The present disclosure generally relates to HVAC and septic systems, and more particularly to HVAC condensate evaporation and aerobic dispersion systems.
Heating, ventilation, and cooling (HVAC) systems include a condensate line that drains excess moisture outside of the place that it is cooling, such as a home or business. The condensate is a byproduct of the cooling cycle. This condensate line is particularly important when used during cooling periods. As air is cooled using the HVAC system, humidity is absorbed which turns into condensation (or condensate). The condensate line connects to the HVAC unit and displaces the condensate away from the HVAC unit to an approved drain. The condensate line functions to keep moisture from building up inside the HVAC unit; however, when the condensate is funneled outdoors away from the HVAC unit, the condensate typically ends up in sewers, condensate pits, and/or other places that may not be up to code. Similar issues can arise with treated water from an aerobic septic system. Further, issues can arise with a condensate line when it is clogged by mold, mildew, dust, dirt, and other contaminants that may be built up on the HVAC evaporator coil. Given the remote location of the HVAC system, it is sometimes difficult to know when clogs occur as most clogs surface within the walls or midstream, out of sight.
Embodiments of the present disclosure may provide an HVAC condensate evaporation system or aerobic-treated water dispersion system that may transform the condensate that drains out of HVAC systems and/or septic systems into steam that is less likely to cause property damage and add relief to municipal water treatment centers. The system according to embodiments of the present disclosure may be installed midstream in a condensate line, and condensate that flows through the condensate line in normal operation may enter the chamber where it hits a solar-powered boiler that evaporates the condensate back into the atmosphere as steam. By converting the condensate into steam, property damage due to drainage out of the condensate line of an HVAC system may be minimized, or even eliminated. The system according to embodiments of the present disclosure also may include a back-up capacitor or battery for low solar days. In embodiments of the present disclosure, the system may further include wireless notification capability, including, but not limited to, Wi-Fi capability, to transmit notifications to the building owner or other interested parties of condensate issues as they may arise.
Embodiments of the present disclosure may provide a heating, ventilation, and air conditioning (HVAC) condensate evaporation system comprising: a water chamber; at least one evaporation vent positioned above the water chamber; a wiring conduit chamber extending vertically from the at least one evaporation vent down one side of the water chamber; and a steam generator placed within and enclosed by the water chamber that evaporates condensate, wherein the system is installed midstream in a condensate line. The system also may include one or more solar panels positioned above the at least one evaporation vent; and solar panel electronics positioned directly below the one or more solar panels. The wiring conduit chamber may house one or more batteries to power the system on low solar days. The system may further include a supplemental battery holder that extends horizontally along a base of the water chamber. The system also may include a washable, removable screen provided in the water chamber above a discharge line, wherein the screen may trap debris present in the condensate. The system may include a unit attached below the water chamber that is communication with the wiring conduit chamber that houses mechanics for operation of the steam generator. The mechanics also may include wireless components that provide wireless notifications to a user when condensate issues arise. The wireless components may be powered by solar energy and may include Wi-Fi or Bluetooth technology. The system may further include a first drain provided in an upper portion of the water chamber, wherein the first drain may provide drainage for a rooftop unit (RTU) or an indoor HVAC system and a second drain provided in a lower portion of the water chamber, wherein the second drain may provide drainage to a P trip or a primary drain line. The system also may include one or more legs affixed to a bottom of the water chamber, wherein the one or more legs may provide for positioning and adjustment of the system.
Other embodiments of the present disclosure may provide an aerobic dispersion system comprising: a box having sides formed of a perforated material that provides for removal of steam from the box, the box further comprising: a water shed cover; a steam heat pipe positioned horizontally along an inside of the box; a treated water inlet piping provided in an upper portion of the box to receive water into the box; and a drain tube that may extend out of a lower portion of the box to provide drainage away from the steam heat pipe. The system may also include one or more solar panels external to the box. The system may include an electric heater that includes a thermostat or controller, and the electric heater may be mounted external to the box. The system also may include a battery pack that may power the system in addition to or in place of one or more solar panels. The system may further include a hinged access door and/or one or more legs affixed to a bottom of the box, wherein the one or more legs may provide for positioning and adjustment of the system.
For a more complete understanding of this disclosure, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Embodiments of the present disclosure may provide a heating, ventilation, and cooling (HVAC) condensate evaporation system that minimizes the condensate that drains out of HVAC systems that typically has flowed into sewers, condensate pits, and/or other places that may not be up to code. Many consumers may not even be aware of the condensate until it causes property damage, such as flooding an attic or damaging a ceiling. Thus, as described in more detail below, using an HVAC condensate evaporation system according to embodiments of the present disclosure may transform the condensate into steam that is less likely to cause damage.
The system according to embodiments of the present disclosure may be installed midstream in an HVAC condensate line and may include a small chamber with a solar-powered boiler that may turn the condensate into steam. Condensate that flows through the HVAC condensate line in normal operation may enter the chamber where it hits a solar-powered boiler that evaporates the condensate back into the atmosphere as steam. By converting the condensate into steam, this keeps the condensate out of sewers, condensate pits, and even off rooftops and gutters. Accordingly, property damage due to drainage out of the condensate line of an HVAC system may be minimized, or even eliminated using an HVAC condensate evaporation system according to embodiments of the present disclosure.
The HVAC condensate evaporation system according to embodiments of the present disclosure utilizes solar power but also may include a back-up capacitor or battery for low solar days. The system may further include wireless notification capability, including, but not limited to, Wi-Fi capability, to transmit notifications to the building owner or other interested parties of condensate issues as they may arise. In some embodiments of the present disclosure, the HVAC condensate evaporation system may be integrated or may interface with existing Wi-Fi, Bluetooth, or other wireless-enabled home/business systems to notify users when condensate is an issue with the HVAC system. While such integration/interfacing may be provided, it also should be appreciated that there may be embodiments of the present disclosure where the HVAC condensate evaporation system may operate and provide notifications on a standalone basis. In some embodiments of the present disclosure, the HVAC condensate evaporation system may be installed as part of rooftop units in commercial environments; however, there may be other embodiments of the present disclosure where the HVAC condensate evaporation system may be utilized in residential systems, such as residential roof-mounted systems.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
The present application is a non-provisional of, and claims the benefit of priority to, U.S. Patent Application No. 62/895,147, filed Sep. 3, 2019, the disclosure of which is incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2794624 | Campagna et al. | Jun 1957 | A |
5126080 | Morton et al. | Jun 1992 | A |
5543090 | Morton et al. | Aug 1996 | A |
9416997 | Bush, Jr. | Aug 2016 | B1 |
9631833 | Arensmeier | Apr 2017 | B2 |
9741023 | Arensmeier et al. | Aug 2017 | B2 |
9920963 | Rafalovich | Mar 2018 | B1 |
10274945 | Arensmeier et al. | Apr 2019 | B2 |
10982874 | Ryu | Apr 2021 | B2 |
11162739 | Ryu | Nov 2021 | B2 |
11287166 | Mohammad | Mar 2022 | B2 |
20020083728 | Lee | Jul 2002 | A1 |
20040250841 | Kimbrough | Dec 2004 | A1 |
20070107450 | Sasao | May 2007 | A1 |
20080072614 | Bhatti | Mar 2008 | A1 |
20080173723 | Zhadanovsky | Jul 2008 | A1 |
20140203459 | Kopel et al. | Jul 2014 | A1 |
20140352344 | Guercio | Dec 2014 | A1 |
20150115053 | Kopel et al. | Apr 2015 | A1 |
20170108233 | Howard | Apr 2017 | A1 |
20170157527 | Kopel et al. | Jun 2017 | A1 |
20190128561 | Hernandez | May 2019 | A1 |
20190242595 | Eplee | Aug 2019 | A1 |
Number | Date | Country |
---|---|---|
102121566 | Jul 2011 | CN |
Number | Date | Country | |
---|---|---|---|
20210063047 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62895147 | Sep 2019 | US |