HVAC system for a vehicle

Information

  • Patent Grant
  • 9103573
  • Patent Number
    9,103,573
  • Date Filed
    Friday, March 1, 2013
    11 years ago
  • Date Issued
    Tuesday, August 11, 2015
    9 years ago
Abstract
A heating, ventilating and air conditioning (HVAC) system for a vehicle is disclosed, the HVAC system including at least one thermoelectric device for providing supplemental heating and cooling for air supplied to a passenger compartment of the vehicle to maximize an efficiency of operation of the vehicle during operation of the HVAC system.
Description
BACKGROUND

1. Field


This disclosure relates to a heating, ventilating and air conditioning (HVAC) system for a vehicle and more particularly to a HVAC system for a hybrid vehicle, the HVAC system including at least one thermoelectric device for providing supplemental heating and cooling for air supplied to a passenger compartment of the vehicle.


2. Description of Related Art


A passenger compartment of a vehicle is typically heated and cooled by a heating, ventilating, and air conditioning (HVAC) system. The HVAC system directs a flow of air through a heat exchanger to heat or cool the air prior to flowing into the passenger compartment. In the heat exchanger, energy is transferred between the air and a coolant such as a water-glycol coolant, for example. The air is normally supplied from ambient air or a mixture of air re-circulated from the passenger compartment and ambient air. Energy for heating and cooling of the passenger compartment of the vehicle is typically supplied from a fuel fed engine such as an internal combustion engine, for example.


In a hybrid vehicle, both a fuel fed engine and an electric motor are used to power a drive system for the vehicle. Thus, at times the fuel fed engine may be operating, the electric motor may be operating, and both the fuel fed engine and the electric motor may be operating. Therefore, the HVAC system in the hybrid vehicle must be capable of heating and cooling air during each of these operating modes. Examples of such systems are shown and described in commonly owned U.S. patent application Ser. No. 11/101,871 filed Apr. 8, 2005, hereby incorporated herein by reference in its entirety, and U.S. patent application Ser. No. 11/184,447 filed Jul. 19, 2005, hereby incorporated herein by reference in its entirety. If the fuel fed engine must be operating in order to operate the HVAC system in the hybrid vehicle, an efficiency thereof is reduced.


It would be desirable to produce a heating, ventilating, and air conditioning system for a hybrid vehicle, wherein an efficiency of operation of the hybrid vehicle during operation of the HVAC system is maximized.


SUMMARY

Consistent and consonant with the present invention, a heating, ventilating, and air conditioning system for a hybrid vehicle, wherein an efficiency of operation of the hybrid vehicle during operation of the HVAC system is maximized, has surprisingly been discovered.


In one embodiment, the heating, ventilating, and air conditioning system for a hybrid vehicle comprises a first fluid circuit including a first conduit for conveying a first fluid therein, the first circuit in thermal communication with an electric side of the hybrid vehicle; a second fluid circuit including a second conduit for conveying the first fluid therein, the second circuit in thermal communication with a fuel fed side of the hybrid vehicle; a first thermoelectric device having a first heat transfer surface and a second heat transfer surface, the first heat transfer surface in thermal communication with at least one of the first circuit and the second circuit, the second heat transfer surface adapted to be in thermal communication with an air stream; and a first heat exchanger disposed in the air stream and in thermal communication with the second fluid circuit, wherein the first circuit, the second circuit, the first thermoelectric device, and the first heat exchanger cooperate to heat, cool, and demist the air stream.


In another embodiment, the heating, ventilating, and air conditioning system for a hybrid vehicle comprises a first conduit forming a first circuit for conveying a first fluid therein; a second conduit forming a second circuit for conveying the first fluid therein; a third conduit for conveying a second fluid therein; a first thermoelectric device having a first heat transfer surface and a second heat transfer surface, the first heat transfer surface in thermal communication with one of the first conduit and the second conduit, the second heat transfer surface in thermal communication with the third conduit; a first heat exchanger disposed in an air stream and in thermal communication with the second conduit, the first heat exchanger providing a selective heating of the air stream; a second heat exchanger disposed in the air stream downstream of the first heat exchanger and in thermal communication with the third conduit, the second heat exchanger providing selective heating and cooling of the air stream; and a third heat exchanger disposed in the air stream downstream of the second heat exchanger and in thermal communication with a source of heat to provide selective heating of the air stream, wherein the first conduit, the second conduit, the third conduit, the first thermoelectric device, the first heat exchanger, the second heat exchanger, and the third heat exchanger cooperate to heat, cool, and demist the air stream.


In another embodiment, the heating, ventilating, and air conditioning system for a hybrid vehicle comprises a first conduit for conveying a first fluid; a second conduit for conveying the first fluid; a third conduit for conveying a second fluid; a first thermoelectric device having a first heat transfer surface and a second heat transfer surface, the first heat transfer surface of the first thermoelectric device in thermal communication with one of the first conduit and the second conduit, the second heat transfer surface of the first thermoelectric device in thermal communication with the third conduit; a second thermoelectric device having a first heat transfer surface and a second heat transfer surface, the first heat transfer surface of the second thermoelectric device in thermal communication with at least one of the first conduit and the second conduit; a first heat exchanger disposed in an air stream and in thermal communication with the second conduit, the first heat exchanger providing a selective heating of the air stream; a second heat exchanger disposed in the air stream downstream of the first heat exchanger and in thermal communication with the third conduit, the second heat exchanger providing selective heating and cooling of the air stream; and a third heat exchanger disposed in the air stream downstream of the second heat exchanger adapted to be in thermal communication with the second heat transfer surface of the second thermoelectric device to provide selective heating of the air stream, wherein the first conduit, the second conduit, the third conduit, the first thermoelectric device, the second thermoelectric device, the first heat exchanger, the second heat exchanger, and the third heat exchanger cooperate to heat, cool, and demist the air stream.





BRIEF DESCRIPTION OF THE DRAWINGS

The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment when considered in the light of the accompanying drawings in which:



FIG. 1 is a schematic flow diagram of a heating, ventilating, and air conditioning (HVAC) system according to an embodiment of the invention;



FIG. 2 is a schematic flow diagram of a HVAC system according to another embodiment of the invention;



FIG. 3 is a schematic flow diagram of a HVAC system according to another embodiment of the invention;



FIG. 4 is a schematic flow diagram of a HVAC system according to another embodiment of the invention;



FIG. 5 is a. schematic flow diagram of a HVAC system according to another embodiment of the invention;



FIG. 6 is a schematic flow diagram of a HVAC system according to another embodiment of the invention;



FIG. 7 is a: schematic flow diagram of a HVAC system according to another embodiment of the invention; and



FIG. 8 is a schematic flow diagram of a HVAC system according to another embodiment of the invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The following detailed description and appended drawings describe and illustrate various exemplary embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner. In respect of the methods disclosed, the steps presented are exemplary in nature, and thus, the order of the steps is not necessary or critical.



FIG. 1 shows a heating ventilating, and air conditioning (HVAC) system 10 for supplying conditioned air to a passenger compartment of a vehicle according to an embodiment of the invention. The system 10 includes a first fluid circuit 12 and a second fluid circuit 14. In the embodiment shown, the first circuit 12 communicates with components of an electric side of a hybrid vehicle (not shown) and the second circuit 14 communicates with components of a fuel fed side of the hybrid vehicle. As used herein, electric side is meant to include components relating to an electric motor for powering the hybrid vehicle such as a battery compartment, for example. Fuel fed side is meant to include components relating to a fuel fed engine for powering the hybrid vehicle such as an internal combustion engine, for example. A first fluid (not shown) is circulated in the first circuit 12 and the second circuit 14 and can be any conventional fluid such as air or a coolant such as a water-glycol coolant, for example.


The first circuit 12 includes a first conduit 16 for conveying the first fluid through the first circuit 12. A pump 18 is disposed in the first conduit 16 to circulate the first fluid therethrough. A pump as used herein is meant to include any conventional pump such as a centrifugal pump, for example, a fan, and the like. The first conduit 16 includes a heat exchanger 20 disposed therein. The heat exchanger 20 can be any conventional heat exchanger such as a low temperature core, for example. The first fluid is also circulated through a battery compartment or other source of heat 22 from the electric side of the hybrid vehicle to remove heat therefrom. In the embodiment shown, the battery compartment 22 is disposed in parallel with the heat exchanger 20. However, it is understood that other configurations can be used as desired such as in series or a separate conduit, for example. A flow valve 24 and a diverter valve 26 are also disposed in the first conduit 16. It is understood that more or fewer valves may be used as desired to control flow of the first fluid through the first conduit 16. The flow valve 24 can be any conventional type such as a gate valve, a ball valve, a flap type valve, and the like, for example. The diverter valve 26 can be any conventional diverter valve such as a three way valve used to selectively permit flow between conduit branches, for example.


Crossover conduits 28, 30 are provided between the first circuit 12 and the second circuit 14. Flow valves 32, 34 are provided in respective crossover conduits 28, 30 to selectively permit flow of the first fluid therethrough. A pump 36 is also provided in the crossover conduit 28 to assist with circulation of the first fluid, if necessary.


A second conduit 38 is included in the second circuit 14. The second conduit 38 is in fluid communication with an engine 40 of the hybrid vehicle to circulate the first fluid therethrough and remove heat therefrom. A heat exchanger 42 is disposed in the second conduit 38 downstream of the engine 40. The heat exchanger 42 can be any conventional heat exchanger such as a radiator for the vehicle, for example. A first bypass conduit 44 is provided to permit bypassing of the heat exchanger 42 and a second bypass conduit 46 is provided to create a recirculation circuit. A diverter valve 48 selectively permits flow between the heat exchanger 42 and the first bypass conduit 44. Selective flow for the second bypass conduit 46 is facilitated by a diverter valve 50. It is understood that more or fewer valves may be used as desired to control flow of the first fluid through the second conduit 38. A pump 52 is disposed in the second conduit 38 to circulate the first fluid therethrough.


A first thermoelectric device (TED) 54 is disposed adjacent the first conduit 16 and between the crossover conduits 28, 30. The first TED 54 includes a first heat transfer surface 55 and a second heat transfer surface 56. The first heat transfer surface 55 is in thermal communication with the first conduit 16 of the first circuit 12. The first TED 54 is in electrical communication with a control system (not shown). The control system controls an electric current sent to the first TED 54. When the current is delivered in one direction, one of the first heat transfer surface 55 and the second heat transfer surface 56 generates thermal energy or heat and the other of the first heat transfer surface 55 and the second heat transfer surface 56 absorbs thermal energy or heat. When the current is reversed, the one of the first heat transfer surface 55 and the second heat transfer surface 56 which was generating heat now absorbs heat and the other of the first heat transfer surface 55 and the second heat transfer surface 56 now generates heat. Additionally, when the current is increased, a heating and cooling capacity of the TED is increased Likewise, when the current is decreased, the heating and cooling capacity of the TED is decreased.


The TED 54 may be any conventional device such as: those produced by Marlow Industries, Inc. of Dallas, Tex.; the thermoelectric systems described in U.S. Pat. No. 6,539,725 to Bell; a quantum tunneling converter; a Peltier device; a thermoionic module; a magneto caloric module; an acoustic heating mechanism; a solid state heat pumping device; and the like; for example; or any combination of the devices listed above. Although a single thermoelectric device is shown, it is understood that additional thermoelectric devices can be used, as desired.


A third conduit 57 is in thermal communication with the second heat transfer surface 56 of the first TED 54. The third conduit 57 conveys a second fluid (not shown). The second fluid can be any conventional fluid such as air or a coolant such as a water-glycol coolant, for example. A pump 58 is disposed in the third conduit 57 to circulate the second fluid therethrough.


An air conduit 60 in fluid communication with a source of air (not shown) is provided to supply the conditioned air to the passenger compartment of the vehicle. The air conduit 60 includes a first heat exchanger 62, a second heat exchanger 64, and a third heat exchanger 66 disposed therein. The heat exchangers 62, 64, 66 can be any conventional type of heat exchanger.


The first heat exchanger 62 and the third heat exchanger 66 are in fluid communication with the second circuit 14. A diverter valve 68 is disposed in a supply side of the second conduit 38 to selectively control flow of the first fluid to the first heat exchanger 62 and the third heat exchanger 66. A diverter valve 70 is disposed in the second conduit 38 on a return side thereof to selectively control flow of the first fluid from the first heat exchanger 62 and the third heat exchanger 66.


The second heat exchanger 64 is in fluid communication with the third conduit 57. The third conduit 57 circulates the second fluid between the first TED 54 and the second heat exchanger 64.


In operation, the system 10 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 60. The system 10 can operate in a heating mode, a demisting mode, and a cooling mode.


In a first heating mode where the engine 40 is operating and the electric motor is not operating, the first heat exchanger 62 and the second heat exchanger 64 transfer heat into the air stream, and the third heat exchanger 66 is idle. Thus, the diverter valves 68, 70 are positioned to militate against flow of the first fluid to the third heat exchanger 66 and permit flow to the first heat exchanger 62. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.


The pump 18 of the first circuit 12 is not operating to circulate the first fluid through the first conduit 16. In order to supply the first fluid to the first TED 54, the pump 36 is operating and the valves 32, 34 of the crossover conduits 28, 30 are open to permit flow therethrough. A portion of the flow of the first fluid in the second conduit 38 is directed through the crossover conduit 28 and into thermal communication with the first heat transfer surface 55 of the first TED 54. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to absorb heat and remove heat from the first fluid. The first fluid then flows through the crossover conduit 30 to re-enter the second conduit 38 and flow to the first heat exchanger 62.


The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62 and the second heat exchanger 64. It is understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream and the second heat exchanger 64 idle.


In a second heating mode where the engine 40 is operating and the electric motor is operating, the first heat exchanger 62 and the second heat exchanger 64 transfer heat into the air stream, and the third heat exchanger 66 is idle. Thus, the diverter valves 68, 70 are positioned to militate against flow of the first fluid to the third heat exchanger 66 and permit flow to the first heat exchanger 62. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The first fluid flows through the battery compartment 22 where heat is transferred into the first fluid, then through the first conduit 16, and into thermal communication with the first heat transfer surface 55 of the first TED 54. The diverter valve 26 is positioned to militate against flow through the heat exchanger 20 and permit flow to the battery compartment 22. Thus, heat is not removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to absorb heat and remove heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62 and the second heat exchanger 64.


In a third heating mode where the engine 40 is not operating and the electric motor is operating, the second heat exchanger 64 transfers heat into the air stream, and the first heat exchanger 62 and the third heat exchanger 66 are idle. Initially, it is presumed that the engine 40 was previously running and requires cooling. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the first bypass conduit 44 and permit flow through the heat exchanger 42. Thus, heat is removed from the first fluid in the heat exchanger 42. The diverter valve 50 is in a position to permit flow of the first fluid through the second bypass conduit 46 and militate against flow through the second conduit 38 to the first heat exchanger 62 and the third heat exchanger 66. Once the engine 40 has sufficiently cooled, the pump 52 can be switched to the off position until the engine 40 requires additional cooling.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The first fluid flows through the battery compartment 22 where heat is transferred into the first fluid, then through the first conduit 16, and into thermal communication with the first heat transfer surface 55 of the first TED 54. The diverter valve 26 is positioned to militate against flow through the heat exchanger 20 and permit flow to the battery compartment 22. Thus, heat is not removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to absorb heat and remove heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the second heat exchanger 64. It is also understood that this mode can be used when both the engine 40 and the electric motor are operating, but where the amount heat required to be delivered to the passenger compartment of the vehicle is low.


In a demisting mode, the engine 40 is operating and the electric motor is operating. The first heat exchanger 62 is idle, the second heat exchanger 64 removes heat from the air stream, and the third heat exchanger 66 transfers heat into the air stream. It is understood that the engine 40 may have also been previously running and has residual heat stored therein. The diverter valves 68, 70 are positioned to militate against flow of the first fluid to the first heat exchanger 62 and permit flow to the third heat exchanger 66. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the third heat exchanger 66 where heat is transferred from the first fluid to the air flowing in the air conduit 60.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 removes heat from the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the air flowing in the air conduit 60 to the second fluid. Therefore, air is cooled in the second heat exchanger 64, heated by the third heat exchanger 66, and delivered to the passenger compartment of the vehicle for demisting. By initially cooling the air, moisture is caused to be removed from the air by condensation.


In a cooling mode, where the engine 40 is not operating and the electric motor is operating, the second heat exchanger 64 removes heat from the air stream, and the first heat exchanger 62 and the third heat exchanger 66 are idle. Initially, it is presumed that the engine 40 was previously running and requires cooling. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the first bypass conduit 44 and permit flow through the heat exchanger 42. Thus, heat is removed from the first fluid in the heat exchanger 42. The diverter valve 50 is in a position to permit flow of the first fluid through the second bypass conduit 46 and militate against flow through the second conduit 38 to the first heat exchanger 62 and the third heat exchanger 66. Once the engine 40 has sufficiently cooled, the pump 52 can be switched to the off position until the engine 40 requires additional cooling.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 removes heat from the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the air flowing in the air conduit 60 to the second fluid. Therefore, air is cooled in the second heat exchanger 64 and delivered to the passenger compartment of the vehicle.



FIG. 2 shows a heating ventilating, and air conditioning (HVAC) system 100 for supplying conditioned air to a passenger compartment of a vehicle according to another embodiment of the invention. Structure included from FIG. 1 has the same reference numeral for clarity and a description thereof is not repeated.


In the embodiment shown, a second thermoelectric device (TED) 102 is disposed adjacent the first conduit 16 and the first TED 54, and between the crossover conduits 28, 30. The second TED 102 includes a first heat transfer surface 104 and a second heat transfer surface 106. The first heat transfer surface 104 is in thermal communication with the first conduit 16 of the first circuit 12. The second TED 102 is in electrical communication with a control system (not shown). The control system controls an electric current sent to the second TED 102 in the same way as described for the first TED 54. The second thermoelectric device 102 may be any conventional device such as those listed for the first TED 54. Although a single thermoelectric device is shown, it is understood that additional thermoelectric devices can be used, as desired.


A fourth conduit 108 is in thermal communication with the second heat transfer surface 106 of the second TED 102. The fourth conduit 108 conveys a third fluid (not shown). The third fluid can be any conventional fluid such as air or a coolant such as a water-glycol coolant, for example. A pump 110 is disposed in the fourth conduit 108 to circulate the third fluid therethrough.


The first heat exchanger 62 is in fluid communication with the second circuit 14 and the third heat exchanger 66 is in fluid communication with the fourth conduit 108. The fourth conduit 108 circulates the third fluid between the second TED 102 and the third heat exchanger 66.


In operation, the system 100 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 60. Similar to the operation described for the system 10, the system 100 can operate in a heating mode, a demisting mode, and a cooling mode.


In a first heating mode where the engine 40 is operating and the electric motor is not operating, the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66 transfer heat into the air stream. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.


The pump 18 of the first circuit 12 is not operating to circulate the first fluid through the first conduit 16. In order to supply the first fluid to the first TED 54 and the second TED 102, the pump 36 is operating and the valves 32, 34 of the crossover conduits 28, 30 are open to permit flow therethrough. A portion of the flow of the first fluid in the second conduit 38 is directed through the crossover conduit 28 and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat and remove heat from the first fluid. The first fluid then flows through the crossover conduit 30 to re-enter the second conduit 38 and flow to the first heat exchanger 62.


The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60.


The pump 110 is operating to circulate the third fluid through the fourth conduit 108. The third fluid is in thermal communication with the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 106 generates heat which is transferred to the third fluid. Thus, the third fluid flows to the third heat exchanger 66 where heat is transferred from the third fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66. It is understood that this mode can be used with the first heat exchanger 62 and the second heat exchanger 64 transferring heat into the air stream, and the third heat exchanger 66 idle. It is also understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle.


In a second heating mode where the engine 40 is operating and the electric motor is operating, the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66 transfer heat into the air stream. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The first fluid flows through the battery compartment 22 where heat is transferred into the first fluid, then through the first conduit 16, and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The diverter valve 26 is positioned to militate against flow through the heat exchanger 20 and permit flow to the battery compartment 22. Thus, heat is not removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat to and remove heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger. 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60.


The pump 110 is operating to circulate the third fluid through the fourth conduit 108. The third fluid is in thermal communication with the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 106 generates heat which is transferred to the third fluid. Thus, the third fluid flows to the third heat exchanger 66 where heat is transferred from the third fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66. It is understood that this mode can be used with the first heat exchanger 62 and the second heat exchanger 64 transferring heat into the air stream, and the third heat exchanger 66 idle. It is also understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle. It is understood that a third heating mode as described above for FIG. 1 can be used with the first TED 54 and the second heat exchanger 64, or the first TED 54 and the second heat exchanger 64 and the second TED 102 and the third heat exchanger 66 with the first heat exchanger 62 being idle.


In a demisting mode, the engine 40 is not operating and the electric motor is operating. The first heat exchanger 62 is idle, the second heat exchanger 64 removes heat from the air stream, and the third heat exchanger 66 transfers heat into the air stream. It is understood that the engine 40 may have also been previously running and has residual heat stored therein, and that the second circuit 14 is operated as described for FIG. 1 to remove heat from the engine 40. Additionally, it, is understood that the engine 40 could be operating, and that the second circuit 14 is operated as described for FIG. 1 to remove heat from the engine 40.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current in the second TED 102 to flow to cause the first heat transfer surface 104 to absorb heat and remove heat from the first fluid. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 removes heat from the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the air flowing in the air conduit 60 to the second fluid.


The pump 110 is operating to circulate the third fluid through the fourth conduit 108. The third fluid is in thermal communication with the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 106 generates heat which is absorbed by the third fluid. Thus, the third fluid flows to the third heat exchanger 66 where heat is transferred to the air flowing in the air conduit 60 from the third fluid.


Therefore, air is cooled in the second heat exchanger 64, heated by the third heat exchanger 66, and delivered to the passenger compartment of the vehicle for demisting. By initially cooling the air, moisture is caused to be removed from the air by condensation.


In a cooling mode, where the engine 40 is not operating and the electric motor is operating, the second heat exchanger 64 and the third heat exchanger 66 remove heat from the air stream, and the first heat exchanger 62 is idle. It is understood that the engine 40 may have also been previously running and has residual heat stored therein, and that the second circuit 14 is operated as described for FIG. 1 to remove heat from the engine 40. Additionally, it is understood that the engine 40 could be operating, and that the second circuit 14 is operated as described for FIG. 1 to remove heat from the engine 40.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 removes heat from the first fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the air flowing in the air conduit 60 to the second fluid.


The pump 110 is operating to circulate the third fluid through the fourth conduit 108. The third fluid is in thermal communication with the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 106 removes heat from the third fluid. Thus, the third fluid flows to the third heat exchanger 66 where heat is transferred from the air flowing in the air conduit 60 to the third fluid. Therefore, air is cooled in the second heat exchanger 64 and the third heat exchanger 66, and delivered to the passenger compartment of the vehicle. It is understood that this mode can be used with one of the second heat exchanger 64 and the third heat exchanger 66 transferring heat from the air stream, and the other of the second heat exchanger 64 and the third heat exchanger 66 idle.



FIG. 3 shows a heating ventilating, and air conditioning (HVAC) system 120 for supplying conditioned air to a passenger compartment of a vehicle according to another embodiment of the invention. Structure included from FIGS. 1 and 2 has the same reference numeral for clarity and a description thereof is not repeated.


In the embodiment shown, the first TED 54 and the second TED 102 include a third conduit 122 in thermal communication with both the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The third conduit 122 conveys a second fluid (not shown). The second fluid can be any conventional fluid such as air or a coolant such as a water-glycol coolant, for example. A pump 124 is disposed in the third conduit 122 to circulate the second fluid therethrough.


The first heat exchanger 62 is in fluid communication “with the second circuit 14. The second heat exchanger 64 has an outlet 126 in fluid communication with the first TED 54 and an inlet 128 in fluid communication with the second TED 102. The third heat exchanger 66 has an outlet 130 in fluid communication with the second TED 102 and an inlet 132 in fluid communication with the first TED 54. The third conduit 122 circulates the second fluid between the first TED 54, the third heat exchanger 66, the second TED 102 and the second heat exchanger 64.


In operation, the system 120 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 60. Similar to the operation described for the systems 10, 100, the system 120 can operate in a heating mode, a demisting mode, and a cooling mode.


In a first heating mode where the engine 40 is operating and the electric motor is not operating, the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66 transfer heat into the air stream. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.


The pump 18 of the first circuit 12 is not operating to circulate the first fluid through the first conduit 16. In order to supply the first fluid to the first TED 54 and the second TED 102, the pump 36 is operating and the valves 32, 34 of the crossover conduits 28, 30 are open to permit flow therethrough. A portion of the flow of the first fluid in the second conduit 38 is directed through the crossover conduit 28 and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat and remove heat from the first fluid. The first fluid then flows through the crossover conduit 30 to re-enter the second conduit 38 and flow to the first heat exchanger 62.


The pump 124 is operating to circulate the second fluid through the third conduit 122. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 generate heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 and the third heat exchanger 66 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66. It is understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle.


In a second heating mode where the engine 40 is operating and the electric motor is operating, the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66 transfer heat into the air stream. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The first fluid flows through the battery compartment 22 where heat is transferred into the first fluid, flows through the first conduit 16, and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The diverter valve 26 is positioned to militate against flow through the heat exchanger 20 and permit flow to the battery compartment 22. Thus, heat is not removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat to and remove heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 124 is operating to circulate the second fluid through the third conduit 122. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 generate heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 and the third heat exchanger 66 where heat is transferred from the second fluid to the air flowing in the air conduit 60.


Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66. It is understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle. It is understood that a third heating mode as described above for FIG. 1 can be used with the first TED 54, the second TED 102, the second heat exchanger 64, and the third heat exchanger 66 with the first heat exchanger 62 being idle.


In a demisting mode, the engine 40 is not operating and the electric motor is operating. The first heat exchanger 62 is idle, the second heat exchanger 64 removes heat from the air stream, and the third heat exchanger 66 transfers heat into the air stream. It is understood that the engine 40 may have also been previously running and has residual heat stored therein, and that the second circuit 14 is operated as described for FIG. 1 to remove heat from the engine 40. Additionally, it is understood that the engine 40 could be operating, and that the second circuit 14 is operated as described for FIG. 1 to remove heat from the engine 40.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current in the second TED 102 to flow to cause the first heat transfer surface 104 to generate heat which is absorbed by the first fluid. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to absorb heat which removes heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 124 is operating to circulate the second fluid through the third conduit 122. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. The second fluid flows to the third heat exchanger 66 where heat is transferred to the air flowing in the air conduit 60 to the second fluid. The second fluid flows to the second heat transfer surface 106 and is in thermal communication with the second heat transfer surface 106. The second heat transfer surface 106 absorbs heat and removes heat from the second fluid. The second fluid flows to the second heat exchanger 64 where heat is removed from the air flowing in the air conduit 60 to the second fluid.


Therefore, air is cooled in the second heat exchanger 64, heated by the third heat exchanger 66, and delivered to the passenger compartment of the vehicle for demisting. By initially cooling the air, moisture is caused to be removed from the air by condensation.


In a cooling mode, where the engine 40 is not operating and the electric motor is operating, the second heat exchanger 64 and the third heat exchanger 66 remove heat from the air stream, and the first heat exchanger 62 is idle. It is understood that the engine 40 may have also been previously running and has residual heat stored therein, and that the second circuit 14 is operated as described for FIG. 1 to remove heat from the engine 40. Additionally, it is understood that the engine 40 could be operating, and that the second circuit 14 is operated as described for FIG. 1 to remove heat from the engine 40.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 124 is operating to circulate the second fluid through the third conduit 122. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 remove heat from the first fluid. Thus, the second fluid flows to the second heat exchanger 64 and the third heat exchanger 66 where heat is transferred from the air flowing in the air conduit 60 to the second fluid. Therefore, air is cooled in the second heat exchanger 64 and the third heat exchanger 66, and delivered to the passenger compartment of the vehicle.



FIG. 4 shows a heating ventilating, and air conditioning (HVAC) system 140 for supplying conditioned air to a passenger compartment of a vehicle according to another embodiment of the invention. Structure included from FIGS. 1 and 2 has the same reference numeral for clarity and a description thereof is not repeated.


In the embodiment shown, the first TED 54 and the second TED 102 include a third conduit 142 in thermal communication with both the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The third conduit 142 conveys a second fluid (not shown). The second fluid can be any conventional fluid such as air or a coolant such as a water-glycol coolant, for example. A pump 144 is disposed in the third conduit 142 to circulate the second fluid therethrough.


The first heat exchanger 62 is in fluid communication with the second circuit 14. The second heat exchanger 64 has an outlet 146 in fluid communication with the first TED 54 and an inlet 148 in fluid communication with the second TED 102. The third heat exchanger 66 has an outlet 150 in fluid communication with the second TED 102 and an inlet 152 in fluid communication with the first TED 54. The third conduit 142 circulates the second fluid between the first TED 54, the third heat exchanger 66, the second TED 102 and the second heat exchanger 64. However, a diverter valve 154 is disposed in the third conduit 142 to selectively control flow of the second fluid from the first TED 54. In a first position, the diverter valve 154 directs flow as described for FIG. 3. In a second position, the diverter valve 154 directs flow from the first TED 54, to the second TED 102, and back to the second heat exchanger 64. Therefore, the third heat exchanger 66 is bypassed and the flow is similar to the flow of the second fluid described for FIG. 1.


In operation, the system 140 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated, by the arrow in the air conduit 60. Similar to the operation described for the systems 10, 100, 120 the system 140 can operate in a heating mode, a demisting mode, and a cooling mode.


In a first heating mode where the engine 40 is operating and the electric motor is not operating, the first heat exchanger 62 and the second heat exchanger 64, transfer heat into the air stream. The third heat exchanger 66 is idle. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.


The pump 18 of the first circuit 12 is not operating to circulate the first fluid through the first conduit 16. In order to supply the first fluid to the first TED 54 and the second TED 102, the pump 36 is operating and the valves 32, 34 of the crossover conduits 28, 30 are open to permit flow therethrough. A portion of the flow of the first fluid in the second conduit 38 is directed through the crossover conduit 28 and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat and remove heat from the first fluid. The first fluid then flows through the crossover conduit 30 to re-enter the second conduit 38 and flow to the first heat exchanger 62.


The pump 144 is operating to circulate the second fluid through the third conduit 142 and bypassing the third heat exchanger 66. The diverter valve 154 is in a position to militate against flow of the second fluid to the third heat exchanger 66. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 generate heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62 and the second heat exchanger 64. It is understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle. It is further understood that this mode can be used as described above for FIG. 3 to transfer heat into the air stream using the first heat exchanger 62, the second heat exchanger 64 and the third heat exchanger 66.


In a second heating mode where the engine 40 is operating and the electric motor is operating, the first heat exchanger 62 and the second heat exchanger 64 transfer heat into the air stream. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.


The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.


The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The first fluid flows through the battery compartment 22 where heat is transferred into the first fluid, flows through the first conduit 16, and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The diverter valve 26 is positioned to militate against flow through the heat exchanger 20 and permit flow to the battery compartment 22. Thus, heat is not removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat to and remove heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 144 is operating to circulate the second fluid through the third conduit 142 and bypassing the third heat exchanger 66. The diverter valve 154 is in a position to militate against flow of the second fluid to the third heat exchanger 66. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 generate heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62 and the second heat exchanger 64. It is understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle. It is further understood that this mode can be used as described above for FIG. 3 to transfer heat into the air stream using the first heat exchanger 62, the second heat exchanger 64 and the third heat exchanger 66.


In a demisting mode, the system 140 is used as described above for FIG. 3.


In a cooling mode, where the engine 40 is not operating and the electric motor is operating, the second heat exchanger 64 removes heat from the air stream, and the first heat exchanger 62 and the third heat exchanger 66 are idle. It is understood that the engine 40 may have also been previously running and has residual heat stored therein, and that the second circuit 14 is operated as described for FIG. 1 to remove heat from the engine 40. Additionally, it is understood that the engine 40 could be operating, and that the second circuit 14 is operated as described for FIG. 1 to remove heat from the engine 40.


The pump 18 of the first circuit 12 is: operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.


The pump 144 is operating to circulate the second fluid through the third conduit 142 and bypassing the third heat exchanger 66. The diverter valve 154 is in a position to militate against flow of the second fluid to the third heat exchanger 66. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 remove heat from the first fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the air flowing in the air conduit 60 to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, air is cooled in the second heat exchanger 64 and delivered to the passenger compartment of the vehicle. It is understood that this mode can be used as described above for FIG. 3 to transfer heat from the air stream using the second heat exchanger 64 and the third heat exchanger 66.



FIG. 5 shows a heating ventilating, and air conditioning (HVAC) system 160 for supplying conditioned air to a passenger compartment of a vehicle according to another embodiment of the invention. The system 160 includes a first fluid circuit 162 and a second fluid circuit 164. In the embodiment shown, the first circuit 162 communicates with components of an electric side of a hybrid vehicle (not shown) and the second circuit 164 communicates with components of a fuel fed side of the hybrid vehicle. A first fluid (not shown) is circulated in the first circuit 162 and the second circuit 164 and can be any conventional fluid such as air or a coolant such as a water-glycol coolant, for example.


The first circuit 162 includes a first conduit 166 for conveying the first fluid through the first circuit 162. A pump 168 is disposed in the first conduit 166 to circulate the first fluid therethrough. The first conduit 166 includes a heat exchanger 170 disposed therein. The heat exchanger 170 can be any conventional heat exchanger such as a low temperature core, for example. The first fluid is also circulated through a battery compartment or other source of heat 172 from the electric side of the hybrid vehicle to remove heat therefrom. In the embodiment shown, the battery compartment 172 is disposed in parallel with the heat exchanger 170. However, it is understood that other configurations can be used as desired such as in series or a separate conduit, for example. A flow valve 174 and a diverter valve 176 are also disposed in the first conduit 166. It is understood that more or fewer valves may be used as desired to control flow of the first fluid through the first conduit 166.


Crossover conduits 178, 180 are provided between the first circuit 162 and the second circuit 164. Flow valves 182, 184 are provided in respective crossover conduits 178, 180 to selectively permit flow of the first fluid therethrough.


A second conduit 186 is included in the second circuit 164. The second conduit 186 is in fluid communication with an engine 188 of the hybrid vehicle to circulate the first fluid therethrough and remove heat therefrom. A heat exchanger 190 is disposed in the second conduit 186 downstream of the engine 188. The heat exchanger 190 can be any conventional heat exchanger such as a radiator for the vehicle, for example. A first bypass conduit 192 is provided to permit bypassing of the heat exchanger 190 and a second bypass conduit 194 is provided to create a recirculation circuit. Flow through the second bypass conduit 194 is controlled by a flow valve 196. It is understood that more or fewer valves may be used as desired to control flow of the first fluid through the second conduit 186. A pump 198 is disposed in the second conduit 186 to circulate the first fluid therethrough. An expansion tank 200 is provided to account for expansion of the first fluid during operation of the system 160. An exhaust gas heat recovery device 202 is provided to permit heat recovery from exhaust gases.


A first thermoelectric device (TED) 204 is disposed adjacent the first conduit 166. The first TED 204 includes a first heat transfer surface 206 and a second heat transfer surface 208. The first heat transfer surface 206 is in thermal communication with the first conduit 166 of the first circuit 162. The first TED 204 is in electrical communication with a control system (not shown). The control system controls an electric current sent to the first TED 204. When the current is delivered in one direction, one of the first heat transfer surface 206 and the second heat transfer surface 208 generates thermal energy or heat, and the other of the first heat transfer surface 206 and the second heat transfer surface 208 absorbs thermal energy or heat. When the current is reversed, the one of the first heat transfer surface 206 and the second heat transfer surface 208 which was generating heat now absorbs heat and the other of the first heat transfer surface 206 and the second heat transfer surface 208 now generates heat. Additionally, when the current is increased, a heating and cooling capacity of the TED is increased Likewise, when the current is decreased, the heating and cooling capacity of the TED is decreased. Although a single thermoelectric device is shown, it is understood that additional thermoelectric devices can be used, as desired.


An air conduit 210 in fluid communication with a source of air (not shown) is provided to supply the conditioned air to the passenger compartment of the vehicle. The air conduit 210 includes a first heat exchanger 212 disposed therein. The heat exchanger 212 can be any conventional type of heat exchanger. The air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204.


In operation, the system 160 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 210. The system 160 can operate in a heating mode and a cooling mode. Additionally, if a second TED is added as discussed for FIGS. 2-4, or if the first TED 204 is disposed upstream of the first heat exchanger 190, the system 160 can operate in a demisting mode.


In a first heating mode where the engine 188 is operating and the electric motor is not operating, the first heat exchanger 212 and the first TED 204 transfer heat into the air stream. The pump 168 of the first circuit 162 is not operating to circulate the first fluid through the first conduit 166. The pump 198 of the second circuit 164 is operating to circulate the first fluid through the second conduit 186. A portion of the flow of the first fluid may be permitted to flow through the heat exchanger 190, or if additional valves are use, flow through the heat exchanger 190 can be militated against. Heat is transferred into the first fluid by the engine 188.


The valve 182 is positioned to permit flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to absorb heat and remove some heat from the first fluid. The first fluid then flows to the first heat exchanger 212. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 generates heat which is transferred to the air flowing in the air conduit 210.


The valve 184 is positioned to permit flow through the first heat exchanger 212. In the first fluid flowing through the first heat exchanger 212, heat is removed therefrom and transferred to the air flowing in the air conduit 210. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 212 and the first TED 204.


In a second heating mode, where the engine 188 is not operating and the electric motor is operating, the first TED 204 transfers heat into the air stream. The pump 168 of the first circuit 162 is operating to circulate the first fluid through the first conduit 166. The diverter valve 176 is positioned to militate against flow of the first fluid to the heat exchanger 170 and permit flow to the battery compartment 172. Heat is transferred into the first fluid by the battery compartment 172. The pump 198 of the second circuit 164 is not operating to circulate the first fluid through the second conduit 186. It is understood that if the engine 188 is operating, or if there is residual heat in the engine 188 requiring removal, the pump 198 can be operated to cause the first fluid to flow through the heat exchanger 190 and recirculate back to the pump 198. If this is necessary, the valve 196 is positioned to permit flow therethrough to recirculate the flow of the first fluid back to the pump 198.


The valve 182 is positioned to militate against flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The valve 184 is positioned to militate against flow through the first heat exchanger 212.


The valve 174 is positioned to permit flow of the first fluid from the battery compartment 172 to the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to absorb heat and remove heat from the first fluid. The first fluid then flows back to the pump 168 for recirculation. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 generates heat which is transferred to the air flowing in the air conduit 210. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first TED 204.


In a cooling mode, where the engine 188 is not operating and the electric motor is operating, the first TED 204 removes heat from the air stream. The pump 168 of the first circuit 162 is operating to circulate the first fluid through the first conduit 166. The diverter valve 176 is positioned to militate against flow of the first fluid to the battery compartment 172 and permit flow to the heat. exchanger 170. Heat is removed from the first fluid by the heat exchanger 170. The pump 198 of the second circuit 164 is not operating to circulate the first fluid through the second conduit 186. It is understood that if the engine 188 is operating, or if there is residual heat in the engine 188 requiring removal, the pump 198 can be operated to cause the first fluid to flow through the heat exchanger 190 and recirculate back to the pump 198. If this is necessary, the valve 196 is positioned to permit flow therethrough to recirculate the flow of the first fluid back to the pump 198.


The valve 182 is positioned to militate against flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The valve 184 is positioned to militate against flow through the first heat exchanger 212.


The valve 174 is positioned to permit flow of the first fluid from the heat exchanger 170 to the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to generate heat which is absorbed by the first fluid. The first fluid then flows back to the pump 168 for recirculation. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 absorbs heat from the air flowing in the air conduit 210. Therefore, cooled air is delivered to the passenger compartment of the vehicle from the first TED 204.



FIG. 6 shows a heating ventilating, and air conditioning (HVAC) system 220 for supplying conditioned air to a passenger compartment of a vehicle according to another embodiment of the invention. Structure included from FIG. 5 has the same reference numeral for clarity and a description thereof is not repeated.


In the embodiment shown, a pump 222 is provided to selectively circulate the first fluid through the first conduit 166 and a crossover conduit 224. A flow valve 226 is disposed in the crossover conduit 224 to selectively permit flow of the first fluid therethrough. It is understood that more or fewer valves may be used as desired.


In operation, the system 220 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 210. The system 220 can operate in a heating mode and a cooling mode. Additionally, if a second TED is added as discussed for FIGS. 2-4, or if the first TED 204 is disposed upstream of the first heat exchanger 190, the system 220 can operate in a demisting mode.


In a first heating mode where the engine 188 is operating and the electric motor is not operating, the first heat exchanger 212 and the first TED 204 transfer heat into the air stream. The pump 222 is operating to circulate the first fluid through the crossover conduit 224. The pump 198 of the second circuit 164 is operating to circulate the first fluid through the second conduit 186. A portion of the flow of the first fluid may be permitted to flow through the heat exchanger 190, or if additional valves are use, flow through the heat exchanger 190 can be militated against. Heat is transferred into the first fluid by the engine 188.


The valve 182 is positioned to permit flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to absorb heat and remove some heat from the first fluid. The first fluid then flows through to the pump 222. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 generates heat which is transferred to the air flowing in the air conduit 210.


The valve 226 is positioned to permit flow through the first heat exchanger 212. In the first fluid flowing through the first heat exchanger 212, heat is removed therefrom and transferred to the air flowing in the air conduit 210. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 212 and the first TED 204.


In a second heating mode, where the engine 188 is not operating and the electric motor is operating, the first TED 204 transfers heat into the air stream. The pump 222 is operating to circulate the first fluid through the first conduit 166. The diverter valve 176 is positioned to militate against flow of the first fluid to the heat exchanger 170 and permit flow to the battery compartment 172. Heat is transferred into the first fluid by the battery compartment 172. The pump 198 of the second circuit 164 is not operating to circulate the first fluid through the second conduit 186. It is understood that if the engine 188 is operating, or if there is residual heat in the engine 188 requiring removal, the pump 198 can be operated to cause the first fluid to flow through the heat exchanger 190 and recirculate back to the pump 198. If this is necessary, the valve 196 is positioned to permit flow therethrough to recirculate the flow of the first fluid back to the pump 198.


The valve 182 is positioned to militate against flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The valve 226 is positioned to militate against flow through the first heat exchanger 212.


The valve 174 is positioned to permit flow of the first fluid from the battery compartment 172 to the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to absorb heat and remove heat from the first fluid. The first fluid then flows back to the pump 222 for recirculation. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 generates heat which is transferred to the air flowing in the air conduit 210. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first TED 204.


In a cooling mode, where the engine 188 is not operating and the electric motor is operating, the first TED 204 removes heat from the air stream. The pump 222 is operating to circulate the first fluid through the first conduit 166. The diverter valve 176 is positioned to militate against flow of the first fluid to the battery compartment 172 and permit flow to the heat exchanger 170. Heat is removed from the first fluid by the heat exchanger 170. The pump 198 of the second circuit 164 is not operating to circulate the first fluid through the second conduit 186. It is understood that if the engine 188 is operating, or if there is residual heat in the engine 188 requiring removal, the pump 198 can be operated to cause the first fluid to flow through the heat exchanger 190 and recirculate back to the pump 198. If this is necessary, the valve 196 is positioned to permit flow therethrough to recirculate the flow of the first fluid back to the pump 198.


The valve 182 is positioned to militate against flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The valve 226 is positioned to militate against flow through the first heat exchanger 212.


The valve 174 is positioned to permit flow of the first fluid from the heat exchanger 170 to the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to generate heat which is absorbed by the first fluid. The first fluid then flows back to the pump 222 for recirculation. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 absorbs heat from the air flowing in the air conduit 210. Therefore, cooled air is delivered to the passenger compartment of the vehicle from the first TED 204.



FIG. 7 shows a heating ventilating, and air conditioning (HVAC) system 230 for supplying conditioned air to a passenger compartment of a vehicle according to another embodiment of the invention. Structure included from FIGS. 5 and 6 has the same reference numeral for clarity and a description thereof is not repeated.


In the embodiment shown, the valve 196 has been removed from the system. It is understood that more or fewer valves may be used as desired.


In operation, the system 230 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 210. The system 230 can operate in a heating mode and a cooling mode. Additionally, if a second TED is added as discussed for FIGS. 2-4, or if the first TED 204 is disposed upstream of the first heat exchanger 190, the system 230 can operate in a demisting mode.


The operation of the system 230 is the same as described above for FIG. 6, except for the valve 196. The valve 196 has been removed in the system 230. Thus, it is not necessary to open a valve to permit recirculation of the flow of the first fluid through the second circuit 164.



FIG. 8 shows a heating ventilating, and air conditioning (HVAC) system 240 for supplying conditioned air to a passenger compartment of a vehicle according to another embodiment of the invention. Structure included from FIGS. 5, 6, and 7 has the same reference numeral for clarity and a description thereof is not repeated.


In the embodiment shown, a point at which a return conduit 242 connects to the second conduit 186 has been changed. The return conduit 242 connects directly into the second conduit 186, where the previous connection was made upstream of the exhaust gas heat recovery device 202. The operation of the system 240 is the same as described above for FIG. 7.


From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.

Claims
  • 1. A heating, ventilating, and air conditioning system for a vehicle, the system comprising: a first fluid circuit including a first conduit configured to convey a first fluid therein, said first circuit in thermal communication with an electric side of the vehicle;a second fluid circuit including a second conduit configured to convey the first fluid therein;a first thermoelectric device having a first heat transfer surface and a second heat transfer surface, the first heat transfer surface in thermal communication with at least one of said first circuit and said second circuit, the second heat transfer surface adapted to be in thermal communication with an air stream conduit, wherein said first thermoelectric device is in direct thermal communication with said air stream conduit; anda first heat exchanger in thermal communication with said second fluid circuit, wherein said first circuit, said second circuit, said first thermoelectric device, and said first heat exchanger are configured to cooperate to heat, cool, or demist an air stream in the air stream conduit.
  • 2. The system according to claim 1, wherein the air stream conduit is in communication with a passenger compartment of the vehicle and a source of air for supplying the air stream.
  • 3. The system according to claim 1, further comprising a first crossover conduit configured to selectively permit flow of the first fluid between the first fluid circuit and the second fluid circuit.
  • 4. The system according to claim 1, further comprising a second crossover conduit configured to selectively permit flow of the first fluid between the first thermoelectric device and the first heat exchanger.
  • 5. The system according to claim 1, further comprising a recirculation conduit configured to recirculate the first fluid within the second fluid circuit without the first fluid flowing to the first fluid circuit.
  • 6. The system of according to claim 5, further comprising a valve configured to control flow of the first fluid through the recirculation conduit.
  • 7. The system according to claim 5, wherein the recirculation conduit is in thermal communication with an exhaust gas heat recovery device configured to recover heat from exhaust gases.
  • 8. The system according to claim 1, wherein the first fluid circuit comprises a first bypass conduit and a valve configured to direct the first fluid through at least one of the first bypass conduit or the electric side of the vehicle.
  • 9. The system according to claim 1, wherein the second fluid circuit comprises a second bypass conduit in fluid communication with at least one of a first crossover conduit or a recirculation conduit, the first crossover conduit configured to selectively permit flow of the first fluid between the first fluid circuit and the second fluid circuit, the recirculation conduit configured to recirculate the first fluid within the second fluid circuit without the first fluid flowing to the first fluid circuit, and the second bypass conduit configured to bypass a second heat exchanger disposed in the second fluid circuit, the second heat exchanger in thermal communication with an engine of a fuel fed side of the vehicle.
  • 10. The system according to claim 1, wherein the thermoelectric device transfers thermal energy from the first fluid to the air stream in a heating mode, and wherein the thermoelectric device transfers thermal energy from the air stream to the first fluid in a cooling mode.
  • 11. The system according to claim 1, wherein the first fluid is a coolant.
  • 12. The system of according to claim 1, wherein a source of heat is the first conduit.
  • 13. The system according to claim 1, wherein a source of heat is the second conduit.
  • 14. The system according to claim 1, wherein the first heat exchanger is disposed in the air stream conduit, and wherein the first thermoelectric device is in direct thermal communication with said air stream conduit downstream of the first heat exchanger in the air stream conduit.
  • 15. The system according to claim 1, wherein the electric side of the vehicle comprises a battery.
  • 16. The system according to claim 8, wherein the first bypass conduit is in thermal communication with a third heat exchanger configured to remove heat from the first fluid.
INCORPORATION BY REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/609,499, entitled HVAC SYSTEM FOR A HYBRID VEHICLE, filed Oct. 30, 2009, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/139,494, entitled HVAC SYSTEM FOR A HYBRID VEHICLE, filed Dec. 19, 2008. This application is a continuation of U.S. application Ser. No. 12/862,674, entitled HYBRID VEHICLE TEMPERATURE CONTROL SYSTEMS AND METHODS, filed Aug. 24, 2010, which is a continuation of U.S. application Ser. No. 11/497,700, entitled HVAC SYSTEM FOR HYBRID VEHICLES USING THERMOELECTRIC DEVICES, filed Aug. 2, 2006, now U.S. Pat. No. 7,779,639. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are incorporated by reference under 37 CFR 1.57 and made a part of this specification.

US Referenced Citations (302)
Number Name Date Kind
413136 Dewey Oct 1889 A
2363168 Findley Nov 1944 A
2499901 Brown, Jr. Mar 1950 A
2944404 Fritts Jul 1960 A
2949014 Belton, Jr. et al. Aug 1960 A
2984077 Gaskill May 1961 A
2997514 Roeder, Jr. Aug 1961 A
3085405 Frantti Apr 1963 A
3125860 Reich Mar 1964 A
3136577 Richard Jun 1964 A
3137142 Venema Jun 1964 A
3138934 Roane Jun 1964 A
3196620 Elfving et al. Jul 1965 A
3212275 Tillman, Jr. Oct 1965 A
3213630 Mole Oct 1965 A
3236056 Phillips et al. Feb 1966 A
3252504 Newton May 1966 A
3391727 Topouszian Jul 1968 A
3527621 Newton Sep 1970 A
3561224 Hampden et al. Feb 1971 A
3599437 Panas Aug 1971 A
3635037 Hubert Jan 1972 A
3681929 Schering Aug 1972 A
3779307 Weiss et al. Dec 1973 A
3817043 Zoleta Jun 1974 A
3885126 Sugiyama et al. May 1975 A
4038831 Gaudel et al. Aug 1977 A
4051691 Dawkins Oct 1977 A
4065936 Fenton et al. Jan 1978 A
4193271 Honigsbaum Mar 1980 A
4229687 Newman Oct 1980 A
4280330 Harris et al. Jul 1981 A
4314008 Blake Feb 1982 A
4324845 Stockel Apr 1982 A
4444851 Maru Apr 1984 A
4448157 Eckstein et al. May 1984 A
4494380 Cross Jan 1985 A
4531379 Diefenthaler, Jr. Jul 1985 A
4658599 Kajiwara Apr 1987 A
4665707 Hamilton May 1987 A
4665971 Sakurai May 1987 A
4707995 Assaf Nov 1987 A
4753682 Cantoni Jun 1988 A
4823554 Trachtenberg et al. Apr 1989 A
4848090 Peters Jul 1989 A
4858069 Hughes Aug 1989 A
4865929 Eck Sep 1989 A
4905475 Tuomi Mar 1990 A
4907060 Nelson et al. Mar 1990 A
4922721 Robertson et al. May 1990 A
4922998 Carr May 1990 A
4947735 Guillemin Aug 1990 A
4988847 Argos et al. Jan 1991 A
4999576 Levinson Mar 1991 A
5015545 Brooks May 1991 A
5029446 Suzuki Jul 1991 A
5038569 Shirota et al. Aug 1991 A
5042566 Hildebrand Aug 1991 A
5071652 Jones et al. Dec 1991 A
5092129 Bayes et al. Mar 1992 A
5097829 Quisenberry Mar 1992 A
5111664 Yang May 1992 A
5119640 Conrad Jun 1992 A
5121047 Goedken et al. Jun 1992 A
5141826 Bohm et al. Aug 1992 A
5167129 Akasaka Dec 1992 A
5193347 Apisdorf Mar 1993 A
5197291 Levinson Mar 1993 A
5198930 Muratomi Mar 1993 A
5229702 Boehling Jul 1993 A
5232516 Hed Aug 1993 A
5269146 Kerner Dec 1993 A
5291960 Brandenburg et al. Mar 1994 A
5300197 Mitani et al. Apr 1994 A
5303771 Des Champs Apr 1994 A
5316078 Cesaroni May 1994 A
5385020 Gwilliam et al. Jan 1995 A
5386823 Chen Feb 1995 A
5395708 Hall Mar 1995 A
5407130 Uyeki et al. Apr 1995 A
5419980 Okamoto et al. May 1995 A
5431021 Gwilliam et al. Jul 1995 A
5448891 Nakagiri et al. Sep 1995 A
5450894 Inoue et al. Sep 1995 A
5483807 Abersfelder et al. Jan 1996 A
5497625 Manz et al. Mar 1996 A
5499504 Mill et al. Mar 1996 A
5549153 Baruschke et al. Aug 1996 A
5566774 Yoshida Oct 1996 A
5576512 Doke Nov 1996 A
5592363 Atarashi et al. Jan 1997 A
5605047 Park et al. Feb 1997 A
5623195 Bullock et al. Apr 1997 A
5653111 Attey et al. Aug 1997 A
5673964 Roan et al. Oct 1997 A
5694770 Bruck et al. Dec 1997 A
5705770 Ogassawara et al. Jan 1998 A
5713426 Okamura Feb 1998 A
5722249 Miller, Jr. Mar 1998 A
5725048 Burk et al. Mar 1998 A
5802856 Schaper et al. Sep 1998 A
5816236 Moroi et al. Oct 1998 A
5871859 Parise Feb 1999 A
5890371 Rajasubramanian et al. Apr 1999 A
5899086 Noda et al. May 1999 A
5901572 Peiffer et al. May 1999 A
RE36242 Apisdorf Jun 1999 E
5918930 Kawai et al. Jul 1999 A
5921088 Imaizumi et al. Jul 1999 A
5955772 Shakouri et al. Sep 1999 A
5964092 Tozuka et al. Oct 1999 A
5966941 Ghoshal Oct 1999 A
5975856 Welle Nov 1999 A
5977785 Burward-Hoy Nov 1999 A
5987890 Chiu et al. Nov 1999 A
6028263 Kobayashi et al. Feb 2000 A
6050326 Evans Apr 2000 A
6057050 Parise May 2000 A
6059198 Moroi et al. May 2000 A
6082445 Dugan Jul 2000 A
6084172 Kishi et al. Jul 2000 A
6105659 Pocol et al. Aug 2000 A
6119463 Bell Sep 2000 A
6122588 Shehan et al. Sep 2000 A
6138466 Lake et al. Oct 2000 A
6138749 Kawai et al. Oct 2000 A
6158225 Muto et al. Dec 2000 A
6203939 Wilson Mar 2001 B1
6205802 Drucker et al. Mar 2001 B1
6205805 Takahashi et al. Mar 2001 B1
6213198 Shikata et al. Apr 2001 B1
6223539 Bell May 2001 B1
6270015 Hirota Aug 2001 B1
6293107 Kitagawa Sep 2001 B1
6294721 Oravetz et al. Sep 2001 B1
6324860 Maeda et al. Dec 2001 B1
6334311 Kim et al. Jan 2002 B1
6346668 McGrew Feb 2002 B1
6347521 Kadotani et al. Feb 2002 B1
6366832 Lomonaco et al. Apr 2002 B2
6393842 Kim May 2002 B2
6401462 Bielinski Jun 2002 B1
6412287 Hughes et al. Jul 2002 B1
6438964 Giblin Aug 2002 B1
6455186 Moores, Jr. et al. Sep 2002 B1
6457324 Zeigler et al. Oct 2002 B2
6464027 Dage et al. Oct 2002 B1
6474073 Uetsuji et al. Nov 2002 B1
6474081 Feuerecker Nov 2002 B1
6481213 Carr et al. Nov 2002 B2
6510696 Guttman et al. Jan 2003 B2
6530920 Whitcroft et al. Mar 2003 B1
6539725 Bell Apr 2003 B2
6554088 Severinsky et al. Apr 2003 B2
6560968 Ko May 2003 B2
6569550 Khelifa May 2003 B2
6570362 Estes et al. May 2003 B1
RE38128 Gallup et al. Jun 2003 E
6588217 Ghoshal Jul 2003 B2
6605773 Kok Aug 2003 B2
6606877 Tomita et al. Aug 2003 B2
6607142 Boggs et al. Aug 2003 B1
6611115 Wakashiro et al. Aug 2003 B2
6640889 Harte et al. Nov 2003 B1
6645666 Moores, Jr. et al. Nov 2003 B1
6653002 Parise Nov 2003 B1
6682844 Gene Jan 2004 B2
6700052 Bell Mar 2004 B2
6705089 Chu et al. Mar 2004 B2
6722139 Moon et al. Apr 2004 B2
6732534 Spry May 2004 B2
6767666 Nemoto Jul 2004 B2
6792259 Parise Sep 2004 B1
6796399 Satou et al. Sep 2004 B2
6803766 Kobayashi et al. Oct 2004 B2
6807811 Lee Oct 2004 B2
6810977 Suzuki Nov 2004 B2
6862892 Meyer et al. Mar 2005 B1
6883602 Drucker Apr 2005 B2
6886356 Kubo et al. May 2005 B2
6894369 Irino et al. May 2005 B2
6896047 Currle et al. May 2005 B2
6907739 Bell Jun 2005 B2
6910345 Horstmann et al. Jun 2005 B2
6942728 Caillat et al. Sep 2005 B2
6949309 Moores, Jr. et al. Sep 2005 B2
6951114 Grisham et al. Oct 2005 B2
6959555 Bell Nov 2005 B2
6973799 Kuehl et al. Dec 2005 B2
6986247 Parise Jan 2006 B1
7007491 Grimm et al. Mar 2006 B2
7014945 Moores, Jr. et al. Mar 2006 B2
7056616 Moores, Jr. et al. Jun 2006 B2
7061208 Nishihata et al. Jun 2006 B2
7089756 Hu Aug 2006 B2
7100369 Yamaguchi et al. Sep 2006 B2
7171955 Perkins Feb 2007 B2
7230404 Kimoto et al. Jun 2007 B2
7246496 Goenka et al. Jul 2007 B2
7252904 Moores, Jr. et al. Aug 2007 B2
7270910 Yahnker et al. Sep 2007 B2
7310953 Pham et al. Dec 2007 B2
7326490 Moores, Jr. et al. Feb 2008 B2
7363766 Eisenhour Apr 2008 B2
7380586 Gawthrop Jun 2008 B2
7384704 Scott Jun 2008 B2
7426835 Bell Sep 2008 B2
7629530 Inaoka Dec 2009 B2
7743614 Goenka et al. Jun 2010 B2
7779639 Goenka Aug 2010 B2
7784289 Scherer et al. Aug 2010 B2
7788933 Goenka Sep 2010 B2
7863866 Wolf Jan 2011 B2
7870892 Gawthrop Jan 2011 B2
7926293 Bell Apr 2011 B2
7946120 Bell May 2011 B2
8069674 Bell Dec 2011 B2
8104294 Reeve Jan 2012 B2
8359871 Woods et al. Jan 2013 B2
8408012 Goenka et al. Apr 2013 B2
8490412 Bell et al. Jul 2013 B2
8495884 Bell et al. Jul 2013 B2
8631659 Goenka Jan 2014 B2
8783397 Goenka et al. Jul 2014 B2
20010029974 Cohen et al. Oct 2001 A1
20020092307 Ghoshal Jul 2002 A1
20020095943 Hatakeyama et al. Jul 2002 A1
20030140636 Van Winkle Jul 2003 A1
20030145605 Moon et al. Aug 2003 A1
20030230443 Cramer et al. Dec 2003 A1
20040025516 Van Winkle Feb 2004 A1
20040050076 Palfy et al. Mar 2004 A1
20040093889 Bureau et al. May 2004 A1
20040098991 Heyes May 2004 A1
20040237541 Murphy Dec 2004 A1
20050000473 Ap et al. Jan 2005 A1
20050011199 Grisham et al. Jan 2005 A1
20050061497 Amaral Mar 2005 A1
20050067862 Iqbal et al. Mar 2005 A1
20050074646 Rajashekara et al. Apr 2005 A1
20050133206 Scott Jun 2005 A1
20050139692 Yamamoto Jun 2005 A1
20050178128 Harwood et al. Aug 2005 A1
20050247446 Gawthrop Nov 2005 A1
20050257531 Kadle et al. Nov 2005 A1
20050257545 Ziehr et al. Nov 2005 A1
20050268621 Kadle et al. Dec 2005 A1
20050278863 Bahash et al. Dec 2005 A1
20060005548 Ruckstuhl Jan 2006 A1
20060011152 Hayes Jan 2006 A1
20060028182 Yang et al. Feb 2006 A1
20060059933 Axakov et al. Mar 2006 A1
20060060236 Kim Mar 2006 A1
20060075758 Rice et al. Apr 2006 A1
20060124165 Bierschenk et al. Jun 2006 A1
20060130490 Petrovski Jun 2006 A1
20060137358 Feher Jun 2006 A1
20060150657 Spurgeon et al. Jul 2006 A1
20060157102 Nakajima et al. Jul 2006 A1
20060188418 Park et al. Aug 2006 A1
20060254284 Ito et al. Nov 2006 A1
20060254285 Lin Nov 2006 A1
20070000255 Elliot et al. Jan 2007 A1
20070017666 Goenka et al. Jan 2007 A1
20070056295 De Vilbiss Mar 2007 A1
20070193617 Taguchi Aug 2007 A1
20070214799 Goenka Sep 2007 A1
20070272290 Sims et al. Nov 2007 A1
20080017362 Kwon et al. Jan 2008 A1
20080090137 Buck et al. Apr 2008 A1
20080239675 Speier Oct 2008 A1
20080307796 Bell et al. Dec 2008 A1
20080311466 Yang et al. Dec 2008 A1
20090000310 Bell et al. Jan 2009 A1
20090025770 Lofy Jan 2009 A1
20090118869 Cauchy et al. May 2009 A1
20100031987 Bell Feb 2010 A1
20100052374 Bell et al. Mar 2010 A1
20100101238 LaGrandeur et al. Apr 2010 A1
20100101239 LaGrandeur et al. Apr 2010 A1
20100112419 Jang et al. May 2010 A1
20100155018 Goenka et al. Jun 2010 A1
20100287952 Goenka Nov 2010 A1
20100291414 Bell et al. Nov 2010 A1
20100313576 Goenka Dec 2010 A1
20110067742 Bell et al. Mar 2011 A1
20110079023 Goenka et al. Apr 2011 A1
20110107773 Gawthrop May 2011 A1
20110236731 Bell et al. Sep 2011 A1
20110244300 Closek et al. Oct 2011 A1
20110287285 Yoon Nov 2011 A1
20120266608 Kadle et al. Oct 2012 A1
20120285758 Bell et al. Nov 2012 A1
20130059190 Kossakovski et al. Mar 2013 A1
20130174579 Goenka et al. Jul 2013 A1
20130183566 Wayne et al. Jul 2013 A1
20130192271 Ranalli et al. Aug 2013 A1
20130192272 Ranalli et al. Aug 2013 A1
20130216887 Wayne et al. Aug 2013 A1
20130317728 Hall et al. Nov 2013 A1
20130327063 Gawthrop Dec 2013 A1
20140060086 Ranalli Mar 2014 A1
Foreign Referenced Citations (79)
Number Date Country
1195090 Oct 1998 CN
13 01 454 Aug 1969 DE
2319155 Oct 1974 DE
197 30 678 Jan 1999 DE
198 29 440 Jan 2000 DE
199 51 224 May 2001 DE
20 105 487 Oct 2001 DE
10 2009 003 737 Oct 2010 DE
0 389 407 Sep 1990 EP
0418995 Mar 1991 EP
0 545 021 Jun 1993 EP
0 791 497 Aug 1997 EP
1641067 Mar 2006 EP
1 932 695 Jun 2008 EP
2806666 Sep 2001 FR
2903057 Jan 2008 FR
231 192 May 1926 GB
1 040 485 Aug 1966 GB
2 267 338 Dec 1993 GB
2 333 352 Jul 1999 GB
39-27735 Dec 1964 JP
56-18231 Feb 1981 JP
01 131830 May 1989 JP
01 200122 Aug 1989 JP
01 281344 Nov 1989 JP
04 103925 Apr 1992 JP
4-165234 Jun 1992 JP
05-37521 May 1993 JP
6-024235 Feb 1994 JP
06-135218 May 1994 JP
07-089334 Apr 1995 JP
07-54189 Jun 1995 JP
07-253224 Oct 1995 JP
08-316388 Nov 1996 JP
09042801 Feb 1997 JP
09-254630 Sep 1997 JP
9-276076 Oct 1997 JP
10035268 Feb 1998 JP
11-042933 Feb 1999 JP
11-301254 Nov 1999 JP
11-342731 Dec 1999 JP
2000 130883 May 2000 JP
2000-161721 Jun 2000 JP
2000-274788 Oct 2000 JP
2000-318434 Nov 2000 JP
2002-13758 Jan 2002 JP
2002059736 Feb 2002 JP
2003-237357 Aug 2003 JP
2004 050874 Feb 2004 JP
2005 212564 Aug 2005 JP
2005-302851 Oct 2005 JP
2006 015965 Jan 2006 JP
2007-161110 Jun 2007 JP
2008-047371 Feb 2008 JP
2008-094366 Apr 2008 JP
2008-108509 May 2008 JP
2009-245730 Oct 2009 JP
2001 111646 Dec 2001 KR
10-2002-0057600 Jun 2007 KR
10-2011-0013876 Feb 2011 KR
66619 Feb 1973 LU
337 227 May 1971 SE
184886 Jul 1966 SU
WO 9501500 Jan 1995 WO
WO 9605475 Feb 1996 WO
WO 9747930 Dec 1997 WO
WO 9909360 Feb 1999 WO
WO 9910191 Mar 1999 WO
WO 9958907 Nov 1999 WO
WO 0200458 Jan 2002 WO
WO 03014634 Feb 2003 WO
WO 2005023571 Mar 2005 WO
WO 2006037178 Apr 2006 WO
WO 2006064432 Jun 2006 WO
WO 2007001289 Jan 2007 WO
WO 2007021273 Feb 2007 WO
WO 2008147305 Apr 2008 WO
WO 2014110524 Jul 2014 WO
WO 2014120688 Aug 2014 WO
Non-Patent Literature Citations (10)
Entry
Behr, “Li-on Battery Cooling”, Power Point Presentation, Stuttgart, May 20, 2009, 13 pages.
Chinese First Office Action for CN Appl. No. 201080032250.3, dated Nov. 26, 2013.
Behr, “Thermal Management for Hybrid Vehicles”, Power Point Presentation, Technical Press Day 2009, 20 pages.
Esfahanian, Vahid et al., “Design and Simulation of Air Cooled Battery Thermal Management System Using Thermoelectric for a Hybrid Electric Bus”, Proceedings of the FISITA 2012 World Automotive Congress, vol. 3, Lecture notes in Electrical Engineering, vol. 191, 2013.
Heckenberger, Thomas, “Li-on Battery Cooling,” BEHR Power Point Presentation, Technical Press Day, Stuttgart, May 20, 2009, 13 pages.
Horie, et al., “A Study on an Advanced Lithium-ion Battery System for EVs”, The World Electric Vehicle Journal, 2008, vol. 2, Issue 2, pp. 25-31.
Jeon, et al., “Development of Battery Pack Design for High Power Li-Ion Battery Pack of HEV”, The World Electric Vehicle Association of Journal, 2007, vol. 1, pp. 94-99.
Jeon, et al., “Thermal modeling of cylindrical lithium ion battery during discharge cycle,” Energy Conversion and Management, Aug. 2011, vol. 52, Issues 8-9, pp. 2973-2981.
Morawietz, et al., “Thermoelektrische Modellierung eines Lithium-Lonen-Energiespeichers fuer den Fahrzeugeinsatz,” VDI-Berichte, Nov. 2008, Issue 2030, pp. 299-318.
Sabbah et al., “Passive Thermal Management System for Plug-in Hybrid and Comparison with Active Cooling: Limitation of Temperature Rise and Uniformity of Temperature Distribution”, ECS Transactions, 2008, vol. 13, Issue 19, pp. 41-52.
Related Publications (1)
Number Date Country
20130174579 A1 Jul 2013 US
Provisional Applications (1)
Number Date Country
61139494 Dec 2008 US
Continuations (3)
Number Date Country
Parent 12609499 Oct 2009 US
Child 13783113 US
Parent 12862674 Aug 2010 US
Child 12609499 US
Parent 11497700 Aug 2006 US
Child 12862674 US