Information
-
Patent Grant
-
6362415
-
Patent Number
6,362,415
-
Date Filed
Thursday, May 4, 200024 years ago
-
Date Issued
Tuesday, March 26, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Reichard; Dean A.
- Mayo, III; William H.
Agents
-
CPC
-
US Classifications
Field of Search
US
- 174 74 R
- 174 74 A
- 174 76
- 174 84 R
- 174 77
- 174 152
- 174 151
- 313 318
- 313 22
- 313 30
- 313 32
-
International Classifications
-
Abstract
Apparatus for connecting an HV cable to the cathode of an X-ray tube is provided with a housing disposed for attachment to the X-ray tube, and a quantity of epoxy or other electric insulating material contained within the housing. The epoxy serves to insulate the exposed end portions of the HV cable conductors, which extend beyond the cable insulation for insertion into the X-ray tube casing. The connector apparatus further includes a heat transfer device, such as a heat pipe, which extends long the cable within the connector housing. A quantity of working fluid contained in the heat transfer device is disposed for bi-directional movement along the device to transfer heat from a first location within the insulating material to a second location proximate to the housing.
Description
BACKGROUND OF THE INVENTION
The invention disclosed and claimed herein generally pertains to improved apparatus for connecting a high voltage (HV) electric cable to an X-ray tube. More particularly, the invention pertains to apparatus of the above type which effectively transfers heat through the connector apparatus, so that heat generated in the X-ray tube is not trapped in a region proximate to the connector. Even more particularly, the invention pertains to apparatus of the above type which employs an elongated heat transfer device, such as a heat pipe or the like, to enhance heat dissipation with respect to the connector apparatus.
In a rotating anode X-ray tube, a beam of electrons is directed through a vacuum and across very high voltage, on the order of 100 kilovolts, from a cathode to a focal spot position on an anode. X-rays are produced as electrons strike the anode, comprising a tungsten target track, which is rotated at high speed. However, the conversion efficiency of X-ray tubes is quite low, typically less than 1% of the total power input. The remainder, in excess of 99% of the input electron beam power, is converted to thermal energy or heat. Accordingly, heat removal, or other effective procedure for managing heat, tends to be a major concern in X-ray tube design.
In a common arrangement, an HV electric power cable is employed to provide the requisite 100 kilovolt potential difference between the cathode and anode, in order to produce X-rays as stated above. One end of the cable is connected to a power source of sufficiently high voltage, and the other end is connected into the tube, for connection to the cathode, by means of an HV connector assembly. The connector assembly generally comprises structure for holding the end of the cable in place with respect to the tube, so that the end portion of the cable conductors, which may comprise either a single conductor or a number of conductors, can be joined to a tube. Accordingly, the connector assembly further comprises a quantity of HV insulation placed to surround any exposed portion of the cable conductors which lie outside the tube. The HV insulation is joined to the X-ray tube and is comparatively thick, in view of the high voltage of the cable conductors.
Generally, good high voltage insulating materials, such as epoxy, also tend to be very poor thermal conductors. This can create a very undesirable situation, if an HV connector assembly of the prior art is directly attached to an X-ray tube, such as across an end thereof. As stated above, a great deal of heat is generated in the X-ray tube, as an undesired byproduct of X-ray production. Some of this heat is directed against the connector insulation material, which has a comparatively large area in contact with the tube. Because of its poor thermal conductive properties, this insulator serves as a heat barrier, so that a substantial amount of heat tends to accumulate proximate to the connector. As a result, the temperature limits of the connector insulation may be readily exceeded, so that the steady state performance of the X-ray tube must be limited.
In one previous arrangement for dealing with this constraint, a reservoir of cooling oil is placed between the HV connector and structure inserted into the tube to support the cathode. However, this arrangement requires that the oil serve as a dielectric. In another arrangement, cooling oil is circulated through the HV connector. This arrangement, however, requires a completely separate oil circuit, provided with tubing and a circulation pump. Thus, this approach can significantly increase cost. In a third prior art arrangement, a good thermal conductor is placed in the electrical insulation of the HV connector to enhance heat flow. However, such thermal conductors can compromise or degrade dielectric characteristics, and have tended to diminish the electrical insulating capabilities of the HV connector assembly.
SUMMARY OF THE INVENTION
The invention provides apparatus for connecting a high voltage electric cable to an X-ray tube, wherein the apparatus may be attached directly to the tube, such as to the outer surface of the tube casing. The apparatus effectively insulates any exposed portions of the HV cable conductors, and at the same time readily dissipates heat from regions proximate or adjacent to the connector apparatus. The apparatus generally comprises a housing joined to the X-ray tube, and a quantity of selected electric insulating material contained within the housing, the insulating material being traversed by a portion of the HV cable. The apparatus further comprises an elongated heat transfer device positioned within the insulating material to extend along the traversing portion of the cable, in closely spaced relationship therewith. A quantity of selected working fluid is sealably contained in the heat transfer device, the working fluid being disposed for bidirectional movement along the device to transfer heat from a first location within the insulating material to a second location which is proximate to or outside of the housing. By placing the heat transfer device along the cable, and more particularly along the electric conductors thereof, the transfer device does not cut across voltage potential lines, and therefore will not interfere with the electrical insulating requirements of the HV connector.
Preferably, the heat transfer device comprises a conduit segment of selected length, the conduit segment having an inner wall in adjacent relationship with a sealed interior space. A selected porous material is attached to the inner wall and configured to define a passage through the sealed interior space that extends along the length of the conduit segment, the porous material being selected in relation to the working fluid so that the fluid, when in liquid form, is disposed for movement through the porous material by means of capillary action. When the first location is at a selectively higher temperature than the second location, fluid proximate to the first location is vaporized into gaseous form, moved along the passage by means of convection to the second location, and then condensed into liquid form.
In one useful embodiment, the conduit segment is placed or positioned with respect to the cable so that the electrical conductors of the cable extend through the center of the conduit segment, along the axis thereof. The conduit segment comprises a selected electrically conductive material. A sleeve, likewise formed of electrically conductive material, is positioned within the conduit segment, in coaxial relationship therewith, between the sealed interior space and the conductors of the cable.
In a second useful embodiment, the apparatus is provided with a sleeve of selected electrically conductive material which is placed around the cable conductors. The conduit segment comprises one of a plurality of substantially identical conduit segments which are positioned around the outer surface of the sleeve, in abutting relationship therewith and equally spaced apart from one another.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a perspective view with a section broken away, showing an X-ray tube provided with a simplified embodiment of the invention.
FIG. 2
is a partial sectional view showing the embodiment of
FIG. 1
in greater detail.
FIG. 3
is a sectional view taken along lines
3
—
3
of FIG.
2
.
FIG. 4
is a perspective view showing a heat transfer device, with a section broken away, which may be adapted for the embodiment of FIG.
1
.
FIG. 5
is a partial sectional view showing a second embodiment of the invention.
FIG. 6
is a partial sectional view taken along lines
6
—
6
of FIG.
5
.
FIG. 7
is a sectional view taken along lines
7
—
7
of FIG.
6
.
FIG. 8
is a sectional view showing a modification of the embodiment shown in FIG.
5
.
FIG. 9
is a sectional view showing a third embodiment of the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to
FIG. 1
, there is shown an X-ray tube
10
. In accordance with conventional practice, tube
10
generally includes a metal housing
12
which supports other X-ray tube components including a cathode
14
, and also provides a protective vacuum enclosure therefor. Cathode
14
directs a high energy beam of electrons
16
onto a target track
18
of an anode
20
, which consists of a refractory metal disk and is continually rotated by means of a conventional mounting and drive mechanism
22
. Target track
18
has an annular or ring-shaped configuration and typically comprises a tungsten based alloy integrally bonded to the anode disk
20
. As anode
20
rotates, the electron beam from cathode
14
impinges upon a continually changing portion of target track
18
to generate X-rays, at a focal spot position
24
. A beam of X-rays
26
generated thereby is projected from the anode focal spot through an X-ray transmissive window
27
provided in the side of housing
12
.
In order to produce X-rays as described above, there must be a potential difference on the order of 100 kilovolts between cathode
14
and anode
20
. In a monopolar tube arrangement this is achieved by connecting the anode to a ground (not shown), and applying power at the required 100 kilovolt range to cathode
14
through an electric cable
28
. Because of the high voltage carried by cable
28
, it is necessary to use an HV connector
30
in coupling the cable to cathode
14
. The connector
30
and its interconnection with cable
28
is shown in greater detail in FIG.
2
.
Referring to
FIG. 2
, there is shown HV connector
30
provided with a housing
32
, which is usefully formed of aluminum and is joined to tube housing
12
, such as at an end thereof.
FIG. 2
further shows HV cable
28
comprising electric conductor or conductors
34
positioned along the center of the cable, and a layer of HV insulation
36
surrounding conductors
34
. As stated above, there may be a single solid conductor
34
or a number of conductors, as shown in FIG.
2
. Conductors
34
usefully comprise copper, and insulator
36
usefully comprises a material such as EP rubber. Such material provides HV cable
28
with flexibility, and at the same time provides sufficient insulation for the high voltage electric power carried thereby.
Referring further to
FIG. 2
, there is shown cable
28
inserted into HV connector
30
, through an aperture in connector housing
32
. Conductors
34
extend beyond the end of insulation layer
36
, and as shown by
FIG. 1
are directed through tube housing
12
and mated with an electric coupling element
38
, joined to cathode
14
. Coupling element
38
and cathode
14
are supported in place by insulating structure
40
, inserted into the end of tube
10
and formed of ceramic material or the like.
In order to insulate the exposed end portion of conductors
34
, that is, the portion extending between the end of EPR insulator
36
and ceramic insert
40
within tube
10
,
FIG. 2
shows HV connector housing
32
filled with electrical insulating material such as epoxy
42
. However, as is well known in the art, substantial amounts of heat are generated by operation of X-ray tube
10
. Some of this heat is directed toward insert
40
and HV connector
30
, as illustrated by the leftward-directed arrows of FIG.
2
. While ceramic insert
40
is a comparatively good thermal conductor, the epoxy insulation
42
of connector
30
is a very poor thermal conductor. Accordingly, the epoxy
42
acts as a thermal barrier.
In order to dissipate heat projected toward connector
30
from within the tube
10
, and to prevent such heat from raising the temperature of connector
30
to an unacceptable level,
FIGS. 2 and 3
show an elongated heat transfer device
44
placed within cable
28
and connector
30
. The heat transfer device
44
comprises a heat pipe or like device of extremely high thermal conductivity, as described hereinafter in further detail in connection with FIG.
4
.
FIGS. 2 and 3
show heat transfer device
44
positioned in closely spaced relationship with conductors
34
, and extending along a portion of the length thereof. More particularly,
FIG. 2
shows transfer device
44
having an end
44
a
positioned close to insert
40
, and thus close to the heat received therethrough, and further shows the opposing end
44
b
of device
44
extending outward from connector housing
32
. If a location along the transfer device
44
is at a different temperature than another location, the device
44
will operate to rapidly transfer heat from the location of higher temperature to the location of lower temperature. Thus, device
44
readily serves to transfer excessive heat from regions proximate to its end
44
a
, close to insert
40
, to its opposing end
44
b
. Even though opposing end
44
b
is within insulating layer
36
, it lies outside the epoxy layer
42
of connector
30
, so that heat can readily be dissipated therefrom into housing
32
, and radiated by the housing into the surrounding air. The transfer of heat by device
44
is passive. Thus, the heat transfer device
44
of connector
30
provides simple and effective cooling, while maintaining essential electrical characteristics required for the connector.
To illustrate operation of a heat transfer device,
FIG. 4
shows a heat transfer device
46
comprising a length of copper tubing or conduit, which is tightly closed or sealed at its ends to form a vacuum tight vessel. Device
46
is similar or identical to heat transfer device
44
of
FIG. 2
, except that device
44
is provided with an angled bend along its length whereas device
46
has a linear configuration. The vacuum tight vessel of heat transfer device
46
is evacuated and partially filled with a working fluid
52
, such as water, and is usefully of circular cross section.
FIG. 4
further shows a porous metal wicking structure
50
, which is joined to the inner wall or surface
48
a
of copper conduit
48
. Wicking structure
50
is usefully formed of a porous material, such as a material comprising small copper pellets or beads which are sintered together. Wick structure
50
is configured to surround or define a passage
54
which extends along the length of transfer device
46
.
By providing a heat transfer device with the construction shown in
FIG. 4
, such device is enabled to transfer heat by respective evaporation and condensation of working fluid
52
. More particularly, if point
46
a
along device
46
is at a higher temperature than a location
46
b
spaced apart therefrom, heat is inputted through conduit
48
into the interior thereof, proximate to location
46
a
. As a result, fluid
52
is vaporized in passage
54
proximate to location
46
a
. This creates a pressure gradient in passage
54
, between a region proximate to location
46
a
and a cooler region proximate to location
46
b
. This pressure gradient forces the vaporized fluid to flow along passage
54
to the cooler region, where it condenses to a liquid and gives up its latent heat of vaporization. The working fluid
52
, now in liquid form, then flows in the opposite direction along device
46
, back toward location
46
a
, through the porous wick structure
50
. Such fluid motion is caused by capillary action in the wick structure, or by gravity if device
46
is oriented to decline downwardly from location
46
b
to location
46
a
. Usefully, a heat transfer device
44
or
46
comprises a device which is similar to a product sold by Thermacore Inc. and referred to commercially thereby as a heat pipe. Devices of such type may have an effective thermal conductivity which exceeds the thermal conductivity of copper by more than 10
3
times.
Referring to
FIG. 5
, there is shown an alternative embodiment of the invention, comprising an HV connector
56
, which for reasons set forth hereinafter significantly reduces the electric field, in comparison with the previously described embodiment. The embodiment of
FIG. 5
also enhances uniformity of the electric field, that is, causes the field to be less non-uniform. Connector
56
, in like manner with connector
30
, is provided with an aluminum housing
32
filled with a layer of epoxy
42
, and cable
28
is passed through connector
56
, from a location outside the connector into X-ray tube
10
. Connector
56
is also provided with a heat transfer device
60
extending along a portion of the cable
28
. As best shown by
FIGS. 6 and 7
, transfer device
60
comprises a sealed copper conduit
58
of circular cross-section and a porous wick structure
62
joined thereto, similar to conduit
48
and wick structure
50
, respectively, of heat transfer device
46
described above. Wick structure
62
defines a passage
64
along transfer device
60
which contains water or other working fluid
66
. However, the diameter of heat transfer device
60
is substantially greater than the diameter of transfer device
44
, whereby device
60
can be positioned around cable conductors
34
rather than placed alongside them. More particularly, conduit
58
of device
60
, as shown by
FIGS. 6 and 7
, is positioned in coaxial relationship with cable
28
, so that cable conductors
34
extend through the center of conduit
58
, proximate to the axis thereof.
Referring further to
FIGS. 6 and 7
, there is shown heat transfer device
60
provided with a cylindrical sleeve
68
, formed of copper or the like, which extends along conduit
58
in coaxial relationship. Sleeve
68
is placed around conductors
34
in closely spaced relationship, and its ends (not shown) are seably joined to corresponding ends (not shown) of conduit
58
. Accordingly, passage
64
through transfer device
60
comprises a sealed interior space which is separated from conductors
34
by the sleeve
68
.
FIGS. 6 and 7
further show the space between conductors
34
and the inner surface of sleeve
68
filled with a material
70
. In one embodiment, material
70
comprises metal powder filled epoxy or other conductive material. In such embodiment sleeve
68
and conduit
58
of heat transfer device
60
are electrically connected to the cable conductors
34
, and are thus at the same voltage U, such as 100 KV. As is known by those of skill in the art, the electric field of a conductive cylinder is inversely proportional to the cylinder radius R. Accordingly, by electrically connecting conduit
58
to conductors
34
, the electric field around transfer device
60
will be determined by the radius of conduit
58
rather than the radius of conductors
34
. Since the radius of conduit
58
is substantially greater, the electric field will be significantly reduced. Moreover, the circular cross-section of conduit
58
provides a much more uniform E-field than the generally elliptical or irregular shaped cross-section of the cable conductors
34
and heat transfer device
44
.
In an alternative embodiment, the material
70
shown in
FIGS. 6 and 7
comprises an epoxy which principally serves as an insulator, but is also selected to have a conductivity which is slightly greater than the conductivity of insulation layer
36
surrounding heat transfer device
60
, as shown in
FIGS. 5 and 6
. As a result, there will be a first voltage potential between cable conductors
34
and conduit
58
of device
60
, and a second voltage potential between conduit
58
and the outer surface of insulating layer
36
. For example, by judicious selection of the conductivity of material
70
, the first voltage potential could be on the order of 20 KV, and the second voltage potential could be on the order of 80 KV. Such configuration provides a graded insulating system, from conductors
34
through device
60
to the outer edge of insulating layer
36
, to optimize the overall electric field distribution inside connector
56
.
Referring further to
FIG. 5
, there is shown an end of heat transfer device
60
proximate to aluminum housing
32
, rather than extending outward therethrough. This arrangement enables device
60
to readily transfer heat from the interior of connector
56
to connector housing
32
, which effectively dissipates heat into the surrounding air. Proper termination of the end, and maintenance of a sufficient high voltage clearance between the end of device
60
and housing
32
, are necessary to provide an acceptable design margin. In another arrangement, the bend or elbow in device
60
may be eliminated.
Referring to
FIG. 8
, there is shown an alternative construction for heat transfer device
60
. Instead of a wick structure
62
surrounding a passage
64
, a wick structure
72
is provided which extends from conduit
58
to sleeve
68
. A number of passages
74
are formed through the wick structure, equally spaced around the sleeve
68
, to carry vaporized working fluid as described above.
Referring to
FIG. 9
, there is shown a heat transfer arrangement
76
, which may be used in connector
56
instead of the heat transfer device
60
described above. Transfer arrangement
76
comprises a sleeve
78
, formed of copper or other conductive material, which is positioned around and extends along the conductors
34
within connector
56
, in coaxial relationship therewith. A number of heat transfer devices
80
, each similar to transfer device
44
, are equally spaced around the inner surface of sleeve
78
. While not shown, each of the transfer devices
80
is bended or angled as necessary to extend along sleeve
78
, in generally parallel relationship with the axis thereof.
FIG. 9
further shows notches
82
formed in sleeve
78
, to accommodate respective transfer devices
80
. By placing the transfer devices
80
around conductors
34
in the symmetrical arrangement shown in
FIG. 9
, desirable electric field effects are achieved, similar to those described above in connection with transfer device
60
. However, the configuration of
FIG. 9
should have significantly less cost. Referring further to
FIG. 9
, there is shown the space between conductors
34
and sleeve
78
filled with material
70
as described above.
Obviously, many other modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the disclosed concept, the invention may be practiced otherwise than as has been specifically described.
Claims
- 1. Apparatus for connecting an HV electric cable to an X-ray tube, said cable being provided with one or more conductors and said apparatus comprising;a housing disposed for attachment to said X-ray tube; a quantity of selected electric insulating material contained within said housing and defining a boundary between regions within said tube and said housing, respectively, said insulating material being traversed by a portion of said HV cable; an elongated heat transfer device positioned in said insulating material to extend along at least part of said traversing portion of said cable; a quantity of selected working fluid sealably contained in said heat transfer device, said working fluid disposed for bi-directional movement along said device to transfer heat from a first location within said insulating material to a second location therein which is closer to said housing; and said heat transfer device having a first end located proximate to said boundary, said first end being sealed to prevent said working fluid from passing through said first end.
- 2. The apparatus of claim 1, wherein said heat transfer device comprises:a conduit segment of selected length, said conduit segment having an inner wall in adjacent relationship with a sealed interior space; and selected porous material attached to said inner wall and configured to define a passage through said sealed interior space that extends along the length of said conduit segment, said porous material being selected in relation to said working fluid so that said fluid, when in liquid form, is disposed for movement through said porous material by means of capillary action.
- 3. The apparatus of claim 2 wherein:when said first location is at a selectively higher temperature than said second location, fluid proximate to said first location is vaporized into gaseous form, moved along said passage by means of convection to said second location, and then condensed into liquid form.
- 4. The apparatus of claim 3 wherein:said conduit segment is positioned with respect to said cable so that said one or more conductors of said cable extend along the center of said conduit segment, proximate to the axis thereof.
- 5. The apparatus of claim 4 wherein:said conduit segment comprises a selected electrically conductive material; and a sleeve of selected electrically conductive material is positioned within said conduit segment, in coaxial relationship therewith, between said sealed interior space and said one or more conductors of said cable.
- 6. The apparatus of claim 3 wherein:said apparatus includes a sleeve of selected electrically conductive material placed around said one or more conductors of said cable; and said conduit segment comprises one of a plurality of substantially identical conduit segments which are equally spaced around the inner surface of said sleeve.
- 7. The apparatus of claim 3 wherein:said housing is formed of a metal disposed to radiate and convect thermal energy to the environment; and an end of said conduit segment is placed in proximate relationship with said housing.
- 8. The apparatus of claim 7 wherein said HV cable is disposed to carry electric power on the order of 100 kilovolts, and wherein:said insulating material comprises epoxy.
- 9. The apparatus of claim 7 wherein:said housing comprises aluminum.
- 10. The apparatus of claim 7 wherein:said working fluid comprises water.
- 11. Apparatus for connecting an HV electric cable provided with one or more conductors to an X-ray tube comprising:a connector housing attached to said X-ray tube and disposed to receive a segment of said cable; electric insulating material contained within said housing and placed around said cable segment; a heat transfer device comprising a conduit segment extending along said cable segment within said connector housing; and a quantity of selected working fluid sealably contained in said conduit segment, said working fluid, when the temperature at a first position along said given conduit segment is selectively higher than the temperature at a second position therealong, being disposed to flow in gaseous form from said first position to said second position, and to flow in liquid form from said second position to said first position, said fluid flow resulting in the transfer of heat along said conduit from said first position to said second position.
- 12. The apparatus of claim 11 wherein:said conduit segment has an inner wall in adjacent relationship with a sealed interior space; and selected porous material is attached to said inner wall and configured to define a passage through said sealed interior space that extends along the length of said conduit segment, said porous material being selected in relation to said working fluid so that said fluid, when in liquid form, is disposed for movement through said porous material by means of capillary action.
- 13. The apparatus of claim 12 wherein:when said first location is at a selectively higher temperature than said second location, fluid proximate to said first location is vaporized into gaseous form, moved along said passage by means of convection to said second location, and then condensed into liquid form.
- 14. The apparatus of claim 13 wherein:said apparatus includes a sleeve of selected electrically conductive material placed around said one or more conductors of said cable; and said conduit segment comprises one of a plurality of substantially identical conduit segments which are equally spaced around the inner surface of said sleeve.
- 15. The apparatus of claim 14 wherein;said HV cable is disposed to carry electric power at a potential of 150 kilovolts, and said insulating material comprises epoxy.
- 16. The apparatus of claim 13 wherein:said conduit segment is positioned with respect to said cable so that said one or more conductors of said cable extend along the center of said conduit segment, proximate to the axis thereof.
- 17. The apparatus of claim 16 wherein:said conduit segment is formed of electrically conductive material; and a sleeve of selected electrically conductive material is positioned within said conduit segment, in coaxial relationship therewith, between said sealed interior space and said one or more conductors of said cable, said sleeve being electrically connected to said conduit segment.
- 18. The apparatus of claim 17 wherein:a space between said conductive sleeve and said one or more conductors is filled with an electrically conductive material.
- 19. The apparatus of claim 17 wherein:a space between said conductive sleeve and said one or more conductors is filled with an electrically insulating material having an electrical conductivity which is slightly greater than the electrical conductivity of said insulating material placed around said cable segment.
- 20. The apparatus of claim 17 whereinsaid porous material extends from said conduit segment to said sleeve within said sealed interior space; and said passage comprises one of a plurality of passages formed through said porous material and positioned around said sleeve in equidistant relationship.
US Referenced Citations (16)