HVAC control using geofencing

Information

  • Patent Grant
  • 10516965
  • Patent Number
    10,516,965
  • Date Filed
    Wednesday, November 11, 2015
    9 years ago
  • Date Issued
    Tuesday, December 24, 2019
    5 years ago
Abstract
An HVAC control system, wherein a building temperature is controlled to a comfort temperature set point when users are inside the geofence and is allowed to deviate from the comfort temperature set point when all users are outside of the geofence. The amount that the building temperature is allowed to deviate from the comfort temperature set point may be in accordance with how long the users have remained outside of the geofence.
Description
TECHNICAL FIELD

The disclosure relates generally to building automation and more particularly to building automation systems with geo-fencing capabilities.


BACKGROUND

Building automation systems are often used to control safety, security and/or comfort levels within a building or other structure. Illustrative but non-limiting examples of building automation systems include Heating, Ventilation and/or Air Conditioning (HVAC) systems, security systems, lighting systems, fire suppression systems and/or the like. In some cases, a building automation system may enter an unoccupied mode when the building is expected to be unoccupied and an occupied mode when the building is expected to be occupied. For example, when the building automation system includes an HVAC system, the building automation system may set a temperature set point of the HVAC system to a more energy efficient setting when in an unoccupied mode and a more comfortable setting when in an occupied mode. In another example, when the building automation system includes a security system, the building automation system may set the security system to a locked or away state when in an unoccupied mode and an unlocked or home state when in an occupied mode.


Geofencing may be utilized to inform the building automation system as to when the building is expected to be occupied and unoccupied. There is a desire to have better information as to when the building will be occupied or unoccupied in order to optimize energy savings while meeting desired comfort requirements.


SUMMARY

The present disclosure pertains generally to geofencing, and more particularly to building automation systems with geofencing capabilities. An example of the disclosure may be found in a method of controlling an HVAC system for a building, the HVAC system implementing geofencing using a geofence that is defined for the building. A building temperature may be controlled to a comfort temperature set point when the user is inside the geofence and may be allowed to deviate from the comfort temperature set point when the user is outside of the geofence. In some cases, the building temperature may be allowed to deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence.


Another example of the disclosure may be found in an HVAC control system for controlling operation of HVAC equipment within a building, the HVAC control system configured to be in operative communication with a user's mobile device providing geofence functionality. The HVAC control system may include an input for receiving location information indicating where the user's mobile device is in relation to a geofence defined for the building and a memory for storing the location information received from the user's mobile device. A controller may be operatively coupled to the input and to the memory and may be configured to control the HVAC equipment and maintain a comfort temperature within the building when the user's mobile device is located within the geofence. The controller may allow a building temperature in the building to deviate from the comfort temperature when the user's mobile device is located outside the geofence. The controller may determine how far the building temperature is allowed to deviate from the comfort temperature based at least in part on how far outside of the geofence the user's mobile device is located and how long the user's mobile device has remained outside of the geofence.


Another example of the disclosure may be found in a building automation server for servicing a user's building. The building automation server may include an input for receiving a geofence status of one or more mobile devices that are associated with the user's building, wherein the geofence status includes whether the one or more mobile devices are inside a geofence or outside a geofence defined for the user's building. The building automation server may include an output for outputting a command to a building controller in the user's building. A controller may be operably coupled to the input and the output and may be configured to keep track of the geofence status for each of the one or more mobile devices. The controller may output a command via the output to change a set point of the building controller to an energy saving set point upon detecting that all of the one or more mobile devices are outside of the geofence and to output a command via the output to change a set point of the user's building to a comfort temperature set point upon detecting that at least one of the one or more mobile devices are inside the geofence. The controller may further be configured to determine how much to change the set point based at least in part on how long one or more of the mobile devices have been outside the geofence.


The preceding summary is provided to facilitate an understanding of some of the features of the present disclosure and is not intended to be a full description. A full appreciation of the disclosure can be gained by taking the entire specification, claims, drawings, and abstract as a whole.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments of the disclosure in connection with the accompanying drawings, in which:



FIG. 1 is a schematic view of an illustrative building automation system;



FIG. 2 is a schematic view of another illustrative building automation system;



FIG. 3 is a schematic view of another illustrative building automation system;



FIG. 4 is a schematic view of an illustrative HVAC control system;



FIG. 5 is a schematic view of an illustrative building automation server; and



FIGS. 6 through 10 are flow diagrams showing illustrative methods that may be carried out in accordance with embodiments of the disclosure.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular illustrative embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DESCRIPTION

The following description should be read with reference to the drawings wherein like reference numerals indicate like elements. The drawings, which are not necessarily to scale, are not intended to limit the scope of the disclosure. In some of the figures, elements not believed necessary to an understanding of relationships among illustrated components may have been omitted for clarity.


All numbers are herein assumed to be modified by the term “about”, unless the content clearly dictates otherwise. The recitation of numerical ranges by endpoints includes all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, and 5).


As used in this specification and the appended claims, the singular forms “a”, “an”, and “the” include the plural referents unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.


It is noted that references in the specification to “an embodiment”, “some embodiments”, “other embodiments”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is contemplated that the feature, structure, or characteristic may be applied to other embodiments whether or not explicitly described unless clearly stated to the contrary.


The present disclosure is directed generally at building automation systems. Building automation systems are systems that control one or more operations of a building. Building automation systems can include HVAC systems, security systems, fire suppression systems, energy management systems and/or any other suitable systems. While HVAC systems are used as an example below, it should be recognized that the concepts disclosed herein can be applied to building control systems more generally.


A building automation system may include a controller, computer and/or other processing equipment that is configured to control one or more features, functions, systems or sub-systems of a building. In some cases, devices can be used by individuals to communicate with the controller, computer and/or other processing equipment. In some cases, a building automation system may include a plurality of components that, in combination, perform or otherwise provide the functionality of the building automation system. A building automation system may be fully contained within a single building, or may include components that are spread between multiple housings and/or across multiple locations. In some embodiments, a building automation system, regardless of the physical location(s) of the components within the building automation system, may control one or more building systems within a single building. In some cases, a building automation system, regardless of the physical location(s) of the components within the building automation system, may control one or more building systems within a plurality of buildings, optionally in accordance with a common operating procedure and/or distinct operating procedures for each building as desired.



FIG. 1 is a schematic view of an illustrative building automation system 10. The illustrative building automation system 10 includes a server 12 that may be configured to communicate with a mobile device 14 and with a building controller 16. It will be appreciated that for simplicity, only a single mobile device 14 is shown, while in many cases the server 12 may be configured to communicate directly or indirectly with any number of mobile devices 14. Similarly, while a single building controller 16 is illustrated, in many cases the server 12 may be configured to communicate directly or indirectly with any number of building controllers 16, located in a single building or distributed throughout a plurality of buildings. The server 12 is illustrated as a single, cloud-based server. In some cases, the server 12 may be a single server. In some instances, the server 12 may generically represent two, three or more servers commonly located or spread between two or more physical locations. In some cases, the server 12 handles communication with both the mobile device 14 and the building controller 16. In some instances, as shown for example in FIG. 2, distinct servers may carry out each communications protocol if desired.


In some cases, the mobile devices 14 may communicate with the server 12 at least partially through a network such as the Internet, sometimes using a cell phone network, WiFi network and/or any other suitable network. Likewise, it is contemplated that the building controller 16 may communicate with the server 12 at least partially through a network such as the Internet, sometimes using a cell phone network, WiFi network and/or any other suitable network.


The server 12 is illustrated in FIG. 1 as being discrete from the building controller 16. In some cases, at least some functionality of the server 12 may be provided within the building controller 16. In some cases, the server 12 may be manifested within the building controller 16. In some cases, at least some functionality of the server 12 may be provided within the mobile device 14. In some cases, at least some of the functionality of the server 12 may be provided within the building controller 16 and at least some of the functionality of the server 12 may be provided within the mobile device 14.



FIG. 2 is a schematic illustration of another illustrative building automation system 20. The illustrative building automation system 20 includes a first server 22 that may be configured to communicate with a mobile device 14 (or multiple mobile devices 14) and a second server 24 that may be configured to communicate with a building controller 16 (or multiple building controllers 16). The first server 22 may be configured to receive data from the mobile device 14, process the data, and send data to the mobile device 14 and/or to the second server 24. The second server 24 may be configured to send data and/or commands to the building controller 16. In some cases, the second server 24 may be configured to receive data from the building controller 16, process the data, and send data to the building controller 16 and/or to the first server 22. In some instances, the first server 22 may be configured to permit data from the mobile device 14 to pass directly through to the building controller 16. In some cases, the second server 24 may be configured to permit data from the building controller 16 to pass directly through to the mobile device 14. The first server 22 and the second server 24 may be configured to communicate with each other. In some cases, each of the first server 22 and the second server 24 may perform a defined function.


It will be appreciated that for simplicity, only a single mobile device 14 is shown, while in many cases the first server 22 may be configured to communicate directly or indirectly with any number of mobile devices 14. Similarly, while a single building controller 16 is illustrated, in many cases the second server 24 may be configured to communicate directly or indirectly with any number of building controllers 16, located in a single building or distributed throughout a plurality of buildings.


The first server 22 is illustrated as a single, cloud-based server. In some cases, the first server 22 may be a single server. In some instances, the first server 22 may generically represent two, three or more servers commonly located or spread between two or more physical locations. The second server 24 is illustrated as a single, cloud-based server. In some cases, the second server 24 may be a single server. In some instances, the second server 24 may generically represent two, three or more servers commonly located or spread between two or more physical locations. In some cases, the first server 22 and the second server 24 may, in combination, be considered as representing or forming a building automation server 26.



FIG. 3 is a schematic illustration of a building automation system 30 in which a building automation server 26 is configured to communicate with a plurality of buildings 32 as well as a plurality of mobile devices 34. It is contemplated that the building automation server 26 may include a single server or two or more distinct servers at one or several locations. The building automation system 30 may serve any desired number of buildings. As illustrated, the plurality of buildings 32 includes a Building One, labeled as 32A, a Building Two, labeled as 32B, and so on through a Building “N”, labeled as 32N. It will be appreciated that the building automation system 30 may include a large number of buildings, each in communication with a central (or distributed) building automation server 26. In some cases, each building may be associated with a unique customer account, as further described below.


As illustrated, each of the plurality of buildings 32 includes a building controller and one or more pieces of building equipment. The building equipment may, for example, be HVAC equipment, security equipment, lighting equipment, fire suppression equipment, and/or the like. In particular, the building 32A includes a building controller 36A and building equipment 38A, the building 32B includes a building controller 36B and building equipment 38B, and so on through the building 32N, which includes a building controller 36N and building equipment 38N. It will be appreciated that while each building is illustrated as having a single building controller and single building equipment controlled by the single building controller, in some cases a building may have multiple related or unrelated building controllers and/or multiple pieces of related or unrelated building equipment.


The plurality of mobile devices 34 may be considered as being divided into a set of mobile devices each associated with a corresponding building. In the example shown, the plurality of mobile devices 34 may be considered as being divided into a set of mobile devices 40A that are associated with the building 32A, a set of mobile devices 40B that are associated with the building 32B, and so on through a set of mobile devices 40N that are associated with the building 32N. As illustrated, the set of mobile devices 40A includes a first mobile device 42A, a second mobile device 44A and a third mobile device 46A. The set of mobile devices 40B includes a first mobile device 42B, a second mobile device 44B and a third mobile device 46B and so on through the set of mobile devices 40N, which includes a first mobile device 42N, a second mobile device 44N and a third mobile device 46N. This is merely illustrative, as any number of mobile devices such as smartphones or tablets, may be associated with a particular building, as desired. Each user or occupant of a building may have an associated mobile device, or may have several associated mobile devices. In some cases, a user or occupant may have a mobile device associated with several different locations such as a home, a cabin or a place of work.


Associating a mobile device with a particular building generally involves the individual who uses the particular mobile device. In the example shown in FIG. 3, a mobile device can communicate with the building automation server 26, and may cause the building automation server 26 to provide instructions to the building controller that is associated with the particular mobile device. For example, and in some instances, a mobile phone with location services activated can be used to inform the building automation server 26 as to the whereabouts of the user of the mobile phone relative to a geo-fence defined for the associated building, and in some cases an estimate of how long before the user will likely arrive at the associated building. The building automation server 26 may send a command to the building controller of the associated building to operate the building equipment in an energy savings manner when all of the users that are associated with a particular building are determined to be away from the building (e.g. the building is unoccupied). The building automation server 26 may send a command to the building controller of the associated building to operate the building equipment in a comfort mode when all of the users that are associated with a particular building are determined or deemed not to be away from the building (e.g. the building is occupied).



FIG. 4 is a schematic illustration of an illustrative HVAC control system 50 for controlling HVAC equipment within a building. In some instances, the HVAC control system 50 may be considered as being an example of the building controller 16 (FIGS. 1 and 2). In some cases, the illustrative HVAC control system 50 may be or include an HVAC controller that is located in the building. In some cases, the HVAC control system 50 may instead be a cloud-based server that is located outside of the building and is connected to and issues commands to a local building controller within the building.


In some cases, the illustrative HVAC control system 50 may be in operative communication with a user's mobile device 52. In some instances, the HVAC control system 50 may be in operative communication with several mobile devices, such as mobile device 52, mobile device 54 and mobile device 56. While a total of three mobile devices are illustrated, it will be appreciated that the HVAC control system 50 may be in operative communication with any number of mobile devices. It will be appreciated that the mobile devices 52, 54, 56 may provide geofence functionality. The HVAC control system 50 may include an input 58 that can receive location information directly or indirectly from the mobile devices 52, 54, 56 that indicates where the particular mobile device, such as the mobile device 52, is in relation to a geofence that is defined for an associated building. In some cases, the input 58 may receive location information indicating where each of a plurality of mobile devices, such as the mobile devices 52, 54, 56, are in relation to the geofence. A memory 60 can store the location information that was received from the user's mobile device 52. In some cases, the memory 60 may store the location information that was received from each of the plurality of mobile devices 52, 54, 56. A controller 62 may be operatively coupled to the input 58 and to the memory 60.


In some cases, the controller 62 is configured to control HVAC equipment 64 in order to maintain a comfort temperature within the building when the user's mobile device 52 is located within the geofence as this indicates that the user is either home or close to home. In some instances, the controller 62 may control the HVAC equipment 64 in order to maintain a comfort temperature within the building when one or more of the mobile devices 52, 54, 56 are within the geofence. The controller 62 may be configured to allow a building temperature in the building to deviate from the comfort temperature when the user's mobile device 52 is located outside the geofence. In some cases, the controller 62 may be configured to allow a building temperature to deviate from the comfort temperature when all of the mobile devices 52, 54, 56 are outside of the geofence.


In some cases, the controller 62 may determine how far the building temperature is allowed to deviate from the comfort temperature towards a more energy efficient temperature based at least in part on: how long the user's mobile device 52 has remained outside of the geofence, and in some cases, how far outside of the geofence the user's mobile device 52 is located. In some cases, the controller 62 determines how far the building temperature is allowed to deviate from the comfort temperature based at least in part on: how long the plurality of user's mobile devices 52, 54, 56 have all remained outside of the geofence, and in some cases, how far the closest of the plurality of user's mobile devices 52, 54, 56 is outside of the geofence.


It will be appreciated that how far the controller 62 permits the building temperature to deviate from the comfort temperature towards a more energy efficient temperature may be based at least in part on how quickly the HVAC equipment 64 can drive the building temperature back to the comfort temperature. In some cases, the controller 62 may allow the building temperature to deviate from the comfort temperature to an extent that the HVAC equipment 64 cannot return the building temperature back to the comfort temperature by the time the closest user's mobile device 52 can return to the building. In some instances, the user may be asked for their input as to how aggressively the controller 62 will attempt to conserve energy at the possible expense of some user comfort. In some instances, the controller 62 may store, in the memory 60, data pertaining to how long the user remains outside the geofence for each of a plurality of days, use the stored data to provide an estimate as to when the user is expected to return to the geofence and use the estimate to adjust how far the building temperature is allowed to deviate from the comfort temperature.



FIG. 5 is a schematic illustration of a building automation server 70 for servicing a user's building. The building automation server 70 includes an input 72 for receiving a geofence status of one or more mobile devices 52 that are associated with the user's building. The geofence status may include, for example, whether the one or more mobile devices 52 are inside a geofence or outside a geofence defined for the user's building. In some cases, the geofence status may also include how far a corresponding mobile device 52 is from the geofence (or building), and in some cases, speed, route and/or direction of the corresponding mobile device 52. While a single mobile device 52 is illustrated, it will be appreciated that the input 72 may be configured to receive geofence status information from any number of mobile devices. An output 74 may be configured to output commands to a building controller 76 that is located within the user's building. In some cases, the building controller 76 may specifically be an HVAC controller, and the output 74 may be configured to output commands to the HVAC controller to the HVAC controller, including but not limited to an energy savings temperature set point or an offset from a comfort temperature set point.


A controller 78 may be operably coupled to the input 72 and the output 74 and may be configured to keep track of the geofence status for each of the one or more mobile devices 52. In some cases, the controller 78 may be configured to output a command via the output 74 to change a set point of the building controller 76 to an energy saving set point upon detecting that all of the one or more mobile devices 52 are outside of the geofence. The controller 78 may also be configured to output a command via the output 74 to change a set point of the user's building to a comfort temperature set point upon detecting that at least one of the one or more mobile devices 52 are inside the geofence or are expected to cross into the geofence.


In some instances, the controller 78 is configured to change a temperature set point to an energy savings temperature set point that is based on a relationship in which the temperature set point is changed “X” degrees for each multiple of a set distance between the closest mobile device of the one or more mobile devices 52 and the geofence (or building). For example, the controller 78 may change the temperature set point by one degree Fahrenheit for each 1000 meters the closest mobile device 52 is outside of the geofence. In some cases, the controller 78 may allow the building temperature to further deviate by “X” more additional degrees Fahrenheit for each hour (or other predetermined time period) that the one or more mobile devices 52 remains outside of the geofence, or perhaps for each hour that the one or more mobile devices 52 remains at a roughly constant distance from the geofence and/or that the one or more mobile devices 52 remains stationary or substantially stationary outside of the geofence. In some instances, the controller 78 may not change the temperature set point by “X” degrees for each multiple of a set distance as described above, but may allow the building temperature to deviate by “X” degrees Fahrenheit from the comfort temperature for each hour (or other predetermined time period) that the one or more mobile devices 52 remains outside of the geofence, or perhaps for each hour that the one or more mobile devices 52 remains at a roughly constant distance from the geofence and/or that the one or more mobile devices 52 remains stationary or substantially stationary outside of the geofence. These examples are merely illustrative.


In some cases, the controller 78 may be configured to receive information, via the input 72, pertaining to an adaptive intelligent recovery (AIR) ramp rate from the local building controller 76. The controller 78 may limit how far the temperature set point can vary from the comfort temperature set point in accordance with the AIR ramp rate in combination with an estimated shortest time that any of the one or more of the mobile devices 52 could return to the building, and also on how long one or more of the mobile devices 52 have remained outside the geofence.


In some cases, the AIR ramp rate may be an approximation of how quickly the HVAC equipment can heat or cool the building (e.g. degrees/hour). It will be appreciated that the AIR ramp rate may be impacted by weather conditions. For example, on a cold cloudy windy day, the building may not heat as quickly as it may on a day in which the outdoor air temperature may be just as cold, but when the winds are calm and the sky is sunny. In another example, the building may not heat as quickly for a given outside temperature during the nighttime hours relative to the daytime hours because at night little or no solar energy is absorbed by the building.


In some cases, the controller 78 may implement a particular AIR ramp rate, and may track how quickly the building temperature actually recovers. If the building temperature regains the comfort temperature set point more quickly than anticipated, the next time the controller 78 may delay the start of the heating ramp. Conversely, if the building temperature does not recover as quickly as predicted by the AIR ramp rate, the next time the controller 78 may start the heating ramp a little earlier. The predicted AIR ramp rate may depend on the outside conditions, the inside conditions, the time of day and/or any other suitable parameters.



FIG. 6 is a flow diagram showing an illustrative method for controlling an HVAC system that implements geofencing. A building temperature is controlled to a comfort temperature set point when the user is inside the geofence, as indicated at block 80. When the user travels outside of the geofence, the building temperature is allowed to deviate from the comfort temperature set point as indicated at block 82. In some cases, the building temperature is allowed to deviate from the comfort temperature set point by an amount that is based at least in part on a distance between the geofence and the user.


How long the user remains outside the geofence may be tracked, as seen at block 84. At block 86, the building temperature is allowed to further deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence. In some cases, allowing the building temperature to further deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence includes allowing the building temperature to deviate from the comfort temperature set point to an extent that the HVAC system cannot return to the comfort temperature set point if the user were to return directly to the building. In some instances, the building temperature does not deviate from the comfort temperature set point by an amount that is based at least in part on a distance between the geofence and the user, but does deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence.



FIG. 7 is a flow diagram showing another illustrative method for controlling an HVAC system that implements geofencing. A building temperature is controlled to a comfort temperature set point when the user is inside the geofence, as indicated at block 80. When the user travels outside of the geofence, the building temperature is allowed to deviate from the comfort temperature set point as indicated at block 82. In some cases, the building temperature is allowed to deviate from the comfort temperature set point by an amount that is based at least in part on a distance between the geofence and the user, but this is not required.


How long the user remains outside the geofence may be tracked, as seen at block 84. At block 86, the building temperature is allowed to further deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence. In some cases, allowing the building temperature to further deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence includes allowing the building temperature to deviate from the comfort temperature set point to an extent that the HVAC system cannot return to the comfort temperature set point if the user were to return directly to the building. In some instances, the building temperature does not deviate from the comfort temperature set point by an amount that is based at least in part on a distance between the geofence and the user, but does deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence.


In some cases, as seen at block 88, the building temperature is driven back towards the comfort temperature set point when, for example: (1) the user crosses from outside the geofence to inside the geofence; (2) does not remain a roughly constant distance from the geofence; and/or (3) does not remain stationary or substantially stationary outside of the geofence.



FIG. 8 is a flow diagram showing an illustrative method of controlling an HVAC system that implements geofencing. A building temperature is controlled to a comfort temperature set point when the user is inside the geofence, as indicated at block 80. When the user is outside of the geofence, the building temperature is allowed to deviate from the comfort temperature set point as indicated at block 82. In some cases, the building temperature is allowed to deviate from the comfort temperature set point by an amount that is based at least in part on a distance between the geofence and the user, but this is not required.


How long the user remains outside the geofence may be tracked, as seen at block 84. At block 86, the building temperature is allowed to further deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence. In some cases, allowing the building temperature to further deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence includes allowing the building temperature to deviate from the comfort temperature set point to an extent that the HVAC system cannot return to the comfort temperature set point if the user were to return directly to the building. In some cases, as seen at block 90, how far the building temperature is allowed to deviate from the comfort temperature set point may be based at least in part on how quickly the HVAC system can drive the building temperature back to the comfort temperature set point. In some instances, the building temperature does not deviate from the comfort temperature set point by an amount that is based at least in part on a distance between the geofence and the user, but does deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence.



FIG. 9 is a flow diagram showing another illustrative method of controlling an HVAC system that implements geofencing. A building temperature is controlled to a comfort temperature set point when the user is inside the geofence, as indicated at block 80. When the user is outside of the geofence, the building temperature is allowed to deviate from the comfort temperature set point as indicated at block 82. In some cases, the building temperature is allowed to deviate from the comfort temperature set point by an amount that is based at least in part on a distance between the geofence and the user, but this is not required.


How long the user remains outside the geofence may be tracked, as seen at block 84. At block 86, the building temperature is allowed to further deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence. In some cases, allowing the building temperature to further deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence includes allowing the building temperature to deviate from the comfort temperature set point to an extent that the HVAC system cannot return to the comfort temperature set point if the user were to return directly to the building. In some cases, as indicated at block 92, data pertaining to how long the user remains outside the geofence is stored for each of a plurality of days, the stored data is then utilized to provide an estimate as to when the user is expected to return to the geofence. This estimate of when the user is expected to return to the geofence may be used to adjust how far the building temperature is allowed to further deviate from the comfort temperature set point. In some instances, the building temperature does not deviate from the comfort temperature set point by an amount that is based at least in part on a distance between the geofence and the user, but does deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence.



FIG. 10 is a flow diagram showing another illustrative method of controlling an HVAC system that implements geofencing. A building temperature is controlled to a comfort temperature set point when one or more users are inside the geofence, as indicated at block 94. When all of the users are outside of the geofence, the building temperature is allowed to deviate from the comfort temperature set point as indicated at block 96. In some cases, the building temperature is allowed to deviate from the comfort temperature set point by an amount that is based at least in part on a distance between the geofence and the closest user, but this is not required. How long each of the plurality of users remains outside the geofence may be tracked, as seen at block 98. At block 100, the building temperature is allowed to further deviate from the comfort temperature set point in accordance with how long the closest user has remained outside of the geofence. In some instances, the building temperature does not deviate from the comfort temperature set point by an amount that is based at least in part on a distance between the geofence and the user, but does deviate from the comfort temperature set point in accordance with how long the user has remained outside of the geofence.


Those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.

Claims
  • 1. A method of controlling an HVAC system for a building, the HVAC system implementing geofencing using a geofence that is defined for the building or a user of the building, the method comprising: controlling a building temperature to a comfort temperature set point when the user is inside the geofence;allowing the building temperature to deviate from the comfort temperature set point by a first amount when the user crosses from inside the geofence to outside of the geofence;tracking how long the user remains outside the geofence; anddetermining a second amount specifying how far the building temperature is allowed to further deviate beyond the first amount based on how long the user remains outside the geofence irrespective of a distance between the geofence and the user, wherein determining the second amount comprises increasing the second amount by a predetermined amount for each predetermined time period that the user remains outside of the geofence; andallowing the building temperature to further deviate beyond the first amount by the second amount while the user remains outside of the geofence.
  • 2. The method of claim 1, further comprising driving the building temperature back towards the comfort temperature set point when the user crosses from outside the geofence to inside the geofence.
  • 3. The method of claim 1, wherein the first amount is based at least in part on a distance between the geofence and the user.
  • 4. The method of claim 1, further comprising limiting the first amount based at least in part on how quickly the HVAC system can drive the building temperature back to the comfort temperature set point.
  • 5. The method of claim 1, wherein the first amount and the second amount collectively can result in a deviation where the HVAC system cannot return to the comfort temperature set point by the time the user returns to the building.
  • 6. The method of claim 1, further comprising storing data pertaining to how long the user remains outside the geofence for each of a plurality of days, and utilizing the stored data to provide an estimate as to when the user is expected to return to the geofence and using the estimate to adjust the second amount.
  • 7. An HVAC control system for controlling operation of HVAC equipment within a building, the HVAC control system configured to be in operative communication with a mobile device providing geofence functionality, the HVAC control system comprising: an input for receiving location information indicating where the mobile device is in relation to a geofence defined for the building;a memory for storing the location information received from the mobile device;a controller operatively coupled to the input and to the memory, the controller configured to control the HVAC equipment to maintain a comfort temperature within the building when the mobile device is located within the geofence;the controller further configured to allow a building temperature in the building to deviate from the comfort temperature by a first amount when the mobile device crosses from inside the geofence to outside the geofence; andthe controller is further configured to determine a second amount specifying how far the building temperature is allowed to further deviate beyond the first amount based at least in part on: how long the mobile device remains outside of the geofence irrespective of a distance between the geofence and the mobile device, wherein, to determine the second amount, the controller is configured to increase the second amount by a predetermined amount for each predetermined time period that the mobile device remains outside of the geofence.
  • 8. The HVAC control system of claim 7, wherein the controller is further configured to limit the first amount based at least in part on how quickly the HVAC equipment can drive the building temperature back to the comfort temperature.
  • 9. The HVAC control system of claim 7, wherein the first amount and the second amount collectively can result in a deviation where the HVAC equipment cannot return the building temperature back to the comfort temperature by the time the mobile device returns to the building.
  • 10. The HVAC control system of claim 7, wherein the controller is further configured to store, in the memory, data pertaining to how long the mobile device remains outside the geofence for each of a plurality of days, use the stored data to provide an estimate as to when the mobile device is expected to return to the geofence and use the estimate to adjust the second amount.
  • 11. The HVAC control system of claim 7, comprising an HVAC controller that is located in the building.
  • 12. The HVAC control system of claim 7, comprising a cloud-based server that is located outside of the building and is connected to and issues commands to a building controller within the building.
  • 13. A building automation server for servicing a building, the building automation server comprising: an input for receiving a geofence status of one or more mobile devices that are associated with the building, wherein the geofence status includes whether the one or more mobile devices are inside a geofence or outside a geofence defined for the building;an output for outputting a command to a building controller in the building;a controller operably coupled to the input and the output, the controller configured to keep track of the geofence status for each of the one or more mobile devices;the controller further configured to output a command via the output to change a set point of the building controller to an energy saving set point upon detecting that all of the one or more mobile devices are outside of the geofence and to output a command via the output to change the set point of the building controller to a comfort temperature set point upon detecting that at least one of the one or more mobile devices are inside the geofence;the controller further configured to determine how far to further deviate from the energy savings set point based at least in part on how long the one or more mobile devices remain outside the geofence irrespective of a distance between the geofence and the one or more mobile devices, wherein, to determine how far to further deviate from the energy savings set point, the controller is configured to, further deviate from the energy savings set point by a predetermined amount for each predetermined time period that the one or more mobile devices remain outside of the geofence.
  • 14. The building automation server of claim 13, configured to output commands to an HVAC controller in the building.
  • 15. The building automation server of claim 14, wherein the energy savings set point is based at least in part on how far outside of the geofence a closest mobile device of the one or more mobile devices is located.
  • 16. The building automation server of claim 15, wherein the controller is further configured to receive information, via the input, pertaining to an adaptive intelligent recovery (AIR) ramp rate from the HVAC controller.
  • 17. The building automation server of claim 16, wherein the controller is further configured to limit how far the energy savings set point can vary from the comfort temperature set point based at least in part on the AIR ramp rate.
  • 18. The building automation server of claim 17, wherein the controller is further configured to provide the HVAC controller with the energy savings set point.
US Referenced Citations (261)
Number Name Date Kind
5317670 Elia May 1994 A
6255988 Bischoff Jul 2001 B1
6356282 Roytman et al. Mar 2002 B2
6400956 Richton Jun 2002 B1
6478233 Shah Nov 2002 B1
6529137 Roe Mar 2003 B1
6604023 Brown et al. Aug 2003 B1
6665613 Duvall Dec 2003 B2
6909891 Yamashita et al. Jun 2005 B2
6990335 Shamoon et al. Jan 2006 B1
7083109 Pouchak Aug 2006 B2
7127734 Amit Oct 2006 B1
7130719 Ehlers et al. Oct 2006 B2
7155305 Hayes et al. Dec 2006 B2
D535573 Barton et al. Jan 2007 S
7159789 Schwendinger et al. Jan 2007 B2
7257397 Shamoon et al. Aug 2007 B2
7327250 Harvey Feb 2008 B2
7343226 Ehlers et al. Mar 2008 B2
7385500 Irwin Jun 2008 B2
D580801 Takach et al. Nov 2008 S
7451017 McNally Nov 2008 B2
7510126 Rossi et al. Mar 2009 B2
7571865 Nicodem et al. Aug 2009 B2
7574208 Hanson et al. Aug 2009 B2
7614567 Chapman et al. Nov 2009 B2
7636604 Bergman et al. Dec 2009 B2
7668532 Shamoon et al. Feb 2010 B2
7768393 Nigam Aug 2010 B2
7801646 Amundson et al. Sep 2010 B2
7812274 Dupont et al. Oct 2010 B2
7839275 Spalink et al. Nov 2010 B2
7904608 Price Mar 2011 B2
7908211 Chen et al. Mar 2011 B1
7949615 Ehlers et al. May 2011 B2
7953518 Kansal et al. May 2011 B2
7973678 Petricoin, Jr. et al. Jul 2011 B2
8018329 Morgan et al. Sep 2011 B2
8026261 Tam et al. Sep 2011 B2
8064935 Shamoon et al. Nov 2011 B2
8065342 Borg et al. Nov 2011 B1
8095340 Brown Jan 2012 B2
8115656 Bevacqua et al. Feb 2012 B2
8125332 Curran et al. Feb 2012 B2
8126685 Nasle Feb 2012 B2
8131401 Nasle Mar 2012 B2
8135413 Dupray Mar 2012 B2
8140279 Subbloie Mar 2012 B2
8150421 Ward et al. Apr 2012 B2
8180492 Steinberg May 2012 B2
8195313 Fadell et al. Jun 2012 B1
8205244 Nightingale et al. Jun 2012 B2
8219114 Larsen Jul 2012 B2
8229722 Tran et al. Jul 2012 B2
8229772 Tran et al. Jul 2012 B2
8232877 Husain Jul 2012 B2
8255090 Frader-Thompson et al. Aug 2012 B2
8269620 Bullemer et al. Sep 2012 B2
8280536 Fadell et al. Oct 2012 B1
8280559 Herman et al. Oct 2012 B2
8301765 Goodman Oct 2012 B2
8305935 Wang Nov 2012 B2
8315717 Forbes, Jr. et al. Nov 2012 B2
8323081 Koizumi et al. Dec 2012 B2
8332055 Veillette Dec 2012 B2
8334906 Lipton et al. Dec 2012 B2
8350697 Trundle et al. Jan 2013 B2
8386082 Oswald Feb 2013 B2
8390473 Kryzanowski et al. Mar 2013 B2
8406162 Haupt et al. Mar 2013 B2
8412381 Nikovski et al. Apr 2013 B2
8412654 Montalvo Apr 2013 B2
8428867 Ashley, Jr. et al. Apr 2013 B2
8433344 Virga Apr 2013 B1
8442695 Imes et al. May 2013 B2
8457797 Imes et al. Jun 2013 B2
8509954 Imes et al. Aug 2013 B2
8510241 Seshan Aug 2013 B2
8510255 Fadell et al. Aug 2013 B2
8510421 Matsuzaki et al. Aug 2013 B2
8531294 Slavin et al. Sep 2013 B2
8554374 Lunacek et al. Oct 2013 B2
8554714 Raymond et al. Oct 2013 B2
8556188 Steinberg Oct 2013 B2
8560127 Leen et al. Oct 2013 B2
8571518 Imes et al. Oct 2013 B2
8577392 Pai et al. Nov 2013 B1
8587445 Rockwell Nov 2013 B2
8606374 Fadell et al. Dec 2013 B2
8620393 Bornstein Dec 2013 B2
8620841 Filson et al. Dec 2013 B1
8626344 Imes et al. Jan 2014 B2
8630741 Matsuoka et al. Jan 2014 B1
8634796 Johnson Jan 2014 B2
8648706 Ranjun et al. Feb 2014 B2
8666558 Wang Mar 2014 B2
8670783 Klein Mar 2014 B2
8686841 Macheca et al. Apr 2014 B2
8718826 Ramachandran et al. May 2014 B2
8725831 Barbeau et al. May 2014 B2
8798804 Besore et al. Aug 2014 B2
8810454 Cosman Aug 2014 B2
8812024 Obermeyer et al. Aug 2014 B2
8812027 Obermeyer et al. Aug 2014 B2
8840033 Steinberg Sep 2014 B2
8868254 Louboutin Oct 2014 B2
8874129 Forutanpour et al. Oct 2014 B2
8886178 Chatterjee Nov 2014 B2
8890675 Ranjan et al. Nov 2014 B2
8909256 Fraccaroli Dec 2014 B2
8918219 Sloo et al. Dec 2014 B2
8941489 Sheshadri et al. Jan 2015 B2
8965401 Sheshadri et al. Feb 2015 B2
8965406 Henderson Feb 2015 B2
9026261 Bukhin et al. May 2015 B2
9033255 Tessier et al. May 2015 B2
9055475 Lacatus et al. Jun 2015 B2
9071453 Shoemaker et al. Jun 2015 B2
9113298 Qiu Aug 2015 B2
9167381 McDonald et al. Oct 2015 B2
9168927 Louboutin Oct 2015 B2
9183530 Schwarz et al. Nov 2015 B2
9210125 Nichols Dec 2015 B1
9210545 Sabatelli et al. Dec 2015 B2
9215560 Jernigan Dec 2015 B1
9219983 Sheshadri et al. Dec 2015 B2
9247378 Bisson et al. Jan 2016 B2
9280559 Jones Mar 2016 B1
9288620 Menendez Mar 2016 B2
9292022 Ramachandran et al. Mar 2016 B2
9363638 Jones Mar 2016 B1
9307344 Rucker et al. Apr 2016 B2
9311685 Harkey et al. Apr 2016 B2
9313320 Zeilingold et al. Apr 2016 B2
9363636 Zeilingold et al. Jun 2016 B2
9363772 Burks Jun 2016 B2
9396344 Jones Jul 2016 B1
9414422 Belghoul et al. Aug 2016 B2
9432807 Kern, Jr. et al. Aug 2016 B2
9433681 Constien et al. Sep 2016 B2
9449491 Sager et al. Sep 2016 B2
9477239 Begman et al. Oct 2016 B2
9491577 Jones Nov 2016 B1
9495866 Roth et al. Nov 2016 B2
9521519 Chiou et al. Dec 2016 B2
9552002 Sloo et al. Jan 2017 B2
9560482 Frenz Jan 2017 B1
9589435 Finlow-Bates Mar 2017 B2
9594384 Bergman et al. Mar 2017 B2
9609478 Frenz et al. Mar 2017 B2
9618227 Drew Apr 2017 B2
9628951 Kolavennu et al. Apr 2017 B1
9635500 Becker et al. Apr 2017 B1
9645589 Leen et al. May 2017 B2
9674658 Partheesh Jun 2017 B2
9900174 Gamberini Feb 2018 B2
9979763 Nichols May 2018 B2
20020147006 Coon et al. Oct 2002 A1
20040034484 Solomita et al. Feb 2004 A1
20050172056 Ahn Aug 2005 A1
20060063522 McFarland Mar 2006 A1
20060097063 Zeevi May 2006 A1
20070037605 Logan Feb 2007 A1
20070043478 Ehlers et al. Feb 2007 A1
20070060171 Sudit et al. Mar 2007 A1
20070099626 Lawrence et al. May 2007 A1
20070114295 Jenkins May 2007 A1
20070249319 Faulkner et al. Oct 2007 A1
20080094230 Mock et al. Apr 2008 A1
20080143550 Ebrom Jun 2008 A1
20080262820 Nasle Oct 2008 A1
20090012704 Franco et al. Jan 2009 A1
20090187499 Mulder et al. Jul 2009 A1
20090240381 Lane Sep 2009 A1
20090302994 Rhee Dec 2009 A1
20100034386 Choong et al. Feb 2010 A1
20100042940 Monday et al. Feb 2010 A1
20100081375 Rosenblatt et al. Apr 2010 A1
20100127854 Helvick et al. May 2010 A1
20100156628 Ainsbury et al. Jun 2010 A1
20100261465 Rhoads et al. Oct 2010 A1
20110148634 Putz Jun 2011 A1
20110153525 Benco et al. Jun 2011 A1
20110214060 Imes et al. Sep 2011 A1
20110314144 Goodman Dec 2011 A1
20120065802 Seeber Mar 2012 A1
20120172027 Partheesh Jul 2012 A1
20120185101 Leen Jul 2012 A1
20120191257 Corcoran et al. Jul 2012 A1
20120209730 Garrett Aug 2012 A1
20120259466 Ray et al. Oct 2012 A1
20120284769 Dixon et al. Nov 2012 A1
20130073094 Knapton et al. Mar 2013 A1
20130204441 Sloo et al. Aug 2013 A1
20130225196 James et al. Aug 2013 A1
20130226352 Dean-Hendricks Aug 2013 A1
20130231137 Hugie et al. Sep 2013 A1
20130267253 Case Oct 2013 A1
20130310053 Srivastava et al. Nov 2013 A1
20130318217 Imes et al. Nov 2013 A1
20130331087 Shoemaker Dec 2013 A1
20130331128 Qiu Dec 2013 A1
20140031989 Bergman et al. Jan 2014 A1
20140031991 Bergman et al. Jan 2014 A1
20140045482 Bisson et al. Feb 2014 A1
20140100835 Majumdar et al. Apr 2014 A1
20140156087 Amundson Jun 2014 A1
20140164118 Polachi Jun 2014 A1
20140172176 Deilmann et al. Jun 2014 A1
20140200718 Tessier Jul 2014 A1
20140244048 Ramachandran et al. Aug 2014 A1
20140248910 Dave et al. Sep 2014 A1
20140266635 Roth et al. Sep 2014 A1
20140277762 Drew Sep 2014 A1
20140302879 Kim et al. Oct 2014 A1
20140313032 Sager Oct 2014 A1
20140330435 Stoner et al. Nov 2014 A1
20140337123 Neurenberg et al. Nov 2014 A1
20140349672 Kern et al. Nov 2014 A1
20140370911 Gorgenyi et al. Dec 2014 A1
20150065161 Ganesh et al. Mar 2015 A1
20150094860 Finnerty et al. Apr 2015 A1
20150140994 Partheesh May 2015 A1
20150141045 Qiu et al. May 2015 A1
20150159895 Quam et al. Jun 2015 A1
20150163631 Quam et al. Jun 2015 A1
20150163945 Barton et al. Jun 2015 A1
20150167999 Seem et al. Jun 2015 A1
20150180713 Stewart et al. Jun 2015 A1
20150181382 McDonald Jun 2015 A1
20150186497 Patton et al. Jul 2015 A1
20150228419 Fadell Aug 2015 A1
20150237470 Mayor et al. Aug 2015 A1
20150271638 Menayas et al. Sep 2015 A1
20150285527 Kim et al. Oct 2015 A1
20150301543 Janoso et al. Oct 2015 A1
20150309484 Lyman Oct 2015 A1
20150338116 Furuta et al. Nov 2015 A1
20150370272 Reddy et al. Dec 2015 A1
20150372832 Kortz et al. Dec 2015 A1
20160007156 Chiou et al. Jan 2016 A1
20160018122 Frank et al. Jan 2016 A1
20160018800 Gettings Jan 2016 A1
20160018832 Frank Jan 2016 A1
20160054865 Kerr et al. Feb 2016 A1
20160057572 Bojorquez et al. Feb 2016 A1
20160142872 Nicholson et al. May 2016 A1
20160189496 Modi Jun 2016 A1
20160223998 Songkakul Aug 2016 A1
20160261424 Gamberini Sep 2016 A1
20160286033 Frenz Sep 2016 A1
20160313749 Frenz Oct 2016 A1
20160313750 Frenz et al. Oct 2016 A1
20170026506 Haepp et al. Jan 2017 A1
20170130979 Kolavennu et al. May 2017 A1
20170134214 Sethuraman et al. May 2017 A1
20170139580 Kimura et al. May 2017 A1
20170171704 Frenz Jun 2017 A1
20170181100 Kolavennu et al. Jun 2017 A1
20170241660 Sekar et al. Aug 2017 A1
20180241789 Nichols Aug 2018 A1
Foreign Referenced Citations (43)
Number Date Country
2015201441 Oct 2015 AU
101689327 May 2013 CN
103175287 Jun 2013 CN
104704863 Jun 2015 CN
105318499 Feb 2016 CN
102013226390 Jun 2015 DE
1515289 Mar 2005 EP
2607802 Jun 2013 EP
2675195 Dec 2013 EP
3001116 Mar 2016 EP
2011203841 Oct 2011 JP
2012109680 Jun 2012 JP
2012000906 Sep 2012 MX
2006055334 May 2006 WO
2009034720 Mar 2009 WO
2009036764 Mar 2009 WO
WO 2009034720 Mar 2009 WO
WO 2009036764 Mar 2009 WO
2009067251 May 2009 WO
WO 2009067251 May 2009 WO
2011011404 Jan 2011 WO
WO 2011011404 Jan 2011 WO
2011121299 Oct 2011 WO
WO 2011121299 Oct 2011 WO
2012000107 Jan 2012 WO
WO 2012000107 Jan 2012 WO
2012068517 May 2012 WO
WO 2012068517 May 2012 WO
2013170791 Nov 2013 WO
WO 2013170791 Nov 2013 WO
2014016705 Jan 2014 WO
WO 2014016705 Jan 2014 WO
2014047501 Mar 2014 WO
WO 2014047501 Mar 2014 WO
2014055939 Apr 2014 WO
2014144323 Sep 2014 WO
WO 2014144323 Sep 2014 WO
2014197320 Dec 2014 WO
2014200524 Dec 2014 WO
WO 2014197320 Dec 2014 WO
2015047739 Apr 2015 WO
2015089116 Jun 2015 WO
2015164400 Oct 2015 WO
Non-Patent Literature Citations (39)
Entry
Balaji et al., “Sentinel: Occupancy Based HVAC Actuation Using Existing WiFi Infrastructure Within Commercial Buildings,” SenSys '13, 14 pages, Nov. 11-15, 2015.
“Petition for Inter Partes Review of U.S. Pat. No. 8,571,518 Pursuant to 35 U.S.C. 311-319, 37 CFR 42,” Inventor Imes et al., dated Oct. 29, 2014.
Do, “Programmable Communicating Thermostats for Demand Response in California,” DR ETD Workshop, 26 pages, Jun. 11, 2007.
Green, “PM's Thermostat Guide,” Popular Mechanics, pp. 155-158, Oct. 1985.
Gupta et al., “Adding GPS-Control to Traditional Thermostats: An Exploration of Potential Energy Savings and Design Challenges,” Pervasive, LNCS 5538, pp. 95-114, 2009.
Gupta, “A Persuasive GPS-Controlled Thermostat System,” 89 pages, Sep. 2008.
http://community.lockitron.com/notifications-geofencing-scheduling-sense-bluetooth/633, “Lockitron Community, Notifications, Geofencing, Scheduling, Sense/Bluetooth,” 14 pages, printed Oct. 29, 2014.
http://IWww.prnev.tswire.com/nev.ts-releases/allure-energy-unveils-a-combination-of-ibeacon-and-nfc-enabled-smart-sensor-technology-known-as-aura-23885 . . . , “Allure Energy Unveils a Combination of iBeacon and NFC Enabled Smart Sensor Technology Known as Aura,” 6 pages, Jan. 6, 2014.
Mobile Integrated Solutions, LLC, “MobiLinc Take Control of Your Home, MobiLinc and Geo-Fence Awareness,” 9 pages, downloaded Mar. 27, 2015.
Pan et al., “A Framework for Smart Location-Based Automated Energy Controls in a Green Building Testbed,” 6 pages, downloaded Jan. 30, 2015.
SmartThings Inc., “2 Ecobee Si Thermostat + Geofencing,” 17 pages, downloaded Nov. 3, 2014.
Allure Energy, “Our Technology,” http://www.allure-energy.com/pages/about.jsp 1 page, printed May 30, 2012.
International Search Report for PCT Application No. PCT/US2010/042589 dated Nov. 22, 2010.
U.S. Appl. No. 14/640,984, filed Mar. 6, 2015.
U.S. Appl. No. 14/668,800, filed Mar. 25, 2015.
U.S. Appl. No. 14/696,662, filed Apr. 27, 2015.
U.S. Appl. No. 14/696,725, filed Apr. 27, 2015.
U.S. Appl. No. 14/933,948, filed Nov. 5, 2015.
U.S. Appl. No. 14/934,543, filed Nov. 6, 2015.
U.S. Appl. No. 14/938,595, filed Nov. 11, 2015.
U.S. Appl. No. 14/938,642, filed Nov. 11, 2015.
U.S. Appl. No. 14/964,264, filed Dec. 9, 2015.
U.S. Appl. No. 14/964,349, filed Dec. 9, 2015.
Mozer, “The Neural Network House: An Environment that Adapts to its Inhabitants,” Department of Computer Science University of Colorado, 5 pages, Downloaded May 29, 2012.
The Extended European Search Report and Opinion for EP Application No. 16156760.7-1862, dated Jul. 8, 2016.
The Extended European Search Report for EP Application No. 1619416, dated Feb. 2, 2017.
The Extended European Search Report for EP Application No. 16196128.9, dated Mar. 7, 2017.
Gentec, “Feature Focus, Threat Level Management,” 2 pages, 2013.
The Extended European Search Report for EP Application No. 16195639.6, dated May 31, 2017.
Scanlon et al., “Mutual Information Based Visual Feature Selection for Lipreading,” 8th International Conference on Spoken Language Processing, 5 pages, Oct. 4-8, 2004.
Transportation Research Board of the National Academies, “Commuting in America III, the Third National Report on Commuting Patterns and Trends,” 199 pages, 2006.
U.S. Appl. No. 15/048,902, filed Feb. 19, 2016.
The International Search Report for PCT Application No. PCT/US2010/042589 dated Nov. 22, 2010.
http://community.lockitron.com/notifications-geofencing-scheduling-sense-bluetooth/633, “Lockitron Community, Notifications, Geofencing, Scheduling, Sense/Bluetooth,” 6 pages, printed Oct. 29, 2014.
http://stackoverflow.com/questions/14232712/tracking-multiple-20-locations-with-ios-geofencing, “Tracking Multiple (20+) Locations with iOS Geofencing—Stack Overflow,” 2 pages, printed Oct. 29, 2014.
http://www.allure-energy.com/aenf_jan9_12.html, “CES Gets First Look at EverSense,” Allure Energy, 2 pages, printed Feb. 17, 2015.
http://www.pmev.tswire.com/nev.ts-releases/allure-energy-unveils-a-combination-of-ibeacon-and-nfc-enabled-smart-sensor-technology-known-as-aura-23885 . . . , “Allure Energy Unveils a Combination of iBeacon and NFC Enabled Smart Sensor Technology Known as Aura,” 6 pages, Jan. 6, 2014.
Response to Extended Search Report dated May 31, 2017, from counterpart European Application No. 16195639.6, filed Nov. 22, 2017, 21 pp.
Text Intended to Grant from counterpart European Application No. 16195639.6, dated Mar. 20, 2018, 66 pp.
Related Publications (1)
Number Date Country
20170130979 A1 May 2017 US