Humeral and glenoid articular surface implant systems and methods

Information

  • Patent Grant
  • 11478358
  • Patent Number
    11,478,358
  • Date Filed
    Thursday, March 12, 2020
    4 years ago
  • Date Issued
    Tuesday, October 25, 2022
    2 years ago
Abstract
One embodiment of the present disclosure provides a humeral implant. The humeral implant includes a tray including a body defining a bone facing recess and a liner recess, said bone facing recess including a ring surface and a convex surface, wherein the ring surface has a profile substantially corresponding to a profile of an outer ring of bone in an excision site of a patient; and wherein said convex surface has a profile substantially corresponding to a profile of a concave socket formed in the excision site. The humeral implant also includes a liner including a body defining a load bearing surface and a tray interface surface, said tray interface surface being configured to be at least partially received in said liner recess of said tray such that said implant is coupled to said tray.
Description
FIELD

The present disclosure is related to devices and methods for the repair of defects that occur in articular cartilage on the surface of bones, and particularly to systems and methods for repairing the humeral head and/or glenoid.


BACKGROUND

Articular cartilage, found at the ends of articulating bones in the body, is typically composed of hyaline cartilage, which has many unique properties that allow it to function effectively as a smooth and lubricious load-bearing surface. When injured, however, hyaline cartilage cells are not typically replaced by new hyaline cartilage cells. Healing is dependent upon the occurrence of bleeding from the underlying bone and formation of scar or reparative cartilage called fibrocartilage. While similar, fibrocartilage does not possess the same unique aspect of native hyaline cartilage and tends to be less durable.


In some cases, it may be necessary or desirable to repair the damaged articular cartilage using one or more implants. While implants may be successfully used, the implant should be designed to maximize the patient's comfort, minimize damage to surrounding areas, minimize potential further injury, maximize the functional life of the implant, and be easy to install.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention are set forth by description of embodiments consistent with the present invention, which description should be considered in conjunction with the accompanying drawings wherein:



FIG. 1 generally illustrates one example of a first implant system and first excision site consistent with the present disclosure;



FIG. 2 generally illustrates one example of establishing a working axis consistent with the present disclosure;



FIG. 3 generally illustrates one example of pin and a threaded instrument along the working axis consistent with the present disclosure;



FIG. 4 generally illustrates one example of first reamer along the working axis consistent with the present disclosure;



FIG. 5 generally illustrates one example of an arcuate surface formed on the first bone consistent with the present disclosure;



FIG. 6 generally illustrates one example of second reamer along the working axis consistent with the present disclosure;



FIG. 7 generally illustrates one example of an intermediate central surface formed on the first bone consistent with the present disclosure;



FIG. 8 generally illustrates one example of third reamer along the working axis consistent with the present disclosure;



FIG. 9 generally illustrates one example of a socket formed on the first bone consistent with the present disclosure;



FIG. 10 generally illustrates one example of forming a pilot hole along the working axis consistent with the present disclosure;



FIG. 11 generally illustrates one example of an implant trial consistent with the present disclosure;



FIG. 12 generally illustrates one example of an anchor along the working axis consistent with the present disclosure;



FIGS. 13A-F generally illustrate various views of one example of the anchor consistent with the present disclosure;



FIG. 14 generally illustrates one example of the anchor being advanced along the working axis consistent with the present disclosure;



FIG. 15 generally illustrates one example of the anchor secured in the first bone consistent with the present disclosure;



FIGS. 16-17 generally illustrate one example of a trial along the working axis consistent with the present disclosure;



FIG. 18 generally illustrates one example of a tray secured to the anchor and a liner consistent with the present disclosure;



FIGS. 19A-E generally illustrate various views of one example of the tray consistent with the present disclosure;



FIGS. 20A-H generally illustrate various views of one example of the liner consistent with the present disclosure;



FIG. 21 generally illustrates an exploded view of one example of the first implant system and the first excision site consistent with the present disclosure;



FIG. 22 generally illustrates an assemble view of one example of the first implant system and the first excision site consistent with the present disclosure;



FIG. 23 generally illustrates an assembled view of one example of a second implant system and a second excision site consistent with the present disclosure;



FIG. 24 generally illustrates an exploded view of one example of the second implant system and the second excision site consistent with the present disclosure;



FIG. 25 generally illustrates an assembled view of one example of the second implant system and the second excision site consistent with the present disclosure;



FIG. 26 generally illustrates one example of establishing a working axis consistent with the present disclosure;



FIG. 27 generally illustrates one example of pin and a pilot bit along the working axis consistent with the present disclosure;



FIG. 28 generally illustrates one example of an anchor along the working axis consistent with the present disclosure;



FIG. 29 generally illustrates one example of an anchor secured in the second bone along the working axis consistent with the present disclosure;



FIGS. 30A-F generally illustrate various views of one example of the anchor consistent with the present disclosure;



FIG. 31 generally illustrates one example of a reamer for forming the second excision site along the working axis consistent with the present disclosure;



FIG. 32 generally illustrates one example of the second excision site in the second bone consistent with the present disclosure;



FIG. 33 generally illustrate one example of a baseplate being and the second excision site consistent with the present disclosure;



FIGS. 34A-G generally illustrate various views of one example of the baseplate consistent with the present disclosure;



FIG. 35 generally illustrate one example of a baseplate being advanced to the second excision site consistent with the present disclosure;



FIGS. 36-37 generally illustrate one example of a baseplate being on the second excision site consistent with the present disclosure;



FIG. 38 generally illustrate one example of a pilot holes being formed in the second excision site consistent with the present disclosure;



FIG. 39 generally illustrate one example of a baseplate being secured to the second excision site consistent with the present disclosure;



FIG. 40 generally illustrate one example of an implant and a baseplate consistent with the present disclosure;



FIG. 41 generally illustrate one example of an implant secured to a baseplate consistent with the present disclosure;



FIGS. 42A-E generally illustrate various views of one example of the implant consistent with the present disclosure;



FIGS. 43-49 generally illustrate various examples of the first implant system and the second implant system.





DETAILED DESCRIPTION

With reference to FIG. 1, a non-limiting example of a first implant site 10 formed in a first bone 12 and a first implant system 14 is generally illustrated. While aspects/embodiments of the first implant site 10 and the first implant system 14 may be described in the context of a humeral excision site formed in the humeral bone and a humeral implant system, it should be appreciated that the first implant site 10 may be formed in other bones (e.g., other than the humerus 12) and the first implant system 14 is not limited to a humeral implant system. As such, the systems and method described herein may be used to form a first implant site 10 on any bone 12 and the first implant system 14 may be used to repair/replace the articular surface of any bone 12.


The humeral implant site 10 may be formed in the humerus 12 in such a manner to aid in the positioning of the humeral implant system 14 and to reduce and/or prevent movement of the humeral implant system 14 relative to the humerus 12. At least a portion of the humeral implant site 10 may therefore be formed with a shape/contour/profile that inversely corresponds to the shape/contour/profile of at least a portion of the humeral implant system 14. As described herein, the humeral implant system 14 may include an anchor 16, an intermediate component or tray 18, and an implant or liner 20. The anchor 16 may be configured to be secured to the bone 12 within the humeral implant site 10, the tray 18 may be configured to be secured to the anchor 16, and the liner 20 may be configured to be secured to the tray 18. As shown, the liner 20 includes a load bearing surface 22 having a generally concaved surface contour (e.g., a reverse shoulder). While aspects/embodiments of the humeral implant system 14 may be described in the context of a reverse shoulder, it should be appreciated that the humeral implant system 14 is not limited to a reverse shoulder configuration. As such, the humeral implant system 14 may include a load bearing surface 22 having any shape/contour/profile such as, but no limited to, a shape/contour/profile that corresponds to the patient's original, native shape/contour/profile.


Turning now to FIG. 2, a portion of one example of a system and method for forming the humeral implant site 10 in the humerus 12 to mate with the humeral implant system 14 is generally illustrated. In particular, a working axis 200 may be established. In the illustrated example, the working axis 200 extends at an angle normal to the crown or highest point on the patient's native articular surface 202; however, it should be appreciated that the working axis 200 may extend at any angle (which may be greater than or less than 90 degrees) and/or from any point along the patient's native articular surface 202. The crown or highest point on the patient's native articular surface 202 may be defined at the point on the patient's native articular surface 202 that is furthest away from the longitudinal axis 207 of the bone 12.


The working axis 200 may be established using a guide 204. The guide 204 may define a passageway 206 formed in a guide body 208 extending along the working axis 200. The passageway 206 may be configured to receive one or more pins 205 such that the pin 205 may be advanced through the passageway 206 and secured into the bone 12 along the working axis 200, for example, using a drill or the like (not shown for clarity). The passageway 206 may substantially correspond to the cross-section (e.g., diameter) of the outside of the pin 205 to align the pin 205 along the working axis 200. The depth that the pin 205 is secured into the bone 12 may be set using the guide 202. For example, the pin 205 and/or the guide 202 may include indicia (such as, but not limited to, laser markings, windows, shoulders, or the like) that may set the depth of the pin 205 into the bone 12.


The guide body 208 may include one or more locating features 210 such as, but not limited to, arms 212. The locating features 210 may be configured to contact native articular surface 202 and align/position the passageway 206 relative to the native articular surface 202. For example, the arms 212 may include tips 214 configured to engage and/or contact specific points of the humerus 12. The arms 212 may therefore have sizes and/or shapes based on the size and/or shape of the patient. The arms 212 may extend in one or more planes. For example, the arms 212 may extend in two mutually perpendicular planes. In one example, the arms 212 may be configured to substantially continuously contact against the native articular surface 202 along one or more planes; however, it should be appreciated that the arms 212 may only contact a plurality of discrete points (such as, but not limited to, the tips 216). The guide 202 may also optionally include a handle 218 configured to allow a surgeon to grasp and position the guide 202 relative to the native articular surface 202.


Once the pin 205 is secured to the bone 12 along the working axis 200, the guide 202 may be removed. Next, a cannulated threaded instrument 300, FIG. 3, may be advanced over the pin 205 and secured into the bone 12. The cannulated threaded instrument 300 may include a cannulated shaft 302 and a distal end region 304 having a threaded tip 306 configured to be secured into the bone 12. The distal end region 304 may also include a shoulder 308. The shoulder 308 may extend radially outward beyond the cross-section (e.g., diameter) of the shaft 302. The cross-section (e.g., diameter) of the passageway 310 of the cannulated threaded instrument 300 may substantially correspond to the cross-section (e.g., diameter) of the outside of the pin 205. The depth that the cannulated threaded instrument 300 is secured into the bone 12, and thus the shoulder 308 relative to the native articular surface 202, may be set using the pin 205. For example, the cannulated threaded instrument 300 and/or the pin 205 may include indicate (such as, but not limited to, laser markings, windows, shoulders, or the like) that may set the depth of the cannulated threaded instrument 300 into the bone 12. In one example, the top of the shoulder 308 may be set to be substantially flush with the native articular surface 202 surrounding the cannulated threaded instrument 300.


Turning now FIG. 4, optionally a first reamer 400 may be rotated and advanced along the working axis 200 to form at least a portion of the humeral implant site 10. In the illustrated example, the first reamer 400 may include a cannulated shaft 402 configured to be rotated and advanced over the pin 205 and/or the cannulated threaded instrument 300. A distal end region 404 of the first reamer 400 may include one or more cutting surfaces 406 configured to remove at least a portion of the native articular surface 202. For example, the first reamer 400 may include one or more cutting arms 408 extending radially outward from the shaft 402. The cutting arms 408 may include one or more cutting surfaces 406 having an arcuate shape. The arcuate shape of the cutting surfaces 406 may be configured to remove at least some of the native articular surface 202 and form an arcuate surface 407 (as shown in FIGS. 4-5) revolved around the working axis 200. For example, the cutting surfaces 406 may be configured to form a generally semi-spherical shape/surface (e.g., convex surface) on the bone 12. Alternatively (or in addition), the cutting surfaces 406 may be formed by two or more tangential curves and/or having one or more inflection points, for example, configured to form a semi-ellipsoidal shape. The first reamer 400 may be advanced along the working axis 200 until a portion of the first reamer 400 (e.g., a central portion) contacts/abuts against a portion of the shoulder 308 of the cannulated threaded instrument 300. Alternatively (or in addition), the depth of the first reamer 400 along the working axis 200 may be set/determined using indicia/markings on the pin 205 and/or the cannulated threaded instrument 300.


Referring to FIG. 6, optionally a second (or additional) cut may be made using a second reamer 600. The second cut may be made to a portion of the arcuate surface 407 formed using the first reamer 400 (e.g., the semi-spherical surface). For example, the first reamer 400 may be removed from working axis 200, and the second reamer 600 may be rotated and advanced along the working axis 200 (e.g., to form at least a portion of the humeral implant site 10). In the illustrated example, the second reamer 600 may include a cannulated shaft 602 configured to be rotated and advanced over the pin 205 and/or the cannulated threaded instrument 300 and revolved around the working axis 200. A distal end region 604 of the second reamer 600 may include one or more cutting surfaces 606 configured to remove at least a portion of the arcuate surface 407. For example, the second reamer 600 may include one or more cutting arms 608 extending radially outward from the shaft 602. The cutting arms 608 may include one or more cutting surfaces 606, for example, having a generally flat, planar, and/or arcuate shape. The second reamer 600 may used to remove a central region 609 of the arcuate surface 407, for example, to form an intermediate central surface 700 (FIG. 7) revolved around the working axis 200.


The cutting surfaces 606 may be configured to remove at least some of the central region 609 of the intermediate central surface 700 revolved around the working axis 200, while leaving behind an arcuate (e.g., semi-spherical) outer ring 702 of the arcuate surface 407 centered around the working axis 200. As described herein, the arcuate outer ring 702 may inversely correspond to a portion of an inner surface of the tray 18 of the humeral implant system 14. As such, the at least a portion of the profile of the cutting surface 406 of the first reamer 400, when revolved around the working axis 200, may correspond to the portion of the inner surface of the tray 18 of the humeral implant system 14.


In at least one example, the cutting surfaces 606 of the second reamer 600 may be configured to form a generally planar shape/surface. Alternatively (or in addition), the cutting surfaces 606 may be formed by one curves, two or more tangential curves, and/or curves having one or more inflection points. The second reamer 600 may be advanced along the working axis 200 until a portion of the second reamer 600 (e.g., a central portion) contacts/abuts against a portion of the shoulder 308 of the cannulated threaded instrument 300. Alternatively (or in addition), the depth of the second reamer 600 along the working axis 200 may be set/determined using indicia/markings on the pin 205 and/or the cannulated threaded instrument 300. While the intermediate central surface 700 is shown having a generally planar surface and the central region 609 formed by the first reamer 400 is shown having a semi-spherical surface, it should be appreciated that the present disclosure is not limited to either of these configurations unless specifically claimed as such since these surfaces will ultimately be removed.


Turning to FIG. 8, optionally a third (or additional) cut may be made using a third reamer 800. The third cut may be made to at least a portion of the intermediate central surface 700 formed using the second reamer 600. For example, the second reamer 600 may be removed from working axis 200, and the third reamer 800 may be rotated and advanced along the working axis 200 (e.g., to form at least a portion of the humeral implant site 10). In the illustrated example, the third reamer 800 may include a cannulated shaft 802 configured to be rotated and advanced over the pin 205 and/or the cannulated threaded instrument 300. A distal end region 804 of the third reamer 800 may include one or more cutting surfaces 806 configured to remove at least a portion of the intermediate central surface 700. For example, the third reamer 800 may include one or more cutting arms 808 extending radially outward from the shaft 802. The cutting arms 808 may include one or more cutting surfaces 806 configured to form a convex socket/surface 900 (FIG. 9) revolved around the working axis 200.


A peripheral rim 902 may be formed between the convex socket/surface 900. In at least one example, the peripheral rim 902 may be formed by a remaining portion of the intermediate central surface 700. As such, the third reamer 800 may remove only a portion of the intermediate central surface 700. Alternatively, peripheral rim 902 may be formed by the intersection of the arcuate outer ring 702 with the convex socket/surface 900. As such, the third reamer 800 may remove all of the intermediate central surface 700. As described herein, the convex surface/socket 900 and/or the peripheral rim 902 may inversely correspond to a portion of an inner surface of the tray 18. As such, the at least a portion of the profile of the cutting surface 806 of the third reamer 800, when revolved around the working axis 200, may correspond to the portion of the inner surface of the tray 18. Once the convex surface/socket 900 has been formed, the cannulated threaded instrument 300 may be removed as shown in FIG. 9.


With reference to FIG. 10, optionally a fourth (or additional) cut may be made using a fourth reamer 1000. The fourth cut may be made to at least a portion of the convex surface/socket 900 formed using the third reamer 800. For example, the third reamer 800 may be removed from working axis 200, and the fourth reamer 1000 may be rotated and advanced along the working axis 200 to form a pilot hole for the anchor 16 of the humeral implant system 14. In the illustrated example, the fourth reamer 1000 may include a cannulated shaft 1002 configured to be rotated and advanced over the pin 205. A distal end region 1004 of the fourth reamer 1000 may include one or more cutting surfaces 1006 configured to remove at least a portion of the socket 900 to form a pilot hole 1008.


Optionally, a trial implant 1010 may be used to set the depth of the fourth reamer 1000 (e.g., using indicate on the pin 205 and/or the trial implant 1010 such as, but not limited to, laser markings, windows, shoulders, or the like). Alternatively (or in addition), the trial implant 1010 may be used to verify the surface contour of the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902. For example, the trial implant 1010 may include a trial 1012 coupled to a handle 1014. The trial 1012 and the handle 1014 may be cannulated and configured to be advanced along the working axis 200. In the illustrated example, the trial 1012 and the handle 1014 may include a passageway 1016 configured to receive the cannulated shaft 1002 of the fourth reamer 1000. The trial 1012 may have an inner surface 1018 which corresponds to the inner surface of the tray 18 of the humeral implant system 14. The trial 1012 may therefore be advanced along the working axis 200 and used to verify that the surface contour of the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902 matches the profile of the tray 18. The trial 1012 (e.g., the inner surface 1018) may contact three portions of the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902 and/or may contact the entire surface of the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902 (e.g., as generally illustrated in FIG. 11).


The reamers 400, 600, 800, 1000 may therefore be used to form the humeral implant site 10 (e.g., as generally illustrated in FIG. 12). The humeral implant site 10 may be formed in the humerus 12 in such a manner to aid in the positioning of the humeral implant system 14 and to reduce and/or prevent movement of the humeral implant system 14 relative to the humerus 12. At least a portion of the humeral implant site 10 (e.g., the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902) may therefore be formed with a shape/contour/profile that inversely corresponds to the shape/contour/profile of tray 18 of the humeral implant system 14. While the system and method for forming the humeral implant site 10 has been described using a plurality of reamers 400, 600, 800, 1000, it should be appreciated that two or more of the reamers 400, 600, 800, 1000 may be combined into a single reamer. A benefit of the use of multiple reamers 400, 600, 800, 1000 as described herein is that it minimizes the likelihood of damaging the bone 12, while also ensuring proper alignment and fit of the resulting humeral implant site 10. Moreover, while the system and method for forming the humeral implant site 10 has been described using a pin 205, it should be appreciated that the pin 205 may be eliminated. For example, the system and method for forming the humeral implant site 10 may be performed using a computer numerical control (CNC) machine such as, but not limited to, a robot controlled multiple axis CNC machine or the like.


Before and/or after the fit of the surface of the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902 have been verified, the anchor 16 of the humeral implant system 14 may be advanced and secured into the bone 12 along the working axis 200, e.g., into the pilot hole 1008 as shown in FIG. 12. Turning now to FIGS. 13A-F, various views of one example of an anchor 16 consistent with the present disclosure are generally illustrated. The anchor 16 may include a body 1302, for example, having a tapered profile. The outside of the body 1302 may include one or more retaining elements (such as, but not limited to, threads, protrusions, ribs, barbs, recesses, or the like 1304) configured to engage the bone 12 and secure the anchor 16 to the bone 12. The anchor 16 may optionally be used with bone cement or the like. The outer surface of the anchor 16 may be configured to facilitate bone regrow. The body 1302 may include a cannulated passageway 1306, for example, configured to be advanced over the pin 205.


A proximal end 1308 of the anchor 16 may include a fixation element 1310 configured to be coupled to a corresponding fixation element of the tray 18 to secure the anchor 16 to the tray 18. For example, the fixation element 1310 includes a tapered interference fit (e.g., a Morse taper or the like). In the illustrated example, the fixation element 1310 is a female tapered recess configured to mate with a corresponding tapered male protrusion formed on the tray 18; however, it should be appreciated that this arrangement may be reversed. Alternatively (or in addition), the fixation element 1310 may include any other mechanism and/or fastener for either permanently or removably coupling the anchor 16 to the tray 18 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like.


The proximal end 1308 of the anchor 16 may optionally include a driving feature 1312. The driving feature 1312 may be configured to mate with a driver (such as a drill or the like) to secure the anchor 16 into the bone 12. For example, the driving feature 1312 may be configured to allow a drill to rotate the anchor 16 into the bone. In the non-limiting example, the driving feature 1312 is a hex recess.


Referring to FIG. 14, the anchor 16 may be advanced over the pin 205 using a driver 1400 (e.g., a hand drill or the like) having a corresponding driving feature 1402 (e.g., a hex head) configured to engage with the driving feature 1312 of the anchor 16. The driver 1400 may optionally be configured to be received through the trial implant 1010 along the working axis 200. For example, the anchor 16, trial implant 1010, and then the driver 1400 may be advanced over the pin 205. The driving feature 1402 of the driver 1400 may then be coupled to the driving feature 1312 of the anchor 16 to secure (e.g., rotate) the anchor 16 into the bone 12 within the pilot hole 1008. The depth of the anchor 16 within the bone 12 may be set using indicia on the driver 1400, pin 205, and/or trial implant 1010 (such as, but not limited to, laser markings, windows, shoulders, or the like) as generally illustrated in FIG. 15. For example, the trial implant 1010 may be advanced over the pin 205 such that the inner surface 1018 of the trial 1012 engages against the humeral implant site 10 (e.g., the arcuate outer ring 702, the socket 900, and/or the peripheral rim 902).


The trial 1012 may be removably coupled to the handle 1016. In the illustrated example, the handle 1016 and the driver may be once the anchor 16 is set within the bone 12, for example, as generally illustrated in FIG. 16. The trial 1012 may optionally include a fixation element corresponding to the fixation element 1310 of the anchor 16. As such, the trial 1012 may be urged into engagement with the anchor 16 to ensure proper alignment of the anchor 16 within the bone 12, for example, as generally illustrated in FIG. 17.


Once proper fit of the trial 1012 with the humeral implant site 10 has been confirmed, the pin 205 and the trial 1012 may be removed. Next, the tray 18 may be coupled to the anchor 16 that is secured in the bone 12, for example, as generally illustrated in FIG. 18, and the liner 20 may thereafter be coupled to the tray 18.


Turning now to FIGS. 19A-E, various views of one example of a tray 18 consistent with the present disclosure are generally illustrated. The tray 18 may include a body 1902 defining a bone facing recess 1904 and a liner recess 1906. The bone facing recess 1904 may include a ring surface 1906 and a convex surface 1908. In particular, the ring surface 1906 may have a profile substantially inversely corresponding to the profile of the arcuate outer ring 702 of the humeral excision site 10. Similarly, the convex surface 1908 may have a profile substantially inversely corresponding to the profile of the convex socket/surface 900 of the humeral excision site 10. The ring surface 1906 and/or the convex surface 1908 may therefore correspond to the cutting surface of the reamers revolved around the working axis 200. The bone facing recess 1904 may also optionally include a peripheral region 1912 corresponding to the peripheral rim 902 of the humeral excision site 10. The peripheral region 1912 may be disposed between the ring surface 1906 and the convex surface 1908.


The tray 18 may include a fixation element 1910 configured to be coupled to the corresponding fixation element 1310 of the anchor 16 to secure the tray 18 to the anchor 16. As discussed herein, the fixation elements 1310, 1910 includes a tapered interference fit (e.g., a Morse taper or the like). In the illustrated example, the fixation element 1910 is a male tapered protrusion extending outward from the bone facing recess 1904 configured to mate with a corresponding tapered female recess formed on the anchor 16; however, it should be appreciated that this arrangement may be reversed. Alternatively (or in addition), the fixation elements 1310, 1910 may include any other mechanism and/or fastener for either permanently or removably coupling the anchor 16 to the tray 18 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like. The fixation elements 1310, 1910 may be aligned along the working axis 200. Alternatively, the fixation elements 1310, 1910 may not be coaxial with the working axis 200.


The ring surface 1906, the convex surface 1908, and/or the peripheral region 1912 may optionally include one or more retaining elements (such as, but not limited to, threads, protrusions, ribs, barbs, recesses, or the like) configured to engage the bone 12 of the humeral excision site 10 and secure the tray 18 to the bone 12. The tray 18 may optionally be used with bone cement or the like. The bone facing recess 1904 of the tray 18 may be configured to facilitate bone regrow.


The liner recess 1906 of the tray 18 may be configured to be coupled to the implant 20. The liner recess 1906 may have a generally concave shape configured to receive at least a portion of the implant 20. For example, the liner recess 1906 may have a generally concave shape that generally inversely corresponds to a tray interface surface of the implant 20. According to one example, the tray 18 may include one or more fixation elements 1920 configured to be coupled to a corresponding fixation element of the implant/liner 20 to secure the implant/liner 20 to the tray 18. In the illustrated example, the fixation element 1920 may form a snap fit connection with the implant/liner 20. For example, the fixation element 1920 may include a tab or latch configured to deform when the implant 20 is urged into the liner recess 1906, and then resiliently snap back into a recess and/or groove on the implant 20. Of course, the fixation element 1920 may alternatively or additionally include any other mechanism and/or fastener for either permanently or removably coupling the implant 20 to the tray 18 such as, but not limited to, tapered interference connections (e.g., a Morse taper or the like), threaded connections, adhesives, or the like.


The tray 18 may have a thickness 1922 configured to position the implant 20 at the desired position relative to the bone 12. The outer surface 1924 of the body 1902 of the tray 18 may have a generally frusto-conical and/or frusto-spherical shape. The generally frusto-conical and/or frusto-spherical shape may be configured to allow the humerus 12 to move relative to the glenoid while minimizing the potential for the humerus 12 to contact the glenoid.


Turning now to FIGS. 20A-H, various views of one example of an implant/liner 20 consistent with the present disclosure are generally illustrated. The implant 20 may include a body 2002 defining a load bearing surface 2004 and a tray interface surface 2006. The load bearing surface 2004 may include a recessed and/or concaved surface 2008. The concaved surface 2008 may therefore be used in a reverse shoulder application in which the native arrangement of the ball and socket of the shoulder is reversed. For example, the concaved surface 2008 may include a semi-spherical shape and/or a semi-ellipsoidal shape. Alternatively, the load bearing surface may include convex surface. The convex surface (e.g., a generally spherical and/or semi-ellipsoid) may generally correspond native articular surface of the patient's humerus 12.


The tray interface surface 2006 is configured to be at least partially received in the liner recess 1906 of the tray 18 such that the implant 20 is coupled to the tray 18. The tray interface surface 2006 may have a generally convex shape that generally inversely corresponds to the liner recess 1906 of the tray 18. As discussed herein, the implant 20 may include one or more fixation elements 1940 configured to be coupled to a corresponding fixation element 1920 of the tray 18 to secure the implant 20 to the tray 18. In the illustrated example, the fixation elements 1920, 1940 may form a snap fit connection. For example, the fixation element 1940 may include a recess and/or groove configured to deform a tab or latch 1920 of the tray 18 when the implant 20 is urged into the liner recess 1906. Of course, the arrangement of the latch and groove may be reversed and the fixation elements 1920, 1940 may alternatively or additionally include any other mechanism and/or fastener for either permanently or removably coupling the implant 20 to the tray 18 such as, but not limited to, tapered interference connections (e.g., a Morse taper or the like), threaded connections, adhesives, or the like.


With reference to FIG. 21, an exploded cross-sectional view of the humeral excision site 10 and the humeral implant system 14 is generally illustrated, while FIG. 22 generally illustrates an assembled cross-sectional view the humeral implant system 14 in the humeral excision site 10. The anchor 16, the tray 18, and/or the implant 20 may be made from metal such as, but not limited to, cobalt chromium, stainless steel, and/or titanium (and alloys thereof). The tray 18 and/or the implant 20 may optionally be made from biocompatible plastic such as, but not limited to, ultra-high-molecular-weight polyethylene (UHMWPE) or the like.


With reference to FIG. 23, a non-limiting example of a second implant site 2300 formed in a second bone 2302 and a second implant system 2404 is generally illustrated. While aspects/embodiments of the second implant site 2300 and the second implant system 2404 may be described in the context of a glenoid excision site formed in the glenoid bone and a glenoid implant system, it should be appreciated that the second implant site 2300 may be formed in other bones (e.g., other than the glenoid 2302) and the second implant system 2404 is not limited to a glenoid implant system. As such, the systems and method described herein may be used to form a second implant site 2300 on any bone 2302 and the second implant system 2404 may be used to repair/replace the articular surface of any bone 2302.


The glenoid implant site 2300 may be formed in the glenoid 2302 in such a manner to aid in the positioning of the glenoid implant system 2404 and to reduce and/or prevent movement of the glenoid implant system 2404 relative to the glenoid 2302. At least a portion of the glenoid implant site 2300 may therefore be formed with a shape/contour/profile that inversely corresponds to the shape/contour/profile of at least a portion of the glenoid implant system 2404. As described herein, the glenoid implant system 2404, FIGS. 24-25, may include an anchor 2402, an intermediate component or base plate 2404, an implant 2406, an optionally one or more fasteners 2408 (such as, but not limited to, bone screws or the like). The anchor 2402 may be configured to be secured to the bone 2302 within the glenoid implant site 2300, the base plate 2404 may be configured to be secured to the anchor 2402 (and optionally to the bone 2302 using the fasteners 2408), and the implant 2406 may be configured to be secured to the base plate 2404. As shown, the implant 2406 includes a load bearing surface 2410 having a generally convex (e.g., semi-spherical and/or semi-ellipsoidal surface contour). While aspects/embodiments of the glenoid implant system 2304 may be described in the context of a reverse shoulder, it should be appreciated that the glenoid implant system 2304 is not limited to a reverse shoulder configuration. As such, the glenoid implant system 2304 may include a load bearing surface 2410 having any shape/contour/profile such as, but no limited to, a shape/contour/profile that corresponds to the patient's original, native shape/contour/profile.


Turning now to FIG. 26, a portion of one example of a system and method for forming the glenoid implant site 2300 in the glenoid 2302 to mate with glenoid implant system 2404 is generally illustrated. In particular, a working axis 2600 may be established. In the illustrated example, the working axis 2600 extends at an angle normal to lowest point on the patient's native articular surface 2602; however, it should be appreciated that the working axis 2600 may extend at any angle (which may be greater than or less than 90 degrees) and/or from any point along the patient's native articular surface 2602. The lowest point on the patient's native articular surface 2602 may be defined at the point on the patient's native articular surface 2602 that at the base of the glenoid socket.


The working axis 2600 may be established using a guide 2604. The guide 2604 may define a passageway 2606 formed in a guide body 2608 extending along the working axis 2600. The passageway 2606 may be configured to receive one or more pins 2605 such that the pin 2605 may be advanced through the passageway 2606 and secured into the bone 2302 along the working axis 2600, for example, using a drill or the like (not shown for clarity). The passageway 2606 may substantially correspond to the cross-section (e.g., diameter) of the outside of the pin 2605 to align the pin 2605 along the working axis 2600. The depth that the pin 2605 is secured into the bone 2302 may be set using the guide 2602. For example, the pin 2605 and/or the guide 2602 may include indicia (such as, but not limited to, laser markings, windows, shoulders, or the like) that may set the depth of the pin 2605 into the bone 2302.


The guide body 2608 may include one or more locating features 2610. The locating features 2610 may be sized and shaped to contact native articular surface 2602 and align/position the passageway 2606 relative to the native articular surface 2602. For example, the locating features 2610 may include a bottom surface having a contour that substantially matches and/or corresponds to the native contour of the patient's native articular surface 2602. As such, the locating features 2610 may be configured to engage and/or contact specific points of the glenoid 2300. The locating features 2610 may therefore have sizes and/or shapes based on the size and/or shape of the patient. The locating features 2610 may extend in one or more planes. For example, portions of the locating features 2610 may extend in two mutually perpendicular planes and/or portions of the locating features 2610 may extend along one or more arcs and/or circles. The guide body 2608 may include one or more windows 2612 configured to allow a surgeon to see portions of the native articular surface 2602. In one example, the locating features 2610 may be configured to substantially continuously contact against the native articular surface 2602 along one or more planes; however, it should be appreciated that the locating features 2610 may only contact a plurality of discrete points (such as, but not limited to, the outer periphery 2616). The guide 2602 may also optionally include a handle 2618 configured to allow a surgeon to grasp and position the guide 2602 relative to the native articular surface 2602.


Once the pin 2605 is secured to the bone 2302 along the working axis 2300, the guide 2602 may be removed. Next, a cannulated drill 2700, FIG. 27, may be advanced over the pin 2605 to form a pilot hole 2800 in the bone 2302 centered around the pin 2605 as generally illustrated in FIG. 28. Once the pilot hole 2800 has been formed, an anchor 2402 of the glenoid implant system 2304 may be advanced and secured into the bone 2302 along the working axis 2600, e.g., into the pilot hole 2800 as shown in FIG. 29.


Turning now to FIGS. 30A-F, various views of one example of an anchor 2402 consistent with the present disclosure are generally illustrated. The anchor 2402 may include a body 3002, for example, having a tapered profile. The outside of the body 3002 may include one or more retaining elements (such as, but not limited to, threads, protrusions, ribs, barbs, recesses, or the like 3004) configured to engage the bone 2302 and secure the anchor 2402 to the bone 2302. The anchor 2402 may optionally be used with bone cement or the like. The outer surface of the anchor 2402 may be configured to facilitate bone regrow. The body 3002 may include a cannulated passageway 3006, for example, configured to be advanced over the pin 2605.


A proximal end 3008 of the anchor 2402 may include a fixation element 3010 configured to be coupled to a corresponding fixation element of the baseplate 2404 to secure the anchor 2402 to the baseplate 2404. For example, the fixation element 3010 may include a tapered interference fit (e.g., a Morse taper or the like). In the illustrated example, the fixation element 3010 is a female tapered recess configured to mate with a corresponding tapered male protrusion formed on the baseplate 2404; however, it should be appreciated that this arrangement may be reversed. Alternatively (or in addition), the fixation element 3010 may include any other mechanism and/or fastener for either permanently or removably coupling the anchor 2402 to the baseplate 2404 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like.


The proximal end 3008 of the anchor 2402 may optionally include a driving feature 3012. The driving feature 3012 may be configured to mate with a driver (such as a drill or the like) to secure the anchor 2402 into the bone 2302. For example, the driving feature 3012 may be configured to allow a drill to rotate the anchor 2402 into the bone 2302. In the non-limiting example, the driving feature 3012 is a hex recess.


Referring back to FIGS. 28-29, the anchor 2402 may be advanced over the pin 2605 using a driver 2802 (e.g., a hand drill or the like) having a corresponding driving feature 2804 (e.g., a hex head) configured to engage with the driving feature 3012 of the anchor 2402. The driver 2802 may include a cannulated shaft 2806 (defining a passageway 2808) with the driving feature 2804 at one end, and a handle 2810 proximate the other end. The anchor 2402 and the driver 2802 may be advanced over the pin 2505 along the working axis 2600. The driving feature driving feature 2804 of the driver 2802 may then be coupled to the driving feature 3012 of the anchor 2402 to secure (e.g., rotate) the anchor 2402 around the working axis 2600 into the bone 2302 within the pilot hole 2800. The depth of the anchor 2402 within the bone 2302 may be set using indicia on the driver 2802 and/or pin 2505 (such as, but not limited to, laser markings, windows, shoulders, or the like) as generally illustrated in FIG. 29.


Turning now to FIG. 31, once the anchor 2402 has been set in place in the bone 2302, the driver 2802 may be removed. Optionally, an initial cut (e.g., a scrim cut) may be performed on the native articular surface 2602 to true-up and create a uniform surface, which may at least partially form the glenoid implant site 2300 (FIG. 32). For example, a truing reamer 3102 (FIG. 31) may be rotated and advanced along the working axis 2600 (e.g., to form at least a portion of the glenoid implant site 2300). In the illustrated example, the truing reamer 3102 may include a cannulated shaft 3103 configured to be rotated and advanced over the pin 2505 and revolved around the working axis 2600. A distal end region 3104 of the truing reamer 3102 may include one or more cutting surfaces 3106 configured to remove at least a portion of the native articular surface 2602. For example, the truing reamer 3102 may include one or more cutting arms 3108 extending radially outward from the shaft 3102. The cutting arms 3108 may include one or more cutting surfaces 3106, for example, having a generally flat, planar, and/or arcuate shape. The truing reamer 3102 may be used to form at least a portion of the glenoid implant site 2300 (FIG. 32) which is revolved around the working axis 2600. The cutting surfaces 3106, when revolved around the working axis 2600, may inversely correspond to (e.g., define) the contours of the bone facing surface of the baseplate 2404 as described herein.


In at least one example, the cutting surfaces 3106 of the truing reamer 3102 may be configured to form a generally planar shape/surface. Alternatively (or in addition), the cutting surfaces 3106 may be formed by one curves, two or more tangential curves, and/or curves having one or more inflection points. The truing reamer 3102 may be advanced along the working axis 2600 until a portion of the truing reamer 3102 (e.g., a central portion) contacts/abuts against a portion of the anchor 2402. Alternatively (or in addition), the depth of the truing reamer 3102 along the working axis 2600 may be set/determined using indicia/markings on the pin 2505 and/or the truing reamer 3102. While the glenoid implant site 2300 (FIG. 32) is shown having a generally concaved surface formed by the truing reamer 3102, it should be appreciated that the glenoid implant site 2300 may alternatively (or in addition) have a generally planar and/or convex shape. As such, the glenoid implant site 2300 is not limited to the illustrated shape unless specifically claimed as such.


Turning now to FIG. 33, the pin 2505 may optionally be removed and the baseplate 2404 may be secured to the anchor 2402. FIGS. 34A-E generally illustrates various views of one example of a baseplate 2404 consistent with the present disclosure. The baseplate 2404 may include a body 3402 defining a bone facing surface 3404 and an implant facing surface 3406. The bone facing surface 3604 may have a profile substantially inversely corresponding to the profile of the glenoid implant site 2300 (e.g., a profile substantially inversely corresponding to the profile of the cutting surfaces 3106 of the truing reamer 3102 when revolved around the working axis 2600). For example, the bone facing surface 3604 may have generally convex surface corresponding to the concaved surface of the glenoid implant site 2300. The bone facing surface 3604 may therefore have a cross-section (e.g., a diameter) that corresponds to the cross-section (e.g., diameter) of the cutting surfaces 3106 of the truing reamer 3102 when revolved around the working axis 2600.


The baseplate 2404 may include an anchor fixation element 3410 configured to be coupled to the corresponding fixation element 3010 of the anchor 2402 to secure the baseplate 2404 to the anchor 2402. As discussed herein, the fixation elements 3010, 3410 may include a tapered interference fit (e.g., a Morse taper or the like). In the illustrated example, the anchor fixation element 3410 is a male tapered protrusion extending outward from the bone facing surface 3404 configured to mate with a corresponding tapered female recess formed on the anchor 2402; however, it should be appreciated that this arrangement may be reversed. Alternatively (or in addition), the fixation elements 3010, 3410 may include any other mechanism and/or fastener for either permanently or removably coupling the anchor 2402 to the baseplate 2404 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like. The fixation elements 3010, 3410 may be aligned along the working axis 2600. Alternatively, the fixation elements 3010, 3410 may not be coaxial with the working axis 2600.


The bone facing surface 3604 may optionally include one or more retaining elements (such as, but not limited to, threads, protrusions, ribs, barbs, recesses, or the like) configured to engage the bone 2302 of the glenoid excision site 2300 and secure the baseplate 2404 to the bone 2302. The baseplate 2404 may optionally be used with bone cement or the like. The bone facing surface 3404 of the baseplate 2404 may be configured to facilitate bone regrow.


The implant facing surface 3406 of the baseplate 2404 may be configured to be coupled to the implant 2406. The implant facing surface 3406 may have a generally planar, concave, and/or convex shape configured to receive at least a portion of the implant 2406. For example, the implant facing surface 3406 may have a generally planar shape that generally corresponds to a baseplate interface surface of the implant 2304. According to one example, the baseplate 2404 may include one or more implant fixation elements 3420 configured to be coupled to a corresponding fixation element of the implant 2304 to secure the implant 2304 to the baseplate 2404. In at least one example, the implant may include a tapered interference connection (e.g., a Morse taper or the like). For example, implant fixation element 3420 may include a male tapered protrusion extending outward from the implant facing surface 3406 configured to mate with a corresponding tapered female recess formed on the implant 2406; however, it should be appreciated that this arrangement may be reversed. Alternatively (or in addition), the fixation elements 3420 may include any other mechanism and/or fastener for either permanently or removably coupling the baseplate 2404 to the implant 2306 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like. The implant fixation element 3420 may be aligned along the working axis 2600. Alternatively, the implant fixation element 3420 may not be coaxial with the working axis 2600.


The baseplate 2404 may have a thickness 3422 configured to position the implant 2306 at the desired position relative to the bone 2302. The outer surface 3424 of the body 3402 of the baseplate 2404 may have a generally frusto-conical, frusto-spherical shape, and/or generally cylindrical shape.


The baseplate 2404 may optionally include one or more apertures 3426 configured to receive one or more fasteners (e.g., a bone screw or the like). The apertures 3426 may extend through the body 3402 (e.g., between the bone facing surface 3404 and the implant facing surface 3406). The fasteners may aid in retaining the baseplate 2404 to the bone 2302 and/or prevent movement (e.g., rotation) of the baseplate 2404 relative to the bone 2302.


The baseplate 2404 (e.g., the implant facing surface 3406) may optionally include one or more implant alignment elements or features 3428. The implant alignment features 3428 may be configured to generally align the implant 2406 relative to the baseplate 2404 and/or prevent movement (e.g., rotation) of the implant 2406 relative to the baseplate 2404. In the illustrated embodiment, the implant alignment features 3428 includes a post extending outward from the implant facing surface 3406 that is configured to be received in a corresponding recess formed in the implant 2406. The post may optionally be tapered (e.g., to form a Morse taper or the like). Of course, the implant alignment features 3428 are not limited to this configuration. For example, the arrangement of the post and the recess may be reversed.


With reference to FIGS. 35-36, the baseplate 2404 may be located on the glenoid implant site 2300 using a holder 3500. The holder 3500 may include a shaft 3502, a handle 3504 at one end region 3506 of the shaft 3502, and a coupler 3508 at the other end region 3510 of the shaft 3502. In the illustrated example, the coupler 3508 may be configured to be secured to the implant fixation element 3420 of the baseplate 2404 (e.g., using a Morse taper connection or the like); however, it should be appreciated that this is only one example and that the coupler 3508 may be configured to be secured to the baseplate 2404 in any manner known to those skilled in the art.


Once the baseplate 2404 has been set in place relative to the glenoid implant site 2300, the baseplate 2404 may be secured to the anchor 2402 as generally illustrated in FIG. 37. For example, the anchor fixation element 3410 configured to be coupled to the corresponding fixation element 3010 of the anchor 2402 to secure the baseplate 2404 to the anchor 2402. Optionally, the baseplate 2404 may be secured to the bone 2302 using one or more fasteners (e.g., bone screws) disposed through the apertures 3426 in the body 3402 baseplate 2404. In the illustrated example, pilot holes may be formed that are aligned with the apertures 3426. For example, a pilot hole drill guide 3800, FIG. 38, may be used to create pilot holes in the bone 2302 within the glenoid implant site 2300 that are aligned with the apertures 3426. The pilot hole drill guide 3800 may include a bushing 3802 or the like configured to be received in a portion of the aperture 3426 (or a cavity configured to receive a portion of the baseplate 2404) that aligns a passageway 3804 of the bushing 3802 with the aperture 3426. Next, a drill bit may be advanced through the passageway 3804 of the bushing 3802 and into the bone 2302 to form the pilot holes. The bushing 3802 may be aligned with (e.g., coupled to) all of the apertures 3426 to form the desired pilot holes. After the pilot holes are formed, one or more fasteners 3900, FIG. 39, may be advanced through the apertures 3426 to secure the baseplate 2404 to the bone 2302. The fasteners 3900 may include any fastener known to those skilled in the art such as, but not limited to, bone screws, posts, pins, or the like.


Once the baseplate 2404 has been secured to the anchor 2402, the implant 2406 may be secured to the baseplate 2404 as generally illustrated in FIGS. 40-41. Turning now to FIGS. 42A-E, various views of one example of an implant 2406 consistent with the present disclosure are generally illustrated. The implant 2406 (also generally referred to as a glenosphere) may include a body 4202, defining a load bearing surface 2410 and a baseplate interface surface 4206. The load bearing surface 2410 may include a convex surface 4208. The convex surface 4208 may therefore be used in a reverse shoulder application in which the native arrangement of the ball and socket of the shoulder is reversed. For example, the convex surface 4208 may include a semi-spherical shape and/or a semi-ellipsoidal shape. Alternatively, the load bearing surface may include concaved surface. The concaved surface (e.g., a generally spherical and/or semi-ellipsoid) may generally correspond native articular surface of the patient's glenoid 2302.


The baseplate interface surface 4206 is configured to at least partially receive the implant facing surface 3406 and/or the outer surface 3424 of the body 3402 of the baseplate 2404 such that the implant 2406 is coupled to the baseplate 2404. A portion 4205 of the baseplate interface surface 4206 may have a generally concaved shape that generally inversely corresponds to the implant facing surface 3406 of the baseplate 2404. Alternatively (or in addition), a portion 4207 of the baseplate interface surface 4206 may have a generally cylindrical shape that generally inversely corresponds to the outer surface 3424 of the body 3402 of the baseplate 2404 (optionally to form a tapered connection).


As discussed herein, the implant 2406 may include one or more baseplate fixation elements 4240 configured to be coupled to a corresponding implant fixation element 3420 of the baseplate 2404 to secure the implant 2406 to the baseplate 2404. In the illustrated example, the fixation elements 3420, 4240 may form Morse taper connection or the like. For example, the baseplate fixation element 4240 may include a tapered configured to receive the tapered male protrusion 3420 of the baseplate 2404. Of course, the arrangement of the male and female portions of the fixation elements 3420, 4240 may be reversed and the fixation elements 3420, 4240 may alternatively or additionally include any other mechanism and/or fastener for either permanently or removably coupling the implant 2406 to the baseplate 2404 such as, but not limited to, snap fit connections, threaded connections, adhesives, or the like.


The implant 2406 may also optionally include one or more implant alignment features 4228 configured to generally align the implant 2406 relative to the baseplate 2404 and/or prevent movement (e.g., rotation) of the implant 2406 relative to the baseplate 2404. In the illustrated embodiment, the implant alignment features 4228 includes a recess configured to receive at least a portion of a post 3428 extending outward from the implant facing surface 3406 of the baseplate 2404. The post and recess 3428, 4228 may optionally be tapered (e.g., to form a Morse taper or the like). Of course, the implant alignment features 3428, 4228 are not limited to this configuration. For example, the arrangement of the post and the recess may be reversed.


Optionally, a set-screw or the like may be advanced through an implant passageway 4250. The implant passageway 4250 may extend through the body 4202 (e.g., from the load bearing surface 2410 and a baseplate interface surface 4206). The implant passageway 4250 may be configured to receive a fastener (e.g. a threaded fastener) to aid in coupling the implant 2406 to the baseplate 2404 and/or the anchor 2402.


Alternatively (or in addition), a fastener or the like may be coupled directly to the baseplate 2404 and/or the anchor 2402 and may be used to remove (e.g., uncouple) the implant 2406 from the baseplate 2404 and/or the anchor 2402. For example, fastener 2321 (FIG. 23) may be threaded to the baseplate 2404 and/or the anchor 2402. To uncouple the implant 2406 from the baseplate 2404 and/or the anchor 2402, the user may advance a tool (e.g., a driver or the like) through the implant passageway 4250 and rotate the fastener. Rotation of the fastener may cause the fastener to advance out of the baseplate 2404 and/or the anchor 2402 and engage against the implant 2406, thereby urging the implant 2406 away from the baseplate 2404 and/or the anchor 2402 and uncoupling the implant 2406 from the baseplate 2404 and/or the anchor 2402. This arrangement may be particularly useful if a subsequent revision to the implant system 2304 is desired.


The anchor 2402, baseplate 2404, and/or the implant 2406 may be made from metal such as, but not limited to, cobalt chromium, stainless steel, and/or titanium (and alloys thereof). The baseplate 2404 and/or the implant 2406 may optionally be made from biocompatible plastic such as, but not limited to, ultra-high-molecular-weight polyethylene (UHMWPE) or the like.


Turning now to FIGS. 43-49, various examples of the first implant system 14 and the second implant system 2304 are shown. In the illustrated examples, the first implant system 14 and the second implant system 2304 are a humeral implant system and a glenoid implant system, respectively, through it should be appreciated that the first implant system 14 and the second implant system 2304 may be used in other joints. The humeral implant system 14 and glenoid implant system 2304 as illustrated form a reverse shoulder system in which the ball and socket arrangement has been switch from the native anatomical configuration; however, it should be appreciated that humeral implant system 14 and glenoid implant system 2304 consistent with the present disclosure may also be used to form a traditional, anatomical should replacement (either a partial or total shoulder replacement).


As used herein, “substantially corresponds” or “generally corresponds” means that the contour/profile of the articulating surface is within 15% of the contour/profile of the patient's native articular surface being replaced and/or within engineering and/or anatomical tolerance. In some instances, the contour/profile of the articulating surface may not correspond to the contour/profile of the patient's native articular surface being replaced.


The foregoing description of several methods and embodiments has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the claims to the precise steps and/or forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be defined by the claims.

Claims
  • 1. A humeral implant comprising: a tray including a body defining a bone facing recess and a liner recess, said bone facing recess including a ring surface and a convex surface, wherein the ring surface has a profile substantially corresponding to a profile of an outer ring of bone in an excision site of a patient; and wherein said convex surface has a profile substantially corresponding to a profile of a concave socket formed in the excision site;a liner including a body defining a load bearing surface and a tray interface surface, said tray interface surface being configured to be at least partially received in said liner recess of said tray such that said liner is coupled to said tray; andan anchor configured to be secured to bone within the excision site, said anchor including a first fixation element; wherein the tray further comprises a second fixation element configured to be coupled to said first fixation element to secure said tray to said anchor and wherein the first fixation element of the anchor includes a female tapered recess and the second fixation element includes a male taper post to engage the female taper recess.
  • 2. The humeral implant of claim 1, wherein the anchor has a body portion having a tapered profile.
  • 3. The humeral implant of claim 1, wherein the anchor has a body portion including one or more retaining elements disposed on an outer portion of the body portion to engage the patient's humeral bone within the excision site; wherein the one or more retaining elements is selected from the group of threads, protrusions, ribs, barbs, and/or recesses.
  • 4. The humeral implant of claim 1, wherein an internal side of the ring surface is configured to receive the outer ring of bone such that the outer ring of bone is bound by the ring surface.
  • 5. The humeral implant of claim 1, wherein the tray further includes a peripheral region between the ring surface and the convex surface, the peripheral region is configured to receive a rim portion of the outer ring of bone in the excision site of the patient.
  • 6. An implant system comprising: a humeral implant comprising: a tray including a body defining a bone facing recess and a liner recess, said bone facing recess including a ring surface and a convex surface, wherein the ring surface has a profile substantially corresponding to a profile of an outer ring of bone in an excision site of a patient; and wherein said convex surface has a profile substantially corresponding to a profile of a concave socket formed in the excision site;a liner including a body defining a humeral load bearing surface and a tray interface surface, said tray interface surface being configured to be at least partially received in said liner recess of said tray such that said liner is coupled to said tray; andan anchor configured to be secured to bone within the excision site, said anchor including a first fixation element; wherein the tray further comprises a second fixation element configured to be coupled to said first fixation element to secure said tray to said anchor and wherein the first fixation element of the anchor includes a female tapered recess and the second fixation element includes a male taper post to engage the female taper recess; anda glenoid implant comprising: a baseplate including a body defining a bone facing surface and an implant facing surface; the bone facing surface having a profile substantially inversely corresponding to a profile of a glenoid implant site; andan implant having a glenoid load bearing surface and a baseplate interface surface;the glenoid load bearing surface having a shape to cooperate with the humeral load bearing surface of the liner.
  • 7. The implant system of claim 6, wherein the anchor has a body portion having a tapered profile.
  • 8. The implant system of claim 6, wherein the anchor has a body portion including one or more retaining elements disposed on an outer portion of the body portion to engage the patient's humeral bone within the excision site; wherein the one or more retaining elements is selected from the group of threads, protrusions, ribs, barbs, and/or recesses.
  • 9. The implant system of claim 6, wherein an internal side of the ring surface is configured to receive the outer ring of bone such that the outer ring of bone is bound by the ring surface.
  • 10. The implant system of claim 6, wherein the tray further includes a peripheral region between the ring surface and the convex surface, the peripheral region is configured to receive a rim portion of the outer ring of bone in the excision site of the patient.
  • 11. The implant system of claim 6, wherein the humeral load bearing surface of the liner is a concave surface and the glenoid load bearing surface of the implant is a convex surface.
  • 12. The implant system of claim 6, wherein the baseplate further comprises an alignment element protrusion on the implant facing surface.
  • 13. The implant system of claim 12, wherein the implant further comprises a recess formed in the baseplate interface surface; wherein the recess is dimensioned to receive the alignment element protrusion to secure the implant to the baseplate.
  • 14. The implant system of claim 6, wherein the implant and baseplate are configured to be coupled together using a friction fit.
Parent Case Info

This application claims the benefit of, and priority to, U.S. Provisional Application Ser. No. 62/817,497, filed Mar. 12, 2019, which is hereby incorporated by reference in its entirety.

US Referenced Citations (1288)
Number Name Date Kind
103645 Muscroft May 1870 A
992819 Springer May 1911 A
1451610 Gestas Apr 1923 A
2267925 Johnston Dec 1941 A
2379984 Nereaux Jul 1943 A
2381102 Boyd Oct 1943 A
2570465 Lundholm Oct 1951 A
2919692 Ackermann Jan 1960 A
3176395 Warner et al. Apr 1965 A
3351115 Boehlow Nov 1967 A
3664345 Dabbs May 1972 A
3715763 Link Feb 1973 A
3840905 Deane Oct 1974 A
3852830 Marmor Dec 1974 A
3910281 Kletschka et al. Oct 1975 A
3976079 Samuels et al. Aug 1976 A
4016651 Kawahara et al. Apr 1977 A
4016874 Maffei et al. Apr 1977 A
4034418 Jackson et al. Jul 1977 A
D245259 Shen Aug 1977 S
4044464 Schiess et al. Aug 1977 A
4158894 Worrell Jun 1979 A
4304011 Whelan, III Dec 1981 A
4309778 Buechel et al. Jan 1982 A
4319577 Bofinger et al. Mar 1982 A
4330891 Brånemark et al. May 1982 A
4340978 Buechel et al. Jul 1982 A
4344192 Imbert Aug 1982 A
4433687 Burke et al. Feb 1984 A
4462120 Rambert et al. Jul 1984 A
4474177 Whiteside Oct 1984 A
4484570 Sutter et al. Nov 1984 A
4531517 Forte et al. Jul 1985 A
4535768 Hourahane et al. Aug 1985 A
4565768 Nonogaki et al. Jan 1986 A
4567885 Androphy Feb 1986 A
4634720 Dorman et al. Jan 1987 A
4655752 Honkanen et al. Apr 1987 A
4661536 Dorman et al. Apr 1987 A
4662371 Whipple et al. May 1987 A
4664669 Ohyabu et al. May 1987 A
4673407 Martin Jun 1987 A
4693986 Vit et al. Sep 1987 A
4703761 Rathbone et al. Nov 1987 A
4708139 Dunbar, IV Nov 1987 A
4712545 Honkanen Dec 1987 A
4714478 Fischer Dec 1987 A
4719908 Averill et al. Jan 1988 A
4722331 Fox Feb 1988 A
4729761 White Mar 1988 A
4741330 Hayhurst May 1988 A
4743262 Tronzo May 1988 A
4778473 Matthews et al. Oct 1988 A
4781182 Purnell et al. Nov 1988 A
4787383 Kenna Nov 1988 A
4788970 Kara et al. Dec 1988 A
4823780 Odensten et al. Apr 1989 A
4842604 Dorman et al. Jun 1989 A
4896663 Vandewalls Jan 1990 A
4911153 Border Mar 1990 A
4911720 Collier Mar 1990 A
4919671 Karpf Apr 1990 A
4920958 Walt et al. May 1990 A
4927421 Goble et al. May 1990 A
4936853 Fabian et al. Jun 1990 A
4938778 Ohyabu et al. Jul 1990 A
4940467 Tronzo Jul 1990 A
4945904 Bolton et al. Aug 1990 A
4955916 Carignan et al. Sep 1990 A
4976037 Hines Dec 1990 A
4978258 Lins Dec 1990 A
4979957 Hodorek Dec 1990 A
4989110 Zevin et al. Jan 1991 A
4990163 Ducheyne et al. Feb 1991 A
4997434 Seedhom et al. Mar 1991 A
4998938 Ghajar et al. Mar 1991 A
5007930 Dorman et al. Apr 1991 A
5019104 Whiteside et al. May 1991 A
5030219 Matsen, III et al. Jul 1991 A
5053049 Campbell Oct 1991 A
5078731 Hayhurst Jan 1992 A
5092895 Albrektsson et al. Mar 1992 A
5100405 McLaren Mar 1992 A
5122144 Bert et al. Jun 1992 A
5127413 Ebert Jul 1992 A
5127920 MacArthur Jul 1992 A
5147386 Carignan et al. Sep 1992 A
5152797 Luckman et al. Oct 1992 A
5154720 Trott et al. Oct 1992 A
5180384 Mikhail Jan 1993 A
5192291 Pannek, Jr. Mar 1993 A
5194066 Van Zile Mar 1993 A
5201881 Evans Apr 1993 A
5207753 Badrinath May 1993 A
5211647 Schmieding May 1993 A
5224945 Pannek, Jr. Jul 1993 A
5234435 Seagrave, Jr. Aug 1993 A
5254119 Schreiber Oct 1993 A
5255838 Gladdish, Jr. et al. Oct 1993 A
5263498 Caspari et al. Nov 1993 A
5263987 Shah Nov 1993 A
5269784 Mast Dec 1993 A
5282863 Burton Feb 1994 A
5290313 Heldreth Mar 1994 A
5306278 Dahl et al. Apr 1994 A
5306290 Martins et al. Apr 1994 A
5306301 Graf et al. Apr 1994 A
5312411 Steele May 1994 A
5314478 Oka et al. May 1994 A
5314482 Goodfellow et al. May 1994 A
5324295 Shapiro Jun 1994 A
5326366 Pascarella et al. Jul 1994 A
5336224 Selman Aug 1994 A
5336266 Caspari et al. Aug 1994 A
5354300 Goble et al. Oct 1994 A
5358525 Fox et al. Oct 1994 A
5360446 Kennedy Nov 1994 A
5374270 McGuire et al. Dec 1994 A
5383937 Mikhail Jan 1995 A
5387218 Meswania Feb 1995 A
5395376 Caspari et al. Mar 1995 A
5395401 Bahler Mar 1995 A
5409490 Ethridge Apr 1995 A
5409494 Morgan Apr 1995 A
5411504 Vilas May 1995 A
5413608 Keller May 1995 A
5423822 Hershberger Jun 1995 A
5423823 Schmieding Jun 1995 A
5425733 Schmieding Jun 1995 A
5458643 Oka et al. Oct 1995 A
5480443 Elias Jan 1996 A
5486178 Hodge Jan 1996 A
5509918 Romano Apr 1996 A
5514139 Goldstein et al. May 1996 A
5520695 Luckman May 1996 A
5522900 Hollister Jun 1996 A
5522901 Thomas et al. Jun 1996 A
5529075 Clark Jun 1996 A
5534031 Matsuzaki et al. Jul 1996 A
5540696 Booth, Jr. et al. Jul 1996 A
5562664 Durlacher et al. Oct 1996 A
5580352 Sekel Dec 1996 A
5580353 Mendes et al. Dec 1996 A
5591170 Spievack et al. Jan 1997 A
5593448 Dong Jan 1997 A
5593450 Scott et al. Jan 1997 A
5595193 Walus et al. Jan 1997 A
5597273 Hirsch Jan 1997 A
5601550 Esser Feb 1997 A
5607480 Beaty Mar 1997 A
5609639 Walker Mar 1997 A
5616146 Murray Apr 1997 A
5620055 Javerlhac Apr 1997 A
5624463 Stone et al. Apr 1997 A
5632745 Schwartz May 1997 A
5634927 Houston et al. Jun 1997 A
5645598 Brosnahan, III Jul 1997 A
5681311 Foley et al. Oct 1997 A
5681320 McGuire Oct 1997 A
5682886 Delp et al. Nov 1997 A
5683400 McGuire Nov 1997 A
5683465 Shinn et al. Nov 1997 A
5683466 Vitale Nov 1997 A
5700264 Zucherman et al. Dec 1997 A
5700265 Romano Dec 1997 A
5702401 Shaffer Dec 1997 A
5702461 Pappas et al. Dec 1997 A
5702465 Burkinshaw Dec 1997 A
5702467 Gabriel et al. Dec 1997 A
5720753 Sander et al. Feb 1998 A
5741266 Moran et al. Apr 1998 A
5765973 Hirsch et al. Jun 1998 A
5769855 Bertin et al. Jun 1998 A
5769894 Ferragamo Jun 1998 A
5769899 Schwartz et al. Jun 1998 A
5771310 Vannah Jun 1998 A
5776137 Katz Jul 1998 A
5782835 Hart et al. Jul 1998 A
5782866 Wenstrom, Jr. Jul 1998 A
5800440 Stead Sep 1998 A
5810851 Yoon Sep 1998 A
5816811 Beaty Oct 1998 A
5817095 Smith Oct 1998 A
5824087 Aspden et al. Oct 1998 A
5824105 Ries et al. Oct 1998 A
5827285 Bramlet Oct 1998 A
RE36020 Moore et al. Dec 1998 E
5871545 Goodfellow et al. Feb 1999 A
5879396 Walston et al. Mar 1999 A
5882350 Ralph et al. Mar 1999 A
5885297 Matsen, III Mar 1999 A
5885298 Herrington et al. Mar 1999 A
5888210 Draenert Mar 1999 A
5891150 Chan Apr 1999 A
5893889 Harrington Apr 1999 A
5895390 Moran et al. Apr 1999 A
5911126 Massen Jun 1999 A
5918604 Whelan Jul 1999 A
5919196 Bobic et al. Jul 1999 A
5921986 Bonutti Jul 1999 A
5928239 Mirza Jul 1999 A
5928241 Menut et al. Jul 1999 A
5928286 Ashby et al. Jul 1999 A
5951603 O'Neil et al. Sep 1999 A
5957979 Beckman et al. Sep 1999 A
5964752 Stone Oct 1999 A
5964768 Huebner Oct 1999 A
5964805 Stone Oct 1999 A
5964808 Blaha et al. Oct 1999 A
5968050 Torrie Oct 1999 A
5989269 Vibe-Hansen et al. Nov 1999 A
5990382 Fox Nov 1999 A
5997543 Truscott Dec 1999 A
5997582 Weiss Dec 1999 A
6004323 Park et al. Dec 1999 A
6007566 Wenstrom, Jr. Dec 1999 A
6010502 Bagby Jan 2000 A
6015411 Ohkoshi et al. Jan 2000 A
6017348 Hart et al. Jan 2000 A
6019767 Howell Feb 2000 A
6019790 Holmberg et al. Feb 2000 A
6033410 McLean et al. Mar 2000 A
6045554 Grooms et al. Apr 2000 A
6045564 Walen Apr 2000 A
6052909 Gardner Apr 2000 A
6053945 O'Neil et al. Apr 2000 A
6059831 Braslow May 2000 A
6063091 Lombardo et al. May 2000 A
6069295 Leitao May 2000 A
6071310 Picha et al. Jun 2000 A
6081741 Hollis Jun 2000 A
6086593 Bonutti Jul 2000 A
6086614 Mumme Jul 2000 A
6099568 Simonian et al. Aug 2000 A
6099571 Knapp Aug 2000 A
6102948 Brosnahan, III Aug 2000 A
6102954 Albrektsson et al. Aug 2000 A
6110207 Eichhorn et al. Aug 2000 A
6120511 Chan Sep 2000 A
6120542 Camino et al. Sep 2000 A
6132433 Whelan Oct 2000 A
6139508 Simpson et al. Oct 2000 A
6146385 Torrie et al. Nov 2000 A
6149654 Lanny Nov 2000 A
6152960 Pappas Nov 2000 A
6159216 Burkinshaw et al. Dec 2000 A
6165223 Metzger et al. Dec 2000 A
6168626 Hyon et al. Jan 2001 B1
6171340 McDowell Jan 2001 B1
6193724 Chan Feb 2001 B1
6206885 Ghahremani et al. Mar 2001 B1
6206926 Pappas Mar 2001 B1
6207218 Layrolle et al. Mar 2001 B1
6217549 Selmon et al. Apr 2001 B1
6217619 Keller Apr 2001 B1
6228119 Ondrla et al. May 2001 B1
6231611 Mosseri May 2001 B1
6235060 Kubein-Meesenburg et al. May 2001 B1
6245074 Allard et al. Jun 2001 B1
6251143 Schwartz et al. Jun 2001 B1
6254605 Howell Jul 2001 B1
6270347 Webster et al. Aug 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6299645 Ogden Oct 2001 B1
6299648 Doubler et al. Oct 2001 B1
6306142 Johanson et al. Oct 2001 B1
6310116 Yasuda et al. Oct 2001 B1
6315798 Ashby et al. Nov 2001 B1
6322500 Sikora et al. Nov 2001 B1
6328752 Sjostrom et al. Dec 2001 B1
6342075 MacArthur Jan 2002 B1
6358251 Mirza Mar 2002 B1
6358253 Torrie et al. Mar 2002 B1
6364910 Shultz et al. Apr 2002 B1
6375658 Hangody et al. Apr 2002 B1
6383188 Kuslich May 2002 B2
6402785 Zdeblick et al. Jun 2002 B1
6415516 Tirado et al. Jul 2002 B1
6416518 DeMayo Jul 2002 B1
6443954 Bramlet et al. Sep 2002 B1
6451023 Salazar et al. Sep 2002 B1
6461373 Wyman et al. Oct 2002 B2
6468309 Lieberman Oct 2002 B1
6478801 Ralph et al. Nov 2002 B1
6478822 Leroux et al. Nov 2002 B1
6482210 Skiba et al. Nov 2002 B1
6494914 Brown Dec 2002 B2
6517541 Sesic Feb 2003 B1
6517542 Papay et al. Feb 2003 B1
6517578 Hein Feb 2003 B2
6520964 Tallarida et al. Feb 2003 B2
6527754 Tallarida et al. Mar 2003 B1
6530956 Mansmann Mar 2003 B1
6540786 Chibrac et al. Apr 2003 B2
6547823 Scarborough et al. Apr 2003 B2
6551322 Lieberman Apr 2003 B1
6554866 Aicher et al. Apr 2003 B1
6558422 Baker et al. May 2003 B1
6569202 Whiteside May 2003 B2
6575980 Robie et al. Jun 2003 B1
6575982 Bonutti Jun 2003 B1
6585666 Suh et al. Jul 2003 B2
6589281 Hyde, Jr. Jul 2003 B2
6591581 Schmieding Jul 2003 B2
6599321 Hyde et al. Jul 2003 B2
6602258 Katz Aug 2003 B1
6607561 Brannon Aug 2003 B2
6610067 Tallarida Aug 2003 B2
6610095 Pope et al. Aug 2003 B1
6623474 Ponzi Sep 2003 B1
6626950 Brown et al. Sep 2003 B2
6629997 Mansmann Oct 2003 B2
6632246 Simon et al. Oct 2003 B1
6638279 Bonutti Oct 2003 B2
6679916 Frankle et al. Jan 2004 B1
6679917 Ek Jan 2004 B2
6720469 Curtis et al. Apr 2004 B1
6746451 Middleton et al. Jun 2004 B2
6755837 Ebner Jun 2004 B2
6755865 Tarabishy Jun 2004 B2
6770078 Bonutti Aug 2004 B2
6783550 MacArthur Aug 2004 B2
6783551 Metzger Aug 2004 B1
6802864 Tornier Oct 2004 B2
6814735 Zirngibl Nov 2004 B1
6827722 Schoenefeld Dec 2004 B1
6860902 Reiley Mar 2005 B2
6881228 Zdeblick et al. Apr 2005 B2
6884246 Sonnabend et al. Apr 2005 B1
6884621 Liao et al. Apr 2005 B2
6893467 Bercovy May 2005 B1
6913463 Blacklock Jul 2005 B2
6923813 Phillips et al. Aug 2005 B2
6926739 Oconnor Aug 2005 B1
6951538 Ritland Oct 2005 B2
6953478 Bouttens et al. Oct 2005 B2
6962577 Tallarida et al. Nov 2005 B2
6969393 Pinczewski et al. Nov 2005 B2
6984248 Hyde, Jr. Jan 2006 B2
6989016 Tallarida et al. Jan 2006 B2
7029479 Tallarida Apr 2006 B2
7048767 Namavar May 2006 B2
7063717 St. Pierre et al. Jun 2006 B2
7105027 Lipman et al. Sep 2006 B2
7112205 Carrison Sep 2006 B2
7115131 Engh et al. Oct 2006 B2
7118578 West, Jr. et al. Oct 2006 B2
7156880 Evans et al. Jan 2007 B2
7160305 Schmieding Jan 2007 B2
7163541 Ek Jan 2007 B2
7166133 Evans et al. Jan 2007 B2
7169184 Dalla Pria Jan 2007 B2
7192431 Hangody et al. Mar 2007 B2
7192432 Wetzler et al. Mar 2007 B2
7204839 Dreyfuss et al. Apr 2007 B2
7204854 Guederian et al. Apr 2007 B2
7229448 Goble et al. Jun 2007 B2
7235091 Thornes Jun 2007 B2
7235107 Evans et al. Jun 2007 B2
7238189 Schmieding et al. Jul 2007 B2
7241316 Evans et al. Jul 2007 B2
7264634 Schmieding Sep 2007 B2
7290347 Augustino et al. Nov 2007 B2
7303577 Dean Dec 2007 B1
7311702 Tallarida et al. Dec 2007 B2
7361195 Schwartz et al. Apr 2008 B2
7368065 Yang et al. May 2008 B2
7371260 Malinin May 2008 B2
7455683 Geissler et al. Nov 2008 B2
7462199 Justin et al. Dec 2008 B2
7468075 Lang et al. Dec 2008 B2
7476250 Mansmann Jan 2009 B1
7491235 Fell Feb 2009 B2
7501073 Wen et al. Mar 2009 B2
7510558 Tallarida Mar 2009 B2
7531000 Hodorek May 2009 B2
7559932 Truckai et al. Jul 2009 B2
7569059 Cerundolo Aug 2009 B2
7572291 Gil et al. Aug 2009 B2
7575578 Wetzler et al. Aug 2009 B2
7578824 Justin et al. Aug 2009 B2
7604641 Tallarida et al. Oct 2009 B2
7611653 Elsner et al. Nov 2009 B1
7618451 Berez et al. Nov 2009 B2
7618462 Ek Nov 2009 B2
7632294 Milbodker et al. Dec 2009 B2
7641658 Shaolian et al. Jan 2010 B2
7641689 Fell et al. Jan 2010 B2
7670381 Schwartz Mar 2010 B2
7678151 Ek Mar 2010 B2
7682540 Boyan et al. Mar 2010 B2
7687462 Ting et al. Mar 2010 B2
7708741 Bonutti May 2010 B1
7713305 Ek May 2010 B2
7722676 Hanson et al. May 2010 B2
7731720 Sand et al. Jun 2010 B2
7731738 Jackson et al. Jun 2010 B2
7738187 Pazidis et al. Jun 2010 B2
7740662 Barnett et al. Jun 2010 B2
7758643 Stone et al. Jul 2010 B2
7776085 Bernero et al. Aug 2010 B2
7806872 Ponzi Oct 2010 B2
7815645 Haines Oct 2010 B2
7815681 Ferguson Oct 2010 B2
7828853 Ek et al. Nov 2010 B2
7842042 Reay-Young et al. Nov 2010 B2
7857817 Tallarida et al. Dec 2010 B2
7875058 Holmes, Jr. Jan 2011 B2
7896883 Ek et al. Mar 2011 B2
7896885 Miniaci et al. Mar 2011 B2
7901408 Ek et al. Mar 2011 B2
7901431 Shumas Mar 2011 B2
7914545 Ek Mar 2011 B2
7931683 Weber et al. Apr 2011 B2
7951163 Ek May 2011 B2
7951204 Chambat et al. May 2011 B2
7955382 Flanagan et al. Jun 2011 B2
7959636 Schmieding Jun 2011 B2
7959650 Kaiser et al. Jun 2011 B2
7959681 Lavi Jun 2011 B2
7967823 Ammann et al. Jun 2011 B2
7993360 Hacker et al. Aug 2011 B2
7993369 Dreyfuss Aug 2011 B2
7998206 Shepard Aug 2011 B2
3012206 Schmieding Sep 2011 A1
3021367 Bourke et al. Sep 2011 A1
8038652 Morrison et al. Oct 2011 B2
8038678 Schmieding et al. Oct 2011 B2
8043315 Shepard Oct 2011 B2
8043319 Lyon et al. Oct 2011 B2
8048079 Iannarone Nov 2011 B2
8048157 Albertorio Nov 2011 B2
8057478 Kuczynski et al. Nov 2011 B2
8062301 Ammann et al. Nov 2011 B2
8062319 O'Quinn et al. Nov 2011 B2
8083746 Novak Dec 2011 B2
8083749 Taber Dec 2011 B2
8083803 Albertorio et al. Dec 2011 B2
8097040 Russo et al. Jan 2012 B2
8114163 Berelsman et al. Feb 2012 B2
8137406 Novak et al. Mar 2012 B2
8137407 Todd et al. Mar 2012 B2
8142502 Stone et al. Mar 2012 B2
8147514 Bonutti Apr 2012 B2
8147559 Tallarida et al. Apr 2012 B2
8152847 Strzepa et al. Apr 2012 B2
8157867 Goble et al. Apr 2012 B2
8162947 Dreyfuss Apr 2012 B2
8163027 Rhodes et al. Apr 2012 B2
8167951 Ammann et al. May 2012 B2
8177738 Schmieding et al. May 2012 B2
8177841 Ek May 2012 B2
8182489 Horacek May 2012 B2
8202282 Schmieding et al. Jun 2012 B2
8202296 Burkhart Jun 2012 B2
8202297 Burkhart Jun 2012 B2
8202298 Cook et al. Jun 2012 B2
8202306 Dreyfuss Jun 2012 B2
8202318 Willobee Jun 2012 B2
8211112 Novak et al. Jul 2012 B2
8221455 Shumas et al. Jul 2012 B2
8231653 Dreyfuss Jul 2012 B2
8231674 Albertorio et al. Jul 2012 B2
8236000 Ammann et al. Aug 2012 B2
8267977 Roth Sep 2012 B2
8277459 Sand et al. Oct 2012 B2
8298247 Sterrett et al. Oct 2012 B2
8298284 Cassani Oct 2012 B2
8303830 Tong et al. Nov 2012 B2
8308662 Lo Nov 2012 B2
8308732 Millett et al. Nov 2012 B2
8308781 Wilson et al. Nov 2012 B2
8317870 Wagner et al. Nov 2012 B2
8323347 Guederian et al. Dec 2012 B2
8328716 Schmieding et al. Dec 2012 B2
8333774 Morrison Dec 2012 B2
8337563 Roche et al. Dec 2012 B2
8343186 Dreyfuss et al. Jan 2013 B2
8348960 Michel et al. Jan 2013 B2
8348975 Dreyfuss Jan 2013 B2
8353915 Helenbolt et al. Jan 2013 B2
8361159 Ek Jan 2013 B2
8377068 Aker et al. Feb 2013 B2
8382789 Weber et al. Feb 2013 B2
8382810 Peterson et al. Feb 2013 B2
8388624 Ek et al. Mar 2013 B2
8398678 Baker et al. Mar 2013 B2
8409209 Ammann et al. Apr 2013 B2
8409250 Schmieding et al. Apr 2013 B2
8414908 Jin et al. Apr 2013 B2
8419794 ElAttrache et al. Apr 2013 B2
8425554 Denove et al. Apr 2013 B2
8430909 Dreyfuss Apr 2013 B2
8435272 Dougherty et al. May 2013 B2
8439976 Albertorio et al. May 2013 B2
8444680 Dooney, Jr. et al. May 2013 B2
8460317 Merves Jun 2013 B2
8460318 Murray et al. Jun 2013 B2
8460350 Albertorio et al. Jun 2013 B2
8460379 Albertorio et al. Jun 2013 B2
8470047 Hazebrouck et al. Jun 2013 B2
8475536 Tong et al. Jul 2013 B2
8486072 Haininger Jul 2013 B2
8496662 Novak et al. Jul 2013 B2
8506573 Dreyfuss et al. Aug 2013 B2
8512376 Thornes Aug 2013 B2
8512411 Sluss et al. Aug 2013 B2
8523872 Ek Sep 2013 B2
8535330 Sherman et al. Sep 2013 B2
8535703 Schmieding et al. Sep 2013 B2
8540717 Tallarida et al. Sep 2013 B2
8540777 Ammann et al. Sep 2013 B2
8540778 Rhodes et al. Sep 2013 B2
8551101 Kuczynski Oct 2013 B2
8556984 Calamel Oct 2013 B2
8579940 Dreyfuss et al. Nov 2013 B2
8579944 Holloway et al. Nov 2013 B2
8591514 Sherman Nov 2013 B2
8591523 Weber Nov 2013 B2
8591544 Jolly et al. Nov 2013 B2
8591578 Albertorio et al. Nov 2013 B2
8591592 Dreyfuss Nov 2013 B2
8591594 Parisi et al. Nov 2013 B2
8597361 Sidebotham et al. Dec 2013 B2
8623052 Dreyfuss et al. Jan 2014 B2
8628573 Roller et al. Jan 2014 B2
8652139 Sterrett et al. Feb 2014 B2
8663230 Miniaci et al. Mar 2014 B2
8663250 Weber Mar 2014 B2
8663251 Burkhart et al. Mar 2014 B2
8663279 Burkhart et al. Mar 2014 B2
8663324 Schmieding et al. Mar 2014 B2
8663333 Metcalfe et al. Mar 2014 B2
8668738 Schmieding et al. Mar 2014 B2
8690952 Dallmann Apr 2014 B2
8702715 Ammann et al. Apr 2014 B2
8702752 Schmieding et al. Apr 2014 B2
8709052 Ammann et al. Apr 2014 B2
8709091 Rhodes et al. Apr 2014 B2
8721722 Shah et al. May 2014 B2
8728131 Di Giacomo et al. May 2014 B2
8734449 Schmied et al. May 2014 B2
8753375 Albertorio Jun 2014 B2
8758356 Fearon et al. Jun 2014 B2
8764797 Dreyfuss et al. Jul 2014 B2
8764807 Michel et al. Jul 2014 B2
8764839 Rhodes et al. Jul 2014 B2
8771279 Philippon et al. Jul 2014 B2
8771351 ElAttrache et al. Jul 2014 B2
8784423 Kowarsch et al. Jul 2014 B2
8790401 Schmieding et al. Jul 2014 B2
8801755 Dreyfuss et al. Aug 2014 B2
8821541 Dreyfuss et al. Sep 2014 B2
8834475 Ammann et al. Sep 2014 B2
8834521 Pinto et al. Sep 2014 B2
8840619 Zajac et al. Sep 2014 B2
8840643 Dreyfuss Sep 2014 B2
8840676 Belew et al. Sep 2014 B2
8852190 Sherman Oct 2014 B2
8852201 Schmieding et al. Oct 2014 B2
8858560 Bradley et al. Oct 2014 B2
8864827 Ek Oct 2014 B2
8870877 Koogle, Jr. Oct 2014 B2
8870962 Roche et al. Oct 2014 B2
8876900 Guederian et al. Nov 2014 B2
8882833 Saylor et al. Nov 2014 B2
8882845 Wirth et al. Nov 2014 B2
8882847 Burdulis, Jr. et al. Nov 2014 B2
8888781 Sterrett Nov 2014 B2
8888785 Ammann et al. Nov 2014 B2
8888815 Holmes, Jr. Nov 2014 B2
8888855 Roche et al. Nov 2014 B2
8906026 Ammann et al. Dec 2014 B2
8911457 Koogle, Jr. et al. Dec 2014 B2
8920497 Albertorio et al. Dec 2014 B2
8920508 Iannotti et al. Dec 2014 B2
8926615 Ek Jan 2015 B2
8927283 Komvopoulos et al. Jan 2015 B2
8939980 Schmieding et al. Jan 2015 B2
8939999 Sterrett et al. Jan 2015 B2
8956369 Millett et al. Feb 2015 B2
8961538 Koogle, Jr. et al. Feb 2015 B2
8961575 Choinski Feb 2015 B2
8961614 Ek et al. Feb 2015 B2
8974537 Dreyfuss Mar 2015 B2
8986346 Dreyfuss Mar 2015 B2
9005245 Thornes et al. Apr 2015 B2
9005246 Burkhart et al. Apr 2015 B2
9044343 Ek Jun 2015 B2
9055955 Ek et al. Jun 2015 B2
9066716 Sikora et al. Jun 2015 B2
9072510 Thornes et al. Jul 2015 B2
9072555 Michel Jul 2015 B2
9078650 Weber Jul 2015 B2
9078661 Gallo Jul 2015 B2
9089363 Dooney, Jr. et al. Jul 2015 B2
9089433 Karnes et al. Jul 2015 B2
9095641 Albertorio Aug 2015 B2
9101366 Sterrett et al. Aug 2015 B2
9101461 Albertorio et al. Aug 2015 B2
9107653 Sullivan Aug 2015 B2
9107676 Burkhart et al. Aug 2015 B2
9113859 Dooney, Jr. et al. Aug 2015 B2
9113920 Ammann et al. Aug 2015 B2
9138223 Jolly et al. Sep 2015 B2
9138237 Meade et al. Sep 2015 B2
9138241 Kuczynski Sep 2015 B2
9138246 Anderson et al. Sep 2015 B2
9138274 Biesinger et al. Sep 2015 B1
9146576 Schmieding et al. Sep 2015 B2
9168124 Guerra et al. Oct 2015 B2
9179907 ElAttrache et al. Nov 2015 B2
9179950 Zajac et al. Nov 2015 B2
9186432 Mazzocca et al. Nov 2015 B2
9204873 Tallarida et al. Dec 2015 B2
9204874 Denove et al. Dec 2015 B2
9204960 Albertorio et al. Dec 2015 B2
9211126 Sikora et al. Dec 2015 B2
9216017 Burkhart Dec 2015 B2
9216022 Karnes et al. Dec 2015 B2
9216090 Metcalfe Dec 2015 B2
9216091 Hardy et al. Dec 2015 B2
9226743 Dreyfuss et al. Jan 2016 B2
9226815 Schmieding et al. Jan 2016 B2
9233003 Roche et al. Jan 2016 B2
9278413 Sperling Mar 2016 B2
9283076 Sikora et al. Mar 2016 B2
9289221 Gelaude et al. Mar 2016 B2
9295556 Perez, III et al. Mar 2016 B2
9301745 Dreyfuss Apr 2016 B2
9301847 Guederian et al. Apr 2016 B2
9320512 Dooney, Jr. Apr 2016 B2
9332979 Sullivan et al. May 2016 B2
9333019 Khosla et al. May 2016 B2
9345471 Sullivan May 2016 B2
9351722 Koogle, Jr. et al. May 2016 B2
9351743 Kehres et al. May 2016 B2
9351745 Ek et al. May 2016 B2
9357989 Tallarida et al. Jun 2016 B2
9358029 Sikora et al. Jun 2016 B2
9364214 Courage Jun 2016 B2
9381022 Bradley et al. Jul 2016 B2
9381053 Parsons et al. Jul 2016 B2
9393010 Murray et al. Jul 2016 B2
9402730 Lederman et al. Aug 2016 B2
9421007 Brady et al. Aug 2016 B2
9421008 Burkhart et al. Aug 2016 B2
9421010 Dreyfuss Aug 2016 B2
9421086 Roller et al. Aug 2016 B2
9421105 Metcalfe et al. Aug 2016 B2
9421106 Splieth et al. Aug 2016 B2
9451951 Sullivan et al. Sep 2016 B2
9463011 Dreyfuss et al. Oct 2016 B2
9468448 Sikora et al. Oct 2016 B2
9485475 Speier et al. Nov 2016 B2
9486207 Dooney, Jr. et al. Nov 2016 B2
9486317 Milano et al. Nov 2016 B2
9492200 Sikora et al. Nov 2016 B2
9498232 Perez, III Nov 2016 B2
9498344 Hodorek et al. Nov 2016 B2
9504462 Dooney, Jr. et al. Nov 2016 B2
9510840 Sikora et al. Dec 2016 B2
9510951 Bachmaier Dec 2016 B2
9521999 Dreyfuss et al. Dec 2016 B2
9526493 Dreyfuss et al. Dec 2016 B2
9526510 Sterrett Dec 2016 B2
9549701 Peterson et al. Jan 2017 B2
9549726 Dreyfuss et al. Jan 2017 B2
9603712 Bachmaier Mar 2017 B2
9610167 Hardy et al. Apr 2017 B2
9615821 Sullivan Apr 2017 B2
9622738 Dreyfuss et al. Apr 2017 B2
9622739 Dreyfuss et al. Apr 2017 B2
9622775 Jolly et al. Apr 2017 B2
9622869 Nerot et al. Apr 2017 B2
9629725 Gargac et al. Apr 2017 B2
9642609 Holmes, Jr. May 2017 B2
9642610 Albertorio et al. May 2017 B2
9662126 Sikora et al. May 2017 B2
9687222 Dreyfuss et al. Jun 2017 B2
9687256 Granberry et al. Jun 2017 B2
9687338 Albertorio et al. Jun 2017 B2
9693765 Sullivan et al. Jul 2017 B2
9693787 Ammann et al. Jul 2017 B2
9706986 ElAttrache et al. Jul 2017 B2
9707023 Ammann et al. Jul 2017 B2
9724138 Palmer et al. Aug 2017 B2
9724168 Yeung Aug 2017 B2
9737292 Sullivan et al. Aug 2017 B2
9750850 Fonte et al. Sep 2017 B2
9763798 Chavarria et al. Sep 2017 B2
9775599 ElAttrache et al. Oct 2017 B2
9795392 Zajac Oct 2017 B2
9801625 Dooney, Jr. et al. Oct 2017 B2
9801707 Cassani Oct 2017 B2
9801726 Karnes et al. Oct 2017 B2
9808240 Parsons et al. Nov 2017 B2
9814455 Dooney, Jr. et al. Nov 2017 B2
9814499 Buscaglia et al. Nov 2017 B2
9833260 Jolly et al. Dec 2017 B2
9839438 Eash Dec 2017 B2
9839462 Zajac Dec 2017 B2
9855029 Sullivan Jan 2018 B2
9855036 Palmer et al. Jan 2018 B2
9855064 Albertorio et al. Jan 2018 B2
9855132 Hoover et al. Jan 2018 B2
9855146 Schmieding Jan 2018 B2
9861357 Palmer et al. Jan 2018 B2
9861413 Palmer et al. Jan 2018 B2
9861417 Helenbolt et al. Jan 2018 B2
9861492 Ek Jan 2018 B2
9867607 Sullivan Jan 2018 B2
9877712 Provencher et al. Jan 2018 B2
9877758 Michel Jan 2018 B2
9888997 Dreyfuss et al. Feb 2018 B2
9895177 Hientzsch et al. Feb 2018 B2
9907655 Ingwer et al. Mar 2018 B2
9907657 Fonte et al. Mar 2018 B2
9913640 Perez, III Mar 2018 B2
9918769 Provencher et al. Mar 2018 B2
9931115 Morgan et al. Apr 2018 B2
9931211 Ek et al. Apr 2018 B2
9931219 Sikora et al. Apr 2018 B2
9956083 Humphrey May 2018 B2
9962265 Ek et al. May 2018 B2
9974537 Coughlin et al. May 2018 B2
9974550 Seitlinger et al. May 2018 B2
9999416 Kelly et al. Jun 2018 B2
10034759 Deransart et al. Jul 2018 B2
10045770 Burkhart et al. Aug 2018 B2
10045788 Sikora et al. Aug 2018 B2
10052091 Dreyfuss et al. Aug 2018 B2
10058322 Dooney, Jr. et al. Aug 2018 B2
10064983 Weber et al. Aug 2018 B2
10076321 Crane et al. Sep 2018 B2
10076322 Dreyfuss Sep 2018 B1
10076343 Ek Sep 2018 B2
10076407 Albertorio et al. Sep 2018 B2
10080557 Laviano et al. Sep 2018 B1
10085739 Dooney, Jr. et al. Oct 2018 B2
10092340 Choinski et al. Oct 2018 B2
10111649 Laviano et al. Oct 2018 B2
10117657 Guederian Nov 2018 B2
10143558 Frankle Dec 2018 B2
10159518 Holowecky et al. Dec 2018 B2
10172606 Sullivan et al. Jan 2019 B2
10172607 Burkhart Jan 2019 B2
10172703 Adams et al. Jan 2019 B2
10172714 Hatzidakis et al. Jan 2019 B2
10182917 Zajac Jan 2019 B2
10188504 Cassani Jan 2019 B2
10194899 Benavitz et al. Feb 2019 B2
10206670 Thornes Feb 2019 B2
10206694 Libby et al. Feb 2019 B2
10213219 Garlock et al. Feb 2019 B2
10238484 Albertorio et al. Mar 2019 B2
10245016 Zajac et al. Apr 2019 B2
10251655 Sterrett Apr 2019 B2
10251656 Granberry et al. Apr 2019 B2
10251686 Zajac et al. Apr 2019 B2
10258320 Dreyfuss et al. Apr 2019 B2
10265060 Dooney, Jr. et al. Apr 2019 B2
10271858 Guilloux et al. Apr 2019 B2
10285801 Roller et al. May 2019 B2
10299841 Dunlop et al. May 2019 B2
10307154 Michalik et al. Jun 2019 B2
10363024 Koogle, Jr. et al. Jul 2019 B2
10398426 Burkhart et al. Sep 2019 B2
10398514 Ryan et al. Sep 2019 B2
10405904 Hientzsch et al. Sep 2019 B2
10413341 Chaudot et al. Sep 2019 B2
10420597 Papangelou et al. Sep 2019 B2
10420649 Overes et al. Sep 2019 B2
10426495 Bonin, Jr. et al. Oct 2019 B2
10441298 Eash Oct 2019 B2
10448945 Bachmaier et al. Oct 2019 B2
10456145 Laviano et al. Oct 2019 B2
10478200 Sikora et al. Nov 2019 B2
10485670 Maale Nov 2019 B2
10499932 Koogle, Jr. et al. Dec 2019 B2
10512543 Ingwer et al. Dec 2019 B2
10537390 Varadarajan et al. Jan 2020 B2
10548737 Hodorek et al. Feb 2020 B2
10575957 Ek Mar 2020 B2
10583012 Longobardi Mar 2020 B1
10595886 Termanini Mar 2020 B2
10624748 Ek et al. Apr 2020 B2
10624749 Ek et al. Apr 2020 B2
10624752 Sikora et al. Apr 2020 B2
10624754 Ek et al. Apr 2020 B2
10631992 Hopkins Apr 2020 B2
10695096 Sikora et al. Jun 2020 B2
10709565 Humphrey et al. Jul 2020 B2
10736751 Hodorek et al. Aug 2020 B2
10945743 Sikora et al. Mar 2021 B2
10959740 Sikora et al. Mar 2021 B2
10966814 Hansen et al. Apr 2021 B2
10973645 Deransart et al. Apr 2021 B2
10987176 Poltaretskyi et al. Apr 2021 B2
11020128 Guilloux et al. Jun 2021 B2
11033399 Hatzidakis et al. Jun 2021 B2
11065125 Ball Jul 2021 B2
11071596 Ryan et al. Jul 2021 B2
11083525 Varadarajan et al. Aug 2021 B2
11090123 Yeung Aug 2021 B2
11103357 Gargac et al. Aug 2021 B2
11129724 Knox et al. Sep 2021 B2
11166733 Neichel et al. Nov 2021 B2
11173037 Deransart et al. Nov 2021 B2
11197764 Mutchler et al. Dec 2021 B2
11229522 Nerot et al. Jan 2022 B2
11234721 Gargac et al. Feb 2022 B2
20010010023 Schwartz et al. Jul 2001 A1
20010012967 Mosseri Aug 2001 A1
20010016775 Scarborough et al. Aug 2001 A1
20010034526 Kuslich et al. Oct 2001 A1
20010039455 Simon et al. Nov 2001 A1
20010053914 Landry et al. Dec 2001 A1
20010056266 Tallarida et al. Dec 2001 A1
20020022847 Ray, III et al. Feb 2002 A1
20020022889 Chibrac et al. Feb 2002 A1
20020022890 Jacobsson et al. Feb 2002 A1
20020049444 Knox Apr 2002 A1
20020055783 Tallarida et al. May 2002 A1
20020082701 Zdeblick et al. Jun 2002 A1
20020106393 Bianchi et al. Aug 2002 A1
20020138150 Leclercq Sep 2002 A1
20020143342 Hangody et al. Oct 2002 A1
20020147498 Tallarida et al. Oct 2002 A1
20020155144 Troczynski et al. Oct 2002 A1
20020156480 Overes et al. Oct 2002 A1
20020173797 Van Zile et al. Nov 2002 A1
20020183760 McGovern et al. Dec 2002 A1
20030028196 Bonutti Feb 2003 A1
20030060887 Ek Mar 2003 A1
20030065332 TenHuisen et al. Apr 2003 A1
20030065391 Re et al. Apr 2003 A1
20030083751 Tornier May 2003 A1
20030100953 Rosa et al. May 2003 A1
20030105465 Schmieding et al. Jun 2003 A1
20030120276 Tallarida et al. Jun 2003 A1
20030120278 Morgan et al. Jun 2003 A1
20030130741 McMinn Jul 2003 A1
20030144736 Sennett Jul 2003 A1
20030171756 Fallin et al. Sep 2003 A1
20030171820 Wilshaw et al. Sep 2003 A1
20030181878 Tallarida et al. Sep 2003 A1
20030195470 Ponzi Oct 2003 A1
20030204195 Keane et al. Oct 2003 A1
20030204267 Hazebrouck et al. Oct 2003 A1
20030216669 Lang et al. Nov 2003 A1
20030216742 Wetzler et al. Nov 2003 A1
20030225456 Ek Dec 2003 A1
20030225457 Justin et al. Dec 2003 A1
20030229352 Penenberg Dec 2003 A1
20040015170 Tallarida et al. Jan 2004 A1
20040033212 Thomson et al. Feb 2004 A1
20040034359 Schmieding et al. Feb 2004 A1
20040034437 Schmieding Feb 2004 A1
20040039389 West, Jr. et al. Feb 2004 A1
20040064190 Ball et al. Apr 2004 A1
20040082906 Tallarida et al. Apr 2004 A1
20040083005 Jacobsson et al. Apr 2004 A1
20040092946 Bagga et al. May 2004 A1
20040106928 Ek Jun 2004 A1
20040133276 Lang et al. Jul 2004 A1
20040138754 Lang et al. Jul 2004 A1
20040138758 Evans et al. Jul 2004 A1
20040148030 Ek Jul 2004 A1
20040153086 Sanford Aug 2004 A1
20040153087 Sanford et al. Aug 2004 A1
20040167632 Wen et al. Aug 2004 A1
20040167633 Wen et al. Aug 2004 A1
20040176775 Burkus et al. Sep 2004 A1
20040186582 Yasuda et al. Sep 2004 A1
20040193172 Ross et al. Sep 2004 A1
20040193175 Maroney et al. Sep 2004 A1
20040193267 Jones et al. Sep 2004 A1
20040193268 Hazebrouck Sep 2004 A1
20040193281 Grimes Sep 2004 A1
20040199166 Schmieding et al. Oct 2004 A1
20040204760 Fitz et al. Oct 2004 A1
20040210309 Denzer et al. Oct 2004 A1
20040220574 Pelo et al. Nov 2004 A1
20040230315 Ek Nov 2004 A1
20040236339 Pepper Nov 2004 A1
20040254585 Whittaker et al. Dec 2004 A1
20040260298 Kaiser et al. Dec 2004 A1
20040260303 Carrison Dec 2004 A1
20050015092 Rathbun et al. Jan 2005 A1
20050015153 Gobel et al. Jan 2005 A1
20050038520 Binette et al. Feb 2005 A1
20050043805 Chudik Feb 2005 A1
20050043808 Felt et al. Feb 2005 A1
20050049716 Wagener et al. Mar 2005 A1
20050065612 Winslow Mar 2005 A1
20050071014 Barnett et al. Mar 2005 A1
20050075642 Felt Apr 2005 A1
20050085909 Eisermann Apr 2005 A1
20050090905 Hawkins et al. Apr 2005 A1
20050107799 Graf et al. May 2005 A1
20050119758 Alexander et al. Jun 2005 A1
20050143731 Justin et al. Jun 2005 A1
20050143745 Hodorek et al. Jun 2005 A1
20050143821 Zdeblick et al. Jun 2005 A1
20050143831 Justin et al. Jun 2005 A1
20050149044 Justin et al. Jul 2005 A1
20050154398 Miniaci et al. Jul 2005 A1
20050165407 Diaz Jul 2005 A1
20050165487 Muhanna et al. Jul 2005 A1
20050177171 Wetzler et al. Aug 2005 A1
20050209705 Niederauer et al. Sep 2005 A1
20050222687 Vunjak-Novakovic et al. Oct 2005 A1
20050229323 Mills et al. Oct 2005 A1
20050234461 Burdulis, Jr. et al. Oct 2005 A1
20050245932 Fanton et al. Nov 2005 A1
20050251268 Truncale Nov 2005 A1
20050273112 McNamara Dec 2005 A1
20050287187 Mansmann Dec 2005 A1
20060004461 Justin et al. Jan 2006 A1
20060009774 Goble et al. Jan 2006 A1
20060009852 Winslow et al. Jan 2006 A1
20060020343 Ek Jan 2006 A1
20060041261 Osypka Feb 2006 A1
20060052878 Schmieding Mar 2006 A1
20060058744 Tallarida et al. Mar 2006 A1
20060058809 Zink et al. Mar 2006 A1
20060058883 Aram et al. Mar 2006 A1
20060069394 Weiler et al. Mar 2006 A1
20060074430 Deffenbaugh et al. Apr 2006 A1
20060085006 Ek Apr 2006 A1
20060085077 Cook et al. Apr 2006 A1
20060105015 Perla et al. May 2006 A1
20060111787 Bailie et al. May 2006 A1
20060121080 Lye et al. Jun 2006 A1
20060142772 Ralph et al. Jun 2006 A1
20060149370 Schmieding et al. Jul 2006 A1
20060154206 Petersson et al. Jul 2006 A1
20060167560 Heck et al. Jul 2006 A1
20060184187 Surti Aug 2006 A1
20060190002 Tallarida Aug 2006 A1
20060195112 Ek Aug 2006 A1
20060217728 Chervitz et al. Sep 2006 A1
20060229726 Ek Oct 2006 A1
20060271059 Reay-Young et al. Nov 2006 A1
20070005143 Ek Jan 2007 A1
20070016208 Thornes Jan 2007 A1
20070038302 Shultz et al. Feb 2007 A1
20070038307 Webster et al. Feb 2007 A1
20070073394 Seedhom et al. Mar 2007 A1
20070093842 Schmieding Apr 2007 A1
20070093848 Harris et al. Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070093896 Malinin Apr 2007 A1
20070118136 Ek May 2007 A1
20070118224 Shah et al. May 2007 A1
20070123921 Ek May 2007 A1
20070129808 Justin et al. Jun 2007 A1
20070134291 Ting et al. Jun 2007 A1
20070173850 Rangaiah et al. Jul 2007 A1
20070179531 Thornes Aug 2007 A1
20070179608 Ek Aug 2007 A1
20070233128 Schmieding et al. Oct 2007 A1
20070244484 Luginbuehl Oct 2007 A1
20070250067 Schmieding et al. Oct 2007 A1
20070255399 Eliasen et al. Nov 2007 A1
20070255412 Hajaj et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20070270711 Gil et al. Nov 2007 A1
20070270873 Flickinger et al. Nov 2007 A1
20070282455 Luginbuehl et al. Dec 2007 A1
20070288031 Dreyfuss et al. Dec 2007 A1
20070299519 Schmieding Dec 2007 A1
20070299529 Rhodes et al. Dec 2007 A1
20080004659 Burkhart et al. Jan 2008 A1
20080015607 D'Alessio et al. Jan 2008 A1
20080015709 Evans et al. Jan 2008 A1
20080027430 Montgomery et al. Jan 2008 A1
20080033443 Sikora et al. Feb 2008 A1
20080033447 Sand Feb 2008 A1
20080046009 Albertorio et al. Feb 2008 A1
20080046084 Sledge Feb 2008 A1
20080071381 Buscher et al. Mar 2008 A1
20080077182 Geissler et al. Mar 2008 A1
20080086139 Bourke et al. Apr 2008 A1
20080086152 McKay et al. Apr 2008 A1
20080091271 Bonitati et al. Apr 2008 A1
20080091272 Aram et al. Apr 2008 A1
20080097618 Baker et al. Apr 2008 A1
20080103506 Volpi et al. May 2008 A1
20080114463 Auger et al. May 2008 A1
20080138611 Yasuzawa et al. Jun 2008 A1
20080154271 Berberich et al. Jun 2008 A1
20080172125 Ek Jul 2008 A1
20080177200 Ikehara et al. Jul 2008 A1
20080183290 Baird et al. Jul 2008 A1
20080188935 Saylor et al. Aug 2008 A1
20080195113 Sikora Aug 2008 A1
20080200904 Cluff et al. Aug 2008 A1
20080208201 Moindreau et al. Aug 2008 A1
20080243262 Lee Oct 2008 A1
20080243263 Lee et al. Oct 2008 A1
20080262500 Collazo Oct 2008 A1
20080262625 Spriano et al. Oct 2008 A1
20080275451 McAllister et al. Nov 2008 A1
20080275512 Albertirio et al. Nov 2008 A1
20080294168 Wieland Nov 2008 A1
20080306483 Iannarone Dec 2008 A1
20080317807 Lu et al. Dec 2008 A1
20090018543 Ammann et al. Jan 2009 A1
20090018581 Anderson et al. Jan 2009 A1
20090035722 Balasundaram et al. Feb 2009 A1
20090036893 Kartalian et al. Feb 2009 A1
20090054899 Ammann et al. Feb 2009 A1
20090069816 Sasing et al. Mar 2009 A1
20090076512 Ammann et al. Mar 2009 A1
20090088753 Aram et al. Apr 2009 A1
20090088858 Zinger et al. Apr 2009 A1
20090105772 Seebeck et al. Apr 2009 A1
20090112211 Johnstone Apr 2009 A1
20090138077 Weber et al. May 2009 A1
20090143783 Dower Jun 2009 A1
20090143784 Petersen et al. Jun 2009 A1
20090149860 Scribner et al. Jun 2009 A1
20090192621 Winslow et al. Jul 2009 A1
20090198288 Hoof et al. Aug 2009 A1
20090210057 Liao et al. Aug 2009 A1
20090216268 Panter Aug 2009 A1
20090216285 Ek et al. Aug 2009 A1
20090220561 Jin et al. Sep 2009 A1
20090222012 Karnes et al. Sep 2009 A1
20090228031 Ritter et al. Sep 2009 A1
20090228105 Son et al. Sep 2009 A1
20090234452 Steiner et al. Sep 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20090264889 Long et al. Oct 2009 A1
20090264928 Blain Oct 2009 A1
20090275950 Sterrett et al. Nov 2009 A1
20090276052 Regala et al. Nov 2009 A1
20090283701 Ogawa Nov 2009 A1
20100003638 Collins et al. Jan 2010 A1
20100015244 Jain et al. Jan 2010 A1
20100028387 Balasundaram et al. Feb 2010 A1
20100028999 Nain Feb 2010 A1
20100036381 Vanleeuwen et al. Feb 2010 A1
20100057197 Weber et al. Mar 2010 A1
20100069958 Sullivan et al. Mar 2010 A1
20100082035 Keefer Apr 2010 A1
20100087829 Metzger et al. Apr 2010 A1
20100092535 Cook et al. Apr 2010 A1
20100112519 Hall et al. May 2010 A1
20100136289 Extrand et al. Jun 2010 A1
20100152752 Denove et al. Jun 2010 A1
20100168505 Inman et al. Jul 2010 A1
20100168854 Luers et al. Jul 2010 A1
20100185294 Ek Jul 2010 A1
20100191342 Byrd et al. Jul 2010 A1
20100211071 Lettmann et al. Aug 2010 A1
20100217315 Jolly et al. Aug 2010 A1
20100227372 Bilek et al. Sep 2010 A1
20100241236 Katrana et al. Sep 2010 A1
20100249930 Myers Sep 2010 A1
20100249935 Slivka et al. Sep 2010 A1
20100249942 Goswami et al. Sep 2010 A1
20100256645 Zajac et al. Oct 2010 A1
20100256758 Gordon et al. Oct 2010 A1
20100268227 Tong et al. Oct 2010 A1
20100268238 Sikora et al. Oct 2010 A1
20100268273 Albertorio et al. Oct 2010 A1
20100268330 Tong et al. Oct 2010 A1
20100268346 Tong et al. Oct 2010 A1
20100268347 Tong et al. Oct 2010 A1
20110009964 Schwartz et al. Jan 2011 A1
20110035012 Linares Feb 2011 A1
20110059312 Howling et al. Mar 2011 A1
20110066242 Lu et al. Mar 2011 A1
20110071641 Ek et al. Mar 2011 A1
20110085968 Jin et al. Apr 2011 A1
20110087280 Albertorio Apr 2011 A1
20110093085 Morton Apr 2011 A1
20110098822 Walch et al. Apr 2011 A1
20110106271 Regala et al. May 2011 A1
20110118780 Holmes, Jr. May 2011 A1
20110123951 Lomicka May 2011 A1
20110125263 Webster et al. May 2011 A1
20110125277 Nygren et al. May 2011 A1
20110137341 Thornes et al. Jun 2011 A1
20110152869 Ek et al. Jun 2011 A1
20110153023 Deffenbaugh et al. Jun 2011 A1
20110159070 Jin et al. Jun 2011 A1
20110178557 Rush et al. Jul 2011 A1
20110190902 Tong et al. Aug 2011 A1
20110196367 Gallo Aug 2011 A1
20110213375 Sikora et al. Sep 2011 A1
20110224729 Baker et al. Sep 2011 A1
20110236435 Biris Sep 2011 A1
20110238069 Zajac et al. Sep 2011 A1
20110251621 Sluss et al. Oct 2011 A1
20110257753 Gordon et al. Oct 2011 A1
20110300186 Hellstrom et al. Dec 2011 A1
20110301648 Lofthouse et al. Dec 2011 A1
20110301716 Sirivisoot et al. Dec 2011 A1
20120016428 White et al. Jan 2012 A1
20120022656 Lavi Jan 2012 A1
20120027837 DeMuth et al. Feb 2012 A1
20120029647 Winslow et al. Feb 2012 A1
20120051489 Varanasi et al. Mar 2012 A1
20120058328 Tourvieille et al. Mar 2012 A1
20120059418 Denham et al. Mar 2012 A1
20120065732 Roller et al. Mar 2012 A1
20120065734 Barrett et al. Mar 2012 A1
20120071935 Keith et al. Mar 2012 A1
20120101502 Kartalian et al. Apr 2012 A1
20120109136 Bourque et al. May 2012 A1
20120109222 Goel et al. May 2012 A1
20120116502 Su et al. May 2012 A1
20120123474 Zajac et al. May 2012 A1
20120123541 Albertorio et al. May 2012 A1
20120128666 Pébay et al. May 2012 A1
20120150203 Brady et al. Jun 2012 A1
20120150225 Burkart et al. Jun 2012 A1
20120150286 Weber et al. Jun 2012 A1
20120165868 Burkhart et al. Jun 2012 A1
20120183799 Steele et al. Jul 2012 A1
20120185058 Albertorio et al. Jul 2012 A1
20120189833 Suchanek et al. Jul 2012 A1
20120189844 Jain et al. Jul 2012 A1
20120209278 Ries et al. Aug 2012 A1
20120214128 Collins et al. Aug 2012 A1
20120215310 Sharp et al. Aug 2012 A1
20120221111 Burkhead, Jr. et al. Aug 2012 A1
20120253467 Frankle Oct 2012 A1
20120265298 Schmieding et al. Oct 2012 A1
20120323338 Vanasse Dec 2012 A1
20120330322 Sand et al. Dec 2012 A1
20120330357 Thal Dec 2012 A1
20130006374 Le Couedic et al. Jan 2013 A1
20130022943 Collins et al. Jan 2013 A1
20130023907 Sterrett et al. Jan 2013 A1
20130023927 Cassani Jan 2013 A1
20130046312 Millett et al. Feb 2013 A1
20130096563 Meade et al. Apr 2013 A1
20130096612 Zajac et al. Apr 2013 A1
20130103104 Krupp et al. Apr 2013 A1
20130110165 Burkhart et al. May 2013 A1
20130138108 Dryfuss et al. May 2013 A1
20130138150 Baker et al. May 2013 A1
20130150885 Dreyfuss Jun 2013 A1
20130150975 Iannotti et al. Jun 2013 A1
20130165954 Dreyfuss et al. Jun 2013 A1
20130165972 Sullivan Jun 2013 A1
20130178871 Koogle, Jr. et al. Jul 2013 A1
20130184818 Coughlin et al. Jul 2013 A1
20130190819 Norton Jul 2013 A1
20130190885 Ammann et al. Jul 2013 A1
20130197651 McDaniel et al. Aug 2013 A1
20130204257 Zajac Aug 2013 A1
20130204259 Zajac Aug 2013 A1
20130205936 Schmieding et al. Aug 2013 A1
20130218176 Denove et al. Aug 2013 A1
20130218286 Stahl Wernersson et al. Aug 2013 A1
20130237987 Graham Sep 2013 A1
20130238099 Hardy et al. Sep 2013 A1
20130245775 Metcalfe Sep 2013 A1
20130261750 Lappin Oct 2013 A1
20130268073 Albertorio et al. Oct 2013 A1
20130282129 Phipps Oct 2013 A1
20130289570 Chao Oct 2013 A1
20130304209 Schmieding et al. Nov 2013 A1
20130331886 Thornes Dec 2013 A1
20130338722 Yalizis Dec 2013 A1
20130338792 Schmieding et al. Dec 2013 A1
20130344600 Jin et al. Dec 2013 A1
20130345747 Dreyfuss Dec 2013 A1
20130345748 Dreyfuss Dec 2013 A1
20140012267 Skiora et al. Jan 2014 A1
20140012389 Ek Jan 2014 A1
20140025173 Cardon et al. Jan 2014 A1
20140052178 Dooney, Jr. Feb 2014 A1
20140052179 Dreyfuss et al. Feb 2014 A1
20140066933 Ek et al. Mar 2014 A1
20140074164 Dreyfuss et al. Mar 2014 A1
20140074239 Albertorio et al. Mar 2014 A1
20140079921 De Volder Mar 2014 A1
20140081273 Sherman Mar 2014 A1
20140081399 Roller et al. Mar 2014 A1
20140088601 Kuczynski Mar 2014 A1
20140088602 Ammann et al. Mar 2014 A1
20140114322 Perez, III Apr 2014 A1
20140114367 Jolly et al. Apr 2014 A1
20140121700 Dreyfuss et al. May 2014 A1
20140121701 Dreyfuss et al. May 2014 A1
20140128889 Sullivan et al. May 2014 A1
20140128915 Dreyfuss et al. May 2014 A1
20140128921 Parsons et al. May 2014 A1
20140155902 Sikora et al. Jun 2014 A1
20140188232 Metcalfe et al. Jul 2014 A1
20140194880 Schmieding et al. Jul 2014 A1
20140228849 Sterrett et al. Aug 2014 A1
20140236306 Karnes et al. Aug 2014 A1
20140243439 Papangelou et al. Aug 2014 A1
20140243891 Schmieding et al. Aug 2014 A1
20140243892 Choinski Aug 2014 A1
20140243976 Schmieding et al. Aug 2014 A1
20140257297 Koogle, Jr. et al. Sep 2014 A1
20140257299 Berelsman et al. Sep 2014 A1
20140257384 Dreyfuss et al. Sep 2014 A1
20140276841 Albertorio et al. Sep 2014 A1
20140276990 Perez, III Sep 2014 A1
20140277020 Koogle et al. Sep 2014 A1
20140277121 Pilgeram et al. Sep 2014 A1
20140277134 ElAttrache et al. Sep 2014 A1
20140277181 Garlock Sep 2014 A1
20140277186 Granberry et al. Sep 2014 A1
20140277214 Helenbolt et al. Sep 2014 A1
20140277448 Guerra et al. Sep 2014 A1
20140288657 Lederman et al. Sep 2014 A1
20140309689 Sikora et al. Oct 2014 A1
20140324167 Schmieding et al. Oct 2014 A1
20140335145 Jin et al. Nov 2014 A1
20140350688 Michel et al. Nov 2014 A1
20150073424 Couture et al. Mar 2015 A1
20150134066 Bachmaier May 2015 A1
20150142052 Koogle, Jr. et al. May 2015 A1
20150157462 Ek et al. Jun 2015 A1
20150164648 Lizak et al. Jun 2015 A1
20150201951 Bradley et al. Jul 2015 A1
20150216541 Schmieding et al. Aug 2015 A1
20150245831 Sullivan Sep 2015 A1
20150250472 Ek et al. Sep 2015 A1
20150250475 Ek Sep 2015 A1
20150250594 Ek Sep 2015 A1
20150250602 Sikora et al. Sep 2015 A1
20150265328 Viola Sep 2015 A1
20150313586 Burkhart et al. Nov 2015 A1
20160022374 Haider et al. Jan 2016 A1
20160030035 Zajac et al. Feb 2016 A1
20160051268 Seitlinger et al. Feb 2016 A1
20160051367 Gervasi et al. Feb 2016 A1
20160106444 Ek Apr 2016 A1
20160151060 Albertorio et al. Jun 2016 A1
20160151119 Michel et al. Jun 2016 A1
20160287243 Benedict et al. Oct 2016 A1
20160287266 Sikora et al. Oct 2016 A1
20160310132 Meislin et al. Oct 2016 A1
20160331404 Jolly et al. Nov 2016 A1
20160354197 Roller et al. Dec 2016 A1
20170056180 Schmieding Mar 2017 A1
20170100251 Ek et al. Apr 2017 A1
20170119528 Ek et al. May 2017 A1
20170128085 Sikora et al. May 2017 A1
20170209196 Zajac et al. Jul 2017 A1
20170215935 Taft Aug 2017 A1
20170239696 Weber Aug 2017 A1
20170252147 Albertorio et al. Sep 2017 A1
20170252521 Guerra et al. Sep 2017 A1
20170281200 Sikora et al. Oct 2017 A1
20170296328 Albertorio et al. Oct 2017 A1
20170311983 Sikora et al. Nov 2017 A1
20170333020 Laviano et al. Nov 2017 A1
20180055507 Bachmaier et al. Mar 2018 A1
20180085104 Schmieding et al. Mar 2018 A1
20180085109 Petry et al. Mar 2018 A1
20180103963 Bradley et al. Apr 2018 A1
20180116682 Albertorio et al. May 2018 A1
20180132869 Sikora et al. May 2018 A1
20180154041 Altschuler et al. Jun 2018 A1
20180161169 Cardon et al. Jun 2018 A1
20180344447 Albertorio et al. Dec 2018 A1
20190021719 Dooney et al. Jan 2019 A1
20190029836 Ek Jan 2019 A1
20190038426 Ek Feb 2019 A1
20190059910 Adams et al. Feb 2019 A1
20190105160 Ek et al. Apr 2019 A1
20190105165 Sikora et al. Apr 2019 A1
20190105166 Ek et al. Apr 2019 A1
20190201185 Albertorio et al. Jul 2019 A1
20190239902 Sikora et al. Aug 2019 A1
20190350578 Petry et al. Nov 2019 A1
20200046383 Ek Feb 2020 A1
20200155174 Sikora et al. May 2020 A1
20200275960 Ek et al. Sep 2020 A1
20200323544 Sikora et al. Oct 2020 A1
20210022877 Ek Jan 2021 A1
20210030549 Ek et al. Feb 2021 A1
20210030550 Ek et al. Feb 2021 A1
20210038395 Ek et al. Feb 2021 A1
20210038398 Sikora et al. Feb 2021 A1
Foreign Referenced Citations (111)
Number Date Country
2001262308 Dec 2001 AU
2001259327 Feb 2005 AU
2002248198 May 2007 AU
2005202099 Jun 2007 AU
2002357284 Aug 2007 AU
2006202337 May 2008 AU
2003262428 Aug 2009 AU
2007216648 Nov 2009 AU
2004216106 Jun 2010 AU
2008207536 Mar 2011 AU
2759027 Oct 2010 CA
2470194 Feb 2011 CA
2933174 Apr 1980 DE
3516743 Nov 1986 DE
3840466 Jun 1990 DE
19505083 Nov 1995 DE
102004053606 May 2006 DE
112013003358 Mar 2015 DE
0240004 Oct 1987 EP
0241240 Oct 1987 EP
0290736 Nov 1988 EP
0350780 Jan 1990 EP
0485678 May 1992 EP
0327387 Sep 1992 EP
0505634 Sep 1992 EP
0736292 Oct 1996 EP
0903125 Mar 1999 EP
0903127 Mar 1999 EP
0993812 Apr 2000 EP
0661023 Aug 2001 EP
1374782 Jan 2004 EP
1426013 Sep 2004 EP
1870060 Dec 2007 EP
1927328 Jun 2008 EP
1278460 Apr 2009 EP
2062541 May 2009 EP
2455002 May 2012 EP
2314257 Feb 2013 EP
2572650 Mar 2013 EP
2574313 Apr 2013 EP
2689750 Jan 2014 EP
2595534 Jun 2014 EP
2804565 Oct 2014 EP
2481368 Dec 2014 EP
2901971 Aug 2015 EP
2986232 Feb 2016 EP
2 400 930 Dec 2017 EP
2986232 Nov 2018 EP
2242068 Mar 1975 FR
2642301 Mar 1990 FR
2676917 Dec 1992 FR
2693650 Jan 1994 FR
2718014 Oct 1995 FR
2733904 Nov 1996 FR
2739151 Mar 1997 FR
2281577 Mar 1995 GB
2372707 Sep 2002 GB
61502029 Sep 1986 JP
63300758 Dec 1988 JP
3504932 Oct 1991 JP
H03-092328 Nov 1992 JP
518511 Mar 1993 JP
06339490 Dec 1994 JP
11244315 Sep 1999 JP
2964035 Oct 1999 JP
2001525210 Dec 2001 JP
2002291779 Oct 2002 JP
2003534096 Nov 2003 JP
198803781 Jun 1988 WO
8909578 Oct 1989 WO
9409730 May 1994 WO
9427507 Dec 1994 WO
9624304 Aug 1996 WO
1997022306 Jun 1997 WO
199725006 Jul 1997 WO
9920192 Apr 1999 WO
0013597 Mar 2000 WO
0105336 Jan 2001 WO
0166021 Sep 2001 WO
0166022 Sep 2001 WO
0182677 Nov 2001 WO
0191648 Dec 2001 WO
0191672 Dec 2001 WO
0217821 Mar 2002 WO
02086180 Oct 2002 WO
03047470 Jun 2003 WO
03051210 Jun 2003 WO
03051211 Jun 2003 WO
03061516 Jul 2003 WO
03065909 Aug 2003 WO
2004014261 Feb 2004 WO
2004026170 Apr 2004 WO
2004052216 Jun 2004 WO
2004075777 Sep 2004 WO
2004100839 Nov 2004 WO
2005051231 Jun 2005 WO
2006004885 Jan 2006 WO
2006074321 Jul 2006 WO
2006091686 Aug 2006 WO
2010135156 Nov 2010 WO
2012003548 Jan 2012 WO
2012021857 Feb 2012 WO
2012058349 May 2012 WO
2013064569 May 2013 WO
2013152102 Oct 2013 WO
2014008126 Jan 2014 WO
2014172347 Oct 2014 WO
2016154393 Sep 2016 WO
2019028344 Feb 2019 WO
2019079104 Apr 2019 WO
2020092335 May 2020 WO
Non-Patent Literature Citations (495)
Entry
Extended Search Report dated Nov. 26, 2018, issued in European Patent Application No. 16769660.8, 7 pages.
Office Action dated Dec. 21, 2018, issued in U.S. Appl. No. 15/388,808, 7 pages.
Notice of Allowance dated Jan. 22, 2019, issued in U.S. Appl. No. 15/296,772, 7 pages.
Office Action dated Mar. 1, 2019, issued in U.S. Appl. No. 15/388,808, 9 pages.
Office Action dated Apr. 2, 2019, issued in U.S. Appl. No. 13/723,902, 19 pages.
Office Action dated Apr. 10, 2019, issued in U.S. Appl. No. 15/865,734, 8 pages.
Office Action dated May 9, 2019, issued in U.S. Appl. No. 15/943,949, 8 pages.
Office Action dated May 15, 2019, issued in U.S. Appl. No. 14/640,667, 16 pages.
Office Action dated May 15, 2019, issued in U.S. Appl. No. 15/973,981, 6 pages.
Office Action dated Jun. 4, 2019, issued in U.S. Appl. No. 14/133,943, 13 pages.
Notice of Allowance dated Jun. 11, 2019, issued in Canadian Patent Application No. 2,759,027, 1 page.
Examination Report dated Jul. 2, 2019, issued in Brazilian Patent Application No. PI1014961-9, 2 pages.
Notice of Allowance dated Jul. 15, 2019, issued in U.S. Appl. No. 15/606,643, 5 pages.
Notice of Allowance dated Sep. 10, 2019, issued in U.S. Appl. No. 15/388,808, 8 pages.
Office Action dated Sep. 11, 2019, issued in U.S. Appl. No. 15/351,530, 15 pages.
VILEX—Restoring Mobility, Cannulated Implants for Forefoot Joints, QSD 8.12-11 Rev D, 2010, 4 pages.
Tornier Implants Chirurgicaux—Aequalis Reversed Shoulder Prosethesis, K132285, Dec. 5, 2013, 8 pages.
Tornier, Aequalis Reversed II Shoulder, Nov. 2014, 3 pages.
Johnson & Johnson Medical Devices Companies—Global PA Shoulder System, https://www.depuysynthes.com/hcp/shoulder/products/qs/DELTAXTEND-Reverse-Shoulder-System, Nov. 2014, 7 pages.
Zimmer Biomet—Joint Replacement Orthopaedic Devices_Hip_Knee_Shoulder, http://www.biomet.com/orthopedics/getfile.cfm?id=2905&rt=inline, Nov. 2014, 3 pages.
Notice of allowance dated Oct. 28, 2019, issued in U.S. Appl. No. 15/865,734, 7 pages.
Office Action dated Nov. 19, 2019, issued in U.S. Appl. No. 13/723,902, 16 pages.
Notice of allowance dated Dec. 12, 2019, issued in U.S. Appl. No. 15/388,808, 8 pages.
Notice of allowance dated Dec. 16, 2019, issued in U.S. Appl. No. 15/973,981, 8 pages.
Notice of allowance dated Dec. 17, 2019, issued in U.S. Appl. No. 15/943,949, 7 pages.
Notice of allowance dated Dec. 18, 2019, issued in U.S. Appl. No. 14/133,943, 5 pages.
Office Action dated Dec. 30, 3019, issued in U.S. Appl. No. 15/943,956, 16 pages.
Office Action dated Jan. 16, 2020, issued in U.S. Appl. No. 14/640,667, 10 pages.
International Search Report and Written Opinion dated Jan. 16, 2020, issued in PCT International Patent Application No. PCT/US2019/058517, 9 pages.
Office Action dated Dec. 16, 2019, issued in European Patent Application No. 05 763 817.3, 5 pages.
Preliminary Report on Patentability dated Feb. 13, 2020, issued in PCT Patent Application No. PCT/US2018/045157, 5 pages.
Notice of Allowance dated Feb. 24, 2020, issued in U.S. Appl. No. 15/351,530, 8 pages.
Office Action dated Mar. 16, 2020, issued in U.S. Appl. No. 15/079,342, 16 pages.
International Search Report and Written Opinion dated Apr. 8, 2020, issued in PCT Patent Application No. PCT/US2020/014980, 9 pages.
USPTO Office action dated Dec. 8, 2005 issued in corresponding U.S. Appl. No. 10/373,463.
USPTO Office Action dated Aug. 31, 2005 issued in corresponding U.S. Appl. No. 10/308,718.
USPTO Office action dated Aug. 16, 2005 issued in corresponding U.S. Appl. No. 10/373,463.
USPTO Office action dated Jan. 27, 2005 issued in corresponding U.S. Appl. No. 10/373,463.
USPTO Office action dated Aug. 13, 2004 issued in corresponding U.S. Appl. No. 10/373,463.
USPTO Notice of Allowance dated Sep. 26, 2003 in U.S. Appl. No. 10/162,533.
USPTO Notice of Allowance dated May 12, 2003 in U.S. Appl. No. 10/024,077.
USPTO Office Action dated Apr. 1, 2003 issued in U.S. Appl. No. 10/162,533.
USPTO Office action dated Mar. 28, 2003 issued in corresponding U.S. Appl. No. 10/024,077.
USPTO Notice of Allowance dated Sep. 30, 2002 in U.S. Appl. No. 09/846,657.
USPTO Office Action dated Apr. 2, 2002 issued in corresponding U.S. Appl. No. 09/846,657.
USPTO Office Action dated Feb. 27, 2002 issued in corresponding U.S. Appl. No. 09/846,657.
USPTO Office Action dated Jan. 3, 2002 issued in corresponding U.S. Appl. No. 09/846,657.
AU Examiners report dated Jan. 18, 2006 issued in corresponding Australian patent application No. 2005202099.
AU Examiners report dated Jan. 12, 2007 issued in corresponding Australian patent application No. 2006202337.
AU Examiners report dated Feb. 21, 2007 issued in corresponding Australian patent application No. 2005202099.
AU Examiners report dated May 23, 2007 issued in corresponding Australian patent application No. 2005202099.
AU Notice of Acceptance dated Aug. 6, 2007 in Patent Application No. 20022357284.
EPO supplementary partial search report dated May 10, 2004 issued in corresponding European application 01932833.5-231-/US0114061.
EPO supplementary search report dated Aug. 30, 2004 issued in corresponding European application 01932833.5.
EPO Office Action dated Aug. 23, 2004, received in related EPO application No. 03 026 286.9 (4 pgs).
EPO Office Action dated Mar. 15, 2005, received in related EPO application No. 03 026 286.9, (3 pgs).
EPO Search Report received in related EPO Application No. 03 02 6286.9 dated Feb. 26, 2004 (5pgs).
EPO Search Report received in related EPO Application No. 03 02 6286.9 dated Apr. 27, 2004 (6pgs).
Examination Report dated Feb. 22, 2005 received in corresponding European Application No. 01932833.5 (3pages).
EPO Office Action dated Sep. 22, 2005 issued in corresponding European application 01932833.5-2310.
EPO Office Action dated Sep. 11, 2006 issued in corresponding European application 01932833.5-2310.
International Preliminary Examination Report dated Nov. 5, 2002 issued in corresponding PCT patent application No. PCT/US01/14061.
U.S. Office Action issued in related U.S. Appl. No. 10/994,453 dated Feb. 25, 2008.
International Preliminary Examination Report dated Nov. 12, 2002 issued in corresponding PCT patent application No. PCT/US01/48821.
International Preliminary Examination Report dated Sep. 12, 2003 issued in corresponding PCT patent application No. PCT/US02/40310.
International Preliminary Examination Report dated Oct. 27, 2003 issued in corresponding PCT patent application No. PCT/US01/48821.
International Preliminary Examination Report dated Aug. 19, 2004 issued in corresponding PCT patent application No. PCT/US02/40310.
Notice of Allowance issued in corresponding U.S. Appl. No. 10/618,887 dated Sep. 13, 2007.
International Preliminary Report on Patentability and Written Opinion dated May 22, 2006 in corresponding PCT patent application No. PCT/US04/039181.
English language translation of Japanese Office Action dated Aug. 9, 2007 issued in corresponding Japanese application No. 2003-552148.
Canadian Office Action dated Jan. 2, 2008 issued in corresponding Canadian Application No. 2407440.
International Preliminary Report on Patentability and Written Opinion dated Mar. 1, 2007 in corresponding PCT patent application No. PCT/US05/030120.
International Preliminary Report on Patentability and Written Opinion dated Jun. 28, 2007 in corresponding PCT patent application No. PCT/US2005/005980.
International Preliminary Report on Patentability and Written Opinion dated Jul. 19, 2007 in corresponding PCT patent application No. PCT/US2006/000380.
International Search Report dated Dec. 27, 2001 issued in corresponding PCT patent application No. PCT/US01/14061.
Office Action issued in corresponding U.S. Appl. No. 10/741,044 dated Oct. 26, 2005.
International Search Report dated May 23, 2003 issued in corresponding PCT patent application No. PCT/US02/40310.
International Search Report and Written Opinion dated Dec. 30, 2004 issued in corresponding PCT patent application No. PCT/US04/05539.
International Search Report and Written Opinion dated Jan. 30, 2006 issued in corresponding PCT patent application No. PCT/US04/39181.
International Search Report and Written Opinion dated Aug. 30, 2006 issued in corresponding PCT patent application No. PCT/US06/06323.
International Search Report and Written Opinion dated Sep. 29, 2006 issued in corresponding PCT patent application No. PCT/US05/30120.
International Search Report and Written Opinion dated Nov. 27, 2006 issued in corresponding PCT patent application No. PCT/US06/00380.
International Search Report and Written Opinion dated Nov. 29, 2006 issued in corresponding PCT patent application No. PCT/US05/023200.
International Search Report and Written Opinion dated May 22, 2007 issued in corresponding PCT patent application No. PCT/US05/05980.
U.S. Office Action dated Apr. 29, 2014, issued in U.S. Appl. No. 13/037,929, 11 pages.
U.S. Office Action dated May 19, 2014, issued in U.S. Appl. No. 13/436,188, 10 pages.
U.S. Office Action dated May 28, 2014, issued in U.S. Appl. No. 13/752,858, 8 pages.
U.S. Office Action dated Jun. 4, 2014, issued in U.S. Appl. No. 12/762,920, 10 pages.
Notice of Allowance dated Jun. 19, 2014, issued in U.S. Appl. No. 13/470,678, 5 pages.
Intent to Grant dated Jun. 27, 2014, issued in European Patent Application No. 12 002 103.5, 6 pages.
U.S. Office Action dated Jul. 7, 2014, issued in U.S. Appl. No. 12/979,992, 6 pages.
U.S. Office Action dated Jul. 7, 2014, issued in U.S. Appl. No. 12/001,473, 15 pages.
Partial supplementary European search report dated Mar. 25, 2015, issued in EP Patent Application No. 11751521.3, 6 pages.
U.S. Examiner interview summary dated Apr. 8, 2015, issued in U.S. Appl. No. 12/001,473, 4 pages.
U.S. Final Office Action dated Apr. 16, 2015, issued in U.S. Appl. No. 12/762,920, 15 pages.
U.S. Supplemental Notice of Allowance dated Apr. 21, 2015, issued in U.S. Appl. No. 13/436,188, 6 pages.
U.S. Final Office Action dated Apr. 28, 2015, issued in U.S. Appl. No. 13/785,867, 8 pages.
U.S. Office Action dated May 1, 2015, issued in U.S. Appl. No. 14/133,943, 25 pages.
U.S. Final Office Action dated May 22, 2015, issued in U.S. Appl. No. 13/438,095, 7 pages.
U.S. Final Office Action dated Jun. 2, 2015, issued in U.S. Appl. No. 12/001,473, 18 pages.
U.S. Office Action dated Jun. 25, 2015, issued in U.S. Appl. No. 12/711,039, 10 pages.
U.S. Final Office Action dated Jul. 7, 2015, issued in U.S. Appl. No. 12/762,948, 15 pages.
Intent to Grant dated Jul. 8, 2015, issued in European Patent Application No. 08 729 178.7, 7 pages.
Notice of Allowance dated Jul. 31, 2015, issued in U.S. Appl. No. 13/438,095, 8 pages.
Extended Search Report dated Sep. 9, 2015, issued in European Patent Application No. 11751521.3, 13 pages.
U.S. Final Office Action dated Sep. 17, 2015, issued in U.S. Appl. No. 14/035,061, 10 pages.
International Preliminary Report on Patentability dated Oct. 29, 2015, issued in PCT Patent Application No. PCT/US/2014/034157, 5 pages.
European Examination Report dated Oct. 28, 2015, issued in European Patent Application No. 05 763 817.3, 4 pages.
U.S. Notice of Allowance dated Oct. 30, 2015, issued in U.S. Appl. No. 12/762,920, 8 pages.
Partial Supplementary European Search Report dated Nov. 5, 2015, issued in European Patent Application No. 12860168.9, 6 pages.
U.S. Office Action dated Nov. 17, 2015, issued in U.S. Appl. No. 13/930,737, 9 pages.
U.S. Office Action dated Nov. 25, 2015, issued in U.S. Appl. No. 13/723,902, 13 pages.
U.S. Office Action dated Nov. 25, 2015, issued in U.S. Appl. No. 13/863,917, 12 pages.
European Examination Report dated Dec. 7, 2015, issued in European Patent Application No. 10 765 332.1, 4 pages.
U.S. Office Action dated Dec. 8, 2015, issued in U.S. Appl. No. 13/796,675, 16 pages.
European Decision to Grant dated Dec. 17, 2015, issued in European Patent Application No. 08729178.7, 2 pages.
European Examination Report dated Jul. 22, 2015, issued in European Patent Application No. 09 002 088.4, 4 pages.
U.S. Office Action dated Jan. 21, 2016, issued in U.S. Appl. No. 12/762,948, 14 pages.
U.S. Final Office Action dated Jan. 21, 2016, issued in U.S. Appl. No. 14/133,943, 27 pages.
U.S. Notice of Allowance dated Feb. 8, 2016, issued in U.S. Appl. No. 13/785,867, 8 pages.
U.S. Notice of Allowance dated Feb. 12, 2016, issued in U.S. Appl. No. 12/001,473, 14 pages.
Canadian Office Action dated Feb. 15, 2016, issued in Canadian Patent Application No. 2,407,440, 3 pages.
U.S. Notice of Allowability dated Feb. 17, 2016, issued in U.S. Appl. No. 13/785,867, 4 pages.
U.S. Notice of Allowance dated Feb. 17, 2016, issued in U.S. Appl. No. 12/979,992, 5 pages.
U.S. Final Office Action dated Feb. 25, 2016, issued in U.S. Appl. No. 12/711,039, 7 pages.
European Extended Search Report dated Feb. 29, 2016, issued in European Patent Application No. 12860168.9, 11 pages.
Canadian Examiner Requisition dated Mar. 10, 2016, issued in Canadian Patent Application No. 2,759,027, 3 pages.
European Examination Report dated Mar. 21, 2016, issued in European Patent Application No. 10 746 863.9, 3 pages.
U.S. Office Action dated Mar. 22, 2016, issued in U.S. Appl. No. 14/640,602, 8 pages.
U.S. Office Action dated Jun. 2, 2016, issued in U.S. Appl. No. 14/035,061, 9 pages.
U.S. Notice of Allowance dated Jun. 7, 2016, issued in U.S. Appl. No. 13/930,737, 5 pages.
International Search Report and Written Opinion dated Jun. 10, 2016, issued in PCT Patent Application No. PCT/US2016/023930, 13 pages.
U.S. Notice of Allowance dated Jun. 29, 2016, issued in U.S. Appl. No. 13/863,917, 9 pages.
U.S. Final Office Action dated Jul. 6, 2016, issued in U.S. Appl. No. 13/723,902, 15 pages.
Official Communication dated Jun. 21, 2016, issued in European Patent Application No. 11 751 521.3, 3 pages.
Final Office Action dated Jul. 19, 2016, issued in U.S. Appl. No. 13/796,675, 17 pages.
Official Communication dated Aug. 23, 2016, issued in European Patent Application No. 10 765 332.1, 4 pages.
Office Action dated Sep. 8, 2016, issued in U.S. Appl. No. 14/640,529, 15 pages.
Office Action dated Sep. 20, 2016, issued in U.S. Appl. No. 14/133,943, 24 pages.
Final Office Action dated Sep. 30, 2016, issued in U.S. Appl. No. 14/640,602, 5 pages.
Office Action dated Oct. 10, 2016, issued in European Patent Application No. 10 746 863.9, 4 pages.
Extended Search Report dated Nov. 16, 2016, issued in European Patent Application No. 14785702.3, 7 pages.
Office Action dated Nov. 22, 2016, issued in U.S. Appl. No. 14/640,774, 10 pages.
Office Action dated Nov. 24, 2016, issued in European Patent Application No. 12 860 168.9, 4 pages.
Office Action dated Dec. 1, 2016, issued in European Patent Application No. 05 763 817.3, 3 pages.
Notice of Allowance dated Jan. 27, 2017, issued in U.S. Appl. No. 12/762,948, 5 pages.
Office Action dated Jan. 27, 2017, issued in U.S. Appl. No. 14/035,061, 9 pages.
Office Action dated Feb. 7, 2017, issued in U.S. Appl. No. 13/723,902, 16 pages.
Office Action dated Feb. 22, 2017, issued in U.S. Appl. No. 13/796,675, 19 pages.
Final Office Action dated Mar. 28, 2017, issued in U.S. Appl. No. 14/133,943, 29 pages.
Canadian Office Action dated Jan. 9, 2017, issued in Canadian Patent Application No. 2,759,027, 3 pages.
Canadian Office Action dated Mar. 22, 2017, issued in Canadian Patent Application No. 2,407,440, 7 pages.
U.S. Notice of Allowance dated Apr. 14, 2017, issued in U.S. Appl. No. 14/640,602, 7 pages.
U.S. Office Action dated Apr. 28, 2017, issued in U.S. Appl. No. 15/153,113, 11 pages.
U.S. Final Office Action dated May 9, 2017, issued in U.S. Appl. No. 14/640,529, 15 pages.
U.S. Final Office Action dated Jun. 15, 2017, issued in U.S. Appl. No. 14/640,774, 10 pages.
Notice of Allowance dated Aug. 7, 2017, issued in U.S. Appl. No. 14/640,602, 8 pages.
Office Action dated Aug. 25, 2017, issued in U.S. Appl. No. 14/728,216, 10 pages.
Final Office Action dated Aug. 25, 2017, issued in U.S. Appl. No. 14/035,061, 10 pages.
Final Office Action dated Sep. 22, 2017, issued in U.S. Appl. No. 13/723,902, 21 pages.
Preliminary Report on Patentability dated Oct. 5, 2017, issued in PCT Patent Application No. PCT/US2016/023930, 11 pages.
Intent to Grant dated Oct. 6, 2017, issued in European Patent Application No. 11 751 521.3, 7 pages.
Final Office Action dated Oct. 6, 2017, issued in U.S. Appl. No. 13/796,675, 18 pages.
Intent to Grant dated Oct. 6, 2017, issued in European Patent Application No. 12 860 168.9, 7 pages.
Office Action dated Oct. 16, 2017, issued in European Patent Application No. 05 763 817.3, 5 pages.
Office Action dated Oct. 17, 2017, issued in U.S. Appl. No. 14/640,667, 10 pages.
Office Action dated Oct. 16, 2017, issued in Canadian Patent Application No. 2,759,027, 3 pages.
U.S. Notice of Allowance dated Nov. 30, 2017, issued in U.S. Appl. No. 14/640,529, 7 pages.
European Intent to Grant dated Dec. 1, 2017, issued in European Patent Application Serial No. 09 002 088.4, 6 pages.
U.S. Notice of Allowance dated Dec. 8, 2017, issued in U.S. Appl. No. 15/153,113, 5 pages.
U.S. Office Action dated Dec. 12, 2017, issued in U.S. Appl. No. 14/133,943, 28 pages.
Canadian Notice of Allowance dated Dec. 14, 2017, issued in Canadian Patent Application Serial No. 2,407,440, 1 page.
U.S. Notice of Allowance dated Jan. 10, 2018, issued in U.S. Appl. No. 14/640,774, 8 pages.
U.S. Notice of Allowance dated Apr. 16, 2018, issued in U.S. Appl. No. 15/153,170, 10 pages.
Office Action dated May 16, 2018, issued in U.S. Appl. No. 15/388,808, 7 pages.
U.S. Notice of Allowance dated May 16, 2018, issued in U.S. Appl. No. 14/728,216, 5 pages.
Office Action dated May 31, 2018, issued in U.S. Appl. No. 13/723,902, 15 pages.
Office Action dated Jun. 19, 2018, issued in U.S. Appl. No. 15/296,772, 8 pages.
Office Action dated Jun. 29, 2018, issued in U.S. Appl. No. 14/640,667, 11 pages.
Office Action dated Sep. 5, 2018, issued in U.S. Appl. No. 15/606,643, 6 pages.
Office Action dated Sep. 13, 2018, issued in U.S. Appl. No. 14/133,943, 28 pages.
International Search Report and Written Opinion dated Oct. 23, 2018, issued in PCT Patent Application No. PCT/US18/45157, 11 pages.
Office Action dated Nov. 9, 2018, issued in Canadian Patent Application No. 2,759,027, 4 pages.
Notice of Allowance dated Dec. 3, 2020, issued in U.S. Appl. No. 16/101,620, 10 pages.
Office Action dated Feb. 12, 2021, issued in U.S. Appl. No. 16/430,947, 8 pages.
International Search Report and Written Opinion dated May 22, 2020, issued in PCT Patent Application No. PCT/U2020/022464, 12 pages.
European Office Action dated Apr. 16, 2013 issued in European Patent Application No. 12 002 103.5, 5 pages.
U.S. Applicant Initiated Interview Summary dated May 15, 2013 issued in U.S. Appl. No. 12/762,920, 3 pages.
European Office Action dated May 15, 2013 issued in European Patent Application No. 05 763 817.3, 4 pages.
U.S. Final Office Action dated Jun. 5, 2013 issued in U.S. Appl. No. 12/942,923, 26 pages.
U.S. Final Office Action dated Jun. 24, 2013 issued in U.S. Appl. No. 13/042,382, 28 pages.
U.S. Notice of Allowance dated Jun. 14, 2013 issued in U.S. Appl. No. 13/043,430, 10 pages.
U.S. Office Action dated Jul. 11, 2013 issued in U.S. Appl. No. 12/711,039, 10 pages.
U.S. Notice of Allowance dated Jul. 29, 2013 issued in U.S. Appl. No. 12/725,181, 7 pages.
U.S. Final Office Action dated Jul. 30, 2013 issued in U.S. Appl. No. 13/075,006, 10 pages.
U.S. Corrected Notice of Allowance dated Jul. 30, 2013 issued in U.S. Appl. No. 11/623,513, 2 pages.
Corrected Notice of Allowability dated Sep. 10, 2013 issued in U.S. Appl. No. 13/043,430, 7 pages.
Decision to Grant dated Sep. 19, 2013 issued in European Patent Application No. 07862736.1, 1 page.
U.S. Office Action dated Oct. 8, 2013 issued in U.S. Appl. No. 13/438,095, 8 pages.
International Search Report and Written Opinion dated Oct. 22, 2013 issued in PCT International Patent Application No. PCT/US2013/048569, 15 pages.
Notice of Allowance dated Oct. 30, 2013 issued in U.S. Appl. No. 13/037,998, 28 pages.
U.S. Final Office Action dated Nov. 29, 2013 issued in U.S. Appl. No. 12/762,920, 9 pages.
U.S. Final Office Action dated Dec. 5, 2013 issued in U.S. Appl. No. 13/470,678, 8 pages.
U.S. Office Action dated Dec. 12, 2013 issued in U.S. Appl. No. 12/979,992, 12 pages.
U.S. Office Action dated Dec. 17, 2013 issued in U.S. Appl. No. 12/001,473, 21 pages.
U.S. Office Action dated Feb. 5, 2014, issued in U.S. Appl. No. 13/438,095, 9 pages.
U.S. Office Action dated Feb. 7, 2014, issued in U.S. Appl. No. 13/075,006, 9 pages.
Australian Examination Report dated Feb. 7, 2014, issued in Australian Patent Application No. 2010236182, 3 pages.
Australian Examination Report dated Feb. 14, 2014, issued in Australian Patent Application No. 2011222404, 3 pages.
European Extended Search Report dated Feb. 24, 2014, issue in European Patent Application No. 09716273.9, 7 pages.
Australian Examination Report dated Feb. 28, 2014, issued in Australian Patent Application No. 2010217907, 3 pages.
U.S. Final Office Action dated Mar. 20, 2014, issued in U.S. Appl. No. 12/711,039, 17 pages.
European Examination Report dated Mar. 20, 2014, issued in European Patent Application No. 12 002 103.5, 3 pages.
U.S. Office Action dated Mar. 21, 2014, issued in U.S. Appl. No. 12/942,923, 6 pages.
U.S. Notice of Allowance dated Apr. 1, 2014, issued in U.S. Appl. No. 13/470,678, 7 pages.
Australian Examination Report dated Apr. 3, 2014, issued in Australian Patent Application No. 2010217907, 3 pages.
U.S. Office Action dated Aug. 13, 2014, issued in U.S. Appl. No. 12/762,948, 12 pages.
U.S. Notice of Allowance dated Aug. 21, 2014, issued in U.S. Appl. No. 13/075,006, 5 pages.
U.S. Office Action dated Sep. 18, 2014, issued in U.S. Appl. No. 13/785,867, 8 pages.
U.S. Notice of Allowance dated Oct. 6, 2014, issued in U.S. Appl. No. 12/942,923, 5 pages.
U.S. Office Action issued in U.S. Appl. No. 13/438,095, dated Nov. 4, 2014, 11 pages.
International Search Report and Written Opinion issued in PCT Patent Application Serial No. PCT/US14/34157, dated Nov. 4, 2014, 12 pages.
European Extended Search Report issued in European Patent Application Serial No. 10765332.1, dated Nov. 10, 2014, 6 pages.
U.S. Office Action issued in U.S. Appl. No. 12/711,039, dated Nov. 10, 2014, 10 pages.
European Extended Search Report issued in European Patent Application Serial No. 10746863.9, dated Nov. 13, 2014, 5 pages.
European Decision to Grant issued in European Patent Application Serial No. 12002103.5, dated Nov. 20, 2014, 1 page.
European Office Action issued in European Patent Application No. 08 729 178.7, dated Nov. 25, 2014, 4 pages.
U.S. Notice of Allowance issued in U.S. Appl. No. 13/037,929, dated Dec. 11, 2014, 5 pages.
International Preliminary Report on Patentability dated Jan. 15, 2015, issued in PCT Patent Application No. PCT/US2013/048569, 9 pages.
Notice of Allowance dated Jan. 21, 2015, issued in U.S. Appl. No. 13/752,858, 7 pages.
Notice of Allowability dated Feb. 19, 2015, issued in U.S. Appl. No. 13/037,929, 2 pages.
U.S. Office Action dated Feb. 19, 2015, issued in U.S. Appl. No. 14/035,061, 6 pages.
Notice of Allowance dated Feb. 25, 2015, issued in U.S. Appl. No. 13/436,188, 8 pages.
Canadian Office Action dated Feb. 27, 2015 issued in Canadian Patent Application Serial No. 2,407,440, 7 pages.
Office Action dated Mar. 3, 2015, issued in U.S. Appl. No. 12/979,992, 11 pages.
Sullivan, “HALLUX RIGIDUS: MTP Implant Arthroplasty,” Foot Ankle Clin. N. Am. 14 (2009) pp. 33-42.
Cook, et al., “Meta-analysis of First Metatarsophalangeal Joint Implant Arthroplasty,” Journal of Foot and Ankle Surgery, vol. 48, Issue 2, pp. 180-190 (2009).
Derner, “Complications and Salvage of Elective Central Metatarsal Osteotomies,” Clin. Podiatr. Med. Surg. 26 (2009) 23-35.
Kirker-Head, et al., “Safety of, and Biological Functional Response to, a Novel Metallic Implant for the Management of Focal Full-Thickness Cartilage Defects: Preliminary Assessment in an Animal Model Out to 1 year,” Journal of Orthopedic Research, May 2006 pp. 1095-1108.
Becher, et al. “Effects of a contoured articular prosthetic device on tibiofemoral peak contact pressure: a biomechanical study,” Knee Surg Sports Traumatol Arthrosc. Jan. 2008; 16(1): 56-63.
United States Office Action dated May 13, 2009 issued in related U.S. Appl. No. 11/359,892.
United States Office Action dated May 18, 2009 issued in related U.S. Appl. No. 11/209,170.
United States Office Action dated May 1, 2009 issued in related U.S. Appl. No. 11/461,240.
Australian Office Action dated Jan. 29, 2009 issued in related Australian Patent Application No. 2004216106.
European Search Report dated Apr. 22, 2009 issued in related European Patent Application No. 09002088.4.
U.S. Office Action dated Aug. 30, 2006 issued in related U.S. Appl. No. 10/618,887.
U.S. Office Action dated Jan. 15, 2008 issued in related U.S. Appl. No. 10/618,887.
U.S. Office Action dated May 28, 2009 issued in related U.S. Appl. No. 11/359,891.
International Search Report and Written Opinion dated Jun. 1, 2009 issued in related International Patent Application No. PCT/US2009/035889.
International Preliminary Report and Patentability dated May 7, 2009 issued in related International Patent Application No. PCT/US2007/082262.
Supplemental European Search Report dated May 28, 2009 issued in related International European Patent Application No. 01997077.1.
Supplemental European Search Report dated May 11, 2009 issued in related International European Patent Application No. 02805182.9.
Notice of Allowance dated Feb. 20, 2009 issued in related U.S. Appl. No. 10/618,887.
Notice of Reasons for Rejection issued in related Japanese Patent Application No. 2003-394702 dated Jul. 21, 2009.
Notice of Reasons for Rejection issued in related Japanese Patent Application No. 20-541615 dated May 26, 2009.
International Preliminary Report on Patentability issued in related International Patent Application No. PCT/US2007/025284 dated Jun. 25, 2009.
Office Action issued in related Australian Patent Application No. 2007216648 dated Jul. 28, 2009.
European Search Report dated Jul. 10, 2009 issued in related European Patent Application No. 09002088.4.
International Preliminary Report on Patentability dated Aug. 20, 2009 issued in related International Patent Application No. 2008053194.
Notice of Allowance dated Aug. 25, 2009 issued in related U.S. Appl. No. 11/379,151.
Notice of Allowance dated Aug. 27, 2009 issued in related U.S. Appl. No. 10/760,965.
U.S. Office Action dated Sep. 2, 2009 issued in relation U.S. Appl. No. 10/994,453.
U.S. Office Action dated Oct. 5, 2009 issued in relation U.S. Appl. No. 10/789,545.
U.S. Office Action dated Oct. 15, 2009 issued in relation U.S. Appl. No. 11/551,912.
U.S. Office Action dated Oct. 14, 2009 issued in relation U.S. Appl. No. 11/461,240.
Australian Notice of Allowance dated Oct. 29, 2009 issued in related Australian Patent Application No. 2007216648.
Notice of Allowance dated Oct. 9, 2009 issued in related U.S. Appl. No. 10/373,463.
Australian Office Action dated Oct. 29, 2009 issued in related Australian Patent Application No. 2007203623.
Japanese Notice of Reasons for Rejection dated Sep. 8, 2009 issued in related Japanese Patent Application No. 2003552147.
Notice of Reasons for Rejection dated Nov. 17, 2009 issued in Japanese Patent Application No. 2007-519417.
European Search Report dated Dec. 3, 2009 issued in related European Patent Application No. 06735827.5.
Office Action dated Dec. 24, 2009 issued in related U.S. Appl. No. 10/994,453.
Supplemental Notice of Allowance dated Nov. 25, 2009 issued in related U.S. Appl. No. 10/373,463.
European Office Action dated Jan. 11, 2010 issued in related European Patent Application No. 2005218302.
U.S. Office Action dated Jan. 25, 2010 issued in related U.S. Appl. No. 11/326,133.
Australian Office Action dated Apr. 9, 2010 issued in related Australian Patent Application No. 2005260590.
U.S. Office Action dated Mar. 2, 2010 issued in related U.S. Appl. No. 11/169,326.
U.S. Office Action dated Mar. 9, 2010 issued in related U.S. Appl. No. 11/359,892.
Australian Office Action dated Feb. 26, 2010 issued in related Australian Patent Application No. 2008207536.
Supplemental Notice of Allowance dated Feb. 2, 2010 issued in related U.S. Appl. No. 10/373,463.
European office communication dated Feb. 10, 2010 issued in European Patent Application No. 09002088.4-2310.
International Search Report and Written Opinion dated Apr. 21, 2010 issued in related International Patent Application No. PCT/US2010/025095.
International Search Report and Written Opinion dated May 3, 2010 issued in related International Patent Application No. PCT/US2010/025464.
European Office Action dated Apr. 13, 2010 issued in related European Patent Application No. 02805182.9-2310.
European Office Action dated Mar. 25, 2010 issued in related European Patent Application No. 01997077.1-2310.
U.S. Office Action dated May 18, 2010 issued in related U.S. Appl. No. 12/415,503.
Japanese Notice of Reasons for Rejection dated Jun. 1, 2010 issued in related Japanese Patent Application No. 2003394702.
European Office Action dated Jun. 1, 2010 issued in related European Patent Application No. 04811836.8-2310.
Japanese Notice of Reasons for Rejection dated Jun. 29, 2010 issued in related Japanese Patent Application No. 2007519417.
Australian Office Action dated Jun. 11, 2010 issued in related Australian Patent Application No. 2005277078.
International Search Report dated Jun. 9, 2010 issued in related International Patent Application No. PCT/US2010/031594.
European Office Action dated May 7, 2010 issued in related European Patent Application No. 06733631.3-2310.
International Search Report dated Jun. 18, 2010 issued in related International Patent Application No. PCT/US2010/031602.
U.S. Office Action dated Jun. 8, 2010 issued in related U.S. Appl. No. 11/209,170.
Office Action dated Sep. 2, 2010 issued in related U.S. Appl. No. 12/415,503.
Office Action dated Aug. 30, 2010 issued in related U.S. Appl. No. 12/397,095.
Office Action dated Jul. 21, 2010 issued in related U.S. Appl. No. 11/551,912.
Office Action dated Aug. 5, 2010 issued in related U.S. Appl. No. 11/325,133.
Notice of Allowance dated Aug. 6, 2010 issued in related U.S. Appl. No. 11/359,892.
Canadian Office Action dated Jul. 29, 2010 issued in related Canadian Patent Application No. 2470936.
Supplemental European Search Report dated Aug. 9, 2010 issued in related European Patent Application No. 04714211.2-2300.
Australian Office Action dated Aug. 23, 2010 issued in related Australian Patent Application No. 2006203909.
Notice of Allowance dated Sep. 9, 2010 issued in related U.S. Appl. No. 10/994,453.
Office Action dated Sep. 21, 2010 issued in related U.S. Appl. No. 11/169,326.
Office Action dated Sep. 29, 2010 issued in related U.S. Appl. No. 11/461,240.
Office Action dated Oct. 11, 2010 issued in related Australian Patent Application No. 2006216725.
International Preliminary Report on Patentability dated Sep. 16, 2010 issued in related International Patent Application No. PCT/US2009/035889.
Supplemental Notice of Allowance dated Oct. 13, 2010 issued in related U.S. Appl. No. 10/994,453.
Supplemental Notice of Allowance dated Oct. 6, 2010 issued in related U.S. Appl. No. 12/415,503.
U.S. Office Action dated Oct. 15, 2010 received in related U.S. Appl. No. 12/027,121.
U.S. Supplemental Notice of Allowance dated Oct. 28, 2010 issued in related U.S. Appl. No. 12/415,503.
European Search Report dated Nov. 4, 2010 issued in related European Patent Application No. 07862736.1-1269.
Notice of Allowance dated Nov. 26, 2010 issued in related U.S. Appl. No. 11/209,170.
Supplemental Notice of Allowance dated Dec. 8, 2010 issued in related U.S. Appl. No. 11/209,170.
Notice of Allowance dated Dec. 13, 2010 issued in related U.S. Appl. No. 12/397,095.
Notice of Allowance dated Jan. 5, 2011 issued in related U.S. Appl. No. 11/326,133.
Supplemental Notice of Allowance dated Feb. 14, 2011 issued in related U.S. Appl. No. 11/326,133.
Canadian Office Action dated Jan. 7, 2011 issued in related Canadian Patent Application No. 2407440.
European Office Action dated Dec. 23, 2010 issued in related European Patent Application No. 028051882.9-2310.
European Office Action dated Dec. 30, 2010 issued in related European Patent Application No. 01997077.1-2310.
Extended Search Report dated Feb. 22, 2011 issued in European Patent Application No. 10012693.7, 8 pages.
Notice of Allowance dated Mar. 2, 2011 issued in Australian Patent Application No. 2008207536, 3 pages.
Notice of Allowance dated Mar. 15, 2011 issued in U.S. Appl. No. 11/551,912, 7pages.
U.S. Office Action dated Apr. 11, 2011 issued in U.S. Appl. No. 11/779,044, 10 pages.
Notice of Allowance dated Apr. 28, 2011 issued in U.S. Appl. No. 12/027,121, 9 pages.
U.S. Office Action dated May 11, 2011 issued in U.S. Appl. No. 11/623,513, 12 pages.
U.S. Office Action dated May 11, 2011 issued in U.S. Appl. No. 12/001,473, 18 pages.
U.S. Office Action dated May 16, 2011 issued in U.S. Appl. No. 12/582,345, 9 pages.
International Search Report and Written Opinion dated May 19, 2011 issued in PCT Application No. PCT/US2011/027451, 11 pages.
Canadian Notice of Allowance dated Jun. 1, 2011 issued in Canadian Patent Application No. 2,470,936, 1 page.
Examiner interview summary dated Jul. 1, 2011 issued in European Patent Application No. 02 805 182.9, 3 pages.
U.S. Final Office Action dated Jul. 8, 2011 issued in U.S. Appl. No. 11/169,326, 26 pages.
Ascension Orthopedics, Inc., Ascension Orthopedics Announces Market Release of TITAN™ Inset Mini Glenoid, PR Newswire, downloaded from internet Jul. 18, 2011, http://www.orthospinenews.com/ascension-orthopedics-announces-market-release-of-titan™-inset-mini-glenoid, Jul. 6, 2011, 2 pages.
PCT International Preliminary Report on Patentability dated Sep. 9, 2011 issued in PCT Patent Application No. PCT/US2010/025464, 7 pages.
Habermeyer, Peter, Atos News, Oct. 2005, “The Artificial Limb “Eclipse”—A new draft without shank in the implantation of artificial shoulder limbs”, cover page w/pp. 40-41, with English translation dated Jan. 13, 2006 (2 pgs).
Thermann, et al, ATOS Newsletter, Jun. 2005, Aktuelle Themen, (16 pages).
Gray, Henry, Anatomy of the Human Body, 1918, 6d. The Foot 1. The Tarsus, II. Osteology, cover page and 10 pgs, www.Bartleby.com/107/63.html#i268 Oct. 25, 2004.
Chainsaw, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Chainsaw&printable=yes, Jun. 26, 2007 (3 pages).
Cannulated Hemi Implants from Vilex, (3 pages).
APTA | Knee,/http://www.apta.org/AM/PrinerTemplate.cfm?Section=Home&TEMPLATE=/CM/HTMLDisplay.dfg& . . . Jun. 25, 2007 (1page).
Arthrosurface, Restoring the Geometry of Motion, HemiCAP Patello—Femoral Resurfacing System (19 pages).
Anatomical Arthroplastie, Total Evolutive Shoulder System T.E.S.S., Biomet France, Biomet Europe (4 pages).
American Machinist, Full-radius milling cutters, http://www.americanmachinist.com/Classes/Article/ArticleDraw_P.aspx, Jun. 26, 2007 (1 page).
Chuck (engineering),Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Chuck_%28engineering%29&printable=yes, Jun. 25, 2007, (4 pages).
Dovetail Rails, http://www.siskiyou.com/MDRSeries.htm, Jun. 25, 2007 (2 pages).
Knee Resurfacing, Permedica, GKS, Global Knee System. Cod. 104570 vers 1.0 del Mar. 15, 2006 (8pages).
Major Biojoint System, La nuova frontiera della biointegrazione naturale, Finceramica Biomedical solutions (4 pages).
Makita Industrial Power Tools, Product Details Print Out, Chain Mortiser, http://www.makita.com/menu.php?pg=product_det_prn&tag=7104L, Jun. 26, 2007 (3pgs).
Milling machine, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Milling_machine&printable=yes, Jun. 26, 2007 (4 pages).
Mortise and tenon, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Mortise_and_tenon&printable=yes, Jun. 25, 2007 (3 pages).
Oka et al, “Development of artificial articular cartilage”, Proc Instn Mech Engrs vol. 214 Part H, 2000 pp. 59-68 (10 pages).
Reversed Arthroplastie, Total Evolutive Shoulder System T.E.S.S., Biomet France, Biomet Europe (4 pages).
M. Siguier, MD et al, “Preliminary Results of Partial Surface Replacement of the Femoral Head in Osteonecrosis”, The Journal of Arthroplasty, vol. 14, No. 1, 1999, pp. 45-51.
T. Siguier, MD et al, Partial Resurfacing Arthroplasty of the Femoral Head in Avascular Necrosis, Clinical Orthopaedics and Related Research, No. 386, 2001, pp. 85-92.
Suganuma, et al—“Arthroscopically Assisted Treatment of Tibial Plateau Fractures”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 20, No. 10, Dec. 2004, pp. 1084-1089 (6 pages).
The Mini Uni: A New Solution for Arthritic Knee Pain and Disability, AORI, 4 pages, www.aori.org/uniknee.htm Apr. 20, 2004.
The Stone Clinic, Orthopaedic Surgery Sports Medicine and Rehabilitation, Unicompartmental Replacement (partial knee joint replacement), Aug. 21, 2000, 3 pages, www.stoneclinic.com/unicopartrepl.htm, Apr. 20, 2004.
Ushio et al, “Partial hemiarthroplasty for the treatment of osteonecrosis of the femoral head”, An Experimental Study in the Dog, The Journal of Bone and Joint Surgery, vol. 85-B, No. 6, Aug. 2003, pp. 922-930 (9 pages).
Russell E. Windsor, MD, In-Depth Topic Reviews, Unicompartmental Knee Replacement, Nov. 7, 2002, 9 pages.
Yaw angle, Wikipedia, the free encyclopedia, http://en.wikipedia.org/w/index.php?title=Yaw_angle&printable=yes, Jun. 25, 2007 (1 page).
Bale, MD, Reto J., et al, “Osteochondral Lesions of the Talus: Computer=assisted Retrograde Drilling Feasibility and Accuracy in Initial Experiences1”, (Radiology. 2001;218:278-282) © RSNA, 2001.
Biomet/Copeland, “Aequalis® Resurfacing Head” Tornier, Scientific Vision, Surgical Leadership, SS-401 Jan. 2007.
Kumai, M.D., Tsukasa, et al Arthroscopic Drilling for the Treatment of Osteochondral Lesions of the Talus*, The Journal of Bone & Joint Surgery, American vol. 81:1229-35(1999).
Matsusue, M.D., Yoshitaka, et al, “Arthroscopic Osteochondral Autograft Transplantation for Chondral Lesion of the Tibial Plateau of the Knee”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 17, No. 6 (Jul.-Aug. 2001):pp. 653-659.
Pill M.S., P.T., Stephan G. et al, “Osteochondritis Dissecans of the Knee: Experiences at the Children's Hospital of Philadelphia and a Review of Literature”, the University of Pennsylvania Orthopaedic Journal 14: 25-33, 2001.
Schneider, T., et al, “Arthroscopy of the ankle joint. A list of indications and realistic expectations”, Foot and Ankle Surgery 1996 2:189-193, © 1996 Arnette Blackwell SA.
Taranow WS, et al, “Retrograde drilling of osteochondral lesions of the medial talar dome”, PubMed, www.pubmed.gov, a service of the National Library of Medicine and the National Institutes of Health, Foot Ankle Int.Aug. 1999; 20(8):474-80.
Ueblacker, M.D., Peter, et al, “Retrograde Cartilage Transplantation of the Proximal and Distal Tibia”, Arthroscopy: The Journal of Arthroscopic and Related Surgery, vol. 20, No. 1 (Jan. 2004): pp. 73-78.
USPTO Office Action dated Dec. 21, 2007 issued in corresponding U.S. Appl. No. 11/169,326.
USPTO Office Action dated Dec. 26, 2007 issued in U.S. Appl. No. 11/379,151.
USPTO Office Action dated Oct. 9, 2007 issued in U.S. Appl. No. 10/373,463.
USPTO Office Action dated Aug. 29, 2007 issued in U.S. Appl. No. 10/760,965.
USPTO Office Action dated May 31, 2007 issued in corresponding U.S. Appl. No. 11/326,133.
USPTO Office Action dated Apr. 26, 2007 issued in U.S. Appl. No. 10/373,463.
USPTO Office Action dated Apr. 4, 2007 issued in corresponding U.S. Appl. No. 10/789,545.
USPTO Office Action dated Mar. 15, 2007 issued in U.S. Appl. No. 10/760,965.
USPTO Office Action dated Feb. 20, 2007 issued in corresponding U.S. Appl. No. 11/326,133.
USPTO Office Action dated Nov. 6, 2006 issued in U.S. Appl. No. 10/760,965.
USPTO Office Action dated Oct. 17, 2006 issued in U.S. Appl. No. 10/373,463.
USPTO Office Action dated Oct. 31, 2006 issued in U.S. Appl. No. 10/760,965.
USPTO Office Action dated Jul. 25, 2006 issued in U.S. Appl. No. 10/760,965.
USPTO Office action dated May 10, 2006 issued in corresponding U.S. Appl. No. 10/373,463.
USPTO Office Action dated Apr. 21, 2006 issued in corresponding U.S. Appl. No. 10/308,718.
USPTO Office Action dated Nov. 9, 2005 issued in corresponding U.S. Appl. No. 10/308,718.
International Search Report and Written Opinion dated Aug. 8, 2007 issued in corresponding PCT patent application No. PCT/US06/29875.
Notice of Allowance issued in corresponding U.S. Appl. No. 10/308,718 dated Sep. 11, 2006.
Office Action issued in corresponding U.S. Appl. No. 11/326,133 dated Oct. 17, 2007.
United States Office Action issued is related U.S. Appl. No. 10/760,965 dated Feb. 19, 2008.
Australian Office Action issued in related Australian Patent Application No. 2003262428 dated Mar. 20, 2008.
Australian Office Action issued in related Australian Patent Application No. 2004293042 dated Feb. 20, 2008.
U.S. Office Action issued in related U.S. Appl. No. 11/326,133 dated Jun. 12, 2008.
International Search Report and Written Opinion dated Jun. 24, 2008 issued in related International Patent Application No. PCT/US07/73685.
International Search Report and Written Opinion dated Jun. 11, 2008 issued in related International Patent Application No. PCT/US07/25284.
International Search Report and Written Opinion dated Aug. 8, 2008 issued in related International Patent Application No. PCT/US08/53988.
U.S. Office Action issued in related U.S. Appl. No. 10/994,453 dated Jun. 5, 2007.
Japanese Office Action dated Jul. 22, 2008 issued in related Japanese Patent Application No. 2006-501193.
U.S. Office Action issued in related U.S. Appl. No. 10/373,463 dated Apr. 21, 2008.
Notice Of Allowance received in U.S. Appl. No. 10/618,887 dated Aug. 15, 2008.
Australia Office Action issued in related Australian Patent Application No. 2007216648 dated May 30, 2008.
European Office Action issued in related European Patent Application No. 01932833.5-2310 dated Apr. 25, 2008.
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Jun. 30, 2008.
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Jul. 27, 2007.
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Apr. 17, 2007.
U.S. Office Action received in related U.S. Appl. No. 11/169,326 dated Mar. 9, 2007.
Canadian Office Action issued in related Canadian Patent Application No. 2546582 dated Aug. 21, 2008.
U.S. Office Action issued in related U.S. Appl. No. 10/994,453 dated Sep. 3, 2008.
U.S. Office Action dated Oct. 21, 2008 issued in related U.S. Appl. No. 11/461,240.
U.S. Office Action dated Jun. 25, 2008 issued in related U.S. Appl. No. 11/359,891.
U.S. Office Action dated Sep. 25, 2008 issued in related U.S. Appl. No. 11/326,133.
U.S. Office Action dated Jul. 2, 2008 issued in related U.S. Appl. No. 11/379,151.
European Office Action dated Oct. 6, 2008 issued in related European Patent Application No. 01932833.5-2310.
U.S. Office Action dated Jun. 27, 2008 issued in related U.S. Appl. No. 10/760,965.
International Search Report and Written Opinion dated Oct. 1, 2008 issued in related International Patent Application No. PCT/US08/53194.
International Search Report and Written Opinion dated Oct. 9, 2008 issued in related International Patent Application No. PCT/US07/82262.
European Search Report dated Nov. 4, 2008 issued in related European Patent Application No. 04811836.8-2310.
Habermeyer, “Eclipse, Schaftfreie Schulterprothese Operationsanleitung,” (dated unknown).
U.S. Office Action dated Jan. 9, 2009 issued in related U.S. Appl. No. 10/373,463.
Canadian Office Action dated Dec. 9, 2008 issued in related Canadian Patent Application No. 2407440.
Supplemental European Search Report dated Nov. 6, 2008 issued in related European Patent Application No. 05791453.3-2310.
Japanese Office Action dated Dec. 19, 2008 issued in Japanese Patent Application No. 2006501193.
Japanese Office Action dated Jan. 13, 2009 issued in Japanese Patent Application No. 2003552147.
International Search Report dated Jan. 30, 2006 issued in related International Patent Application No. PCT/US04/39181.
U.S. Office Action dated Mar. 27, 2009 issued in related U.S. Appl. No. 11/169,326.
European Office Action dated Feb. 26, 2009 in related European Patent Application No. 05791453.3.
McCarty, III., et al., “Nonarthroplasty Treatment of Glenohumeral Cartilage Lesions,” Arthroscopy, The Journal of Arthroscopic and related Surgery, vol. 21, No. 9; Sep. 2005 (pp. 1131-1142).
Bushnell, et al., “Bony Instability of the Shoulder,” Arthroscopy, The Journal of Arthroscopic and related Surgery, vol. 24, No. 9; Sep. 2005 (pp. 1061-1073).
Scalise, et al., “Resurfacing Arthroplasty of the Humerus: Indications, Surgical Technique, and Clinical Results,” Techniques in Shoulder and Elbow Surgery 8(3):152-160; 2007.
Davidson, et al., “Focal Anatomic Patellofemoral Inlay Resurfacing: Theoretic Basis, Surgical Technique, and Case Reports,” Orthop. Clin. N. Am., 39 (2008) pp. 337-346.
Provencher, et al., “Patellofemoral Kinematics After Limited Resurfacing of the Trochlea,” The Journal of Knee Surgery, vol. 22 No. 2 (2008) pp. 1-7.
Dawson, et al., “The Management of Localized Articular Cartilage Lesions of the Humeral Head in the Athlete,” Operative Techniques in Sports Medicine, vol. 16, Issue 1, pp. 14-20 (2008).
Uribe, et al., “Partial Humeral Head Resurfacing for Osteonecrosis,” Journal of Shoulder and Elbow Surgery, (2009) 6 pages.
Burks, “Implant Arthroplasty of the First Metatarsalphalangeal Joint,” Clin. Podiatr. Med. Surg., 23 (2006) pp. 725-731.
Hasselman, et al., “Resurfacing of the First Metatarsal Head in the Treatment of Hallux Rigidus,” Techniques in Foot & Ankle Surgery 7(1):31-40, 2008.
Jäger, et al., “Partial hemi-resurfacing of the hip joint—a new approach to treat local osteochondral defects?” Biomed Tech 2006; 51:371-376 (2006).
Office Action dated Sep. 2, 2020, issued in U.S. Appl. No. 14/640,667, 12 pages.
Office Action dated Sep. 23, 2020, issued in U.S. Appl. No. 15/943,956, 13 pages.
International Search Report and Written Opinion dated Oct. 2, 2020, issued in PCT International Patent Application No. PCT/US2020/037492, 12 pages.
Office Action dated Oct. 15, 2020, issued in European Patent Application No. 05763817.2, 3 pages.
Office Action dated Nov. 3, 2020, issued in U.S. Appl. No. 16/134,291, 7 pages.
Notice of Allowance dated Nov. 3, 2020, issued in U.S. Appl. No. 15/079,342, 7 pages.
Office Action dated Nov. 25, 2020, issued in U.S. Appl. No. 16/054,224, 12 pages.
International Preliminary Report on Patentability dated Sep. 1, 2011 issued in PCT International Patent Application No. PCT/US2010/025095, 8 pages.
International Preliminary Report on Patentability dated Oct. 27, 2011 issued in PCT International Patent Application No. PCT/US2010/031602, 8 pages.
International Preliminary Report on Patentability dated Oct. 27, 2011 issued in PCT International Patent Application No. PCT/US2010/031594, 7 pages.
U.S. Office Action dated Nov. 1, 2011 issued in U.S. Appl. No. 12/713,135, 10 pages.
U.S. Notice of Allowance dated Nov. 23, 2011 issued in U.S. Appl. No. 11/623,513, 19 pages.
U.S. Office Action dated Nov. 28, 2011 issued in U.S. Appl. No. 12/711,039, 6 pages.
Notice of Allowance dated Dec. 12, 2011 issued in U.S. Appl. No. 12/582,345, 19 pages.
U.S. Office Action dated Dec. 22, 2011 issued in U.S. Appl. No. 11/623,513, 8 pages.
U.S. Office Action dated Dec. 27, 2011 issued in U.S. Appl. No. 12/620,309, 10 pages.
U.S. Office Action dated Jan. 4, 2012 issued in U.S. Appl. No. 12/001,473, 19 pages.
U.S. Office Action dated Jan. 10, 2012 issued in U.S. Appl. No. 12/031,534, 9 pages.
U.S. Office Action dated Jan. 18, 2012 issued in U.S. Appl. No. 12/778,055, 9 pages.
European Office Action dated Jan. 23, 2012 issued in European Patent Application No. 01 997 077.1, 3 pages.
Examination Report dated Dec. 30, 2011 issued in European Patent Application No. 09 002 088.4, 6 pages.
Intent to Grant dated Feb. 17, 2012 issued in European Patent Application No. 02 805 182.9, 5 pages.
Notice of Allowance dated Feb. 24, 2012 issued in U.S. Appl. No. 12/027,121, 9 pages.
Intent to Grant dated Feb. 29, 2012 issued in European Patent Application No. 10 012 693.7, 5 pages.
Supplemental Notice of Allowance dated Mar. 2, 2012 issued in U.S. Appl. No. 12/027,121, 2 pages.
Office Action dated Mar. 2, 2012 issued in U.S. Appl. No. 12/713,135, 7 pages.
U.S. Office Action dated Mar. 29, 2012 issued in U.S. Appl. No. 10/789,545, 7 pages.
U.S. Office Action dated Apr. 18, 2012 issued in U.S. Appl. No. 12/725,181, 9 pages.
U.S. Notice of Allowance dated May 31, 2012 issued in U.S. Appl. No. 11/623,513, 5 pages.
Extended Search Report dated Jul. 3, 2012 issued in European Patent Application No. 12002103.5, 5 pages.
Decision to Grant dated Jul. 26, 2012 issued in European Patent Application No. 10012693.7, 1 page.
Final Office Action dated Aug. 13, 2012 issued in U.S. Appl. No. 12/711,039, 12 pages.
Office Action dated Aug. 14, 2012 issued in U.S. Appl. No. 12/001,473, 17 pages.
Office Action dated Aug. 20, 2012 issued in U.S. Appl. No. 13/037,998, 11 pages.
Office Action dated Aug. 21, 2012 issued in U.S. Appl. No. 13/043,430, 11 pages.
U.S. Office Action dated Aug. 28, 2012 issued in U.S. Appl. No. 12/762,948, 12 pages.
U.S. Notice of Allowance dated Sep. 4, 2012 issued in U.S. Appl. No. 11/169,326, 6 pages.
Notice of Allowability dated Oct. 9, 2012, issued in U.S. Appl. No. 12/713,135, 5 pages.
Notice of Al lowability dated Oct. 11, 2012, issuedin U.S. Appl. No. 11/169,326 2 pages.
U.S. Office Action dated Oct. 23, 2012, issued in U.S. Appl. No. 13/042,382, 17 pages.
U.S. Office Action dated Oct. 24, 2012, issued in U.S. Appl. No. 12/942,923, 9 pages.
U.S. Office Action dated Oct. 31, 2012, issued in U.S. Appl. No. 13/075,006, 9 pages.
Notice of Allowance dated Nov. 13, 2012 issued in U.S. Appl. No. 12/725,181, 5 pages.
Preliminary Report on Patentability dated Sep. 20, 2012 issued in PCT Patent Application No. PCT/US2011/027451, 3 pages.
Extended European Search report dated Dec. 10, 2012 issued in European Patent Application No. 07844549.1, 5 pages.
Supplementary European Search Report dated Jan. 3, 2013 issued in European Patent Application No. 05763817.3, 3 pages.
Great Britain Examination Report dated Feb. 6, 2013 issued in Great Britain Patent Application No. 1114417.7, 2 pages.
Supplementary European Search Report dated Feb. 18, 2013 issued in European Patent Application No. 08729178.7, 10 pages.
U.S. Office Action dated Feb. 25, 2013 issued in U.S. Appl. No. 12/762,920, 8 pages.
Canadian Office Action dated Dec. 13, 2012 issued in Canadian Patent Application No. 2,407,440, 6 pages.
International Search Report and Written Opinion dated Mar. 8, 2013 issued in PCT Patent Application No. PCT/US12/71199, 13 pages.
U.S. Office Action dated Apr. 15, 2013 issued in U.S. Appl. No. 13/470,678, 10 pages.
U.S. Office Action dated Apr. 22, 2013 issued in U.S. Appl. No. 12/001,473, 16 pages.
U.S. Office Action dated Apr. 23, 2013 issued in U.S. Appl. No. 13/037,998, 8 pages.
European Intent to Grant dated Apr. 29, 2013 issued in European Patent Application No. 07 862 736.1, 7 pages.
U.S. Notice of Allowance dated May 9, 2013 issued in U.S. Appl. No. 12/725,181, 6 pages.
U.S. Office Action dated May 15, 2013 issued in U.S. Appl. No. 12/762,948, 10 pages.
Canadian Office Action dated Jul. 28, 2021, received in Canadian Patent Application No. 3,064,646, 3 pages.
Canadian Office Action dated Dec. 29, 2021, received in Canadian Patent Application No. 3,064,646, 3 pages.
European Office Action dated Jan. 14, 2022, received in European Patent Application No. 16 769 660.8, 6 pages.
Examination Report under Section 18(3) dated May 13, 2022 , received in European Patent Application No. GB2112996.0, 2 pages.
Related Publications (1)
Number Date Country
20200289275 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62817497 Mar 2019 US