The present invention relates to a blower assembly for use in a motor vehicle heating, ventilation and air conditioning (HVAC) system, and more specifically to such a blower assembly having an inlet configured to suppress fan noise.
Most automotive vehicles have an HVAC system that includes an electrically powered blower to circulate air through the enclosed cabin of the vehicle.
It is common for a motor vehicle HVAC system to include ducts carrying inlet air from two separate sources: fresh air from outside the vehicle and recirculated air from within the vehicle. Because of packaging space constraints, it may not be practical to arrange both the recirculation and fresh air ducts so as to feed directly into the fan, so that the fan inlet duct(s) may have a sharp bend close to the fan.
It is a well-recognized problem that abrupt or sharp bends in the inlet duct delivering airflow to a fan may cause flow disruptions. Such flow disruptions may be particularly severe if the sharp bend is close to the blower fan itself. If the flow disruption creates turbulence and/or a low-pressure region at a region of the inlet face of the fan, it may result in undesirable noise under certain airflow and fan speed conditions. Such flow disruptions and related low-pressure regions can also reduce the blower system efficiency.
In a first disclosed embodiment, a motor vehicle HVAC blower comprises a fan and a duct delivering airflow to the fan. The duct has a bend adjacent to the fan causing a low-pressure region at a face of the fan. A baffle is located immediately adjacent to the fan face and collocated with at least a portion of the low-pressure region to impede airflow through the face of the fan at that location. The baffle acts to reduce unwanted low frequency noise and improves the mechanical efficiency of the fan.
In another disclosed embodiment, the baffle covers a circular segment of the fan face.
In another disclosed embodiment, a surface of the baffle facing the fan face comprises a sound-suppressing feature. The sound-suppressing feature may comprise a series of ridges extending in a chord-wise direction.
In another disclosed embodiment, the duct comprises a first inlet path receiving air from a vehicle exterior, and a second inlet path receiving air from a vehicle interior.
In another disclosed embodiment, a method of reducing noise from an HVAC blower comprises identifying a low-pressure region at a face of a fan caused by a bend in a duct supplying air to the fan, and positioning a baffle immediately adjacent to the fan face and adjacent to at least a portion of the low-pressure region to impede airflow therethrough.
Embodiments of the present invention described herein are recited with particularity in the appended claims. However, other features will become more apparent, and the embodiments may be best understood by referring to the following detailed description in conjunction with the accompanying drawings, in which:
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Inlet duct 14 has a first inlet path 20 and a second inlet path 22 which merge prior to feeding into blower 12. A mixer door 24 is movable to select or blend the air streams supplied by first and second inlet paths 20, 22. In a common configuration of a motor vehicle HVAC system, first air inlet path 20 supplies fresh air drawn from the exterior of the vehicle, while second air inlet path 22 supplies recirculated air drawn from the vehicle interior. The position of valve plate 24 may be manually or automatically controlled in response to various climate control settings of the HVAC system as is well known in the art.
As seen in
A baffle 26 is located generally parallel with the inlet face of fan 16 and impedes airflow from directly entering the fan in the predicted or known location of the low-pressure region that may result from the sharp bend of the airflow. Impeding airflow to the inlet face of the fan in that low-pressure region is intended to uniformly distribute the airflow over the remaining surface of the fan face that is not blocked by the baffle. The baffle 26 thus serves to improve blower efficiency by reducing system pressure drop and may also reduce objectionable noise, particularly low-frequency noise.
As seen in
The height h may be advantageously selected to be approximately 5% to approximately 15% of the diameter of fan 16. It should be noted that the present figures are not drawn to scale, and as such the height h of baffle 26 may, for clarity of illustration, appear to be greater than 15% of the fan face diameter.
The geometry of inlet dust 14 shown in
In
In
In one or more of the embodiments shown in
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5551836 | Roth et al. | Sep 1996 | A |
5934366 | Gowan | Aug 1999 | A |
7431127 | de Borchgrave et al. | Oct 2008 | B2 |
7744342 | Kamoshita et al. | Jun 2010 | B2 |
7942234 | Utsunomiya | May 2011 | B2 |
7990701 | Yeh et al. | Aug 2011 | B2 |
8083477 | Hwang et al. | Dec 2011 | B2 |
8251642 | Hwang et al. | Aug 2012 | B2 |
20070209353 | Zelinski | Sep 2007 | A1 |
20100104421 | Hwang et al. | Apr 2010 | A1 |