The present invention relates generally to methods and devices for controlling a climate control system for an enclosure. More particularly, the present invention relates to methods and devices for operating a cooling system and a humidifier for cooling and humidifying the air that is provided to the enclosure.
Conventional thermostats control the operation of cooling systems in response to an increase or decrease in the temperature of the air within an enclosure. Typically, the occupant of the enclosure specifies a temperature set point that the thermostat attempts to maintain by operating the climate control system. During the cooling mode of operation, the thermostat activates the cooling system when the temperature of the air within the enclosure rises above the occupant specified temperature set point, and de-activates, or suppresses, the cooling system when the temperature of the air within the enclosure falls below the occupant specified temperature set point.
In moderate moist climate regions, the cooling system often includes one or more cooling coils for cooling the air that is provided to the enclosure. A compressor is typically used to provide refrigerant to the coils when cooling is desired. A humidifier, if present, is typically not used during the cooling season.
In hot and arid climatic regions, the cooling system often include a cooler as described above, or an air washer or “swamp cooler” for cooling and humidifying the air within the enclosure. In an air washer system, the warm and often dry air is passed through a chamber having one or more banks of spray nozzles, a sump, an externally mounted pump, and one or more staggered metal baffles at the chamber's exit. When the thermostat within the enclosure indicates a need for cooling, water is withdrawn from the sump by the external pump and sprayed into the chamber in fine droplets. Air withdrawn from the enclosure and/or from the external environment is blown through the chamber and thereby exposed to the water spray therein. The warm air flowing through the chamber is subjected to evaporative cooling and some humidification. The one or more staggered metal baffles, often called “eliminator plates”, at the exit of the chamber help minimize physical carry-over of water droplets with the air steam. In an air washer system, there is typically no provision for controlling the amount of water that's added to the air stream. Other cooling systems are also commonly used.
One disadvantage of many cooling systems is that if too much water is added to the system, condensation of the water may occur within the ductwork of the system and/or within the enclosure itself. If insufficient water is added to the system, the air within the enclosure can become too dry. The presence of too much or too little moisture can encourage growth of mold and mildew, cause health problems, and/or in some cases, damage the structure, furnishings and other contents of the enclosure.
The present invention provides methods and devices for cooling and humidifying the air within the enclosure. In one illustrative embodiment of the present invention, an air stream is passed through a cooling system, a humidifier, and ultimately to the enclosure. The cooling system is used to cool the air that is provided to the enclosure, and the humidifier is used to add water to the air that is provided to the enclosure. To help control the amount of water that is added to the air, and in one illustrative embodiment, a measure of the dew point temperature and a measure of the temperature of the air may be determined. If the temperature of the air is below the dew point temperature, the humidifier may be suppressed. If, however, the temperature of the air is above the dew point temperature, the humidifier may not be suppressed. In some cases, the humidification may be suppressed when the cooling system is activated, and not suppressed after the cooling system is deactivated.
In some embodiments of the present invention, the climate control system may include provisions for fan over-run whereby the indoor air circulation fan is permitted to continue operating for a duration of time after de-activating the cooling system and before activating the humidifier. In such an embodiment, the air stream through the cooling system may continue to be cooled by cooling energy stored within the thermal mass of the cooling system. The air stream may also be evaporatively cooled by water condensate on the one or more cooling coils, and any residual condensate in the coil drip pans, if present. The humidifier may then be activated if a need for humidification is indicated, and if the temperature of the air stream exiting the last of the one or more cooling coils during a cooling cycle is greater than the dew-point temperature of the air.
The following detailed description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Those skilled in the art will recognize that many of the examples provided may have suitable alternatives that could be utilized without departing from the spirit of the present invention.
Air conditioning unit 19 operates on externally supplied AC power provided on conductors 42 to control element 23. Control element 23 switches power to compressor 17 and blower 20 on conductors 38 and 39 respectively, thereby providing sequencing as needed for their operation. Compressor 17 provides liquid coolant to evaporator (or cooling coil) 18 located within plenum 21 along with blower 20 and humidifier 58. Cooling coil 18 may include one or more evaporators, although only one cooling coil is shown for illustration purposes. Air conditioning unit 19 operates while a demand signal is present on path 26. The demand signal on path 26 closes switch 29, allowing control current supplied by a 24 VAC source on path 40 to flow to the air conditioning unit controller 23 on path 41.
Humidification unit 22 operates on power provided on path 64. Humidifier 58 is shown located in plenum 21 and operates to humidify the air passing through plenum 21 to duct 69. Control element 54 switches power to humidifier 58 on conductor 56, thereby providing sequencing as needed for operating humidifier 58. Humidifier 58 may include, and is not limited to one or more of the following: steam, water spray, pad, drip mesh, etc. Humidifier 58 operates when a demand signal is present on path 60. The demand signal on path 60 closes switch 62, allowing control current supplied by a 24 VAC source on path 66 to flow to humidifier controller 54 on path 64.
While air conditioning unit 19 is operating, fan 20 first forces air 10 across cooling coil 18 to cool, and dehumidify air 10 (if it contains excess water), and then across humidifier 58 to add water to air 10 if and as needed as directed by the presence or absence of a demand signal on path 60. Air 10 may include re-circulation air drawn from enclosure 12, and/or air drawn from the external environment interacting with enclosure 12, and/or a combination of re-circulation air and air from the external environment. The conditioned air then flows into enclosure 12 through duct 69 to maintain both the desired temperature and humidity of the air within enclosure 12.
The demand signals on paths 26 and 60 are provided by controller 25. Controller 25 will typically be attached to a wall of enclosure 12 in the manner done for conventional thermostats. Controller 25 may include memory 27 which can store digital data, and processor 28 which can perform computation and comparison operations on data supplied to it from both memory 27 and from external sources. Processor 28 also includes an instruction memory element. In one embodiment, a conventional micro-controller may be used to function as memory 27 and processor 28.
Controller 25 further includes sensor 14, located within enclosure 12, which provides a dew-point temperature signal on path 30 encoding the dew-point temperature of the air within enclosure 12, but alternatively may encode the wet-bulb temperature or the relative humidity of the air within enclosure 12. Temperature sensor 15, also located within enclosure 12, encodes a dry-bulb temperature value in an air temperature signal on path 31. In one embodiment of the present invention, sensor 52, located within plenum 21 and between humidifier 58 and the last of the one or more cooling coil 18, may encode on path 16, a dry-bulb temperature value of the air entering humidifier 58. In an alternate embodiment, sensor 52 may encode on path 16, a dew-point temperature value of the air entering humidifier 58. In another embodiment, sensor 52 may encode on path 16, a signal representing the presence or absence of water condensate on the one or more cooling coils 18 and/or the presence or absence of water condensate in the drip pans of the one or more cooling coils 18. In the illustrative embodiment, processor 28 receives these temperature signals and converts them to digital values for internal operations.
Paths 33 and 35 carry signals to memory 27 encoding various set point values. Typically the signals on paths 33 and 35 are provided by the person responsible for controlling the climate of enclosure 12. The set point values may be selected by simply shifting control levers or dials on the exterior of controller 25. The values may also be selected by a keypad which provides digital values for the set points in the signals on paths 33 and 35. Path 33 carries a dew-point temperature signal encoding a dew-point temperature set point value representative of the desired dew-point temperature within enclosure 12. This dew-point temperature set point value may be the actual desired dew-point temperature, or the desired relative humidity, or the desired wet-bulb temperature. Path 35 carries a signal encoding an air (dry-bulb) temperature set point value. Memory 27 records these set point values, and encodes them in set point signals carried to processor 28 on a path 36. If memory 27 and processor 28 are formed of a conventional microcontroller, the procedures by which these set point values are provided to processor 28, when needed, are included in further circuitry not shown which provides a conventional control function for the overall operation of such a microcontroller. In some cases, processor unit 28 has internal to it, a read-only memory (ROM) in which a sequence of control instructions are stored and executed by processor unit 28.
Turning now to
Although the methods illustrated in
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proper by way of example to facilitate comprehension of the inventions and should not be construed to limit the scope thereof.
Number | Name | Date | Kind |
---|---|---|---|
2110025 | Ridge | Mar 1938 | A |
2751197 | Herrman et al. | Jun 1956 | A |
3305173 | Beckman | Feb 1967 | A |
3670809 | El-Tahry | Jun 1972 | A |
4042016 | Boochever et al. | Aug 1977 | A |
4136730 | Kinsey | Jan 1979 | A |
4735054 | Beckey | Apr 1988 | A |
4974665 | Zillner, Jr. | Dec 1990 | A |
5353862 | Akiyama | Oct 1994 | A |
5435146 | Clark | Jul 1995 | A |
5450893 | Galba et al. | Sep 1995 | A |
5675979 | Shah | Oct 1997 | A |
6186407 | Hammer et al. | Feb 2001 | B1 |
6220039 | Kensok et al. | Apr 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20040099411 A1 | May 2004 | US |