Humidity based control system for an internal combustion engine

Abstract
A humidity based control system for an internal combustion engine includes a calculation module and a calibration module. The calculation module determines a humidity of air used in a combustion process of the internal combustion engine. The control module selectively controls spark timing and exhaust dilution in the internal combustion engine based on the humidity.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:



FIG. 1 is a functional block diagram of an exemplary engine system using a humidity based control system according to the present disclosure;



FIG. 2 is a functional block diagram of the humidity based control system according to the present disclosure; and



FIG. 3 is a flow chart illustrating exemplary steps taken by the humidity based control system to adjust spark timing and exhaust dilution according to the present disclosure.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the disclosure, its application, or uses. As used herein, the term module or device refers to an application specific integrated circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group) and memory that executes one or more software or firmware programs, a combinational logic circuit, and/or other suitable components that provide the described functionality.


According to the present disclosure, a humidity based control system compensates for atmospheric conditions during engine operation. More specifically, the humidity based control system determines a humidity level based on various sensors and adjusts spark timing and dilution of an air/fuel mixture based on the humidity level.


Referring now to FIG. 1, a functional block diagram of an engine system 100 includes an engine 102 that combusts an air/fuel mixture to produce drive torque. Air is drawn into an intake manifold 104 through a throttle 106. The throttle 106 regulates air flow into the intake manifold 104. Air within the intake manifold 104 is distributed into a cylinder 110. Although four cylinders are illustrated, it can be appreciated that the engine 102 may include additional or fewer cylinders 110. For example, engines having 2, 3, 4, 5, 6, 8, 10 and 12 cylinders are contemplated.


A fuel injector (not shown) injects fuel which is combined with air as it is drawn into the cylinder 110. A fuel injection system (not shown) provides a desired air-to-fuel ratio within each cylinder 110. An intake valve 114 selectively opens and closes to enable the air/fuel mixture to enter the cylinder 110. The intake valve position is regulated by an intake cam shaft 116. A piston (not shown) compresses the air/fuel mixture within the cylinder 110. A spark plug 118 initiates combustion of the air/fuel mixture driving the piston in the cylinder 110. The piston drives a crankshaft (not shown) to produce drive torque. The crankshaft rotatably drives camshafts 116,120 using a timing chain (not shown) to regulate the timing of intake and exhaust valves 114, 121. Although a single intake camshaft and a single exhaust camshaft are shown, it is appreciated that dual intake camshafts and dual exhaust camshafts may be used in a v-type cylinder configuration. Likewise, electro-hydrolic valve actuation, or other valve systems.


Exhaust gases within the cylinder 110 are forced out of an outlet (not shown) when the exhaust valve 121 is in an open position. The exhaust valve position is regulated by the exhaust cam shaft 120. The exhaust gases are released into the atmosphere through an exhaust 124.


The engine 102 may include an intake cam phaser 128 and an exhaust cam phaser 130 that regulate rotational timing of the intake and exhaust cam shafts 116,120, respectively. More specifically, a phase angle of the intake and exhaust cam phasers 128, 130 may be retarded or advanced to control rotational timing of the input and output cam shafts 116, 120. By controlling rotational timing of the cam shafts 116,120 the amount of exhaust gases retained in the cylinder can be regulated.


The engine system 100 may include an exhaust gas recirculation (EGR) valve 132. The EGR valve 132 selectively opens and closes to regulate a flow of exhaust gases back into the intake manifold 104. Introducing exhaust gases into an intake stroke of the combustion event tends to limit the amount of oxygen available for combustion. Limiting the oxygen available for combustion lowers combustion temperatures and reduces engine emissions. When the EGR valve 132 is optimized with spark timing, fuel economy and/or performance may be improved.


An intake air temperature sensor 136 is responsive to intake air temperature and generates an intake air temperature signal 138 based thereon. A barometric pressure sensor 148 is responsive to atmospheric pressure and generates a barometric pressure signal 150 based thereon. A relative humidity sensor 154 is responsive to an amount of water that air can hold based on temperature and generates a relative humidity signal 155 based thereon. A humidity based control system 134 controls engine 102 operation based on the intake air temperature signal 138, the barometric pressure signal 150, and the relative humidity signal.


Referring now to FIG. 2, the humidity based control system 134 includes a calculation module 170 and a control module 172. The calculation module 170 determines a humidity based on the intake air temperature signal 138, the barometric pressure signal 150, and the relative humidity signal 155. The control module 172 determines whether the humidity has increased or decreased since a previous cycle and generates a control signal to adjust spark timing and/or dilution of the air/fuel mixture.


The calculation module 170 may include a saturation water vapor pressure module 174, a partial pressure module 176, and a humidity module 178. The saturation water vapor pressure module 174 determines a saturation water vapor pressure value based on the intake air temperature signal 138 and the barometric pressure signal 150. More specifically, the saturation water vapor pressure value may be determined using the following formula:






es=(1.007+3.46×10−6×p)×(0.6064(17.502×T÷(240.97+T)))


where es is the saturation water vapor pressure value, p is the barometric pressure, and T is intake air temperature. The saturation water vapor pressure module 174 generates a water vapor pressure signal 175 based on the saturation water vapor pressure value.


The partial pressure module 176 determines a partial pressure of water vapor value based on the relative humidity signal 155 and the water vapor pressure signal 175. More specifically, the partial pressure of water vapor value may be determined using the following formula:






e=(es×φ÷100)


where e is the partial pressure of water vapor value, φ is relative humidity, and es is the saturation water vapor pressure value. The partial pressure module 176 generates a partial pressure signal 177 based on the partial pressure of water vapor value.


The humidity module 178 determines the humidity based on the partial pressure signal 177 and the barometric pressure signal 150. More specifically, the humidity may be determined using the following formula:






h=(622×e÷(p÷e))/10


where h is the humidity, p is the barometric pressure, and e is the partial pressure of water vapor value. The humidity module 178 generates a humidity signal 179 based on the humidity. The control module 172 generates the control signal to adjust spark timing and/or dilution of the air/fuel mixture based on the humidity signal 179.


Referring now to FIG. 3, exemplary steps of the humidity based control system 134 are generally identified at 300. The process begins in step 305 when the engine 102 is turned on. In step 310, the calculation module 170 determines the humidity. In step 320, the calibration module 172 determines whether the humidity is increasing or decreasing. More specifically, the calibration module compares the humidity to a previous humidity calculated during the previous cycle. If the humidity is increasing, the spark timing is advanced in step 330. In step 340, the humidity based control system 134 decreases dilution of the air/fuel mixture using the EGR valve 132 and/or the cam phasers 128,130. In step 350, the humidity based control system 134 determines whether the engine 102 is running. If the engine is running, the process returns to step 310. If the engine 102 is not running, the process ends in step 360.


If the calibration module 170 determines that the humidity is decreasing in step 320, spark timing is retarded in step 370 to allow correct combustion phasing. In step 380, the humidity based control system 134 increases dilution of the air/fuel mixture using the EGR valve 132 and/or the cam phasers 128,130 and proceeds to step 350. Thus, when less moisture is in the air, more exhaust gases are introduced to dilute the air/fuel mixture.


Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present disclosure can be implemented in a variety of forms. Therefore, while this disclosure has been described in connection with particular examples thereof, the true scope of the disclosure should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification, and the following claims.

Claims
  • 1. A humidity based control system for an internal combustion engine, comprising: a calculation module that determines a humidity of air used in a combustion process of the internal combustion engine; anda calibration module that selectively controls spark timing of the internal combustion engine based on said humidity.
  • 2. The humidity based control system of claim 1 wherein said calibration module selectively controls exhaust gas recirculation in the internal combustion engine based on said humidity.
  • 3. The humidity based control system of claim 2 wherein said calibration module increases said spark timing when said humidity is increasing.
  • 4. The humidity based control system of claim 3 wherein said calibration module decreases said exhaust gas recirculation when said humidity is increasing.
  • 5. The humidity based control system of claim 2 wherein said calibration module decreases said spark timing when said humidity is decreasing.
  • 6. The humidity based control system of claim 5 wherein said calibration module increases said exhaust gas recirculation when said humidity is decreasing.
  • 7. The humidity based control system of claim 2 wherein said exhaust gas recirculation is controlled with an exhaust gas recirculation valve.
  • 8. The humidity based control system of claim 2 wherein said exhaust gas recirculation is controlled with a cam phaser.
  • 9. The humidity based control system of claim 1 wherein said humidity is based on an air intake temperature signal, a barometric pressure signal, and a relative humidity signal.
  • 10. The humidity based control system of claim 9 wherein said calculation module comprises: a water vapor pressure module that generates a water vapor pressure signal based on said air intake temperature signal and said barometric pressure signal;a partial pressure module that generates a partial pressure signal based on said relative humidity signal and said water vapor pressure signal; anda humidity module that calculates said humidity based on said partial pressure signal and said barometric pressure signal.
  • 11. A method to calibrate an internal combustion engine, comprising: determining a humidity of air used in a combustion process of the internal combustion engine; andselectively controlling spark timing of said internal combustion engine based on said humidity.
  • 12. The method of claim 11 further comprising selectively controlling exhaust gas recirculation in the internal combustion engine based on said humidity.
  • 13. The method of claim 12 further comprising increasing said spark timing when said humidity is increasing.
  • 14. The method of claim 13 further comprising decreasing said exhaust gas recirculation when said humidity is increasing.
  • 15. The method of claim 12 further comprising decreasing said spark timing when said humidity is decreasing.
  • 16. The method of claim 15 further comprising increasing said exhaust gas recirculation when said humidity is decreasing.
  • 17. The method of claim 12 wherein said exhaust gas recirculation is controlled with an exhaust gas recirculation valve.
  • 18. The method of claim 12 wherein said exhaust gas recirculation is controlled with a cam phaser.
  • 19. The method of claim 11 wherein said humidity is based on an air intake pressure, a barometric pressure, and a relative humidity.
  • 20. The method of claim 19 wherein: a water vapor pressure is based on said air intake temperature;a partial pressure is based on said relative humidity and said water vapor pressure; andsaid humidity is based on said partial pressure and said barometric pressure.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 60/842,512, filed on Sep. 5, 2006. The disclosure of the above application is incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60842512 Sep 2006 US