The present invention generally relates to the field of controllers, and more specifically to HVAC and other controllers.
There are a wide variety of controllers in use today including, for example, HVAC controllers, security system controllers, lawn sprinkler controllers, lighting system controllers, as well as many other types of controllers. HVAC controllers, for example, are employed to monitor and, if necessary, control various environmental conditions within a home, office, or other enclosed space. Such devices are useful in regulating any number of environmental conditions within a particular space including for example, temperature, humidity, venting, air quality, etc.
In many cases, such controllers often include a microprocessor and/or other circuitry that interacts with components in the system. For example, and again with reference to an HVAC controller, a thermostat may interact with a temperature, humidity and/or other sensing device, and control a heater, a blower, a compressor, a vent, a humidifier and/or other component to help control the temperature, humidity and/or other environmental parameters within a building.
Many controllers are equipped with a user interface that allows a user to interact, monitor and/or adjust one or more parameters controlled by the system. With more modern designs, the user interface may include a liquid crystal display (LCD) panel or the like inset within a housing. The user interface may permit, for example, the user to program the controller to activate, for example, on a certain schedule determined by the user.
For HVAC and other controllers, significant energy and/or other savings may be achieved by properly using and/or programming the controller. For example, energy savings may be achieved when an HVAC controller has been properly programmed to permit setbacks when the building is not occupied, or in other circumstances in which temperature setbacks can be tolerated.
While many controllers, including HVAC controllers, have become increasingly more intuitive to operate and/or program via enhanced user interfaces, some users may still need help, such as through written instructions, to properly use and/or program their controllers. In many cases, however, the owner's manual or other documentation for a controller is not always immediately available to the user when the user desires to interact with the controller. As such, and in many cases, the user simply does not operate the controller properly and/or gain the advantages of some of the functions provided by the controller.
To help avoid this, some controllers include a flip-down door upon which helpful instructions may be printed. However, as design considerations have dictated larger, more interactive user interfaces such as larger display panels, touch screens, and the like, there is less and less room available for such flip-down doors. Therefore, a need remains for a controller that makes at least some written operating and/or programming instructions available to the user without having to provide a flip down door with instructions printed thereon.
The present invention generally relates to controllers, and more specifically, to controllers that make at least some written operating and/or programming instructions available to the user without having to provide a flip down door with instructions printed thereon.
In one illustrative embodiment, a thermostat is provided that includes a housing, an instruction card receiving slot that is formed by or within the housing, and an instruction card that is adapted to be slid into the instruction card receiving slot. In some embodiments, the instruction card receiving slot is formed, at least in part, by one or more instruction card retention tabs of the housing. In other embodiments, the instruction card receiving slot is more like a pocket. It is contemplated that the instruction card receiving slot may extend through the top side, and/or one of the lateral sides of the thermostat.
In some cases, at least part of the instruction card can be adapted to extend out of the instruction card receiving slot when the instruction card is fully inserted into the instruction card receiving slot. The part of the instruction card that is adapted to extend out of the instruction card receiving slot may include a tab. In some cases, the housing can include a top side that faces up when the thermostat is mounted to a vertical surface such as a wall, and the tab may extend up past the top side of the thermostat. In other cases, the housing may have a top side, a bottom side and two lateral sides, and the tab may extend out past at least one of the lateral sides of the thermostat.
In some illustrative embodiments, the controller may include a wall plate, and a controller module that is adapted to be releasably securable to the wall plate. The wall plate is adapted to be mounted to a wall or other surface. The instruction card receiving slot may be formed or otherwise attached to the controller module, or the wall plate, as desired. When the instruction card slot is formed or otherwise attached to the controller module, and when the controller module is released or removed from the wall plate, the instruction card may accompany the control module. This may be desirable when, for example, the control module is adapted for arm chair programming. In other cases, the instruction card may remain with the wall plate.
Many controllers include one or more electrical components and/or circuit boards within a housing. In some cases, the instruction card receiving slot may be adapted to prevent the instruction card from engaging the one or more electrical components and/or circuit boards when the instruction card is received by the instruction card receiving slot. This, however, is not required. However, when so provided, this may help protect the one or more electrical components and/or circuit boards from dirt, debris as well as possible mechanical and/or electrical faults due to contact with the instruction card.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, Detailed Description and Examples which follow more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Although examples of construction, dimensions, and materials are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.
Generally, the present invention relates to providing instructions to controllers that have a user interface. Such controllers can be used in a variety of systems such as, for example, HVAC systems, sprinkler systems, security systems, lighting systems, and the like. Many of the Figures depict HVAC controllers. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
Wall plate 12 may be adapted to releasably secure controller module 14 to wall plate 12. In some instances, controller module 14 may be secured to wall plate 12 such that wall plate 12 securely holds controller module 14 but permits controller module 14 to be relatively easily removed from wall plate 12 and subsequently returned to wall plate 12. In some instances, it may be desirable to temporarily remove controller module 14 from wall plate 12 in order to, for example, adjust or edit programmed values such as temperature set points, schedules, etc., within controller module 14. This feature may permit a user to, for example, remove controller module 14 from wall plate 12 and to sit in a comfortable arm chair while programming controller module 14 or while adjusting a pre-existing program within controller module 14.
The illustrative controller module 14 includes a display 16. Display 16 is an LCD display, which may be used to display alphanumeric data such as temperatures, times and dates. In some instances, controller module 14 may include several buttons 18 that may, for example, be used to help program and/or otherwise control controller module 14. Buttons 18 can be used to select among particular programming features. In some cases, controller module 14 may also include an up button 20 and a down button 22. Up button 20 and down button 22 may be used to either raise or lower, respectively, a value for a selected parameter. In some instances, controller module 14 may also include a hold button 24 that can be used to temporarily select a new temperature set point.
In the illustrative embodiment, controller module 14 includes software and/or circuitry adapted to retain a program including a variety of operating information as well as to provide appropriate communication with accessible HVAC equipment.
It is important to note that each of buttons 18, 20, 22 and 24, and display 16 are merely illustrative. In other embodiments, controller module 14 may include additional or fewer buttons. In some embodiments, controller module 14 may include no buttons at all, as display 16 may be, for example, a touch-screen display that can provide soft buttons on the display 16 that can be used for programming and/or running controller module 14.
Controller module 14 may be seen as including a housing 26. In some instances, as illustrated, controller module 14 may also include a front plate 27 that secures to housing 26. In some instances, there may be manufacturing advantages to separately providing front plate 27. Front plate 27 may include openings corresponding to display 16, buttons 18, up button 20, down button 22, and hold button 24.
In some instance, instruction card 28 may include a tab 32 that, in the illustrated embodiment, extends beyond a lateral side 34 of housing 26. It is contemplated that the tab 32 may alternatively, or in addition to, extend above the top of the housing 26. In some instances, tab 32 may serve to identify instruction card 28. It can be seen in
In some instances, housing 26 is configured to accommodate a battery pack 38. The illustrative HVAC controller 10 includes one or more batteries contained within battery pack 38 in order to provide sufficient current to operate HVAC controller 10. In some instances, HVAC controller 10 draws operating power from the HVAC equipment it controls, and the batteries may be included merely as back-up protection. In some cases, HVAC controller 10 is powered by the HVAC equipment it controls and no battery back-up is included.
In the illustrative embodiment, housing 26 is configured to accommodate an electrical connector 40. As best seen in
In some cases, housing 26 may include structure intended to releasably secure controller module 14 (
Slot 30 includes a recess 44 that has an upper opening 46, a bottom surface 48, a first side surface 50, a second side surface 52, and a lower surface 54. In some instances, it is contemplated that recess 44 may extend all the way to side 34 of housing 26. In such cases, second side surface 52 may be absent. In some instances, slot 30 may include a side opening or slot 56 that is configured to accommodate tab 32 (
In the illustrative embodiment shown in
It can be seen that each of the instruction card retention tabs 58 extend at least substantially parallel with bottom surface 48, and that instruction card retention tabs 58 function in combination with recess 44 to form slot 30 and to provide for releasable, slide-out instruction card 28 (
Instruction card retention tab 58 includes a slot side 90 that is closest to bottom surface 48 (
As noted above, housing 36 may include an electrical connector 40 (
Wall plate 12 includes a total of four mounting protrusions 64 that are adapted to cooperate with mounting apertures 42 (
The illustrative wall plate 12 includes a raised portion 66 that in some instances can cooperate with slot 30 (
It should be noted that narrowed portion 70 extends into slot 30 such that a distance between narrowed portion 70 (and hence raised portion 66) and bottom surface 48 may be less than or equal to a distance between instruction card retention tab 58 and bottom surface 48. Consequently, raised portion 66 can be seen as cooperating with slot 30 to permit easily insertion and removal of instruction card 28 (
Instruction card 28 may encompass a variety of substrates, shapes, and written and/or printed information and/or graphics.
In some instances, depending on the characteristics of substrate 74, first and second fold lines 78 and 80 may be printed lines showing where substrate 74 should be folded. In some instances, substrate 74 may include no fold lines, one fold line, or even three or more fold lines. In some cases, first and second fold lines 78 and 80 may represent creases, scoring or even perforations. Substrate 74 may be formed from any suitable material that may be printed on and can withstand folding. One example of a suitable material is 80 pound Sterling Ultra Gloss Cover. In some instances, instruction card 28 may be formed of a rigid plastic material and thus may not include fold lines 78 and 80.
Instruction card 28 may be printed or otherwise provided with any suitable information. In some instances, instruction card 28 may include rudimentary programming instructions that would permit a user to, for example, set the date and time and to edit an HVAC control schedule. In other instances, for example, if HVAC controller 10 is not programmable, instruction card 28 may be printed with operating instructions, suggested maintenance schedules such as filter replacement, and the like.
The invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the invention can be applicable will be readily apparent to those of skill in the art upon review of the instant specification.