This application claims the priority of United Kingdom Application No. 1413428.2, filed Jul. 29, 2014, the entire contents of which are incorporated herein by reference.
The present invention relates to a humidifying apparatus. In a preferred embodiment, the present invention provides a humidifying apparatus for generating a flow of moist air and a flow of air for dispersing the moist air within a domestic environment, such as a room, office or the like.
Domestic humidifying apparatus is generally in the form of a portable appliance having a casing comprising a water tank for storing a volume of water, and a fan for creating a flow of air through an air duct of the casing. The stored water is conveyed, usually under gravity, to an atomizing device for producing water droplets from the received water. This device may be in the form of a heater or a high frequency vibrating device, such as a transducer. The water droplets enter the flow of air passing through the air duct, resulting in the emission of a mist into the environment. The appliance may include a sensor for detecting the relative humidity of the air in the environment. The sensor outputs a signal indicative of the detected relative humidity to a drive circuit, which controls the transducer to maintain the relative humidity of the air in the environment around a desired level. Typically, the actuation of the transducer is stopped when the detected relative humidity is around 5% higher than the desired level, and is restarted when the detected relative humidity is around 5% lower than the desired level.
It is known to provide an ultraviolet radiation (UV) emitting lamp or other UV generator to sterilize water that is conveyed to the atomizing device. For example, U.S. Pat. No. 5,859,952 describes a humidifier in which the water supplied from a tank is conveyed through a sterilizing chamber before being conveyed by a pipe to a chamber containing an ultrasonic atomizer. The sterilizing chamber has a UV transparent window beneath which a UV lamp is located to irradiate water as it passes through the sterilizing chamber. U.S. Pat. No. 7,540,474 describes a humidifier in which the water tank includes a UV transparent tube for conveying water to an outlet of the tank, and a main body upon which the tank is mounted includes a UV lamp which irradiates water as it passes through the tube to the outlet.
WO 2013/132222 describes a humidifier which comprises a body and an annular nozzle detachably mounted on the body. The body comprises a base and a water tank removably mounted on the base. A motor-driven impeller located within the base draws an air flow into the humidifier through air inlets located in the outer casing of the base. A first air passageway located downstream from the impeller conveys a first part of the air flow to an annular first interior passage within the nozzle. The first part of the air flow is emitted from a first air outlet of the nozzle. A second air passageway located downstream from the impeller conveys a second part of the air flow over a water reservoir which receives water from the water tank. Transducers located within the water reservoir atomize water stored in the water reservoir to humidify the second part of the air flow. An outlet duct defined by the water tank conveys the humidified air flow to an annular second interior passage of the nozzle. The humidified air flow is emitted from a second air outlet of the nozzle so that the humidified air flow becomes entrained within the air emitted from the first air outlet of the nozzle.
The base has a relatively wide cylindrical outer wall, a relatively narrow cylindrical inner wall located above and co-axial with the outer wall, and a recessed annular wall which extends between the inner wall and the outer wall. These walls of the base define the water reservoir, and so the water reservoir is exposed when the water tank is removed from the base. The water reservoir includes a UV transparent tube housing a UV lamp for irradiating water stored in the water reservoir, and baffle plates for guiding water entering the water reservoir from the water tank over the tube so that it is irradiated by the UV lamp before being atomized by the transducers. The water tank is annular in shape, and is mounted by the user on the annular wall of the base so as to surround the inner wall of the base. The base includes a proximity sensor for detecting that the water tank has been mounted on the base. A drive circuit deactivates the motor, the UV lamp and the transducers in response to signal received from the proximity sensor indicating that the water tank has been removed from the base.
In a first aspect, the present invention provides humidifying apparatus comprising a base comprising a chamber, a water tank removably mounted on the base for supplying water to the chamber, an impeller and a motor for driving the impeller to generate an air flow, an inlet duct for conveying the air flow to the chamber, humidifying means for humidifying the air flow with water from the chamber, an ultraviolet radiation generator for irradiating water stored in the chamber, and an outlet duct for conveying the humidified air flow from the chamber, wherein a detachable section of the apparatus is opaque to ultraviolet radiation and is positioned over the chamber, the detachable section comprising an air inlet of the outlet duct and a flange for occluding a peripheral portion of the chamber.
In addition to providing at least part of an outlet duct for conveying a humidified air flow away from the chamber, the detachable section of the apparatus can also provide a cover for the chamber. Forming the detachable section from material which is opaque to ultraviolet radiation can inhibit any leakage of ultraviolet radiation both through the detachable section of the apparatus and from the peripheral portion of the chamber. The flange also inhibits leakage of air from the peripheral portion of the chamber. Having these features formed in a detachable section of the apparatus can enable the chamber and the detachable section to be easily cleaned by the user when the detachable section has been detached from the apparatus.
The detachable section of the apparatus is preferably detachably connected to the water tank so that it is positioned over the chamber when the water tank is mounted on the base, but alternatively the detachable section of the apparatus may be detachably connected to the base.
Preferably, the detachable section also comprises an air outlet of the inlet duct. The air outlet of the inlet duct is preferably co-planar with the air inlet of the outlet duct, so that the air inlet of the outlet duct and the air outlet of the inlet duct are located at the same distance above the level of the water stored in the chamber. The air outlet of the inlet duct is preferably located adjacent to the air inlet of the outlet duct to minimize the length of the flow path between the air outlet of the inlet duct and the air inlet of the outlet duct.
The detachable section preferably comprises a wall depending from at least part of the flange for guiding the air flow from the air outlet of the inlet duct towards the air inlet of the outlet duct. The wall is preferably annular in shape and positioned so as to delimit, and so to extend about, a flow channel located directly beneath the air outlet of the inlet duct and the air inlet of the outlet duct.
If the ultraviolet radiation generator is omitted from the apparatus, then the detachable section of the apparatus need not be formed from material which is opaque to ultraviolet radiation, and the flange may also be omitted. In a second aspect, the present invention provides humidifying apparatus comprising a base comprising a chamber, a water tank removably mounted on the base for supplying water to the chamber, an impeller and a motor for driving the impeller to generate an air flow, an inlet duct for conveying the air flow to the chamber, humidifying means for humidifying the air flow with water from the chamber, and an outlet duct for conveying the humidified air flow from the chamber, wherein a detachable section of the apparatus is positioned over the chamber, the detachable section comprising an air outlet of the inlet duct, an air inlet of the outlet duct, the air outlet of the inlet duct being positioned adjacent to the air inlet of the outlet duct, and an annular wall for delimiting a flow channel located directly beneath the air outlet of the inlet duct and the air inlet of the outlet duct.
When the chamber is filled with water to a maximum level, the annular wall preferably extends into the water stored in the chamber, establishing an interface between the annular wall and the stored water which forms a seal for inhibiting the leakage of air from the flow channel.
The detachable section may comprise an air inlet of the inlet duct, with the base comprising an air passageway for conveying the air flow from the impeller to the air inlet of the inlet duct. The air inlet of the inlet duct is preferably arranged on a side wall of the detachable section which faces the base, the base comprising an air flow port for emitting the air flow towards the air inlet of the inlet duct.
The humidifying means preferably comprises a transducer for atomizing water stored in the chamber. The air inlet of the outlet duct is preferably located directly above the transducer.
The water tank is preferably annular in shape, and is mounted on the base so as to surround at least part of the base. For example, the base preferably comprises a cylindrical or tubular wall which surrounds the motor and the impeller, and the water tank is preferably mounted on the base so as to surround this tubular wall. The water tank preferably comprises an annular inner wall which is opaque to ultraviolet radiation and an annular outer wall which is transparent to visible light to allow a user to see the amount of water remaining in the tank. The detachable section is preferably detachably connected to the annular inner wall of the water tank, for example by a releasable catch.
The outlet duct may comprise a plurality of sections which extend between the air inlet of the outlet duct and at least one air outlet of the outlet duct. The outlet duct preferably comprises an inlet section and an outlet section, and wherein the detachable section of the apparatus defines the inlet section of the outlet duct, and the detachable section of the apparatus and the annular inner wall of the water tank together define the outlet section of the outlet duct. The detachable section preferably includes a seal for engaging the annular inner wall of the water tank to inhibit leakage of the humidified air flow from between these two components.
In a preferred embodiment, the outlet duct comprises a plurality of air outlets. For example, the outlet duct may be bifurcated into a pair of duct branches, with each of the branches comprising a respective air outlet of the outlet duct. The outlet duct may be bifurcated to allow the duct to convey the humidified air flow about or around part of the apparatus, allowing the apparatus to maintain a compact appearance. For example, the apparatus may comprise an air outlet detachably mounted on the base, and releasing means for releasing the air outlet for removal from the base, the releasing means comprising a user operable button mounted on the base. The outlet duct may be bifurcated into a pair of duct branches between which the button is positioned.
As mentioned above, the detachable section preferably forms part of, or is connected to, the water tank, and so the humidified air flow is preferably emitted from part of the water tank into the air outlet. The water tank preferably comprises a seal for engaging the air outlet and a support for supporting the seal, the detachable section being detachably connected to the support. The support and the seal preferably comprise at least one aperture for conveying the humidified air flow from the duct to the air outlet. The seal preferably comprises a relatively rigid frame and a relatively flexible, resilient part carried by the frame for engaging the air outlet and for urging the frame towards the air outlet. The frame is preferably connected to the support so as to allow movement of the seal relative to the support. The frame may also be detachable from the support to allow the seal to be cleaned or replaced by the user. The resilient part of the seal may comprise a first section which is surrounded by the frame for engaging the air outlet, and a second section which is located between the frame and the support for urging the frame towards the air outlet. The second section of the resilient part of the seal may have an undulating or bellows shape. The first section of the resilient part of the seal may also have an undulating or bellows shape.
In a third aspect, the present invention provides humidifying apparatus comprising, a base comprising a chamber, a water tank removably mounted on the base for supplying water to the chamber, an impeller and a motor for driving the impeller to generate an air flow, an inlet duct for conveying the air flow to the chamber, humidifying means for humidifying the air flow with water from the chamber, and an outlet duct for conveying the humidified air flow from the chamber to an air outlet of the apparatus, the outlet duct being bifurcated into a pair of duct branches, each of the branches comprising a respective air outlet of the outlet duct, wherein a detachable section of the apparatus is positioned over the chamber, the detachable section comprising an air inlet of the outlet duct and at least partially defining said duct branches, and wherein the water tank comprises a seal for engaging the air outlet of the apparatus and a support for supporting the seal, and wherein the detachable section of the apparatus is detachably connected to the support.
Features described above in connection with the first aspect of the invention are equally applicable to each of the second and third aspects of the invention, and vice versa.
An embodiment of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
The nozzle 14 is arranged to emit two different air flows. The nozzle 14 comprises a rear section 16 and a front section 18 connected to the rear section 16. Each section 16, 18 is annular in shape, and extends about a bore 20 of the nozzle 14. The bore 20 extends centrally through the nozzle 14 so that the centre of each section 16, 18 is located on the axis X of the bore 20.
In this example, each section 16, 18 has a “racetrack” shape, in that each section 16, 18 comprises two, generally straight sections located on opposite sides of the bore 20, a curved upper section joining the upper ends of the straight sections and a curved lower section joining the lower ends of the straight sections. However, the sections 16, 18 may have any desired shape; for example the sections 16, 18 may be circular or oval. In this embodiment, the height of the nozzle 14 is greater than the width of the nozzle, but the nozzle 14 may be configured so that the width of the nozzle 14 is greater than the height of the nozzle 14.
Each section 16, 18 of the nozzle 14 defines a flow path along which a respective one of the air flows passes. In this embodiment, the rear section 16 of the nozzle 14 defines a first air flow path along which a first air flow passes through the nozzle 14, and the front section 18 of the nozzle 14 defines a second air flow path along which a second air flow passes through the nozzle 14.
With reference also to
The outer casing section 22 comprises a tubular base 26 which defines a first air inlet 28 of the nozzle 14. The outer casing section 22 and the inner casing section 24 together define a first air outlet 30 of the nozzle 14. As described in more detail below, the first air flow enters the nozzle 14 through the first air inlet 28, and is emitted from the first air outlet 30. The first air outlet 30 is defined by overlapping, or facing, portions of the internal surface 32 of the outer casing section 22 and the external surface 34 of the inner casing section 24. The first air outlet 30 is in the form of a slot. The slot has a relatively constant width in the range from 0.5 to 5 mm. In this example the first air outlet has a width of around 1 mm Spacers 36 may be spaced about the first air outlet 30 for urging apart the overlapping portions of the outer casing section 22 and the inner casing section 24 to control the width of the first air outlet 30. These spacers may be integral with either of the casing sections 22, 24.
In this embodiment, the first air outlet 30 extends partially about the bore 20. The first air outlet 30 extends along the curved upper section and the straight sections of the nozzle 14. However, the first air outlet 30 may extend fully about the bore 20. As shown in
The first air outlet 30 is arranged to emit air through a front part of the bore 20 of the nozzle 14. The first air outlet 30 is shaped to direct air over an external surface of the nozzle 14. In this embodiment, the external surface 34 of the inner casing section 24 comprises a Coanda surface 40 over which the first air outlet 30 is arranged to direct the first air flow. The Coanda surface 40 is annular, and thus is continuous about the central axis X. The external surface 34 of the inner casing section 24 also includes a diffuser portion 42 which tapers away from the axis X in a direction extending from the first air outlet 30 to the end wall 24b of the inner casing section 24.
The casing sections 22, 24 together define an annular first interior passage 46 for conveying the first air flow from the first air inlet 28 to the first air outlet 30. The first interior passage 46 is defined by the internal surface of the outer casing section 22 and the internal surface of the inner casing section 24. A tapering, annular mouth 48 of the rear section 16 of the nozzle 14 guides the first air flow to the first air outlet 30. A first air flow path through the nozzle 14 may therefore be considered to be formed from the first air inlet 28, the first interior passage 46, the mouth 48 and the first air outlet 30.
The front section 18 of the nozzle 14 comprises an annular front casing section 50. The front casing section 50 extends about the bore axis X, and has a “racetrack” shape which is similar to that of the other casing sections 22, 24 of the nozzle 14. Similar to the casing sections 22, 24, the front casing section 50 may be formed from a plurality of connected parts, but in this embodiment the front casing section 50 is formed from a single moulded part. The front casing section 50 is preferably formed from plastics material.
The front casing section 50 comprises an annular outer wall 50a which extends generally parallel to the bore axis X, and an annular inner wall 50b connected to the outer wall 50a at the front end 44 of the nozzle 14. The inner wall 50b is angled to the outer wall 50a so that the inner wall 50b tapers towards the axis X. During assembly, the front casing section 50 is attached to the inner casing section 24, for example using a series of snap-fit connections between the outer wall 50a of the front casing section 50 and the intermediary wall 24c of the inner casing section 24. An annular sealing member 52 forms an air-tight seal between the inner casing section 24 and the front casing section 50.
With reference to
In this embodiment, the second air outlet 60 is in the form of a slot having a relatively constant width in the range from 0.5 to 5 mm. In this example the second air outlet 60 has a width of around 1 mm. The second air outlet 60 is located between the end wall 24b of the inner casing section 24 and the inner wall 50b of the front casing section 50. Spacers 62 may be spaced along the second air outlet 60 to urge apart the overlapping portions of the inner casing section 24 and the front casing section 50 to control the width of the second air outlet 60. These spacers may be integral with either of the casing sections 24, 50. The second air outlet 60 is configured to emit the second air flow into the bore 20 of the nozzle 14, preferably towards the axis X of the nozzle and more preferably in a plane which is orthogonal to the axis X of the nozzle 14.
The casing sections 24, 50 together define an annular second interior passage 68 for conveying the second air flow from the second air inlet 58 to the second air outlet 60. The second interior passage 68 is defined by the internal surfaces of the inner casing section 24 and the front casing section 50. A second air flow path through the nozzle 14 may therefore be considered to be formed by the second air inlet 58, the interior passage 68 and the second air outlet 60.
Returning to
With reference also to
The central wall 82 extends about an impeller 90 for generating a first air flow through the first air passageway 76. In this example the impeller 90 is in the form of a mixed flow impeller. In overview, the impeller 90 is connected to a rotary shaft extending outwardly from a motor 92 for driving the impeller 90. In this embodiment, the motor 92 is a DC brushless motor having a speed which is variable by the drive circuit 74 in response to a speed selection by a user. The maximum speed of the motor 92 is preferably in the range from 5,000 to 10,000 rpm. The motor 92 is housed within a motor bucket comprising a domed upper portion 96 connected to a lower portion 98. A set of guide vanes 100 is connected to the upper surface of the upper portion 96 of the motor bucket to guide air towards the first air inlet 28 of the nozzle 14. Further features of the impeller 92 and the motor bucket are described below.
The motor bucket is located within, and mounted on, a generally frustoconical impeller housing 104. The impeller housing 104 is, in turn, mounted on an annular platform 106 extending inwardly from the central wall 82. An annular inlet member 108 is connected to the bottom of the impeller housing 104 for guiding the air flow into the impeller housing 104. An annular sealing member 110 is located between the impeller housing 104 and the platform 106 to prevent air from passing around the outer surface of the impeller housing 104 to the inlet member 108. The platform 106 preferably comprises a guide portion for guiding an electrical cable 107 from the drive circuit 74 to the motor 92.
The first air passageway 76 extends from the air inlet 72 to the inlet member 108. From the inlet member 108, the first air passageway 76 extends, in turn, through the impeller housing 104, the upper end of the central wall 82 and the sections 86, 88 of the upper wall. A frustoconical baffle 109a connected to the internal surfaces of the sections 86, 88 of the upper walls serves to guide the first air flow emitted from the impeller housing 104 into the base 26 of the nozzle 14. An annular seal 109b extending around the upper end of the baffle 109a engages the end of the base 26 of the nozzle 14 to form an air tight seal between the nozzle 14 and the base 70.
The second air passageway 78 is arranged to receive air from the first air passageway 76. The second air passageway 78 is located adjacent to the first air passageway 76. The second air passageway 78 comprises a duct 110 for receiving air from the first air passageway 76. The duct 110 has an annular inlet port 112 located downstream from the guide vanes 100 so as to receive part of the air flow emitted from the guide vanes 100, and which forms the second air flow. The inlet port 112 is located between the baffle 109a and a domed upper section 113 of the impeller housing 104. The duct 110 extends between the impeller housing 104 and the baffle 109a to an outlet port 114 located on the central wall 82 of the base 70.
The humidifying apparatus 10 is configured to increase the humidity of the second air flow before it enters the nozzle 14. With reference now to
The outer wall 122 is formed from material which is transparent to visible light to allow a user to observe the volume of water stored within the water tank 120. For the same reason, the upper wall 126 is preferably formed from the same material as the outer wall 122. The outer wall 122 and the upper wall 126 may be joined together using an adhesive, or using a laser welding technique. These walls 122, 126 are preferably formed from a transparent plastics material. The inner wall 124 and the lower wall 128 are preferably integral, and do not need to be formed from the same plastics material as the outer wall 122 and the upper wall 126. In this embodiment the inner wall 124 and the lower wall 128 are formed from material which is opaque to ultraviolet radiation, and preferably also visible light, so that the portion of the base 70 which is surrounded by, or covered by, the inner wall 124 and the lower wall 128 is not visible to the user when the water tank 120 is mounted on the base 70. An adhesive is used to connect the inner wall 124 to the upper wall 126, and to connect the outer wall 122 to the lower wall 128.
The lower wall 128 of the water tank 120 engages, and is supported by, the supporting wall 84 of the base 70 when the water tank 120 is mounted on the base 70. Protrusions 130 may be formed on, or mounted on, the lower wall 128 for location within recesses 132 formed on the supporting wall 84 of the base 70 to ensure accurate angular positioning of the water tank 120 on the base 70. The protrusions 130 may be in the form of magnets which interact with other magnets (not shown) mounted beneath the recesses 132 on the lower surface of the supporting wall 84 to assist with the accurate location of the water tank 120 on the base 70, and to increase the force required to move the water tank 120 relative to the base 70. This can reduce the risk of accidental movement of the water tank 120 relative to the base 70.
The water tank 120 preferably has a capacity in the range from 2 to 4 liters. With particular reference to
The upper wall 126 of the water tank 120 comprises one or more supports 138 for supporting the inverted water tank 120 on a work surface, counter top or other support surface. In this example, two parallel supports 138 are formed in the periphery of the upper wall 126 for supporting the inverted water tank 120.
With reference now to
A pin 152 extends upwardly from the section of the base forming, in part, the inlet chamber 142. When the water tank 120 is mounted on the base 70, the pin 152 protrudes into the spout 134 to push the valve 136 upwardly to open the spout 134, thereby allowing water to pass under gravity into the inlet chamber 142. As the inlet chamber 142 fills with water, water passes through the channel 150 to enter the outlet chamber 144. As water is output from the water tank 120, it is replaced within the water tank 120 by air which enters the water tank 120 through slots 154 located in the side wall of the spout 134. As the chambers 142, 144 fill with water, the level of water within the chambers 142, 144 equalizes. The spout 134 is arranged so that the water reservoir 140 can be filled with water to a maximum level which is substantially co-planar with the upper end of the slots 154 located within the side wall of the spout 134; above that level no air can enter the water tank 120 to replace water output from the water tank 120.
The section of the base forming, in part, the outlet chamber 144 comprises a circular aperture for exposing a piezoelectric transducer 156. The drive circuit 74 is configured to actuate vibration of the transducer 156 in an atomization mode to atomise water located in the outlet chamber 144. In the atomization mode, the transducer 156 may vibrate ultrasonically at a frequency f1, which may be in the range from 1 to 2 MHz. With reference also to
The water reservoir 140 also includes an ultraviolet radiation (UV) generator for irradiating water within the water reservoir 140. In this embodiment, the UV generator is arranged to irradiate water within the outlet chamber 144 of the water reservoir 140. In this embodiment, the UV generator comprises a UV lamp 160, which forms part of a UV lamp assembly 162 of the base 70. The UV lamp assembly 162 is in the form of a cartridge which is removably insertable into the base 70 to allow the UV lamp assembly 162 to be replaced by a user as required. The water reservoir 140 comprises a UV transparent tube 164. The tube 164 is located within the outlet chamber 144 of the water reservoir 140. The UV lamp assembly 162 is supported by the base 70 so that the UV lamp 160 is located within the tube 164 when it is inserted fully into the base 70. Preferably, an open end of the tube 164 protrudes through an aperture formed in the side wall of the water reservoir 140 to allow the UV lamp 160 to enter the tube 164. An 0-ring sealing member may be provided between the tube 164 and the aperture formed in the side wall to inhibit water leakage through the aperture.
With reference to
A float 168 may be provided within the water tank 120, and a level sensor 170, shown schematically in
The water tank 120 defines an inlet duct 174 for receiving the second air flow from the outlet port 114 of the base 70. In this embodiment, the inlet duct 174 is defined by a detachable section 176 of the water tank 120, which is detachably connected to the inner wall 124 of the water tank 120 by a user-operable catch 177. The detachable section 176 is illustrated in
The water tank 120 also includes an outlet duct for conveying the second air flow from the reservoir 140 to the second air inlet 58 of the nozzle 14. In the embodiment, the outlet duct comprises an inlet section 186 and an outlet section 188. The inlet section 186 is defined by the detachable section 176 of the water tank 120. The detachable section 176 comprises an air inlet 190 of the outlet duct. The air inlet 190 is located in the bottom wall 184 of the body 178 so that it is positioned directly above the transducer 156 when the water tank 120 is mounted on the base 70, as shown in
The body 178 of the detachable section 176 comprises a flange 192 which extends outwardly from the bottom wall 184. The flange 192 extends around a majority of the body 178. The flange 192 is shaped so that when the water tank 120 is mounted on the base 70, the flange 192 is located over, and is preferably mounted upon, a recessed portion 194 of the supporting wall 84 which extends about the water reservoir 140. As shown through a comparison of
The detachable section 176 comprises a wall 198 depending from the flange 192 for guiding the second air flow from the air outlet 182 of the inlet duct 174 towards the air inlet 190 of the outlet duct. The wall 198 is annular in shape and positioned so as to delimit, and so to extend about, a flow channel located directly beneath the air outlet 182 of the inlet duct 174 and the air inlet 190 of the outlet duct. The height of the wall 198 is selected so that when the outlet chamber 144 of the water reservoir 140 is filled with water to the maximum level, the end of the wall 198 extends into the water stored in the outlet chamber 144, establishing an interface between the wall 198 and the stored water which forms a seal for inhibiting the leakage of the second air flow from the flow channel defined by the wall 198.
The body 178 of the detachable section 176 comprises a port 200 from which the second air flow enters the outlet section 188 from the inlet section 186. When the detachable section 176 is connected to the inner wall 124 of the water tank 120, an inner part of the outlet section 188 is defined by the detachable section 176, and an outer part of the outlet section 188 is defined by the inner wall 124. A seal 202 disposed on the detachable section 176 forms an air tight seal to prevent leakage of the second air flow from the interface between the inner wall 124 and the detachable section 176. In this embodiment, the outlet section 188 of the outlet duct bifurcates to form a pair of duct branches 204, each comprising a respective air outlet 206 of the outlet duct. This allows the outlet duct to convey the second air flow about part of the base 70, in this embodiment a button 260 (described in more detail below) actuable by the user to release the nozzle 14 from the base 70.
With reference to
The frame 218 carries a relatively flexible, resilient part of the seal 210. The resilient part of the seal 210 comprises a first section 220 which is retained by, and surrounded by, the frame 218 for engaging the end of the base 56 of the nozzle 14. The resilient part of the seal 210 also comprises a pair of second sections 222 depending from the first section 220, and which engage the support 212 to urge the frame 218 away from the support 212 and towards the base 56 of the nozzle 14. The seal 210 and the support 212 comprise apertures or passageways 224 which allow the second air flow to pass therethrough and into the base 56 of the nozzle 14. In this embodiment, each of the second sections 222 is tubular in shape, and has an undulating or bellows shape.
As illustrated in
When the nozzle 14 is mounted on the body 12, the base 26 of the outer casing section 22 of the nozzle 14 is located over the open end of the upper cylindrical section of the upper wall of the base 70, and the base 56 of the front casing section 50 of the nozzle 14 is located over the seal 210 of the water tank 120. The user then pushes the nozzle 14 towards the body 12. When the bases 26, 56 of the nozzle 14 are fully inserted in the body 12, the annular seal 109b engages the end of the base 26 of the nozzle 14 to form an air tight seal between the nozzle 14 and the base 70, whereas the seal 210 engages the end of the base 56 of the nozzle 14 to form an air tight seal between the nozzle 14 and the water tank 120.
With reference now to
The base 26 of the nozzle 14 includes a housing 244 for retaining the magnet 242. The housing 244 is located on the outer surface of the base 26. The housing 244 has an annular wall which is integral with the base 26, and which defines at least side walls 246, a lower end wall 248 and an upper end wall of the housing 248. The housing 244 may have one of a variety of other shapers, such as rectangular or other polygonal shape, and so the annular wall may be replaced with a series of connected walls which define the side walls 246 and ends wall of the housing 244. The walls of the housing 244 surround the magnet 242. A cover 250 is connected to the walls of the housing 244 by snap fit connectors.
The inner cylindrical wall 88b of the base 70 comprises a groove 252 which is shaped to receive the housing 244 as the nozzle 14 is mounted on the body 12. The sensor 242 is positioned within the housing 88c so as to be located between the groove 252 and outer cylindrical wall 88a. The groove 252 and the housing 244 have substantially the same shape so that the nozzle 14 becomes angularly aligned relative to the body 12 as the base 26 of the nozzle 14 is inserted into the body 12. The groove 252 comprises side walls 254 for engaging the side walls 246 of the housing 244 to inhibit relative rotation between the nozzle 14 and the body 12, and an end wall 256 for engaging the lower end wall 248 of the housing 244 to restrict the extent to which the housing 244 is insertable within the groove 252.
With reference to
The actuator 264 is in the form of a non-circular hoop located within the cavity 88c for engaging the detents 262. The button 260 and the actuator 264 are arranged so that the depression of the button 260 by the user causes the actuator 264 to rotate within the cavity 88c. For example, the actuator 264 may comprise a protrusion 264a which is contacted, and pushed to one side, by the button 260 as it is depressed by the user, which causes the actuator 264 to rotate in a clockwise direction within the housing 88c. Due to the asymmetric shape of the actuator 264, the rotation of the actuator 264 causes it to engage the detents 262 to move the detents 262 away from the grooves 266, against the biasing force of the springs 265, to their release positions. This allows the user to remove the nozzle 14 from the body 12. Once the nozzle 14 has been lifted from the body 12, the button 260 may be released by the user. The springs 265 urge the detents 262 back to their retaining position, which in turn causes the actuator 264 to rotate within the housing 88c in an anticlockwise direction and raise the button 260.
When the nozzle 14 has been removed from the body 12, the user may remove the water tank 120 from the base 70, for example to replenish the water tank 120 or to remove the detachable section 176 and seal 210 for cleaning. While the nozzle 14 is removed from the body 12, there is an opportunity for water to enter the body 12 through the exposed first air passageway 76, especially when the water tank 120 is replaced on the base 70. For example, with reference to
The impeller 90 comprise a substantially conical hub 272 and a series of curved vanes 274 which are connected to, and preferably integral with, the outer surface of the hub 272. In this embodiment, the impeller 90 further comprises a generally frustoconical shroud 276 which is connected to the outer edges of the curved vanes 274. If any water droplets fall from the lip 270, those water droplets will fall into the impeller 90, between the hub 272 and the shroud 276. The droplets will subsequently fall from the impeller 90, through the inlet member 108 and on to the sheet 81 of silencing foam. To minimise any disruption to the air flow generated by the rotation of the impeller 90, the lip 270 does not protrude downwardly from the motor bucket beyond the hub 272 of the impeller 90.
The lip 270 is defined by an outer peripheral wall of an annular groove 278 formed in the lower portion of the motor bucket. The impeller 90 comprises an annular vane 280 connected to the base of the hub 272 so as to extend into the groove 278. In this embodiment, each of the groove 278 and the vane 280 is annular in shape. During rotation of the impeller 90, the vane 280 generates an air boundary adjacent to the lip 270 which further inhibits the passage of water droplets along the lower portion 98 of the motor bucket beyond the lip 270.
Returning to
The panel 290 is illustrated in isolation in
The panel 290 comprises a trough 296 which is located beneath the connector 75a to which the mains power cable is attached by the user. As there is a risk that water may enter the base 70 through the aperture 75b when the mains power cable is disconnected from the base 70, the trough 296 comprises a drain hole 298 for draining any such water from the trough 296.
As described above, a button 73 for controlling the operation of the humidifying apparatus may be located on the outer wall 71 of the base 70 of the body 12. The button 73 may be used to activate and deactivate the motor 92 to switch on and switch off the humidifying apparatus. Additionally, the humidifying apparatus 10 comprises a remote control 300 for transmitting control signals to a user interface circuit 302 of the humidifying apparatus 10.
A first button is used to activate and deactivate the motor 92, and a second button is used to set the speed of the motor 92, and thus the rotational speed of the impeller 90. The control system may have a discrete number of user selectable speed settings, each corresponding to a respective different rotational speed of the motor 92. A third button is used to set a desired level for the relative humidity of the environment in which the humidifying apparatus 10 is located, such as a room, office or other domestic environment. For example, the desired relative humidity level may be selected within a range from 30 to 80% at 20° C. through repeated actuation of the third button. A fourth button may be used to selectively deactivate the transducer 156 to prevent the second air flow from becoming humidified.
The user interface circuit 302 comprises a switch which is actuated through user operation of the button 73, a sensor or receiver 304 for receiving signals transmitted by the remote control 300, and a display 306 for displaying a current operational setting of the humidifying apparatus 10. For example, the display 306 may normally indicate the currently selected relative humidity level. As the user changes the rotational speed of the motor 92, the display 306 may indicate briefly the currently selected speed setting. The display 306 may be located immediately behind a transparent or translucent part of the outer wall 71 of the base 70, and the sensor 304 may be located behind the button 73.
The user interface circuit 302 is connected to the drive circuit 74. The drive circuit 74 comprises a microprocessor and a motor driver for driving the motor 92. A mains power cable (not shown) for supplying electrical power to the humidifying apparatus 10 extends through the aperture 75b formed in the base 70. The cable is connected to a plug. The drive circuit 74 comprises a power supply unit connected to the connector 75a. The user interface may also comprise one or more LEDs for providing a visual alert depending on a status of the humidifying apparatus 10. For example, a first LED 308 may be illuminated to indicate that the water tank 120 has become depleted, as indicated by a signal received by the drive circuit 74 from the level sensor 170.
A humidity sensor 310 is also provided for detecting the relative humidity of air in the external environment, and for supplying a signal indicative of the detected relative humidity to the drive circuit 74. In this example the humidity sensor 310 may be located immediately behind the air inlet 72 to detect the relative humidity of the air flow drawn into the humidifying apparatus 10. The user interface may comprise a second LED 312 which is illuminated by the drive circuit 74 when an output from the humidity sensor 310 indicates that the relative humidity of the air flow entering the humidifying apparatus 10, HD, is at or above the desired relative humidity level, HS, set by the user.
To operate the humidifying apparatus 10, the user actuates the first button of the remote control, in response to which the remote control 300 generates a signal containing data indicative of the actuation of this first button. This signal is received by the receiver 304 of the user interface circuit 302. The operation of the button is communicated by the user interface circuit 302 to the drive circuit 74, in response to which the drive circuit 74 actuates the UV lamp 160 to irradiate water stored in the outlet chamber 144 of the water reservoir 140. In this example, the drive circuit 74 simultaneously activates the motor 92 to rotate the impeller 90. The rotation of the impeller 90 causes air to be drawn into the body 12 through the air inlet 72. An air flow passes through the impeller housing 104 and the guide vanes 100. Downstream from the guide vanes 100, a portion of the air emitted from the guide vanes 100 enters the duct 110, whereas the remainder of the air emitted from the guide vanes 100 is conveyed along the first air passageway 76 to the first air inlet 28 of the nozzle 14. The impeller 90 and the motor 92 may thus be considered to generate a first air flow which is conveyed to the nozzle 14 by the first air passageway 76 and which enters the nozzle 14 through the first air inlet 28.
The first air flow enters the first interior passage 46 at the lower end thereof. The first air flow is divided into two air streams which pass in opposite directions around the bore 20 of the nozzle 14. As the air streams pass through the first interior passage 46, air enters the mouth 48 of the nozzle 14. The air flow rate into the mouth 48 is preferably substantially even about the bore 20 of the nozzle 14. The mouth 48 guides the air flow towards the first air outlet 30 of the nozzle 14, from where it is emitted from the humidifying apparatus 10.
The air flow emitted from the first air outlet 30 causes a secondary air flow to be generated by the entrainment of air from the external environment, specifically from the region around the first air outlet 30 and from around the rear of the nozzle 14. Some of this secondary air flow passes through the bore 20 of the nozzle 14, whereas the remainder of the secondary air flow becomes entrained, in front of the nozzle 14, within the air flow emitted from the first air outlet 30.
As mentioned above, with rotation of the impeller 90 air enters the second air passageway 78 to form a second air flow. The second air flow passes through the duct 110 and the inlet duct 174 of the detachable section 176 of the water tank 120 to be emitted over the water stored in the outlet chamber 144 of the water reservoir 140. When the drive circuit 74 actuates the vibration of the transducer 156 to atomize water stored in the outlet chamber 144 of the water reservoir 140, airborne water droplets above the water located within the outlet chamber 144 of the water reservoir 140. The transducer 156 may be actuated in response to a user input received from the remote control 300, and/or a fixed time period following the actuation of the motor 92 to create the air flows through the humidifying apparatus 10.
With rotation of the impeller 90, airborne water droplets become entrained within the second air flow. The—now moist—second air flow passes upwardly through the outlet duct to the second air inlet 58 of the nozzle 14, and enters the second interior passage 68 within the front section 18 of the nozzle 14.
At the base of the second interior passage 68, the second air flow is divided into two air streams which pass in opposite directions around the bore 20 of the nozzle 14. As the air streams pass through the second interior passage 68, each air stream is emitted from the second air outlet 60. The emitted second air flow is conveyed away from the humidifying apparatus 10 within the air flow generated through the emission of the first air flow from the nozzle 14, thereby enabling a humid air current to be experienced rapidly at a distance of several metres from the humidifying apparatus 10.
The moist air flow is emitted from the nozzle 14 until the relative humidity HD of the air flow entering the humidifying apparatus 10, as detected by the humidity sensor 310, is 1% at 20° C. higher than the relative humidity level HS, selected by the user using the third button of the remote control 270. The emission of the moistened air flow from the nozzle 14 may then be terminated by the drive circuit 74, preferably by changing the mode of vibration of the transducer 156. For example, the frequency of the vibration of the transducer 156 may be reduced to a frequency f3, where f1>f3≧0, below which atomization of the stored water is not performed. Alternatively the amplitude of the vibrations of the transducer 156 may be reduced. Optionally, the motor 92 may also be stopped so that no air flow is emitted from the nozzle 14. However, when the humidity sensor 310 is located in close proximity to the motor 92 it is preferred that the motor 92 is operated continually to avoid undesirable humidity fluctuation in the local environment of the humidity sensor 310.
As a result of the termination of the emission of a moist air flow from the humidifying apparatus 10, the relative humidity HD detected by the humidity sensor 310 will begin to fall. Once the relative humidity of the air of the environment local to the humidity sensor 270 has fallen to 1% at 20° C. below the relative humidity level HS selected by the user, the drive circuit 74 re-activates the vibration of the transducer 156 in the atomization mode. If the motor 92 has been stopped, the drive circuit 74 simultaneously re-activates the motor 92. As before, the moist air flow is emitted from the nozzle 14 until the relative humidity HD detected by the humidity sensor 310 is 1% at 20° C. higher than the relative humidity level HS selected by the user.
This actuation sequence of the transducer 156 (and optionally the motor 92) for maintaining the detected humidity level around the level selected by the user continues until the first button is actuated again, or until a signal is received from the level sensor 170 indicating that the level of water within the water tank 120 has fallen below the minimum level. If the first button is actuated, or upon receipt of this signal from the level sensor 170, the drive circuit 74 deactivates the motor 92, the transducer 156 and the UV lamp 160 to switch off the humidifying apparatus 10. The drive circuit 74 also deactivates these components of the humidifying apparatus 10 in response to a signal received from the proximity sensor 172 indicating that the water tank 120 has been removed from the base 70, and in response to a signal received from the sensor 240 indicating that the nozzle 14 has been removed from the base 70.
Number | Date | Country | Kind |
---|---|---|---|
1413428.2 | Jul 2014 | GB | national |
Number | Name | Date | Kind |
---|---|---|---|
284962 | Huston | Sep 1883 | A |
1357261 | Svoboda | Nov 1920 | A |
1767060 | Ferguson | Jun 1930 | A |
1896869 | Larsh | Feb 1933 | A |
2014185 | Martin | Sep 1935 | A |
2035733 | Wall | Mar 1936 | A |
2071266 | Schmidt | Feb 1937 | A |
D103476 | Weber | Mar 1937 | S |
2115883 | Sher | May 1938 | A |
D115344 | Chapman | Jun 1939 | S |
2210458 | Keilholtz | Aug 1940 | A |
2258961 | Saathoff | Oct 1941 | A |
2295502 | Lamb | Sep 1942 | A |
2336295 | Reimuller | Dec 1943 | A |
2363839 | Demuth | Nov 1944 | A |
2433795 | Stokes | Dec 1947 | A |
2473325 | Aufiero | Jun 1949 | A |
2476002 | Stalker | Jul 1949 | A |
2488467 | De Lisio | Nov 1949 | A |
2510132 | Morrison | Jun 1950 | A |
2544379 | Davenport | Mar 1951 | A |
2547448 | Demuth | Apr 1951 | A |
2583374 | Hoffman | Jan 1952 | A |
2620127 | Radcliffe | Dec 1952 | A |
2711682 | Drechsel | Jun 1955 | A |
2755106 | Brennan et al. | Jul 1956 | A |
2765977 | Morrison | Oct 1956 | A |
2808198 | Morrison | Oct 1957 | A |
2813673 | Smith | Nov 1957 | A |
2830779 | Wentling | Apr 1958 | A |
2838229 | Belanger | Jun 1958 | A |
2922277 | Bertin | Jan 1960 | A |
2922570 | Allen | Jan 1960 | A |
3004403 | Laporte | Oct 1961 | A |
3047208 | Coanda | Jul 1962 | A |
3270655 | Guirl et al. | Sep 1966 | A |
D206973 | De Lisio | Feb 1967 | S |
3503138 | Fuchs et al. | Mar 1970 | A |
3518776 | Wolff et al. | Jul 1970 | A |
3724092 | McCleerey | Apr 1973 | A |
3729934 | Denning et al. | May 1973 | A |
3743186 | Mocarski | Jul 1973 | A |
3795367 | Mocarski | Mar 1974 | A |
3872916 | Beck | Mar 1975 | A |
3875745 | Franklin | Apr 1975 | A |
3885891 | Throndson | May 1975 | A |
3943329 | Hlavac | Mar 1976 | A |
4037991 | Taylor | Jul 1977 | A |
4046492 | Inglis | Sep 1977 | A |
4061188 | Beck | Dec 1977 | A |
4073613 | Desty | Feb 1978 | A |
4090814 | Teodorescu et al. | May 1978 | A |
4113416 | Kataoka et al. | Sep 1978 | A |
4136735 | Beck et al. | Jan 1979 | A |
4173995 | Beck | Nov 1979 | A |
4180130 | Beck et al. | Dec 1979 | A |
4184417 | Chancellor | Jan 1980 | A |
4184541 | Beck et al. | Jan 1980 | A |
4192461 | Arborg | Mar 1980 | A |
4264837 | Gaboriaud | Apr 1981 | A |
4332529 | Alperin | Jun 1982 | A |
4336017 | Desty | Jun 1982 | A |
4342204 | Melikian et al. | Aug 1982 | A |
4448354 | Reznick et al. | May 1984 | A |
4568243 | Schubert et al. | Feb 1986 | A |
4630475 | Mizoguchi | Dec 1986 | A |
4643351 | Fukamachi et al. | Feb 1987 | A |
4703152 | Shih-Chin | Oct 1987 | A |
4716946 | Grigoletto | Jan 1988 | A |
4718870 | Watts | Jan 1988 | A |
4732539 | Shin-Chin | Mar 1988 | A |
4734017 | Levin | Mar 1988 | A |
4790133 | Stuart | Dec 1988 | A |
4850804 | Huang | Jul 1989 | A |
4878620 | Tarleton | Nov 1989 | A |
4893990 | Tomohiro et al. | Jan 1990 | A |
4978281 | Conger | Dec 1990 | A |
5061405 | Stanek et al. | Oct 1991 | A |
D325435 | Coup et al. | Apr 1992 | S |
5110266 | Toyoshima et al. | May 1992 | A |
5168722 | Brock | Dec 1992 | A |
5176856 | Takahashi et al. | Jan 1993 | A |
5188508 | Scott et al. | Feb 1993 | A |
D343231 | Lim | Jan 1994 | S |
5296769 | Havens et al. | Mar 1994 | A |
D346017 | Lim | Apr 1994 | S |
5310313 | Chen | May 1994 | A |
5317815 | Hwang | Jun 1994 | A |
5338495 | Steiner et al. | Aug 1994 | A |
5402938 | Sweeney | Apr 1995 | A |
5407324 | Starnes, Jr. et al. | Apr 1995 | A |
5425902 | Miller et al. | Jun 1995 | A |
5435489 | Jenkins et al. | Jul 1995 | A |
5483616 | Chiu et al. | Jan 1996 | A |
5518370 | Wang et al. | May 1996 | A |
D374712 | Jane et al. | Oct 1996 | S |
5609473 | Litvin | Mar 1997 | A |
5645769 | Tamaru et al. | Jul 1997 | A |
5649370 | Russo | Jul 1997 | A |
D382951 | Deines et al. | Aug 1997 | S |
5671321 | Bagnuolo | Sep 1997 | A |
5677982 | Levine et al. | Oct 1997 | A |
5706985 | Feer | Jan 1998 | A |
5735683 | Muschelknautz | Apr 1998 | A |
5762034 | Foss | Jun 1998 | A |
5762661 | Kleinberger et al. | Jun 1998 | A |
5783117 | Byassee et al. | Jul 1998 | A |
5794306 | Firdaus | Aug 1998 | A |
D398983 | Keller et al. | Sep 1998 | S |
5841080 | Iida et al. | Nov 1998 | A |
5843344 | Junket et al. | Dec 1998 | A |
5859952 | Levine et al. | Jan 1999 | A |
5862037 | Behl | Jan 1999 | A |
5868197 | Potier | Feb 1999 | A |
5881685 | Foss et al. | Mar 1999 | A |
5922247 | Shoham et al. | Jul 1999 | A |
D415271 | Feer | Oct 1999 | S |
6015274 | Bias et al. | Jan 2000 | A |
D423663 | Rossman et al. | Apr 2000 | S |
6073881 | Chen | Jun 2000 | A |
D429808 | Krauss et al. | Aug 2000 | S |
6123618 | Day | Sep 2000 | A |
6155782 | Hsu | Dec 2000 | A |
D435899 | Melwani | Jan 2001 | S |
6200155 | Chudkosky et al. | Mar 2001 | B1 |
6254337 | Arnold | Jul 2001 | B1 |
6269549 | Carlucci et al. | Aug 2001 | B1 |
6278248 | Hong et al. | Aug 2001 | B1 |
6282746 | Schleeter | Sep 2001 | B1 |
6293121 | Labrador | Sep 2001 | B1 |
6321034 | Jones-Lawlor et al. | Nov 2001 | B2 |
6386845 | Bedard | May 2002 | B1 |
6480672 | Rosenzweig et al. | Nov 2002 | B1 |
6599088 | Stagg | Jul 2003 | B2 |
6604694 | Kordas et al. | Aug 2003 | B1 |
D483851 | Fok | Dec 2003 | S |
D485895 | Melwani | Jan 2004 | S |
D486903 | Chiang | Feb 2004 | S |
6715739 | Mulvaney et al. | Apr 2004 | B2 |
6789787 | Stutts | Sep 2004 | B2 |
6791056 | VanOtteren et al. | Sep 2004 | B2 |
6830433 | Birdsell et al. | Dec 2004 | B2 |
6845971 | Bachert | Jan 2005 | B2 |
D512772 | Lee | Dec 2005 | S |
D513067 | Blateri | Dec 2005 | S |
7059826 | Lasko | Jun 2006 | B2 |
7088913 | Verhoorn et al. | Aug 2006 | B1 |
7147336 | Chou | Dec 2006 | B1 |
D539414 | Russak et al. | Mar 2007 | S |
7192258 | Kuo et al. | Mar 2007 | B2 |
7198473 | Stickland et al. | Apr 2007 | B2 |
D544078 | Geringer | Jun 2007 | S |
7362964 | Wang | Apr 2008 | B2 |
7412781 | Mattinger et al. | Aug 2008 | B2 |
7478993 | Hong et al. | Jan 2009 | B2 |
7540474 | Huang et al. | Jun 2009 | B1 |
D595835 | Fu | Jul 2009 | S |
D598532 | Dyson et al. | Aug 2009 | S |
D602143 | Gammack et al. | Oct 2009 | S |
D602144 | Dyson et al. | Oct 2009 | S |
D605748 | Gammack et al. | Dec 2009 | S |
7660110 | Vinson et al. | Feb 2010 | B2 |
7664377 | Liao | Feb 2010 | B2 |
D614280 | Dyson et al. | Apr 2010 | S |
7731050 | Parks et al. | Jun 2010 | B2 |
7775848 | Auerbach | Aug 2010 | B1 |
7806388 | Junkel et al. | Oct 2010 | B2 |
7841045 | Shaanan et al. | Nov 2010 | B2 |
D633997 | Hideharu et al. | Mar 2011 | S |
D633999 | Hideharu et al. | Mar 2011 | S |
7931449 | Fitton et al. | Apr 2011 | B2 |
D638114 | Li et al. | May 2011 | S |
D643098 | Wallace et al. | Aug 2011 | S |
8002520 | Dawson et al. | Aug 2011 | B2 |
D644726 | Hideharu et al. | Sep 2011 | S |
D645133 | Hideharu | Sep 2011 | S |
D646373 | Liebson et al. | Oct 2011 | S |
8092166 | Nicolas et al. | Jan 2012 | B2 |
8113490 | Chen | Feb 2012 | B2 |
8152495 | Boggess, Jr. et al. | Apr 2012 | B2 |
8246317 | Gammack | Aug 2012 | B2 |
D669164 | Hsu | Oct 2012 | S |
8308445 | Gammack et al. | Nov 2012 | B2 |
D672023 | Wallace et al. | Dec 2012 | S |
D672024 | Fitton et al. | Dec 2012 | S |
8348629 | Fitton et al. | Jan 2013 | B2 |
8356804 | Fitton et al. | Jan 2013 | B2 |
D676536 | Roach et al. | Feb 2013 | S |
D678993 | Kung-Hua | Mar 2013 | S |
8403640 | Gammack et al. | Mar 2013 | B2 |
8408869 | Hutton et al. | Apr 2013 | B2 |
D681793 | Li | May 2013 | S |
D684249 | Herbst | Jun 2013 | S |
8454322 | Gammack et al. | Jun 2013 | B2 |
8469660 | Dyson et al. | Jun 2013 | B2 |
8529226 | Li | Sep 2013 | B2 |
8544826 | Ediger et al. | Oct 2013 | B2 |
D698018 | Choi | Jan 2014 | S |
D700959 | Sickinger et al. | Mar 2014 | S |
8684687 | Dyson et al. | Apr 2014 | B2 |
D705415 | Lo | May 2014 | S |
8721286 | Gammack et al. | May 2014 | B2 |
8721307 | Li | May 2014 | B2 |
8764412 | Gammack et al. | Jul 2014 | B2 |
8783663 | Fitton et al. | Jul 2014 | B2 |
8784071 | Gammack | Jul 2014 | B2 |
20010017212 | Hirano | Aug 2001 | A1 |
20020104972 | Guzorek | Aug 2002 | A1 |
20020106547 | Sugawara et al. | Aug 2002 | A1 |
20020190400 | Bachert | Dec 2002 | A1 |
20030059307 | Moreno et al. | Mar 2003 | A1 |
20030064677 | Terrell et al. | Apr 2003 | A1 |
20030164367 | Bucher et al. | Sep 2003 | A1 |
20030171093 | Gumucio Del Pozo | Sep 2003 | A1 |
20030190183 | Hsing | Oct 2003 | A1 |
20030230477 | Fink et al. | Dec 2003 | A1 |
20040022631 | Birdsell et al. | Feb 2004 | A1 |
20040049842 | Prehodka | Mar 2004 | A1 |
20040106370 | Honda et al. | Jun 2004 | A1 |
20040149881 | Allen | Aug 2004 | A1 |
20050031448 | Lasko et al. | Feb 2005 | A1 |
20050053465 | Roach et al. | Mar 2005 | A1 |
20050069407 | Winkler et al. | Mar 2005 | A1 |
20050128698 | Huang | Jun 2005 | A1 |
20050163670 | Alleyne et al. | Jul 2005 | A1 |
20050173997 | Schmid et al. | Aug 2005 | A1 |
20050194167 | Kiyota et al. | Sep 2005 | A1 |
20050258554 | Bachert | Nov 2005 | A1 |
20050281672 | Parker et al. | Dec 2005 | A1 |
20060172682 | Orr et al. | Aug 2006 | A1 |
20060199515 | Lasko et al. | Sep 2006 | A1 |
20060263073 | Clarke et al. | Nov 2006 | A1 |
20060279927 | Strohm | Dec 2006 | A1 |
20070009354 | Zahuranec | Jan 2007 | A1 |
20070035189 | Matsumoto | Feb 2007 | A1 |
20070041857 | Fleig | Feb 2007 | A1 |
20070065280 | Fok | Mar 2007 | A1 |
20070166160 | Russak et al. | Jul 2007 | A1 |
20070176502 | Kasai et al. | Aug 2007 | A1 |
20070224044 | Hong et al. | Sep 2007 | A1 |
20070237500 | Wang | Oct 2007 | A1 |
20070269323 | Zhou et al. | Nov 2007 | A1 |
20080020698 | Spaggiari | Jan 2008 | A1 |
20080124060 | Gao | May 2008 | A1 |
20080152482 | Patel | Jun 2008 | A1 |
20080166224 | Giffin | Jul 2008 | A1 |
20080286130 | Purvines | Nov 2008 | A1 |
20080314250 | Cowie et al. | Dec 2008 | A1 |
20090026850 | Fu | Jan 2009 | A1 |
20090032130 | Dumas et al. | Feb 2009 | A1 |
20090039805 | Tang | Feb 2009 | A1 |
20090060710 | Gammack et al. | Mar 2009 | A1 |
20090060711 | Gammack et al. | Mar 2009 | A1 |
20090078120 | Kummer et al. | Mar 2009 | A1 |
20090120925 | Lasko | May 2009 | A1 |
20090191054 | Winkler | Jul 2009 | A1 |
20090214341 | Craig | Aug 2009 | A1 |
20090301482 | Burton et al. | Dec 2009 | A1 |
20100133707 | Huang | Jun 2010 | A1 |
20100150699 | Nicolas et al. | Jun 2010 | A1 |
20100162011 | Min | Jun 2010 | A1 |
20100171465 | Seal et al. | Jul 2010 | A1 |
20100225012 | Fitton et al. | Sep 2010 | A1 |
20100226749 | Gammack et al. | Sep 2010 | A1 |
20100226750 | Gammack | Sep 2010 | A1 |
20100226751 | Gammack et al. | Sep 2010 | A1 |
20100226752 | Gammack et al. | Sep 2010 | A1 |
20100226753 | Dyson et al. | Sep 2010 | A1 |
20100226754 | Hutton et al. | Sep 2010 | A1 |
20100226758 | Cookson et al. | Sep 2010 | A1 |
20100226763 | Gammack et al. | Sep 2010 | A1 |
20100226764 | Gammack et al. | Sep 2010 | A1 |
20100226769 | Helps | Sep 2010 | A1 |
20100226771 | Crawford et al. | Sep 2010 | A1 |
20100226787 | Gammack et al. | Sep 2010 | A1 |
20100226797 | Fitton et al. | Sep 2010 | A1 |
20100226801 | Gammack | Sep 2010 | A1 |
20100254800 | Fitton et al. | Oct 2010 | A1 |
20110058935 | Gammack et al. | Mar 2011 | A1 |
20110080724 | Jörgensen | Apr 2011 | A1 |
20110110805 | Gammack et al. | May 2011 | A1 |
20110164959 | Fitton et al. | Jul 2011 | A1 |
20110223014 | Crawford et al. | Sep 2011 | A1 |
20110223015 | Gammack et al. | Sep 2011 | A1 |
20110236228 | Fitton et al. | Sep 2011 | A1 |
20110248096 | Lin et al. | Oct 2011 | A1 |
20120031509 | Wallace et al. | Feb 2012 | A1 |
20120033952 | Wallace et al. | Feb 2012 | A1 |
20120034108 | Wallace et al. | Feb 2012 | A1 |
20120039705 | Gammack | Feb 2012 | A1 |
20120045315 | Gammack | Feb 2012 | A1 |
20120045316 | Gammack | Feb 2012 | A1 |
20120051884 | Junkel et al. | Mar 2012 | A1 |
20120057959 | Hodgson et al. | Mar 2012 | A1 |
20120082561 | Gammack et al. | Apr 2012 | A1 |
20120093629 | Fitton et al. | Apr 2012 | A1 |
20120093630 | Fitton et al. | Apr 2012 | A1 |
20120107096 | Yang et al. | May 2012 | A1 |
20120114513 | Simmonds et al. | May 2012 | A1 |
20120230658 | Fitton et al. | Sep 2012 | A1 |
20120308375 | Gammack | Dec 2012 | A1 |
20120318393 | Tsen | Dec 2012 | A1 |
20120319311 | Nutter et al. | Dec 2012 | A1 |
20130011252 | Crawford et al. | Jan 2013 | A1 |
20130026664 | Staniforth et al. | Jan 2013 | A1 |
20130028763 | Staniforth et al. | Jan 2013 | A1 |
20130028766 | Staniforth et al. | Jan 2013 | A1 |
20130077292 | Zimmerman | Mar 2013 | A1 |
20130129490 | Dos Reis et al. | May 2013 | A1 |
20130142676 | Zou | Jun 2013 | A1 |
20130143481 | Kagawa et al. | Jun 2013 | A1 |
20130161842 | Fitton et al. | Jun 2013 | A1 |
20130175711 | Nutter et al. | Jul 2013 | A1 |
20130199372 | Nock et al. | Aug 2013 | A1 |
20130234346 | Staniforth et al. | Sep 2013 | A1 |
20130234347 | Staniforth et al. | Sep 2013 | A1 |
20130249122 | Staniforth et al. | Sep 2013 | A1 |
20130249124 | Staniforth et al. | Sep 2013 | A1 |
20130249126 | Staniforth et al. | Sep 2013 | A1 |
20130272858 | Stickney et al. | Oct 2013 | A1 |
20130280051 | Nicolas et al. | Oct 2013 | A1 |
20130280061 | Stickney | Oct 2013 | A1 |
20130280096 | Gammack et al. | Oct 2013 | A1 |
20130309065 | Johnson et al. | Nov 2013 | A1 |
20130309080 | Johnson et al. | Nov 2013 | A1 |
20130320574 | Sickinger et al. | Dec 2013 | A1 |
20130323100 | Poulton et al. | Dec 2013 | A1 |
20130336771 | Dyson et al. | Dec 2013 | A1 |
20140017069 | Peters | Jan 2014 | A1 |
20140077398 | Staniforth et al. | Mar 2014 | A1 |
20140079566 | Gammack et al. | Mar 2014 | A1 |
20140084492 | Staniforth et al. | Mar 2014 | A1 |
20140210114 | Staniforth et al. | Jul 2014 | A1 |
20140210115 | Staniforth et al. | Jul 2014 | A1 |
20140255173 | Poulton et al. | Sep 2014 | A1 |
20140255217 | Li | Sep 2014 | A1 |
20150084214 | Wilson et al. | Mar 2015 | A1 |
20160032927 | Johnson et al. | Feb 2016 | A1 |
20160032941 | Beavis et al. | Feb 2016 | A1 |
20160033148 | Darvill | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
560119 | Aug 1957 | BE |
1055344 | May 1979 | CA |
2155482 | Sep 1996 | CA |
346643 | May 1960 | CH |
2085866 | Oct 1991 | CN |
2111392 | Jul 1992 | CN |
2549372 | May 2003 | CN |
1437300 | Aug 2003 | CN |
1446116 | Oct 2003 | CN |
2650005 | Oct 2004 | CN |
2713643 | Jul 2005 | CN |
1680727 | Oct 2005 | CN |
1724950 | Jan 2006 | CN |
2833197 | Nov 2006 | CN |
201011346 | Jan 2008 | CN |
201147215 | Nov 2008 | CN |
201180678 | Jan 2009 | CN |
201221477 | Apr 2009 | CN |
101424279 | May 2009 | CN |
101451754 | Jun 2009 | CN |
201281416 | Jul 2009 | CN |
201349269 | Nov 2009 | CN |
101684828 | Mar 2010 | CN |
201486901 | May 2010 | CN |
101726100 | Jun 2010 | CN |
101749288 | Jun 2010 | CN |
201502549 | Jun 2010 | CN |
201507461 | Jun 2010 | CN |
201518985 | Jul 2010 | CN |
101825096 | Sep 2010 | CN |
101825101 | Sep 2010 | CN |
101825102 | Sep 2010 | CN |
101825103 | Sep 2010 | CN |
101825104 | Sep 2010 | CN |
101825324 | Sep 2010 | CN |
201568337 | Sep 2010 | CN |
101858355 | Oct 2010 | CN |
101936310 | Jan 2011 | CN |
201696365 | Jan 2011 | CN |
201696366 | Jan 2011 | CN |
201739199 | Feb 2011 | CN |
101984299 | Mar 2011 | CN |
101985948 | Mar 2011 | CN |
201763705 | Mar 2011 | CN |
201763706 | Mar 2011 | CN |
201770513 | Mar 2011 | CN |
201771875 | Mar 2011 | CN |
201779080 | Mar 2011 | CN |
201786777 | Apr 2011 | CN |
201786778 | Apr 2011 | CN |
201802648 | Apr 2011 | CN |
301539668 | May 2011 | CN |
102095236 | Jun 2011 | CN |
201858204 | Jun 2011 | CN |
201874898 | Jun 2011 | CN |
201874901 | Jun 2011 | CN |
201917047 | Aug 2011 | CN |
102251973 | Nov 2011 | CN |
102287357 | Dec 2011 | CN |
202101355 | Jan 2012 | CN |
102367813 | Mar 2012 | CN |
202267207 | Jun 2012 | CN |
301949285 | Jun 2012 | CN |
202431623 | Sep 2012 | CN |
102900654 | Jan 2013 | CN |
103697556 | Apr 2014 | CN |
1 291 090 | Mar 1969 | DE |
24 51 557 | May 1976 | DE |
27 48 724 | May 1978 | DE |
3644567 | Jul 1988 | DE |
195 10 397 | Sep 1996 | DE |
197 12 228 | Oct 1998 | DE |
100 00 400 | Mar 2001 | DE |
10041805 | Jun 2002 | DE |
10 2009 039 783 | Apr 2010 | DE |
10 2009 007 037 | Aug 2010 | DE |
0 044 494 | Jan 1982 | EP |
0 186 581 | Jul 1986 | EP |
0 459 812 | Dec 1991 | EP |
0 784 947 | Jul 1997 | EP |
0 846 868 | Jun 1998 | EP |
1 094 224 | Apr 2001 | EP |
1 138 954 | Oct 2001 | EP |
1 357 296 | Oct 2003 | EP |
1 779 745 | May 2007 | EP |
1 939 456 | Jul 2008 | EP |
1 980 432 | Oct 2008 | EP |
2 000 675 | Dec 2008 | EP |
2191142 | Jun 2010 | EP |
2 230 467 | Sep 2010 | EP |
2 414 738 | Feb 2012 | EP |
2 578 889 | Apr 2013 | EP |
1033034 | Jul 1953 | FR |
1119439 | Jun 1956 | FR |
1387334 | Jan 1965 | FR |
2 375 471 | Jul 1978 | FR |
2 534 983 | Apr 1984 | FR |
2 640 857 | Jun 1990 | FR |
2 658 593 | Aug 1991 | FR |
2794195 | Dec 2000 | FR |
2 874 409 | Feb 2006 | FR |
2 906 980 | Apr 2008 | FR |
2928706 | Sep 2009 | FR |
22235 | Jun 1914 | GB |
383498 | Nov 1932 | GB |
593828 | Oct 1947 | GB |
601222 | Apr 1948 | GB |
633273 | Dec 1949 | GB |
641622 | Aug 1950 | GB |
661747 | Nov 1951 | GB |
861749 | Feb 1961 | GB |
863 124 | Mar 1961 | GB |
1067956 | May 1967 | GB |
1 262 131 | Feb 1972 | GB |
1 265 341 | Mar 1972 | GB |
1 278 606 | Jun 1972 | GB |
1 304 560 | Jan 1973 | GB |
1 403 188 | Aug 1975 | GB |
1 434 226 | May 1976 | GB |
1 501 473 | Feb 1978 | GB |
2 094 400 | Sep 1982 | GB |
2 107 787 | May 1983 | GB |
2 111 125 | Jun 1983 | GB |
2 178 256 | Feb 1987 | GB |
2 185 531 | Jul 1987 | GB |
2 185 533 | Jul 1987 | GB |
2 218 196 | Nov 1989 | GB |
2 236 804 | Apr 1991 | GB |
2 240 268 | Jul 1991 | GB |
2 242 935 | Oct 1991 | GB |
2 285 504 | Jul 1995 | GB |
2 289 087 | Nov 1995 | GB |
2383277 | Jun 2003 | GB |
2 428 569 | Feb 2007 | GB |
2 452 593 | Mar 2009 | GB |
2452490 | Mar 2009 | GB |
2463698 | Mar 2010 | GB |
2464736 | Apr 2010 | GB |
2466058 | Jun 2010 | GB |
2468312 | Sep 2010 | GB |
2468313 | Sep 2010 | GB |
2468315 | Sep 2010 | GB |
2468317 | Sep 2010 | GB |
2468319 | Sep 2010 | GB |
2468320 | Sep 2010 | GB |
2468323 | Sep 2010 | GB |
2468328 | Sep 2010 | GB |
2468329 | Sep 2010 | GB |
2468331 | Sep 2010 | GB |
2468369 | Sep 2010 | GB |
2468498 | Sep 2010 | GB |
2473037 | Mar 2011 | GB |
2479760 | Oct 2011 | GB |
2482547 | Feb 2012 | GB |
2484671 | Apr 2012 | GB |
2484695 | Apr 2012 | GB |
2484761 | Apr 2012 | GB |
2493231 | Jan 2013 | GB |
2493505 | Feb 2013 | GB |
2493507 | Feb 2013 | GB |
2499041 | Aug 2013 | GB |
2500005 | Sep 2013 | GB |
2500010 | Sep 2013 | GB |
2500011 | Sep 2013 | GB |
2500012 | Sep 2013 | GB |
2504415 | Jan 2014 | GB |
31-13055 | Aug 1956 | JP |
35-4369 | Mar 1960 | JP |
39-7297 | Mar 1964 | JP |
46-7230 | Dec 1971 | JP |
47-21718 | Oct 1972 | JP |
49-43764 | Apr 1974 | JP |
49-150403 | Dec 1974 | JP |
50-92046 | Aug 1975 | JP |
51-7258 | Jan 1976 | JP |
52-121045 | Sep 1977 | JP |
53-60100 | May 1978 | JP |
56-167897 | Dec 1981 | JP |
57-71000 | May 1982 | JP |
57-157097 | Sep 1982 | JP |
61-31830 | Feb 1986 | JP |
61-116093 | Jun 1986 | JP |
61-280787 | Dec 1986 | JP |
62-98099 | May 1987 | JP |
62-223494 | Oct 1987 | JP |
63-36794 | Mar 1988 | JP |
63-179198 | Jul 1988 | JP |
63-198933 | Dec 1988 | JP |
63-306340 | Dec 1988 | JP |
64-21300 | Feb 1989 | JP |
64-58955 | Mar 1989 | JP |
64-83884 | Mar 1989 | JP |
1-138399 | May 1989 | JP |
1-224598 | Sep 1989 | JP |
2-146294 | Jun 1990 | JP |
2-104872 | Aug 1990 | JP |
2-218890 | Aug 1990 | JP |
2-248690 | Oct 1990 | JP |
3-52515 | May 1991 | JP |
3-267598 | Nov 1991 | JP |
3-286775 | Dec 1991 | JP |
4-43895 | Feb 1992 | JP |
4-366330 | Dec 1992 | JP |
5-99386 | Apr 1993 | JP |
5-157093 | Jun 1993 | JP |
5-164089 | Jun 1993 | JP |
5-263786 | Oct 1993 | JP |
6-74190 | Mar 1994 | JP |
6-86898 | Mar 1994 | JP |
6-147188 | May 1994 | JP |
6-257591 | Sep 1994 | JP |
6-280800 | Oct 1994 | JP |
6-336113 | Dec 1994 | JP |
7-111174 | Apr 1995 | JP |
7-190443 | Jul 1995 | JP |
8-21400 | Jan 1996 | JP |
8-72525 | Mar 1996 | JP |
8-313019 | Nov 1996 | JP |
9-100800 | Apr 1997 | JP |
9-178083 | Jul 1997 | JP |
9-287600 | Nov 1997 | JP |
11-83094 | Mar 1999 | JP |
11-502586 | Mar 1999 | JP |
11-227866 | Aug 1999 | JP |
2000-55419 | Feb 2000 | JP |
2000-116179 | Apr 2000 | JP |
2000-201723 | Jul 2000 | JP |
2001-17358 | Jan 2001 | JP |
2002-21797 | Jan 2002 | JP |
2002-138829 | May 2002 | JP |
2002-213388 | Jul 2002 | JP |
2003-4265 | Jan 2003 | JP |
2003-161473 | Jun 2003 | JP |
2003-329273 | Nov 2003 | JP |
2004-8275 | Jan 2004 | JP |
2004-208935 | Jul 2004 | JP |
2004-216221 | Aug 2004 | JP |
2005-201507 | Jul 2005 | JP |
2005-307985 | Nov 2005 | JP |
2006-3042 | Jan 2006 | JP |
2006-89096 | Apr 2006 | JP |
2006-189221 | Jul 2006 | JP |
3124510 | Aug 2006 | JP |
3127331 | Nov 2006 | JP |
2007-51826 | Mar 2007 | JP |
2007-138763 | Jun 2007 | JP |
2007-138789 | Jun 2007 | JP |
2008-39316 | Feb 2008 | JP |
2008-100204 | May 2008 | JP |
2008-107037 | May 2008 | JP |
3144127 | Aug 2008 | JP |
3146538 | Oct 2008 | JP |
2008-292078 | Dec 2008 | JP |
2008-294243 | Dec 2008 | JP |
2009-44568 | Feb 2009 | JP |
2009-62986 | Mar 2009 | JP |
D1371413 | Oct 2009 | JP |
2009-275925 | Nov 2009 | JP |
D1376284 | Dec 2009 | JP |
2010-46411 | Mar 2010 | JP |
2010-59845 | Mar 2010 | JP |
2010-131259 | Jun 2010 | JP |
2010-203760 | Sep 2010 | JP |
2010-203764 | Sep 2010 | JP |
3168517 | Jun 2011 | JP |
2011-183204 | Sep 2011 | JP |
2012-31806 | Feb 2012 | JP |
2012-149842 | Aug 2012 | JP |
2012-154527 | Aug 2012 | JP |
2013-508667 | Mar 2013 | JP |
2013-185821 | Sep 2013 | JP |
1999-002660 | Jan 1999 | KR |
10-2005-0102317 | Oct 2005 | KR |
10-2007-0007997 | Jan 2007 | KR |
20-0448319 | Mar 2010 | KR |
10-2010-0055611 | May 2010 | KR |
10-0985378 | Sep 2010 | KR |
10-2011-0096588 | Aug 2011 | KR |
517825 | Jan 2003 | TW |
589932 | Jun 2004 | TW |
M394383 | Dec 2010 | TW |
M399207 | Mar 2011 | TW |
M407299 | Jul 2011 | TW |
WO-9013478 | Nov 1990 | WO |
WO-9506822 | Mar 1995 | WO |
WO-02073096 | Sep 2002 | WO |
WO-03058795 | Jul 2003 | WO |
WO-03069931 | Aug 2003 | WO |
WO-2005050026 | Jun 2005 | WO |
WO-2005057091 | Jun 2005 | WO |
WO-2006008021 | Jan 2006 | WO |
WO-2006012526 | Feb 2006 | WO |
WO-2007024955 | Mar 2007 | WO |
WO-2007048205 | May 2007 | WO |
WO-2008014641 | Feb 2008 | WO |
WO-2008024569 | Feb 2008 | WO |
WO-2008139491 | Nov 2008 | WO |
WO-2009030879 | Mar 2009 | WO |
WO-2009030881 | Mar 2009 | WO |
WO-2010100449 | Sep 2010 | WO |
WO-2010100451 | Sep 2010 | WO |
WO-2010100452 | Sep 2010 | WO |
WO-2010100453 | Sep 2010 | WO |
WO-2010100462 | Sep 2010 | WO |
WO-2011050041 | Apr 2011 | WO |
WO-2011147318 | Dec 2011 | WO |
WO-2012006882 | Jan 2012 | WO |
WO-2012033517 | Mar 2012 | WO |
WO-2012052737 | Apr 2012 | WO |
WO-2013014419 | Jan 2013 | WO |
WO-2013132218 | Sep 2013 | WO |
WO-2013132222 | Sep 2013 | WO |
Entry |
---|
Search Report dated Feb. 6, 2015, directed to GB Application No. 1413428.2; 1 page. |
International Search Report and Written Opinion mailed Nov. 5, 2015, directed to International Application No. PCT/GB2015/052134; 8 pages. |
Reba, I. (1966). “Applications of the Coanda Effect,” Scientific American 214: 84-92. |
Third Party Submission Under 37 CFR 1.99 filed Jun. 2, 2011, directed to U.S. Appl. No. 12/203,698; 3 pages. |
Staniforth et al., U.S. Office Action mailed Mar. 17, 2015, directed to U.S. Appl. No. 13/785,787; 18 pages. |
Staniforth et al., U.S. Office Action mailed Sep. 11, 2015, directed to U.S. Appl. No. 13/785,787; 16 pages. |
Staniforth et al., U.S. Office Action mailed Feb. 27, 2015, directed to U.S. Appl. No. 13/786,014; 7 pages. |
Staniforth et al., U.S. Office Action mailed Sep. 30, 2015, directed to U.S. Appl. No. 13/786,014; 8 pages. |
Staniforth et al., U.S. Office Action mailed Oct. 15, 2015, directed to U.S. Appl. No. 13/786,313; 18 pages. |
Staniforth et al., U.S. Office Action mailed Jun. 4, 2015, directed to U.S. Appl. No. 13/784,430; 17 pages. |
Staniforth et al., U.S. Office Action mailed Feb. 2, 2016, directed to U.S. Appl. No. 13/784,430; 19 pages. |
Staniforth et al., U.S. Office Action mailed Sep. 21, 2015, directed to U.S. Appl. No. 13/785,954; 16 pages. |
Staniforth et al., U.S. Office Action mailed Mar. 11, 2016, directed to U.S. Appl. No. 13/785,954; 16 pages. |
Staniforth et al., U.S. Office Action mailed Sep. 25, 2015, directed to U.S. Appl. No. 13/786,226; 20 pages. |
Staniforth et al., U.S. Office Action mailed Mar. 1, 2016, directed to U.S. Appl. No. 13/786,226; 19 pages. |
Staniforth et al., U.S. Office Action mailed Aug. 27, 2015, directed to U.S. Appl. No. 13/786,082; 20 pages. |
Staniforth et al., U.S. Office Action mailed Mar. 1, 2016, directed to U.S. Appl. No. 13/786,082; 19 pages. |
Dyson et al., U.S. Office Action mailed May 28, 2015, directed to U.S. Appl. No. 29/460,993; 9 pages. |
Dyson et al., U.S. Office Action mailed Apr. 27, 2015, directed to U.S. Appl. No. 29/460,994; 6 pages. |
Dyson et al., U.S. Office Action mailed Apr. 24, 2015, directed to U.S. Appl. No. 29/460,990; 6 pages. |
Dyson et al., U.S. Office Action mailed Apr. 10, 2015, directed to U.S. Appl. No. 29/460,989; 7 pages. |
Staniforth et al., U.S. Office Action mailed May 2, 2016, directed to U.S. Appl. No. 14/166,152; 18 pages. |
Staniforth et al., U.S. Office Action mailed Mar. 30, 2016, directed to U.S. Appl. No. 14/166,472; 47 pages. |
Gammack et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/203,698; 10 pages. |
Gammack et al., U.S. Office Action mailed Jun. 21, 2011, directed to U.S. Appl. No. 12/203,698; 11 pages. |
Gammack et al., U.S. Office Action mailed Sep. 17, 2012, directed to U.S. Appl. No. 13/114,707; 12 pages. |
Gammack et al., U.S. Office Action mailed Dec. 10, 2010, directed to U.S. Appl. No. 12/230,613; 12 pages. |
Gammack et al., U.S. Office Action mailed May 13, 2011, directed to U.S. Appl. No. 12/230,613; 13 pages. |
Gammack et al., U.S. Office Action mailed Sep. 7, 2011, directed to U.S. Appl. No. 12/230,613; 15 pages. |
Gammack et al., U.S. Office Action mailed Jun. 8, 2012, directed to U.S. Appl. No. 12/230,613; 15 pages. |
Gammack et al., U.S. Office Action mailed Aug. 20, 2012, directed to U.S. Appl. No. 12/945,558; 15 pages. |
Gammack et al., U.S. Office Action mailed Feb. 28, 2013, directed to U.S. Appl. No. 12/945,558; 16 pages. |
Gammack et al., U.S. Office Action mailed Jun. 12, 2013, directed to U.S. Appl. No. 12/945,558; 20 pages. |
Fitton et al., U.S. Office Action mailed Nov. 30, 2010 directed to U.S. Appl. No. 12/560,232; 9 pages. |
Nicolas et al., U.S. Office Action mailed Mar. 7, 2011, directed to U.S. Appl. No. 12/622,844; 10 pages. |
Nicolas et al., U.S. Office Action mailed Sep. 8, 2011, directed to U.S. Appl. No. 12/622,844; 11 pages. |
Helps et al., U.S. Office Action mailed Feb. 15, 2013, directed to U.S. Appl. No. 12/716,694; 12 pages. |
Gammack et al., U.S. Office Action mailed Dec. 9, 2010, directed to U.S. Appl. No. 12/716,781; 17 pages. |
Gammack et al., U.S. Office Action mailed Jun. 24, 2011, directed to U.S. Appl. No. 12/716,781; 19 pages. |
Gammack et al., U.S. Office Action mailed May 29, 2013, directed to U.S. Appl. No. 13/588,666; 11 pages. |
Gammack et al., U.S. Office Action mailed Sep. 27, 2013, directed to U.S. Appl. No. 13/588,666; 10 pages. |
Gammack et al., U.S. Office Action mailed Mar. 14, 2013, directed to U.S. Appl. No. 12/716,740; 15 pages. |
Gammack et al., U.S. Office Action mailed Sep. 6, 2013, directed to U.S. Appl. No. 12/716,740; 15 pages. |
Gammack et al., U.S. Office Action mailed Apr. 24, 2014, directed to U.S. Appl. No. 12/716,740; 16 pages. |
Li et al., U.S. Office Action mailed Oct. 25, 2013, directed to U.S. Appl. No. 13/686,480; 17 pages. |
Fitton et al., U.S. Office Action mailed Jun. 13, 2014, directed to U.S. Appl. No. 13/274,998; 11 pages. |
Fitton et al., U.S. Office Action mailed Jun. 13, 2014, directed to U.S. Appl. No. 13/275,034; 10 pages. |
Gammack et al., U.S. Office Action mailed Feb. 14, 2013, directed to U.S. Appl. No. 12/716,515; 21 pages. |
Gammack et al., U.S. Office Action mailed Aug. 19, 2013, directed to U.S. Appl. No. 12/716,515; 20 pages. |
Gammack et al., U.S. Office Action mailed Feb. 10, 2014, directed to U.S. Appl. No. 12/716,515; 21 pages. |
Fitton et al., U.S. Office Action mailed Mar. 30, 2012, directed to U.S. Appl. No. 12/716,707; 7 pages. |
Fitton et al., U.S. Office Action mailed Dec. 31, 2013, directed to U.S. Appl. No. 13/718,693; 8 pages. |
Staniforth et al., U.S. Office Action mailed Sep. 18, 2014, directed to U.S. Appl. No. 13/559,142; 18 pages. |
Gammack et al. U.S. Office Action mailed Oct. 18, 2012, directed to U.S. Appl. No. 12/917,247; 11 pages. |
Gammack et al., U.S. Office Action mailed Sep. 3, 2014, directed to U.S. Appl. No. 13/861,891; 7 pages. |
Wallace et al., U.S. Office Action mailed Jun. 7, 2013, directed to U.S. Appl. No. 13/192,223; 30 pages. |
Wallace et al., U.S. Office Action mailed Oct. 23, 2013, directed to U.S. Appl. No. 13/192,223; 18 pages. |
Gammack et al., U.S. Office Action mailed Apr. 12, 2011, directed to U.S. Appl. No. 12/716,749; 8 pages. |
Gammack et al., U.S. Office Action mailed Sep. 1, 2011, directed to U.S. Appl. No. 12/716,749; 9 pages. |
Gammack et al., U.S. Office Action mailed Jun. 25, 2012, directed to U.S. Appl. No. 12/716,749; 11 pages. |
Gammack et al., U.S. Office Action mailed May 24, 2011, directed to U.S. Appl. No. 12/716,613; 9 pages. |
Fitton et al., U.S. Office Action mailed Mar. 8, 2011, directed to U.S. Appl. No. 12/716,780; 12 pages. |
Fitton et al., U.S. Office Action mailed Sep. 6, 2011, directed to U.S. Appl. No. 12/716,780; 16 pages. |
Dos Reis et al., U.S. Office Action mailed Sep. 23, 2014, directed to U.S. Appl. No. 29/466,240; 9 pages. |
Dos Reis et al., U.S. Office Action mailed Sep. 24, 2014, directed to U.S. Appl. No. 29/466,229; 9 pages. |
Dos Reis et al., U.S. Office Action mailed Sep. 19, 2014, directed to U.S. Appl. No. 29/466,190; 9 pages. |
Mcpherson et al., U.S. Office Action mailed Sep. 19, 2014, directed to U.S. Appl. No. 29/466,094; 8 pages. |
Mcpherson et al., U.S. Office Action mailed Sep. 19, 2014, directed to U.S. Appl. No. 29/466,241; 8 pages. |
Mcpherson et al., U.S. Office Action mailed Sep. 19, 2014, directed to U.S. Appl. No. 29/466,253; 7 pages. |
Dyson et al., U.S. Office Action mailed Sep. 12, 2014, directed to U.S. Appl. No. 29/480,896; 10 pages. |
Dyson et al., U.S. Office Action mailed Sep. 12, 2014, directed to U.S. Appl. No. 29/480,915; 9 pages. |
Poulton et al., U.S. Office Action mailed Sep. 12, 2014, directed to U.S. Appl. No. 29/480,919; 10 pages. |
Deniss. (Sep. 9, 2010) “iFan, The Chinese Clone of the Dyson Air Multiplier,” located at <http://chinitech.com/en/chinese-clones/ifan-le-clone-chinois-du-dyson-air-multiplier> visited on Aug. 29, 2014. (6 pages). |
Amee. (Mar. 29, 2012) “Breeze Right Bladeless Fan Up to 41% Off,” located at <http://madamedeals.com/breeze-right-bladeless-fan-up-to-41-off/> visited on Sep. 3, 2014. (2 pages). |
Questel. (Jun. 11, 2014) “Designs-Questel” located at <http://sobjprd.questel.fr/export/QPTUJ214/pdf2/19f053ea-a60f-4c58-9232-c458147a9adf-224304.pdf/> visited on Sep. 4, 2014. (67 pages). |
Amazon. “Pisenic Bladeless Fan 16 Inches with Remote Control, Bladeless Fan Air Conditioner 110v, Air Multiplier Table Fans, Green,” located at <http://www.amazon.com/Pisenic-Bladeless-Fan-16-Conditioner/dp/B007VC178M%3FSubscriptionid%3DAKIAJYLII7AAJMX7ETAA%26tag%3Dtk78-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3DB007VC178M#cm—cr—dpwidget> visited on Sep. 2, 2014. (4 pages). |
Steiner, L., (May 14, 2013) “Dyson Fan Heater Review: Cozy Up to Dyson Fan Heater,” located at <http://www.vissbiz.com/dyson-fan-heater-review/cozy-up-to-dyson-fan-heater/> visited on Sep. 3, 2014. (3 pages). |
Staniforth et al., U.S. Office Action mailed May 25, 2016, directed to U.S. Appl. No. 13/786,313; 19 pages. |
Staniforth et al., U.S. Office Action mailed Jun. 28, 2016, directed to U.S. Appl. No. 13/785,787; 16 pages. |
Staniforth et al., U.S. Office Action mailed Aug. 19, 2016, directed to U.S. Appl. No. 13/784,430; 20 pages. |
Number | Date | Country | |
---|---|---|---|
20160033150 A1 | Feb 2016 | US |