil resistance is 10 kΩ and the inductance is 2 H, then 2πfL has a magnitude of 4142/H or 8284 complex ohms, and the impedance, Z, is about 13 kΩ For lower frequencies, Z is closer to 10 kΩ, because the value of 2πfL drops with frequency, f.
Treating Z as a resistance, Math 34 shows Vop, Zop, Vos and Zos for parallel and series circuits in
Since the signals in resistors have a different phase from those in inductors, the subsequent combinations of humbuckers by mechanical switching, where resistor-inductor circuits are connected to other resistor-inductor circuits, may well produce signals which are not purely in-phase, out-of-phase or contra-phase. Only experiment can verify results. Note that adding resistors across the outputs of series and parallel coil connections will have the result of lowering the roll-off frequency due to coil inductance, making the combinations sound darker or warmer than they would otherwise. This could promote the use of contra-phase signals, which tend to partially cancel out frequencies at and close to the fundamental string vibration, to achieve brighter tones.
If electric or battery power is available in the stringed instrument for active electronics, then pickups can be isolated from each other with respect to phase interactions by using isolation differential amplifiers.
In this circuit, the gain is presumed to be inversely proportional to the gain resistor, so that the series gain is halved compared to parallel. If the converse were true, the 3rd pole of the switch would be used to short the resistor RG on the left, to make it RG for series and 2*RG for parallel. Note that the 3PDT switch, SW1 in
If 2 humbuckers are wired directly to the input of
In the section “A dual-humbucker experiment”, shown in
This may be a problem, because the results, when converted to probability density functions, produced mean frequencies far above the string fundamentals. Subsequent limited experiments demonstrated that better resolution, i.e., lower sampling rates with higher resolution, produced lower mean frequencies and visibly sharper peaks in the amplitude versus frequency plots. But at the cost of not measuring higher frequencies. Had the right equipment been available, it would have been preferable to measure with at least 1 Hz resolution from 0 to 10000 Hz, meaning 20000 samples per second with an FFT sampling window on the order of 215=32768 samples.
Let ABS mean humbucker AB at the neck, with its internal coils connected in series, and ABP with its coils connected in parallel, as in
If 3 humbuckers, each with a series-parallel switch, like
There is no commonly made and widely available 4P7T switch. Most rotary switches have 12 positions on one wafer, and can have some combination of M poles and J throws, where M*J=12. A custom 4P7T switch which could actually fit in a guitar could be prohibitively expensive, since it would likely require new tooling for manufacture. Any solution for 3 pickups using common switches would have to involve concatenating switches, as shown in
Past about 3 or 4 pickups or other sensors, there is little if any room left on a conventional electric guitar for ordinary switches. Just for humbucking pairs, concatenated, commonly-available switches don't have enough poles. The pattern of signs duplicates beyond NSGN=2J-1 in Math 7, 8ab & 9ab implies that one can always attach one terminal of one pickup to either the low or high side of the output, as is done with humbucker CD in
A digitally-controlled analog crosspoint switch with Mx x-inputs and My y-inputs, has Mx times My crosspoint interconnections with 2Mx*My switch choices. All of the pickup terminals are connected to both the x and y inputs, with at least two extra for the outputs. So for Mx pickup terminals, My must be greater than or equal to Mx+2 to account for the two output terminals. For example, if there are 4 humbuckers with integral series-parallel switches, or 4 humbucking pairs, then Mx must be at least 8, and My must be at least 10. And the inherent 280 or more interconnections choices is a very large number, well beyond the needs of the pickup switching discussed here.
Commonly-available crosspoint switches, such as the Zarlink MT093 iso-CMOS 8×12 analog switch array, ˜$7/each, and the Intersil CD22M3494 BiMOS 16×8 crosspoint switch, ˜$6.50/each, require digital sequencing and control for the crosspoint switch array. This means a micro-controller, particularly a low-power micro-controller. It is possible to concatenate crosspoint switches to form, for example, a 16×16 from two 8×16 crosspoint switches. Subtracting 2 for the output, that leaves 14 pickup terminals to connect, either 7 matched single-coil pickups, or 7 humbuckers with integral series-parallel switching. For 8 single-coil pickups, or 4 humbuckers with all four terminals, plus an output connected to the crosspoint switch, a 16×18 or larger switch is needed, such as four 8×12 switches concatenated into a 16×24 switch.
Here one parts company with the Jacob application (US 2009/0308233 A1) and Ball patents (U.S. Pat. No. 9,196,235, 2015; U.S. Pat. No. 9,640,162, 2017). It is neither necessary nor desirable either to have separate pickup and circuit selection, as Jacob required, or to have input and output controls look exactly the same as current guitars and basses and other stringed instruments, as Ball required. A crosspoint switch combines both selection and connection circuits. And using only classic controls with knobs can be too limiting, requiring more control surface space than actually needed. Routing controls through the analog switching matrix means either that the number of possible vibration sensors, or pickups, will be limited by and compete with the number of control lines, or that the size of the analog switching matrix must be quite large to handle any number of pickups above 3 or 4, plus 3 to 5 controls. It is more efficient to use digital controls and multiplexers, connected directly to the micro-controller, which can also provide any drive signals necessary. Modern digital mice and smartphones are a perfect example.
But much more is possible. The “manual shift control” could be like the scrolling wheel on a mouse, with rotation to change selection and the down, left and right switches to change modes, such as setting presets of favorite tones, and moving tones up and down in the selection sequence. That kind of input could also be done with a “swipe & tap sensor”, with a “status display” that shows alphanumeric data to indicate presets and selections, or done with a touch-sensitive screen like a smart phone, built into the stringed instrument. This could also be done with USB or Bluetooth, BT, or other digital connections, which could also be used to diagnose and reprogram the microcontroller, if needed.
Most if not all current microcontrollers have an analog-to-digital converter, or ADC. In U.S. Pat. No. 9,401,134 (Baker, 2016) pickup position can be changed to any position, attitude and height between the neck and bridge. This would change any bright-to-warm preset sequence of humbucking or other combinations. So would changing the model of any of the pickups. So the ADC converter is used to perform frequency spectrum analysis on the results, to aid in re-ordering the selection sequence from bright to warm. And if it becomes hopelessly confused, the mode switch setting on the “manual shift control” or the “swipe&tap sensor” can be used reset the sequence to a factory setting.
Using a fast-Fourier transform, or FFT, computed by the micro-controller, spectral analysis could be done by manual strumming of the stringed instrument, as noted in the “dual-humbucker experiment” above, or by means of an automatic strumming device, attached to the stringed instrument and controlled by the micro-controller via USB or another digital connection. Math 15 and the associated text show the methods and numbers likely to be of most use in determining the initial sequence of bright to warm. Which could be modified by the musician with presets or re-ordering of the sequence, should perception prove different. This will also identify which tonal outputs may be duplicates, and thus may be excluded from the sequence.
This application claims the precedence of U.S. Pat. No. 9,401,134 B2, filed Jul. 23, 2014 and granted Jul. 26, 2016, and the related Provisional Patent Applications, No. 62/355,852, filed Jun. 28, 2016, and No. 62/370,197, filed Aug. 2, 2016 by this inventor, Donald L. Baker dba android originals LC, Tulsa Okla. USA