The invention relates to the control of HVAC equipment, and more particularly, to the control of multi-stage HVAC equipment in a system having a plurality of zones.
Many buildings, particularly relatively small buildings such as single-family houses, have a single heating, ventilation, and air conditioning (HVAC) unit that is controlled by a single thermostat. The HVAC unit typically comprises some type of fluid temperature conditioning device, such as a furnace for heating air, a boiler for heating a liquid or steam, or an air conditioner having an evaporating coil for cooling air. If the fluid is air, it is typically ducted to various locations within the building, or if it is liquid or steam, it is typically piped to heat exchangers at various locations in the building. The thermostat in this type of space conditioning system is typically positioned at a location where the heating and cooling loads are representative of the entire structure. For example, the thermostat may be installed in an interior room away from windows and doors that would tend to influence the sensed temperature. The HVAC equipment then controls the heating and cooling of the entire structure according to the thermostat signal received from the single location.
However, a single thermostat location may not accurately represent the heating or cooling needs throughout the structure. Other locations of the building may have significantly greater or lower heating and cooling loads than exist at the location of the thermostat. For example, rooms having a larger surface area of windows, or rooms having a greater area of exterior walls, may require greater heat inputs to maintain the desired temperature. Similarly, rooms facing south or west, or rooms that are on an upper story, may require greater cooling inputs to maintain the desired temperature. In cases where the HVAC equipment is controlled only by a single thermostat, the heating or cooling supplied to each individual area of the building will be based on the heating or cooling needs at the thermostat location and not on the actual heating and cooling needs of each individual area. As a consequence, the heating and cooling loads of individual areas of the structure may not be satisfied and the temperature of these areas will tend to deviate from the desired temperature.
In some situations, it may be desired to control different locations within a building at different temperatures. For example, rooms that are seldom occupied may not need to be maintained at the same temperature as rooms that are frequently occupied. Energy that is used to heat or cool these unoccupied rooms is not used effectively or economically. Also, rooms may be occupied by people having special temperature needs, such as an elderly person or an infant, that are preferably maintained at a different temperature than the rest of the building. However, a system that has only a single thermostat is generally unable to accurately control different locations in the building at different temperatures.
One solution to this problem is to utilize HVAC zone control. Rather than having a single thermostat controlling the HVAC equipment, multiple thermostats are positioned at locations within the building that are expected to have different heating and cooling loads. Although it is possible that each of these thermostats could control a separate fluid temperature conditioning device such as a separate furnace or air conditioner for each zone, that approach is generally neither efficient nor economical. Rather, most commonly the ductwork or piping that is used to transmit the conditioned fluid to the building spaces is configured with controls to adjust fluid flow to the various zones of the building corresponding to the various thermostats. For example, air ducts may be configured with controllable dampers that are capable of opening and closing to control the flow of air to a particular zone within the building when the thermostat in that zone calls for conditioning.
A system having HVAC zone control generally requires the use of a zone controller to receive the signals from the various thermostats, control the operation of the heating or cooling device, and control the distribution of the conditioned fluid through the ductwork. The zone controller typically comprises electronic circuitry for evaluating the heating or cooling needs of the various zones of the building and for determining an appropriate control of the heating or cooling device and the dampers or valves that control distribution. The distribution control where the conditioned fluid is air is typically accomplished with a duct damper. A duct damper typically comprises a variable obstruction within the duct that can be actuated to one position where there is relatively little resistance to air flow within the duct, and can be actuated to another position where there is relatively great, or complete, resistance to air flow. Duct dampers can be controlled by any of a number of actuation means, including electronic, pneumatic, or mechanical. The HVAC zone controller generally is configured to open or close a duct damper in order to effectuate control over a zone in response to thermostat signals.
In addition, some HVAC systems are equipped with a multiple stage fluid temperature conditioning device that has multiple heating or cooling output stages. For example, a furnace may be provided with multiple heat output stages such as where a variable flow gas valve or multiple burners are selectively controlled to provide a relatively lower heat output stage and a relatively higher heat output stage. Similarly, a multiple stage heat pump may be provided that has multiple compressor speeds where the different compressor speeds are controllable to vary the output rate of the device. In some other circumstances, multiple conditioning units are provided where the operation of a single device constitutes a relatively lower stage of output and operating multiple devices simultaneously constitutes a relatively higher stage of output. Oftentimes, heat pump systems are provided with secondary electrical resistance heating that can be engaged to provide higher stage heat output when necessary, particularly when the outdoor air temperature is low and the heat pump efficiency is low. Other types of multiple stage HVAC equipment exist.
In an HVAC system having both zone control and a multiple stage fluid temperature conditioning device, it can be challenging to determine the proper control strategy for the multiple stage fluid temperature conditioning device. There is a need for improved controls for multiple stage conditioning devices used in HVAC systems having zone control.
One aspect of the invention relates to a controller for controlling an HVAC system having a plurality of zones and having a multiple stage fluid temperature conditioning device. In one embodiment, the controller includes a plurality of thermostat terminals for receiving a plurality of thermostat signals from a plurality of thermostats, and where each thermostat is located within one of a plurality of zones, and where each one of the plurality of thermostat signals indicates a call for conditioning in the zone where that thermostat is located. The controller further includes a plurality of flow control terminals, where each flow control terminal is configured to transmit a signal to control one of a plurality of flow control devices in response to a call for conditioning in one of the plurality of zones. The controller also includes one or more timers that are connected to the thermostat terminals, where the one or more timers are configured to initiate a separate timing count upon each call for conditioning in any one of the plurality of zones. In addition, the controller includes one or more staging terminals for transmitting staging signals to control a multiple stage fluid temperature conditioning device, where the transmission of the staging signals determines whether the conditioning device will operate at a relatively higher output stage. The controller is also configured to make a timing count determination to determine if any one of the separate timing counts initiated upon each call for conditioning in any one of the plurality of zones exceeds a timing delay parameter. The transmission of staging signals depends on the timing count determination.
Another aspect of the invention relates to a method for controlling a multiple stage fluid temperature conditioning device of an HVAC system that has a plurality of zones. The method includes the step of receiving a plurality of thermostat signals from a plurality of thermostats, where each thermostat is located within one of a plurality of zones, and where each of the plurality of thermostat signals indicates a call for conditioning in the zone where that thermostat is located. The method further includes the steps of transmitting a flow control signal to one or more flow control devices in response to each thermostat signal calling for conditioning in one of the plurality of zones, storing a timing delay parameter, initiating a separate timing count upon the receipt of each thermostat signal, and making a timing count determination by determining whether any one of the separate timing counts exceed the timing delay parameter. The method further includes the steps of transmitting a staging signal to control the operation of the multiple stage fluid temperature conditioning device, wherein the transmission of the staging signal determines whether the conditioning device will operate at a relatively higher output stage. The transmission of the staging signal depends on the timing count determination.
The invention may be more completely understood by considering the detailed description of various embodiments of the invention that follows in connection with the accompanying drawings.
While the invention may be modified in many ways, specifics have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives following within the scope and spirit of the invention as defined by the claims.
As discussed above, it may be desirable for a building to have an HVAC system with zone control.
A variety of control strategies for zone controller 46 are usable. In general, however, zone controller 46 is configured to open and close dampers 40, 42, 44, in response to signals from thermostats 26, 28, 30, respectively, and to operate conditioning device 32. For example, if zone controller 46 senses that thermostat 26 is calling for heat because the temperature in zone 20 has fallen below a preset level, then zone controller 46 sends a signal to conditioning device 32 to turn on and signals damper 40 to be in an open position. Heated air from conditioning device 32 will then travel through duct 34, through damper 40, and into zone 20, thereby tending to increase the temperature within zone 20. If at the same time thermostats 28, 30 in zones 22, 24 do not call for heat, dampers 42, 44 will be in a closed position and heated air will not travel through ducts 36, 38 into zones 22, 24. The operation of HVAC system 10 in response to other thermostat signals from other zones and other combinations of zones is similar. HVAC system 10 may include other sensing devices and other sources of input to zone controller 46, as well as other actuating devices and other devices that are controlled by zone controller 46.
In an HVAC system having both zone control and a multiple stage fluid temperature conditioning device, it can be challenging to determine the proper control strategy for the multiple stage fluid temperature conditioning device. For example, it is generally desired that the second or relatively higher stages of output of the temperature conditioning device be utilized only when necessary. In some cases, such as where resistance heating is provided to supplement a heat pump, the second or higher stages of output may be more expensive to operate and therefore should be used only when absolutely needed. Furthermore, it is desired that the multiple stage equipment be controlled in a manner that causes the amount of time the equipment runs in response to calls for conditioning from the thermostats to be optimized. This is desirable because run times that are very short, such as where the equipment is operating in too high of a stage, can cause frequent cycling of the multiple stage conditioning device and consequent low efficiency and high wear, and can also cause the temperature in the space to overshoot the set point. Likewise, run times that are very long, such as where the equipment is operating in too low of a stage, can cause excessive noise, deviation from set temperature for an excessive period of time, and also high equipment wear.
Various strategies exist for controlling a multiple stage fluid temperature conditioning device in a zone control system. For example, some zone controllers use the number of zones that are calling for conditioning to determine whether to up-stage or down-stage the conditioning device. An example of an operating characteristic of this type of system is shown in
Some other zone controllers utilize a timer to control the up-staging and down-staging of the conditioning device, such that if the conditioning device has been running for a set period, such as 10 minutes, the conditioning device is up-staged to a relatively higher output. However, this strategy may fail to account for the situation where multiple zones call for conditioning in a generally sequential fashion, such that each zone may be satisfied relatively quickly but where the combination of sequential zones calling for conditioning causes the equipment to run for a relatively long period of time. This relatively long run time may cause the equipment to upstage inappropriately, such as shown in
Still other zone controllers attempt to resolve these problems with a combination of strategies. For example, some zone controllers may utilize a timer to control up-staging, where the timer is only utilized if a certain number or percentage of zones are calling for conditioning. By way of example, the timer in this type of zone controller could be configured to be initiated when two zones are calling for conditioning, and in this way would up-stage the equipment only after satisfying both the required time delay and number of zones calling. This system, however, would fail to properly up-stage the equipment when only a single zone is calling for an extended period of time or where the zones call sequentially with minimal overlap, such as is shown in
Still other strategies exist for controlling a multi-stage fluid temperature conditioning device in a zoned HVAC system. For example, some systems may rely on a signal sent from a thermostat that represents the difference between the set point and the measured temperature. The system is then configured to initiate a higher stage of operation when the temperature difference exceeds a threshold. However, this system may fail to account for the situation where the conditioning device runs for a long period of time without satisfying the call for conditioning, but where the difference in temperature is not great enough to enable operation at a higher stage.
The present invention addresses various shortcomings of current systems. An operating characteristic of a zone controller constructed according to the principles of the present invention is depicted in
Some embodiments further include a time buffer to prevent overly frequent staging changes. In these embodiments, the zone controller includes a set or programmed stage time buffer parameter that controls the minimum amount of time between staging changes. The zone controller is then configured to control the staging of the conditioning device based both on the individual zone timers as well as the time buffer. The time buffer is generally configured to override staging changes that would otherwise be commanded based only on the zone staging timers. The time buffer measures the amount of time since the last staging change and prevents staging changes until a certain amount of time has passed.
Some embodiments of a zone controller constructed according to the principles of the present invention also include inputs from one or more sensors, where these inputs are used as factors affecting the control of the stage of the conditioning device. For example, in one embodiment, a discharge air temperature sensor is provided that generates a signal representative of the temperature of the air leaving the conditioning device. The zone control is then configured to have a set or programmed value for a discharge air temperature limit. This is most commonly used in a furnace or heating device, where the discharge air temperature limit is used to prevent the furnace from up-staging when the discharge air temperature is above a certain temperature. This prevents possible damage to the furnace or associated equipment from operating at too high of a temperature.
An operating characteristic of a zone controller constructed according to the present invention is depicted in
At time T21=8 minutes, Zone 2 initiates a call for conditioning, and consequently the timer associated with Zone 2 initiates a timer count. Thereafter, at time T13=13 minutes, Zone 1 terminates a call for conditioning while Zone 2 maintains a call for conditioning. Because Zone 1 is no longer calling for conditioning, and because Zone 2 has not yet satisfied its delay parameter, the highest stage being commanded is a first (or relatively lower output) stage. The conditioning device is down-staged to stage 1 at time T13. Zone 2 continues its call for conditioning, until at time T22=18 minutes, zone 2 has satisfied its delay parameter of 10 minutes. Therefore, Zone 2 initiates a request for a higher stage of operation and the conditioning device is operated at a second (or higher) stage. This continues until time T23=25 minutes when Zone 2 terminates a call for conditioning. At this point, there is no remaining call for conditioning and the conditioning device is turned off.
An exemplary flow chart of the operation of a zone controller constructed according to the principles of the present invention is depicted in
Steps 114, 116, 118 each produce an output that represents the stage called for by each zone. At step 120, the output of steps 114, 116, and 118 is received and evaluated to determine the highest stage demanded. Prior to commanding the conditioning device to operate at a different stage, the time buffer is consulted at step 122. The time buffer tracks the amount of time since the last staging change. The time buffer includes a time buffer parameter that must be satisfied in order for the zone controller to change the stage. For example, if the zone 1 staging timer calls for up-staging to a second stage, while zone 2 is also calling for conditioning but at a lower stage, and then after a relatively short period of time zone 1 stops calling for conditioning, the conditioning device will continue to operate at the higher stage until the time buffer parameter has been satisfied. This prevents the conditioning device from undergoing rapid staging changes. Therefore, if the time buffer has been satisfied, such that there has not been a staging change within a set period of time, then at step 124 a signal is sent to the conditioning device to control the stage. However, if the time buffer has not been satisfied, such that there has been a staging change within the set time period, then step 126 involves repeating steps 120 and 122 until the time buffer is satisfied or the request for a different stage changes.
Signals received at thermostat terminals 200, 202, 204, 206 are transmitted to an input processing component 208 and further to a microprocessor 210. Microprocessor 210 is configured to receive signals from sensor terminal 212. Sensor terminal 212 may be configured to receive signals from sensors such as an outdoor air temperature sensor and a discharge air temperature sensor. Other sensors are usable. The nature and construction of these sensors are known to those of skill in the art. A power input 214 is provided for connection to a power supply transformer. Microprocessor 210 is further configured to transmit signals to a driver 216, which in turn transmits signals to a plurality of damper terminals 218, 220, 222, 224. Each of damper terminals 218, 220, 222, 224 is configured to receive wires that are used to transmit a signal to a damper to control the position of the damper. Microprocessor 210 is also configured to transmit signals to an equipment terminal 226. Equipment terminal 226 is configured to receive wires that are used to transmit signals to HVAC conditioning device, such as a furnace, boiler, air conditioner, or heat pump, to control the operation of the HVAC equipment. In one embodiment, one or more of equipment terminals are staging terminals that control the stage of operation of the HVAC equipment. An interface 228 may also be provided that is in communication with microprocessor 210 and is used to input various parameters and make various selections to affect the operation of the zone controller 70. Interface 228 may take a number of forms, such as a plurality of dip switches, dials, and potentiometers and other electronic components, an LCD screen and buttons, or a plurality of film-style switches. Interface 228 is particularly adapted for use during the installation process in order to configure the zone controller 70 to operate properly with the specific HVAC equipment that is present. Operation module 230 is intended for use during the operation of the zone controller 70 for determining the status of the zone controller 70 and for providing operation inputs. For example, operation module 230 may be configured to provide indicator lights that indicate the status of an aspect of zone controller 70, and may be configured to provide switches for setting a mode of operation. Operation module 230 is in communication with microprocessor 210. Each of the electrical components of zone controller 70 is attached to an electronic board 232.
In operation, signals received at thermostat terminals 200, 202, 204, 206 are transmitted to microprocessor 210. When a thermostat signal is received at microprocessor 210 that represents a call for conditioning in a particular zone, a timer count is initiated in microprocessor 210 that represents the amount of time the zone has been calling for conditioning. Microprocessor 210 includes one or more timers that are configured to initiate a separate timing count upon each call for conditioning in a zone. Microprocessor 210 may also include memory that stores one or more staging delay parameters, as well as other parameters such as a time buffer parameter and a discharge air temperature limit. At the time that a call for conditioning is received, the microprocessor 210 initiates a signal to one of corresponding damper terminals 218, 220, 222, 224 to cause the appropriate dampers to be open. Microprocessor 210 also initiates a signal to equipment terminal 226 to instruct the conditioning device to begin operating. Microprocessor 210 generally performs the operations depicted in
Other embodiments of a zone controller are usable. For example, instead of the one or more zone timers being part of a microprocessor, the one or more timers may be separate circuits or components configured to generate a timing count corresponding to the amount of time that a particular zone has been calling for conditioning.
The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention may be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the present specification. The claims are intended to cover such modifications and devices.
The above specification provides a complete description of the structure and use of the invention. Since many of the embodiments of the invention can be made without parting from the spirit and scope of the invention, the invention resides in the claims.
Number | Name | Date | Kind |
---|---|---|---|
3664414 | Raleigh | May 1972 | A |
3892104 | Klee et al. | Jul 1975 | A |
4071745 | Hall | Jan 1978 | A |
4205381 | Games et al. | May 1980 | A |
4335320 | Garver | Jun 1982 | A |
4338791 | Stamp, Jr. et al. | Jul 1982 | A |
4495986 | Clark et al. | Jan 1985 | A |
4501125 | Han | Feb 1985 | A |
4530395 | Parker et al. | Jul 1985 | A |
4795088 | Kobayashi et al. | Jan 1989 | A |
4830095 | Friend | May 1989 | A |
4843084 | Parker et al. | Jun 1989 | A |
4932466 | Foster | Jun 1990 | A |
5024265 | Buchholz et al. | Jun 1991 | A |
D319429 | D'Aleo et al. | Aug 1991 | S |
5042265 | Baldwin et al. | Aug 1991 | A |
5092394 | Foster | Mar 1992 | A |
5129234 | Alford | Jul 1992 | A |
D329226 | Holbrook | Sep 1992 | S |
5161608 | Osheroff | Nov 1992 | A |
5245835 | Cohen et al. | Sep 1993 | A |
5303767 | Riley | Apr 1994 | A |
5318104 | Shah et al. | Jun 1994 | A |
5344069 | Narikiyo | Sep 1994 | A |
5348078 | Dushane et al. | Sep 1994 | A |
5449319 | Dushane et al. | Sep 1995 | A |
5495887 | Kathnelson et al. | Mar 1996 | A |
5751572 | Maciulewicz | May 1998 | A |
5818194 | Nordby | Oct 1998 | A |
5829674 | Vanostrand et al. | Nov 1998 | A |
5860473 | Seiden | Jan 1999 | A |
5944098 | Jackson | Aug 1999 | A |
5983890 | Thomas et al. | Nov 1999 | A |
6196467 | Dushane et al. | Mar 2001 | B1 |
D449279 | Takach, Jr. et al. | Oct 2001 | S |
D454544 | Takach, Jr. et al. | Mar 2002 | S |
6354093 | Davis et al. | Mar 2002 | B2 |
6402043 | Cockerill | Jun 2002 | B1 |
6540148 | Salsbury et al. | Apr 2003 | B1 |
6574581 | Bohrer et al. | Jun 2003 | B1 |
6705533 | Casey et al. | Mar 2004 | B2 |
6711471 | Kidder | Mar 2004 | B2 |
6725914 | Petterson | Apr 2004 | B2 |
6851621 | Wacker et al. | Feb 2005 | B1 |
6856841 | Peterson | Feb 2005 | B2 |
6874693 | Readio et al. | Apr 2005 | B2 |
6879881 | Attridge, Jr. | Apr 2005 | B1 |
6957696 | Krumnow | Oct 2005 | B1 |
6964174 | Shah | Nov 2005 | B2 |
6967565 | Lingemann | Nov 2005 | B2 |
6986708 | Demster | Jan 2006 | B2 |
6997390 | Alles | Feb 2006 | B2 |
7000849 | Ashworth et al. | Feb 2006 | B2 |
7017827 | Shah et al. | Mar 2006 | B2 |
7047092 | Wimsatt | May 2006 | B2 |
7055759 | Wacker et al. | Jun 2006 | B2 |
7106019 | Becerra et al. | Sep 2006 | B2 |
7114554 | Bergman et al. | Oct 2006 | B2 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7150408 | DeLuca | Dec 2006 | B2 |
7156316 | Kates | Jan 2007 | B2 |
7188002 | Chapman, Jr. et al. | Mar 2007 | B2 |
7228693 | Helt | Jun 2007 | B2 |
7320362 | Nichols | Jan 2008 | B2 |
7360370 | Shah et al. | Apr 2008 | B2 |
D590352 | Jacoby et al. | Apr 2009 | S |
20030103075 | Rosselot | Jun 2003 | A1 |
20040194484 | Zou et al. | Oct 2004 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
20050040248 | Wacker et al. | Feb 2005 | A1 |
20050043907 | Eckel et al. | Feb 2005 | A1 |
20050156049 | Van Ostrand et al. | Jul 2005 | A1 |
20050159847 | Shah et al. | Jul 2005 | A1 |
20050159924 | Shah et al. | Jul 2005 | A1 |
20050228607 | Simons | Oct 2005 | A1 |
20050288824 | Fisher | Dec 2005 | A1 |
20060004492 | Terlson et al. | Jan 2006 | A1 |
20070045429 | Chapman et al. | Mar 2007 | A1 |
20070050732 | Chapman et al. | Mar 2007 | A1 |
20070057075 | Votaw et al. | Mar 2007 | A1 |
20070225868 | Terlson et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
20556 | Oct 2001 | SK |
Number | Date | Country | |
---|---|---|---|
20080251590 A1 | Oct 2008 | US |