This disclosure generally relates to humidifiers and related methods of operating humidifiers.
Low humidity in an ambient environment may cause discomfort and, in some instances, health-related issues (e.g., respiratory issues). To increase the moisture content of air in an ambient environment, a humidifier can be used. A humidifier can be supplied with water and operate to output a mist into the ambient environment, thereby increasing the ambient environment's moisture content.
Currently available humidifiers can be limited in their operational capability and efficiency. For example, these currently available humidifiers may lack the capability to control an amount of water that is supplied to the mist-creating portion of the humidifier. Instead, these humidifiers may simply have the mist-creating portion filled with water at all times during humidifier operation. In these humidifiers, the only instance where the mist-creating portion may be less than completely filled with water is when the humidifier's water supply is depleted. This can result is operating the mist-creating portion of the humidifier at a less than optimal water level and, consequently, operating the humidifier less efficiently to ultimately achieve a desired increase in moisture content of the ambient environment.
In general, various exemplary embodiments relating to humidifiers, and related methods of operating humidifiers, are disclosed herein. These embodiments can be useful, for instance, in increasing the operational capability and/or efficiency of a humidifier. As one example, embodiments disclosed herein can control the amount of fluid supply (e.g., a liquid, such as water) that is present within a fluid output portion, such as a reservoir, of the humidifier. For instance, the amount of fluid supply present within the fluid output portion can be maintained at a fluid level, or a range of fluid levels, that corresponds to a focal region of a fluid atomizer located in the fluid output portion. In addition, control over the amount of fluid supply that is present within the fluid output portion may provide the humidifier with a range of functional abilities relating to fluid output parameters according to different operational modes. Thus, in various embodiments, the fluid atomizer can operate across a range of humidifier operational modes and efficiently operate to output desired parameters.
One exemplary embodiment includes a humidifier. This humidifier embodiment includes a liquid tank, a reservoir, a liquid atomizer, a valve, and a controller. The liquid tank defines a first interior volume. The reservoir is in liquid communication with the first interior volume and the liquid atomizer is located in the reservoir. The valve is configured to actuate between a closed position and an opened position. The closed position prevents liquid communication between the first interior volume and the reservoir. The opened position allows liquid communication between the first interior volume and the reservoir. The controller is coupled to the valve and configured to selectively actuate the valve between the closed position and the opened position.
In a further embodiment, this humidifier includes a liquid quantity sensor that measures a quantity of liquid within the reservoir. For instance, the liquid quantity sensor may measure the quantity of liquid in the reservoir by measuring a liquid level within the reservoir. The liquid quantity sensor can be in signal communication with the controller. The controller can actuate the valve between the opened and closed positions in response to signals from the liquid quantity sensor that correspond to one or more predetermined liquid quantities in the reservoir. For instance, the one or more predetermined liquid quantities in the reservoir can correspond to liquid levels within the reservoir that maintain liquid within the reservoir at the liquid atomizer's focal region.
Another exemplary embodiment includes a method of operating a humidifier. This method embodiment includes detecting a quantity of liquid in a reservoir of the humidifier. In response to detecting a first predetermined liquid quantity in the reservoir, the method includes actuating a valve from a closed position to an opened position. The closed position prevents liquid communication between a first interior volume of a liquid tank and the reservoir. The opened position allows liquid communication between the first interior volume of the liquid tank and the reservoir. In response to detecting a second predetermined liquid quantity in the reservoir, the method includes actuating the valve from the opened position to the closed position. The second predetermined liquid quantity in the reservoir is greater than the first predetermined liquid quantity in the reservoir. The method also includes atomizing liquid in the reservoir using a liquid atomizer and delivering atomized liquid from the reservoir to an ambient environment using a fan.
This disclosure is filed concurrently with the following three patent applications that are owned by the owner of this disclosure: U.S. patent application Ser. No. 15/665,604, titled “Humidifier Measurement and Control”; U.S. patent application Ser. No. 15/665,611, titled “Humidifier Liquid Tank”; and U.S. patent application Ser. No. 15/665,616, titled “Humidifier User Interaction”. These three patent applications are hereby incorporated into this disclosure by reference in their entirety.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings.
The following drawings are illustrative of particular embodiments of the present invention and therefore do not limit the scope of the invention. The drawings are intended for use in conjunction with the explanations in the following description. Embodiments of the invention will hereinafter be described in conjunction with the appended drawings, wherein like numerals denote like elements.
The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following description provides some practical illustrations for implementing exemplary embodiments of the present invention. Examples of constructions, materials, and/or dimensions are provided for selected elements. Those skilled in the art will recognize that many of the noted examples have a variety of suitable alternatives.
In the example of
Humidifier 100a includes a fluid column 114 through which atomized liquid can travel from the reservoir 110 out of the humidifier 100a. The column 114 can extend within the interior of the liquid tank 102. As shown in the example of
In the illustrated embodiment, the lid 106 of the tank 102 includes a burp valve 118. The burp valve 118 can allow for fluid communication between the first interior volume of the tank 102 and an ambient environment. In one example, the burp valve 118 can be actuated between a first position that allows for such fluid communication thereat and a second position that seals the first interior volume from the ambient environment thereat. The burp valve 118 may, as an example, be a self-actuated pressure control valve such that it is configured to actuate from the second position to the first position when a pressure within first interior volume of the tank 102 reaches a predetermined pressure level. For instance, at times when the column 114 is sealed from the ambient environment, communication of liquid from the tank 102 to the reservoir 110 may cause pressure to build within the tank 102. If this pressure builds to a sufficient level, it may tend to hold liquid in the tank 102 and thereby impede communication of liquid from the tank 102 to the reservoir 110. Accordingly, the burp valve 118 can be useful in relieving pressure built up within the tank 102 by allowing air to pass between the first interior volume of the tank 102 and the ambient environment.
In the example of
In the illustrated example, the base portion 120a is removably coupled to the tank 102 by way of a mate ring 122. In some examples, the mate ring is integrally formed into the tank 102 such that when the tank 102 and base portion 120a are joined, the mate ring 122 engages base portion 120a. The mate ring 122 can provide a sealing engagement between the base portion 120a and the tank 102 so that liquid in the tank 102 and/or the base portion 120a (e.g., in reservoir 110) does not escape the humidifier 100a at the interface between the tank 102 and base portion 120a.
The humidifier 100a of
In various examples, light from the interface 130 can present information to the user, such as a mist emission level from the humidifier. In some such examples, the interface includes a plurality of light emitting elements arranged linearly. The number of light emitting elements that actively emit light can correspond to a level of mist emission. For example, a lowest level of mist emission can correspond to a single light source, for instance, positioned nearest the mate ring 122. As the mist emission increases, the number of active light sources can similarly increase to represent the increasing emission.
As shown, humidifier 100a further comprises the tank water level sensor 140 that can be used to detect the level of water in the liquid tank 102. For instance, in the illustrated examples, tank water level sensor 140 extends along the vertical dimension of sidewall 108 so that the interface between the water and air in the tank 102 at the tank water level sensor 140 is representative of the amount of water in the tank 102. In some embodiments, tank water level sensor 140 comprises a capacitive sensor configured to detect the water level based on changes in capacitance at the tank water level sensor 140. In some such examples, the internal components of the tank water level sensor 140 can be isolated from the external environment surrounding the humidifier 100a so that any stray electric fields or touching of the outer surface of the humidifier 100a does not impact the capacitance of the tank water level sensor 140.
In some embodiments, a controller can be configured to control operation of one or more components, such as the interface 130, tank water level sensor 140, atomizer (not shown), fan (not shown), a reservoir valve and the like. In some such embodiments, the controller can be positioned in the base portion 120a of the humidifier 100a. A controller positioned in the base portion 120a can communicate with various components via wired or wireless communication. In some examples, the controller positioned in the base portion 120a can be arranged to communicate with components in the tank 102 (e.g., the interface 130, the tank water level sensor 140, etc.) via a connector that facilitates electrical communication between the base portion 120a and the mate ring 122.
As shown, base portion 120a of the humidifier 100a of
In some embodiments, humidifier 100a includes one or more fans positioned within the base portion 120a to further promote air cooling of components within the base portion 120a, for example, by pulling in ambient air via vents 124. Additionally or alternatively, one or more fans within the humidifier 100a can be used to force mist from the atomizer through column 114 and out of the cap 116a and/or 116b.
In other examples, vents 124 may be excluded. For instance, in some embodiments, air cooling may not be necessary within the base portion 120a. Additionally or alternatively, in some embodiments, one or more sensors for sensing conditions of the ambient environment may be positioned outside of the humidifier and may be in wired or wireless communication with one or more humidifier components. In some such examples, vents (e.g., 124 in
In the example of
Further shown in
The liquid tank 102 of
As shown in
Together, the port 144 and actuation member 146 can define a tank interface assembly 148 of the base portion 120. The tank interface assembly 148 can facilitate fluid communication between the tank and the base portion 120, and, in particular, the reservoir 110 thereof. The tank interface assembly 148 can be positioned in the base portion 120 at a location that is aligned with a location of the selective sealing component of the tank when the tank is coupled to the base portion 120. Upon coupling the tank to the base portion 120, the actuation member 146 can be configured to mate with the selective sealing component of the liquid tank and, thereby, actuate the selective sealing component to the opened position (shown, e.g., in
To actively control communication of liquid from the tank to the reservoir when the tank is coupled to the base portion 120, the base portion 120 can include a valve 150. The valve 150 may facilitate the selective addition of liquid to the reservoir 110 from the tank. To do so, the valve 150 can be configured to actuate between a closed position and an opened position. The closed position of the valve 150 can prevent liquid from being communicated between the first interior volume of the tank and the reservoir 110. The opened position of the valve 150 can allow liquid to be communicated between the first interior volume of the tank and the reservoir 110. The humidifier's controller, for instance, can be coupled to the valve 150 and configured to cause selective actuation of the valve 150 between the closed and opened positions.
Also shown in the example of
In addition,
As also shown in
As one example, the liquid quantity sensor 154 can monitor the level of the liquid within the reservoir 110 by detecting a distance between the floating member 162 and the sensing device 164. For instance, in one embodiment, the floating member 162 can be a magnet and the sensing device 164 can be a Hall-Effect sensor. The floating member 162 (e.g., magnet) will move along the support member 166 as the liquid level rises and falls within the reservoir 110. As this occurs, the distance between the floating member 162 and the sensing device 164 (e.g., Hall-Effect sensor) will change accordingly. The sensing device 164 can generate and output signals (e.g., to the controller) that represent a distance between the floating member 162 and the sensing device 164. As an example, the sensing device 164 can output a first signal, at a first time, when the floating member 162 is a first predetermined distance from the sensing device 164. The sensing device 164 can further output a second signal, at a second later time, when the floating member 162 is a second predetermined distance from the sensing device 164. In this example, if the second predetermined distance is greater than the first predetermined distance this would indicate that the liquid level, and thus liquid quantity, within the reservoir 110 has increased between the first and second times.
The ability to monitor the liquid level within the reservoir 110 using the liquid quantity sensor 154 can be useful in efficiently operating the humidifier 100. For example, the liquid atomizer 156 (e.g., an ultrasonic agitator) can have a focal region R, as shown in the example of
The humidifier 100 can monitor the liquid level within the reservoir 110 using the liquid quantity sensor 154 and accordingly take action to maintain the liquid level in the reservoir 110 within the focal region R of the liquid atomizer 156. As noted, a controller of the humidifier 100 can be coupled to both the liquid quantity sensor 154 (e.g., via the sensing device 164) and the valve 150. The controller can receive a first signal from the liquid quantity sensor 154 corresponding to a first predetermined liquid quantity in the reservoir 110. In response, the controller can actuate the valve 150 from the closed position to the opened position to thereby cause liquid to begin filling into the reservoir 110, such as from the tank 102 (e.g., via the holding chamber 152). In one example, the first predetermined liquid quantity can correspond to a lower end of the liquid levels (e.g., the lowest liquid level) that are within the focal region R. Later, at a second time, the controller can receive a second signal from the liquid quantity sensor 154 corresponding to a second predetermined liquid quantity in the reservoir 110. In response, the controller can actuate the valve 150 from the opened position to the closed position to thereby stop liquid from entering into the reservoir 110. In this same example, the second predetermined liquid quantity can correspond to a higher end of the liquid levels (e.g., the highest liquid level) that are within the focal region R. In this way, the humidifier 100 can maintain liquid within the reservoir 110 that is within the focal region R.
In the exemplary embodiment shown in
To actuate the valve 150 to the opened position the shape memory allow 200 can be transformed to the deformed shape. As noted, the shape memory alloy 200 can be deformed in response to an actuation signal from the controller.
The shape memory alloy 200 can be coupled to the valve 150 in a variety of suitable configurations that allow deformation of the shape memory alloy 200 to open the valve 150. One example of such a configuration is described here in reference to
As the shape memory alloy 200 is transformed to the deformed shape, this change in the shape memory alloy 200 can bring the first anchor 220 and the second anchor 225 closer together as indicated by the arrows 245. As one example, the deformed shape of the shape memory alloy 200 can be a more compressed state relative to the original shape, and transformation to this more compressed state can supply force needed to bring the first and second anchors 220, 225 closer together. As the first and second anchors 220, 225 are brought closer together, the arm 230 acts to transfer force from the second anchor 225 to the actuation slider 235. In one instance, force is transferred to the actuation slider 235 in a direction generally perpendicular to the first and second anchors 220, 225. This causes the actuation slider 235 to move along the surface 240 of the valve support 210 as indicated by the arrow 250. As the actuation slider 235 is moved along the surface 240 it can overcome the upward bias force on the valve support 210 and move the valve support 210 downward as indicated by the arrow 255. This, in turn, can bring the valve sealing surface 205 away from its position pressing against the reservoir port 215 and thereby opens the valve 150 into the reservoir 110. Thus, in this way, deforming the shape memory alloy 200, such as via an actuation signal from the controller, can actuate the valve 150 to the opened position. Likewise, the shape memory alloy 200 can return to its original shape when the controller terminates the actuation signal.
The base portion 120 further includes additional humidifier components, such as the liquid atomizer 156, the valve 150, one or more fans 160, a memory 178, liquid quantity sensor 154 and one or more other sensors (e.g., a temperature sensor, humidity sensor, etc.), and a communication interface 182. Such components may be used during various operations of the humidifier. For instance, in some exemplary embodiments, atomizer 156 and one or more fans 160 can operate together to create mist from liquid stored in a reservoir and subsequently expel the mist from the humidifier. This could include one or more fans 160 in fluid communication with the fluid column to deliver mist created by the atomizer 156 through the fluid column to the ambient atmosphere. Memory 178 can be used to store operating instructions for the controller 184 and/or data collected during various humidifier operations. Additionally or alternatively, controller 184 can receive data from the liquid quantity sensor 154 and one or more sensor(s), when present, and/or the fan(s) 160. In various examples, components such as memory 178 may be integrated into controller 184 or may be stand-alone components (e.g., on a circuit board).
According to the exemplary configuration of
In various embodiments, controller 184 can include any component or combination of components capable of receiving data (e.g., a user-selected mist emission setting via the user interface, tank liquid level data via the liquid level detector, reservoir liquid quantity data from liquid quantity sensor 154, fan speed related data from the fan(s) 160, etc.) from one or more system components. The controller 184 can be further configured to analyze the received data, and perform one or more actions based on the analyzed data. In various examples, controller 184 can be embodied as one or more processors operating according to instructions included in a memory (e.g., memory 178), such as a non-transitory computer-readable medium. Such memory can be integral with the controller 184 or separate therefrom. In other examples, such a controller 184 can be embodied as one or more microcontrollers, circuitry arranged to perform prescribed tasks, such as an application-specific integrated circuit (ASIC), or the like.
In some embodiments, the controller 184 can be configured to communicate with other humidifier components in any of a variety of ways, such as via wired or wireless communication (e.g., via lower connector 126 and upper connector 128). In some examples, the controller 184 can communicate with one or more components via an I2C connection, a Bluetooth® connection, or other known communication types. In various embodiments, controller 184 can be embodied as a plurality of controllers separately in communication with different system components. Such controllers can be programmed to operate in concert (e.g., according to instructions stored in a single memory or communicating memories), or can operate independently of one another.
For example, in various embodiments, the controller 184 can be in one- or two-way communication with various components of the humidifier, such as the atomizer 156, the valve 150, the fan(s) 160, the liquid quantity sensor 154, the interface 130, and/or the tank water level sensor 140. For example, as described elsewhere herein, in some embodiments, the controller 184 can be configured to receive data from the liquid quantity sensor 154 and control operation of the valve 150. This could include receiving such data from the sensor 154 and causing a current to be output onto a component coupled to the valve 150 (e.g., the shape memory alloy). The controller 184 may also be configured to receive data from the liquid quantity sensor 154 and control operation of the atomizer 156 and/or fan(s) 160 in conjunction with control of the valve 150. It will be appreciated that various examples are possible, some of which are described herein by way of example.
The controller 184 can adjust operation of one or more humidifier components to adjust the humidifier output according to received input. In some examples, the controller 184 can adjust the operation (e.g., the operating power, operating frequency) of the atomizer 156 in order to produce more or less mist and/or vary the degree of atomization of the liquid. Additionally or alternatively, the controller 184 can adjust the operating speed of a fan 160 (e.g., a mist fan, such as a centrifugal fan) to control the speed at which mist is expelled from the humidifier. In certain examples, the controller 184 may selectively adjust one or both of the atomizer 156 and the fan 160 depending on the magnitude of output level change and/or desired output level. In further examples, as described elsewhere herein, the controller 184 can receive data from one or more components, such as fan(s) 160, and/or sensors, such as liquid quantity sensor 154 in the base portion 120 and/or external sensors in communication with controller 184. In some such examples, the controller 184 can be configured to receive data from such sensors and adjust humidifier operation accordingly. For instance, in an exemplary embodiment, the controller 184 monitors the liquid level in the reservoir according to data received from the liquid quantity sensor 154 and can act to adjust the liquid level in the reservoir via actuation of the valve 150. As another example, the controller 184 monitors the speed of the fan(s) 160 according to data received from the fan(s) 160 and can act to adjust the power being supplied to the fan(s) 160.
In some embodiments, the communication interface 182 can facilitate communication between one or more humidifier components (e.g., controller 184) and one or more external components via a wired connection and/or a wireless connection, such one or more of a WiFi® connection, a Bluetooth® connection, or the like. In some such embodiments, the controller 184 can be accessed via the communication interface 182 such that a user can adjust one or more settings of the controller 184 via an external or remote device. Similarly, such access to the controller 184 can be used to control operation of the humidifier, such as a desired amount of mist emission or the like, in addition to or instead of other interfaces (e.g., interface 130). In some such examples, a user can interface with the communication interface 182 of the humidifier via, for example, a web interface and/or an application running on the user's mobile device, such as a smartphone, tablet, or the like, for example, as described in U.S. patent application Ser. No. 15/665,616, titled “Humidifier User Interaction”, which is incorporated into this disclosure by reference above.
In some embodiments, the controller 184 can additionally or alternatively be in communication with one or more external devices, for example, via communication interface 182. In some such examples, the controller 184 can receive data from one or more sensors external to or built-in to the humidifier, for example, via wired or wireless communication, such as Ethernet, Bluetooth® , Wi-Fi , etc. Some such sensors can be used for measuring different aspects of the ambient environment of the humidifier, such as a temperature sensor, humidity sensor (e.g., a hygrometer), or the like. In some such examples, the controller 184 can perform one or more operations according to received data from external sensors. In some embodiments, remotely located components such as a humidity sensor, temperature sensor, or the like can be used to measure various parameters regarding the ambient environment surrounding the humidifier. In some such examples, there is no need to sample surrounding air in the humidifier itself, and the humidifier base portion can be made without vents (e.g., base portion 120b in
In the illustrated example, power supply 170 is in communication with a variety of components in the base portion 120 as well as lower connector 126, which itself is in communication with the upper connector 128. Thus, in various embodiments, the power supply 170 can provide electrical power to various components in the base portion 120, such as the atomizer 156, valve 150, fan(s) 160, sensor 154, communication interface 182, controller 184, as well as any other components. Further, power supply 170 can provide electrical power to components proximate the liquid tank 102, such as the tank water level sensor 140 and the interface 130, by way of the upper connector 128 and lower connector 126.
In various embodiments, power supply 170 can include one or more sources of electrical power, such as one or more batteries, capacitive energy storage devices, or the like. Additionally or alternatively, power supply 170 can include a wired power supply, for example, a plug capable of plugging into an outlet. In some embodiments, the power supply 170 receives electrical power from a power source (e.g., a wall outlet) and outputs an appropriate electrical power to various humidifier components as needed during operation of the humidifier. As noted, in some cases an amount of electrical power output to certain humidifier components (e.g., the fan(s) 160) can be regulated by the controller 184. In some examples, each component in the humidifier can operate at approximately the same voltage output from power supply 170. In still further examples, power supply 170 can include a plurality of power-supplying components for providing different amounts of electrical power to different components. For instance, in some embodiments, power supply 170 can include a power board having a plurality of outputs for providing power to various system components. In some embodiments, power supplied to various components within the humidifier are independent from one another so that any short circuit condition (e.g., due to liquid ingress) in the power supplied to one portion of the humidifier does not impact the power supplied elsewhere.
At step 720, the process 700 includes actuating a valve from a closed position to an opened position in response to detecting a first predetermined quantity of liquid in the reservoir. In the closed position, the valve can prevent communication of liquid between an interior volume of a liquid supply tank and the reservoir. In the opened position, the valve can allow communication of liquid between the interior volume of the liquid supply tank and the reservoir. Thus, actuating the valve from the closed position to the opened position can cause liquid to be added to the reservoir. In one embodiment, a controller of the humidifier can receive data from the liquid quantity sensor and execute instructions to determine that the received data indicates the first predetermined quantity is present. The controller can then take action to actuate the valve from the closed to the opened position.
At step 730, the process 700 includes actuating the valve from the opened position to the closed position in response to detecting a second predetermined quantity of liquid in the reservoir. Actuating the valve from the opened position to the closed position can cause liquid to stop being added to the reservoir. As one example, the first predetermined liquid quantity may correspond to a first predetermined distance between the floating member and the sensing device and the second predetermined liquid quantity may correspond to a second predetermined distance between the floating member and the sensing device. In such an example, the second predetermined quantity of liquid in the reservoir can be greater than the first predetermined quantity of liquid in the reservoir, and thus the second predetermined distance would be greater than the first predetermined distance.
In one particular embodiment, actuating the valve can include deforming a shape memory alloy coupled to the valve. For instance, actuating the valve from the closed position to the opened position may include deforming the shape memory alloy, for instance, by transforming the shape memory alloy from its original shape to a deformed (e.g., relatively more compressed) shape. This deformation can allow liquid to pass into the reservoir. To actuate the valve from the opened position to the closed position can include returning the shape memory alloy to its original shape.
Detecting the quantity of liquid in the reservoir and actuating a valve to control liquid communication into the reservoir, as a result of the detecting, can be useful in maintaining an efficient liquid level within the reservoir. For instance, as described elsewhere herein, this can help to keep the liquid level in the reservoir within a focal region of a fluid atomizer located in the reservoir. In one embodiment, the first predetermined liquid quantity can correspond to a liquid level that is at or near a low liquid level end of the focal region. By actuating the valve from the closed position to the opened position upon detecting this, the liquid level within the reservoir can be raised to the second predetermined liquid quantity level which can correspond to a liquid level that is at or near an upper liquid level end of the focal region.
At step 740, the process 700 includes atomizing liquid in the reservoir using a liquid atomizer. The liquid atomizer can be located in the reservoir. In one example, the liquid atomizer includes an agitator which is driven to atomize a portion of the liquid in the reservoir to a desired extent. For instance, the liquid atomizer can include an ultrasonic agitator. The ultrasonic agitator can include a transducer element which can be driven to oscillate a portion of the liquid in the reservoir at an ultrasonic frequency and thereby cause this portion of the liquid to be atomized.
At step 750, the process includes delivering atomized liquid from the reservoir to an ambient environment using a fan. The fan can be in fluid communication with the reservoir and, in some cases, located in the reservoir. In one example, the fan is in fluid communication with both the reservoir and a column of the humidifier. This column can have one end in fluid communication with the reservoir and an opposite end in fluid communication with the ambient environment. The fan can be driven during operation of the humidifier to forcibly expel atomized liquid from the reservoir to the ambient environment through the column.
Various non-limiting exemplary embodiments have been described. It will be appreciated that suitable alternatives are possible without departing from the scope of the examples described herein. These and other examples are within the scope of the following claims.