1. Field
This disclosure relates to a heating, ventilating and air conditioning (HVAC) system for a vehicle and more particularly to a HVAC system for a hybrid vehicle, the HVAC system including at least one thermoelectric device for providing supplemental heating and cooling for air supplied to a passenger compartment of the vehicle.
2. Description of Related Art
A passenger compartment of a vehicle is typically heated and cooled by a heating, ventilating, and air conditioning (HVAC) system. The HVAC system directs a flow of air through a heat exchanger to heat or cool the air prior to flowing into the passenger compartment. In the heat exchanger, energy is transferred between the air and a coolant such as a water-glycol coolant, for example. The air is normally supplied from ambient air or a mixture of air re-circulated from the passenger compartment and ambient air. Energy for heating and cooling of the passenger compartment of the vehicle is typically supplied from a fuel fed engine such as an internal combustion engine, for example.
In a hybrid vehicle, both a fuel fed engine and an electric motor are used to power a drive system for the vehicle. Thus, at times the fuel fed engine may be operating, the electric motor may be operating, and both the fuel fed engine and the electric motor may be operating. Therefore, the HVAC system in the hybrid vehicle must be capable of heating and cooling air during each of these operating modes. Examples of such systems are shown and described in commonly owned U.S. patent application Ser. No. 11/101,871 filed Apr. 8, 2005, hereby incorporated herein by reference in its entirety, and U.S. patent application Ser. No. 11/184,447 filed Jul. 19, 2005, hereby incorporated herein by reference in its entirety. If the fuel fed engine must be operating in order to operate the HVAC system in the hybrid vehicle, an efficiency thereof is reduced.
It would be desirable to produce a heating, ventilating, and air conditioning system for a hybrid vehicle, wherein an efficiency of operation of the hybrid vehicle during operation of the HVAC system is maximized.
Consistent and consonant with the present invention, a heating, ventilating, and air conditioning system for a hybrid vehicle, wherein an efficiency of operation of the hybrid vehicle during operation of the HVAC system is maximized, has surprisingly been discovered.
In one embodiment, the heating, ventilating, and air conditioning system for a hybrid vehicle comprises a first fluid circuit including a first conduit for conveying a first fluid therein, the first circuit in thermal communication with an electric side of the hybrid vehicle; a second fluid circuit including a second conduit for conveying the first fluid therein, the second circuit in thermal communication with a fuel fed side of the hybrid vehicle; a first thermoelectric device having a first heat transfer surface and a second heat transfer surface, the first heat transfer surface in thermal communication with at least one of the first circuit and the second circuit, the second heat transfer surface adapted to be in thermal communication with an air stream; and a first heat exchanger disposed in the air stream and in thermal communication with the second fluid circuit, wherein the first circuit, the second circuit, the first thermoelectric device, and the first heat exchanger cooperate to heat, cool, and demist the air stream.
In another embodiment, the heating, ventilating, and air conditioning system for a hybrid vehicle comprises a first conduit forming a first circuit for conveying a first fluid therein; a second conduit forming a second circuit for conveying the first fluid therein; a third conduit for conveying a second fluid therein; a first thermoelectric device having a first heat transfer surface and a second heat transfer surface, the first heat transfer surface in thermal communication with one of the first conduit and the second conduit, the second heat transfer surface in thermal communication with the third conduit; a first heat exchanger disposed in an air stream and in thermal communication with the second conduit, the first heat exchanger providing a selective heating of the air stream; a second heat exchanger disposed in the air stream downstream of the first heat exchanger and in thermal communication with the third conduit, the second heat exchanger providing selective heating and cooling of the air stream; and a third heat exchanger disposed in the air stream downstream of the second heat exchanger and in thermal communication with a source of heat to provide selective heating of the air stream, wherein the first conduit, the second conduit, the third conduit, the first thermoelectric device, the first heat exchanger, the second heat exchanger, and the third heat exchanger cooperate to heat, cool, and demist the air stream.
In another embodiment, the heating, ventilating, and air conditioning system for a hybrid vehicle comprises a first conduit for conveying a first fluid; a second conduit for conveying the first fluid; a third conduit for conveying a second fluid; a first thermoelectric device having a first heat transfer surface and a second heat transfer surface, the first heat transfer surface of the first thermoelectric device in thermal communication with one of the first conduit and the second conduit, the second heat transfer surface of the first thermoelectric device in thermal communication with the third conduit; a second thermoelectric device having a first heat transfer surface and a second heat transfer surface, the first heat transfer surface of the second thermoelectric device in thermal communication with at least one of the first conduit and the second conduit; a first heat exchanger disposed in an air stream and in thermal communication with the second conduit, the first heat exchanger providing a selective heating of the air stream; a second heat exchanger disposed in the air stream downstream of the first heat exchanger and in thermal communication with the third conduit, the second heat exchanger providing selective heating and cooling of the air stream; and a third heat exchanger disposed in the air stream downstream of the second heat exchanger adapted to be in thermal communication with the second heat transfer surface of the second thermoelectric device to provide selective heating of the air stream, wherein the first conduit, the second conduit, the third conduit, the first thermoelectric device, the second thermoelectric device, the first heat exchanger, the second heat exchanger, and the third heat exchanger cooperate to heat, cool, and demist the air stream.
The above, as well as other advantages of the present invention, will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment when considered in the light of the accompanying drawings in which:
The following detailed description and appended drawings describe and illustrate various exemplary embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner. In respect of the methods disclosed, the steps presented are exemplary in nature, and thus, the order of the steps is not necessary or critical.
The first circuit 12 includes a first conduit 16 for conveying the first fluid through the first circuit 12. A pump 18 is disposed in the first conduit 16 to circulate the first fluid therethrough. A pump as used herein is meant to include any conventional pump such as a centrifugal pump, for example, a fan, and the like. The first conduit 16 includes a heat exchanger 20 disposed therein. The heat exchanger 20 can be any conventional heat exchanger such as a low temperature core, for example. The first fluid is also circulated through a battery compartment or other source of heat 22 from the electric side of the hybrid vehicle to remove heat therefrom. In the embodiment shown, the battery compartment 22 is disposed in parallel with the heat exchanger 20. However, it is understood that other configurations can be used as desired such as in series or a separate conduit, for example. A flow valve 24 and a diverter valve 26 are also disposed in the first conduit 16. It is understood that more or fewer valves may be used as desired to control flow of the first fluid through the first conduit 16. The flow valve 24 can be any conventional type such as a gate valve, a ball valve, a flap type valve, and the like, for example. The diverter valve 26 can be any conventional diverter valve such as a three way valve used to selectively permit flow between conduit branches, for example.
Crossover conduits 28, 30 are provided between the first circuit 12 and the second circuit 14. Flow valves 32, 34 are provided in respective crossover conduits 28, 30 to selectively permit flow of the first fluid therethrough. A pump 36 is also provided in the crossover conduit 28 to assist with circulation of the first fluid, if necessary.
A second conduit 38 is included in the second circuit 14. The second conduit 38 is in fluid communication with an engine 40 of the hybrid vehicle to circulate the first fluid therethrough and remove heat therefrom. A heat exchanger 42 is disposed in the second conduit 38 downstream of the engine 40. The heat exchanger 42 can be any conventional heat exchanger such as a radiator for the vehicle, for example. A first bypass conduit 44 is provided to permit bypassing of the heat exchanger 42 and a second bypass conduit 46 is provided to create a recirculation circuit. A diverter valve 48 selectively permits flow between the heat exchanger 42 and the first bypass conduit 44. Selective flow for the second bypass conduit 46 is facilitated by a diverter valve 50. It is understood that more or fewer valves may be used as desired to control flow of the first fluid through the second conduit 38. A pump 52 is disposed in the second conduit 38 to circulate the first fluid therethrough.
A first thermoelectric device (TED) 54 is disposed adjacent the first conduit 16 and between the crossover conduits 28, 30. The first TED 54 includes a first heat transfer surface 55 and a second heat transfer surface 56. The first heat transfer surface 55 is in thermal communication with the first conduit 16 of the first circuit 12. The first TED 54 is in electrical communication with a control system (not shown). The control system controls an electric current sent to the first TED 54. When the current is delivered in one direction, one of the first heat transfer surface 55 and the second heat transfer surface 56 generates thermal energy or heat and the other of the first heat transfer surface 55 and the second heat transfer surface 56 absorbs thermal energy or heat. When the current is reversed, the one of the first heat transfer surface 55 and the second heat transfer surface 56 which was generating heat now absorbs heat and the other of the first heat transfer surface 55 and the second heat transfer surface 56 now generates heat. Additionally, when the current is increased, a heating and cooling capacity of the TED is increased Likewise, when the current is decreased, the heating and cooling capacity of the TED is decreased.
The TED 54 may be any conventional device such as: those produced by Marlow Industries, Inc. of Dallas, Tex.; the thermoelectric systems described in U.S. Pat. No. 6,539,725 to Bell; a quantum tunneling converter; a Peltier device; a thermoionic module; a magneto caloric module; an acoustic heating mechanism; a solid state heat pumping device; and the like; for example; or any combination of the devices listed above. Although a single thermoelectric device is shown, it is understood that additional thermoelectric devices can be used, as desired.
A third conduit 57 is in thermal communication with the second heat transfer surface 56 of the first TED 54. The third conduit 57 conveys a second fluid (not shown). The second fluid can be any conventional fluid such as air or a coolant such as a water-glycol coolant, for example. A pump 58 is disposed in the third conduit 57 to circulate the second fluid therethrough.
An air conduit 60 in fluid communication with a source of air (not shown) is provided to supply the conditioned air to the passenger compartment of the vehicle. The air conduit 60 includes a first heat exchanger 62, a second heat exchanger 64, and a third heat exchanger 66 disposed therein. The heat exchangers 62, 64, 66 can be any conventional type of heat exchanger.
The first heat exchanger 62 and the third heat exchanger 66 are in fluid communication with the second circuit 14. A diverter valve 68 is disposed in a supply side of the second conduit 38 to selectively control flow of the first fluid to the first heat exchanger 62 and the third heat exchanger 66. A diverter valve 70 is disposed in the second conduit 38 on a return side thereof to selectively control flow of the first fluid from the first heat exchanger 62 and the third heat exchanger 66.
The second heat exchanger 64 is in fluid communication with the third conduit 57. The third conduit 57 circulates the second fluid between the first TED 54 and the second heat exchanger 64.
In operation, the system 10 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 60. The system 10 can operate in a heating mode, a demisting mode, and a cooling mode.
In a first heating mode where the engine 40 is operating and the electric motor is not operating, the first heat exchanger 62 and the second heat exchanger 64 transfer heat into the air stream, and the third heat exchanger 66 is idle. Thus, the diverter valves 68, 70 are positioned to militate against flow of the first fluid to the third heat exchanger 66 and permit flow to the first heat exchanger 62. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.
The pump 18 of the first circuit 12 is not operating to circulate the first fluid through the first conduit 16. In order to supply the first fluid to the first TED 54, the pump 36 is operating and the valves 32, 34 of the crossover conduits 28, 30 are open to permit flow therethrough. A portion of the flow of the first fluid in the second conduit 38 is directed through the crossover conduit 28 and into thermal communication with the first heat transfer surface 55 of the first TED 54. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to absorb heat and remove heat from the first fluid. The first fluid then flows through the crossover conduit 30 to re-enter the second conduit 38 and flow to the first heat exchanger 62.
The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62 and the second heat exchanger 64. It is understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream and the second heat exchanger 64 idle.
In a second heating mode where the engine 40 is operating and the electric motor is operating, the first heat exchanger 62 and the second heat exchanger 64 transfer heat into the air stream, and the third heat exchanger 66 is idle. Thus, the diverter valves 68, 70 are positioned to militate against flow of the first fluid to the third heat exchanger 66 and permit flow to the first heat exchanger 62. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The first fluid flows through the battery compartment 22 where heat is transferred into the first fluid, then through the first conduit 16, and into thermal communication with the first heat transfer surface 55 of the first TED 54. The diverter valve 26 is positioned to militate against flow through the heat exchanger 20 and permit flow to the battery compartment 22. Thus, heat is not removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to absorb heat and remove heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62 and the second heat exchanger 64.
In a third heating mode where the engine 40 is not operating and the electric motor is operating, the second heat exchanger 64 transfers heat into the air stream, and the first heat exchanger 62 and the third heat exchanger 66 are idle. Initially, it is presumed that the engine 40 was previously running and requires cooling. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the first bypass conduit 44 and permit flow through the heat exchanger 42. Thus, heat is removed from the first fluid in the heat exchanger 42. The diverter valve 50 is in a position to permit flow of the first fluid through the second bypass conduit 46 and militate against flow through the second conduit 38 to the first heat exchanger 62 and the third heat exchanger 66. Once the engine 40 has sufficiently cooled, the pump 52 can be switched to the off position until the engine 40 requires additional cooling.
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The first fluid flows through the battery compartment 22 where heat is transferred into the first fluid, then through the first conduit 16, and into thermal communication with the first heat transfer surface 55 of the first TED 54. The diverter valve 26 is positioned to militate against flow through the heat exchanger 20 and permit flow to the battery compartment 22. Thus, heat is not removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to absorb heat and remove heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the second heat exchanger 64. It is also understood that this mode can be used when both the engine 40 and the electric motor are operating, but where the amount heat required to be delivered to the passenger compartment of the vehicle is low.
In a demisting mode, the engine 40 is operating and the electric motor is operating. The first heat exchanger 62 is idle, the second heat exchanger 64 removes heat from the air stream, and the third heat exchanger 66 transfers heat into the air stream. It is understood that the engine 40 may have also been previously running and has residual heat stored therein. The diverter valves 68, 70 are positioned to militate against flow of the first fluid to the first heat exchanger 62 and permit flow to the third heat exchanger 66. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the third heat exchanger 66 where heat is transferred from the first fluid to the air flowing in the air conduit 60.
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 removes heat from the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the air flowing in the air conduit 60 to the second fluid. Therefore, air is cooled in the second heat exchanger 64, heated by the third heat exchanger 66, and delivered to the passenger compartment of the vehicle for demisting. By initially cooling the air, moisture is caused to be removed from the air by condensation.
In a cooling mode, where the engine 40 is not operating and the electric motor is operating, the second heat exchanger 64 removes heat from the air stream, and the first heat exchanger 62 and the third heat exchanger 66 are idle. Initially, it is presumed that the engine 40 was previously running and requires cooling. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the first bypass conduit 44 and permit flow through the heat exchanger 42. Thus, heat is removed from the first fluid in the heat exchanger 42. The diverter valve 50 is in a position to permit flow of the first fluid through the second bypass conduit 46 and militate against flow through the second conduit 38 to the first heat exchanger 62 and the third heat exchanger 66. Once the engine 40 has sufficiently cooled, the pump 52 can be switched to the off position until the engine 40 requires additional cooling.
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 removes heat from the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the air flowing in the air conduit 60 to the second fluid. Therefore, air is cooled in the second heat exchanger 64 and delivered to the passenger compartment of the vehicle.
In the embodiment shown, a second thermoelectric device (TED) 102 is disposed adjacent the first conduit 16 and the first TED 54, and between the crossover conduits 28, 30. The second TED 102 includes a first heat transfer surface 104 and a second heat transfer surface 106. The first heat transfer surface 104 is in thermal communication with the first conduit 16 of the first circuit 12. The second TED 102 is in electrical communication with a control system (not shown). The control system controls an electric current sent to the second TED 102 in the same way as described for the first TED 54. The second thermoelectric device 102 may be any conventional device such as those listed for the first TED 54. Although a single thermoelectric device is shown, it is understood that additional thermoelectric devices can be used, as desired.
A fourth conduit 108 is in thermal communication with the second heat transfer surface 106 of the second TED 102. The fourth conduit 108 conveys a third fluid (not shown). The third fluid can be any conventional fluid such as air or a coolant such as a water-glycol coolant, for example. A pump 110 is disposed in the fourth conduit 108 to circulate the third fluid therethrough.
The first heat exchanger 62 is in fluid communication with the second circuit 14 and the third heat exchanger 66 is in fluid communication with the fourth conduit 108. The fourth conduit 108 circulates the third fluid between the second TED 102 and the third heat exchanger 66.
In operation, the system 100 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 60. Similar to the operation described for the system 10, the system 100 can operate in a heating mode, a demisting mode, and a cooling mode.
In a first heating mode where the engine 40 is operating and the electric motor is not operating, the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66 transfer heat into the air stream. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.
The pump 18 of the first circuit 12 is not operating to circulate the first fluid through the first conduit 16. In order to supply the first fluid to the first TED 54 and the second TED 102, the pump 36 is operating and the valves 32, 34 of the crossover conduits 28, 30 are open to permit flow therethrough. A portion of the flow of the first fluid in the second conduit 38 is directed through the crossover conduit 28 and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat and remove heat from the first fluid. The first fluid then flows through the crossover conduit 30 to re-enter the second conduit 38 and flow to the first heat exchanger 62.
The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60.
The pump 110 is operating to circulate the third fluid through the fourth conduit 108. The third fluid is in thermal communication with the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 106 generates heat which is transferred to the third fluid. Thus, the third fluid flows to the third heat exchanger 66 where heat is transferred from the third fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66. It is understood that this mode can be used with the first heat exchanger 62 and the second heat exchanger 64 transferring heat into the air stream, and the third heat exchanger 66 idle. It is also understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle.
In a second heating mode where the engine 40 is operating and the electric motor is operating, the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66 transfer heat into the air stream. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The first fluid flows through the battery compartment 22 where heat is transferred into the first fluid, then through the first conduit 16, and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The diverter valve 26 is positioned to militate against flow through the heat exchanger 20 and permit flow to the battery compartment 22. Thus, heat is not removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat to and remove heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger. 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60.
The pump 110 is operating to circulate the third fluid through the fourth conduit 108. The third fluid is in thermal communication with the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 106 generates heat which is transferred to the third fluid. Thus, the third fluid flows to the third heat exchanger 66 where heat is transferred from the third fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66. It is understood that this mode can be used with the first heat exchanger 62 and the second heat exchanger 64 transferring heat into the air stream, and the third heat exchanger 66 idle. It is also understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle. It is understood that a third heating mode as described above for
In a demisting mode, the engine 40 is not operating and the electric motor is operating. The first heat exchanger 62 is idle, the second heat exchanger 64 removes heat from the air stream, and the third heat exchanger 66 transfers heat into the air stream. It is understood that the engine 40 may have also been previously running and has residual heat stored therein, and that the second circuit 14 is operated as described for
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current in the second TED 102 to flow to cause the first heat transfer surface 104 to absorb heat and remove heat from the first fluid. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 removes heat from the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the air flowing in the air conduit 60 to the second fluid.
The pump 110 is operating to circulate the third fluid through the fourth conduit 108. The third fluid is in thermal communication with the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 106 generates heat which is absorbed by the third fluid. Thus, the third fluid flows to the third heat exchanger 66 where heat is transferred to the air flowing in the air conduit 60 from the third fluid.
Therefore, air is cooled in the second heat exchanger 64, heated by the third heat exchanger 66, and delivered to the passenger compartment of the vehicle for demisting. By initially cooling the air, moisture is caused to be removed from the air by condensation.
In a cooling mode, where the engine 40 is not operating and the electric motor is operating, the second heat exchanger 64 and the third heat exchanger 66 remove heat from the air stream, and the first heat exchanger 62 is idle. It is understood that the engine 40 may have also been previously running and has residual heat stored therein, and that the second circuit 14 is operated as described for
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 58 is operating to circulate the second fluid through the third conduit 57. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 removes heat from the first fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the air flowing in the air conduit 60 to the second fluid.
The pump 110 is operating to circulate the third fluid through the fourth conduit 108. The third fluid is in thermal communication with the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 106 removes heat from the third fluid. Thus, the third fluid flows to the third heat exchanger 66 where heat is transferred from the air flowing in the air conduit 60 to the third fluid. Therefore, air is cooled in the second heat exchanger 64 and the third heat exchanger 66, and delivered to the passenger compartment of the vehicle. It is understood that this mode can be used with one of the second heat exchanger 64 and the third heat exchanger 66 transferring heat from the air stream, and the other of the second heat exchanger 64 and the third heat exchanger 66 idle.
In the embodiment shown, the first TED 54 and the second TED 102 include a third conduit 122 in thermal communication with both the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The third conduit 122 conveys a second fluid (not shown). The second fluid can be any conventional fluid such as air or a coolant such as a water-glycol coolant, for example. A pump 124 is disposed in the third conduit 122 to circulate the second fluid therethrough.
The first heat exchanger 62 is in fluid communication “with the second circuit 14. The second heat exchanger 64 has an outlet 126 in fluid communication with the first TED 54 and an inlet 128 in fluid communication with the second TED 102. The third heat exchanger 66 has an outlet 130 in fluid communication with the second TED 102 and an inlet 132 in fluid communication with the first TED 54. The third conduit 122 circulates the second fluid between the first TED 54, the third heat exchanger 66, the second TED 102 and the second heat exchanger 64.
In operation, the system 120 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 60. Similar to the operation described for the systems 10, 100, the system 120 can operate in a heating mode, a demisting mode, and a cooling mode.
In a first heating mode where the engine 40 is operating and the electric motor is not operating, the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66 transfer heat into the air stream. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.
The pump 18 of the first circuit 12 is not operating to circulate the first fluid through the first conduit 16. In order to supply the first fluid to the first TED 54 and the second TED 102, the pump 36 is operating and the valves 32, 34 of the crossover conduits 28, 30 are open to permit flow therethrough. A portion of the flow of the first fluid in the second conduit 38 is directed through the crossover conduit 28 and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat and remove heat from the first fluid. The first fluid then flows through the crossover conduit 30 to re-enter the second conduit 38 and flow to the first heat exchanger 62.
The pump 124 is operating to circulate the second fluid through the third conduit 122. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 generate heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 and the third heat exchanger 66 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66. It is understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle.
In a second heating mode where the engine 40 is operating and the electric motor is operating, the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66 transfer heat into the air stream. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The first fluid flows through the battery compartment 22 where heat is transferred into the first fluid, flows through the first conduit 16, and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The diverter valve 26 is positioned to militate against flow through the heat exchanger 20 and permit flow to the battery compartment 22. Thus, heat is not removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat to and remove heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 124 is operating to circulate the second fluid through the third conduit 122. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 generate heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 and the third heat exchanger 66 where heat is transferred from the second fluid to the air flowing in the air conduit 60.
Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62, the second heat exchanger 64, and the third heat exchanger 66. It is understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle. It is understood that a third heating mode as described above for
In a demisting mode, the engine 40 is not operating and the electric motor is operating. The first heat exchanger 62 is idle, the second heat exchanger 64 removes heat from the air stream, and the third heat exchanger 66 transfers heat into the air stream. It is understood that the engine 40 may have also been previously running and has residual heat stored therein, and that the second circuit 14 is operated as described for
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current in the second TED 102 to flow to cause the first heat transfer surface 104 to generate heat which is absorbed by the first fluid. The controller causes the current to the first TED 54 to flow to cause the first heat transfer surface 55 to absorb heat which removes heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 124 is operating to circulate the second fluid through the third conduit 122. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54. The second heat transfer surface 56 generates heat which is transferred to the second fluid. The second fluid flows to the third heat exchanger 66 where heat is transferred to the air flowing in the air conduit 60 to the second fluid. The second fluid flows to the second heat transfer surface 106 and is in thermal communication with the second heat transfer surface 106. The second heat transfer surface 106 absorbs heat and removes heat from the second fluid. The second fluid flows to the second heat exchanger 64 where heat is removed from the air flowing in the air conduit 60 to the second fluid.
Therefore, air is cooled in the second heat exchanger 64, heated by the third heat exchanger 66, and delivered to the passenger compartment of the vehicle for demisting. By initially cooling the air, moisture is caused to be removed from the air by condensation.
In a cooling mode, where the engine 40 is not operating and the electric motor is operating, the second heat exchanger 64 and the third heat exchanger 66 remove heat from the air stream, and the first heat exchanger 62 is idle. It is understood that the engine 40 may have also been previously running and has residual heat stored therein, and that the second circuit 14 is operated as described for
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 124 is operating to circulate the second fluid through the third conduit 122. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 remove heat from the first fluid. Thus, the second fluid flows to the second heat exchanger 64 and the third heat exchanger 66 where heat is transferred from the air flowing in the air conduit 60 to the second fluid. Therefore, air is cooled in the second heat exchanger 64 and the third heat exchanger 66, and delivered to the passenger compartment of the vehicle.
In the embodiment shown, the first TED 54 and the second TED 102 include a third conduit 142 in thermal communication with both the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The third conduit 142 conveys a second fluid (not shown). The second fluid can be any conventional fluid such as air or a coolant such as a water-glycol coolant, for example. A pump 144 is disposed in the third conduit 142 to circulate the second fluid therethrough.
The first heat exchanger 62 is in fluid communication with the second circuit 14. The second heat exchanger 64 has an outlet 146 in fluid communication with the first TED 54 and an inlet 148 in fluid communication with the second TED 102. The third heat exchanger 66 has an outlet 150 in fluid communication with the second TED 102 and an inlet 152 in fluid communication with the first TED 54. The third conduit 142 circulates the second fluid between the first TED 54, the third heat exchanger 66, the second TED 102 and the second heat exchanger 64. However, a diverter valve 154 is disposed in the third conduit 142 to selectively control flow of the second fluid from the first TED 54. In a first position, the diverter valve 154 directs flow as described for
In operation, the system 140 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated, by the arrow in the air conduit 60. Similar to the operation described for the systems 10, 100, 120 the system 140 can operate in a heating mode, a demisting mode, and a cooling mode.
In a first heating mode where the engine 40 is operating and the electric motor is not operating, the first heat exchanger 62 and the second heat exchanger 64, transfer heat into the air stream. The third heat exchanger 66 is idle. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.
The pump 18 of the first circuit 12 is not operating to circulate the first fluid through the first conduit 16. In order to supply the first fluid to the first TED 54 and the second TED 102, the pump 36 is operating and the valves 32, 34 of the crossover conduits 28, 30 are open to permit flow therethrough. A portion of the flow of the first fluid in the second conduit 38 is directed through the crossover conduit 28 and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat and remove heat from the first fluid. The first fluid then flows through the crossover conduit 30 to re-enter the second conduit 38 and flow to the first heat exchanger 62.
The pump 144 is operating to circulate the second fluid through the third conduit 142 and bypassing the third heat exchanger 66. The diverter valve 154 is in a position to militate against flow of the second fluid to the third heat exchanger 66. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 generate heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62 and the second heat exchanger 64. It is understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle. It is further understood that this mode can be used as described above for
In a second heating mode where the engine 40 is operating and the electric motor is operating, the first heat exchanger 62 and the second heat exchanger 64 transfer heat into the air stream. The pump 52 of the second circuit 14 is operating to circulate the first fluid through the second conduit 38. Heat is transferred into the first fluid by the engine 40.
The diverter valve 48 is positioned to militate against flow through the heat exchanger 42 and permit flow through the first bypass conduit 44. Thus, heat is not removed from the first fluid in the heat exchanger 42 and the first fluid flows through the first bypass conduit 44. The diverter valve 50 is in a position to militate against flow of the first fluid through the second bypass conduit 46. Therefore, the first fluid flows through the second conduit 38 to the first heat exchanger 62 where heat is transferred from the first fluid to the air flowing in the air conduit 60.
The pump 18 of the first circuit 12 is operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The first fluid flows through the battery compartment 22 where heat is transferred into the first fluid, flows through the first conduit 16, and into thermal communication with the first heat transfer surface 55 of the first TED 54 and the first heat transfer surface 104 of the second TED 102. The diverter valve 26 is positioned to militate against flow through the heat exchanger 20 and permit flow to the battery compartment 22. Thus, heat is not removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to absorb heat to and remove heat from the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 144 is operating to circulate the second fluid through the third conduit 142 and bypassing the third heat exchanger 66. The diverter valve 154 is in a position to militate against flow of the second fluid to the third heat exchanger 66. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 generate heat which is transferred to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 62 and the second heat exchanger 64. It is understood that this mode can be used with only the first heat exchanger 62 transferring heat into the air stream, and the second heat exchanger 64 and the third heat exchanger 66 idle. It is further understood that this mode can be used as described above for
In a demisting mode, the system 140 is used as described above for
In a cooling mode, where the engine 40 is not operating and the electric motor is operating, the second heat exchanger 64 removes heat from the air stream, and the first heat exchanger 62 and the third heat exchanger 66 are idle. It is understood that the engine 40 may have also been previously running and has residual heat stored therein, and that the second circuit 14 is operated as described for
The pump 18 of the first circuit 12 is: operating to circulate the first fluid through the first conduit 16 to supply the first fluid to the first TED 54 and the second TED 102. The pump 36 is not operating and the valves 32, 34 of the crossover conduits 28, 30 are closed to militate against flow therethrough. The diverter valve 26 is positioned to permit flow through the heat exchanger 20 and militate against flow to the battery compartment 22. Thus, heat is removed from the first fluid in the heat exchanger 20. The controller causes the current to the first TED 54 and the second TED 102 to flow to cause the first heat transfer surface 55 and the first heat transfer surface 104 to generate heat which is absorbed by the first fluid. The first fluid then returns to the pump 18 for recirculation.
The pump 144 is operating to circulate the second fluid through the third conduit 142 and bypassing the third heat exchanger 66. The diverter valve 154 is in a position to militate against flow of the second fluid to the third heat exchanger 66. The second fluid is in thermal communication with the second heat transfer surface 56 of the first TED 54 and the second heat transfer surface 106 of the second TED 102. The second heat transfer surface 56 and the second heat transfer surface 106 remove heat from the first fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the air flowing in the air conduit 60 to the second fluid. Thus, the second fluid flows to the second heat exchanger 64 where heat is transferred from the second fluid to the air flowing in the air conduit 60. Therefore, air is cooled in the second heat exchanger 64 and delivered to the passenger compartment of the vehicle. It is understood that this mode can be used as described above for
The first circuit 162 includes a first conduit 166 for conveying the first fluid through the first circuit 162. A pump 168 is disposed in the first conduit 166 to circulate the first fluid therethrough. The first conduit 166 includes a heat exchanger 170 disposed therein. The heat exchanger 170 can be any conventional heat exchanger such as a low temperature core, for example. The first fluid is also circulated through a battery compartment or other source of heat 172 from the electric side of the hybrid vehicle to remove heat therefrom. In the embodiment shown, the battery compartment 172 is disposed in parallel with the heat exchanger 170. However, it is understood that other configurations can be used as desired such as in series or a separate conduit, for example. A flow valve 174 and a diverter valve 176 are also disposed in the first conduit 166. It is understood that more or fewer valves may be used as desired to control flow of the first fluid through the first conduit 166.
Crossover conduits 178, 180 are provided between the first circuit 162 and the second circuit 164. Flow valves 182, 184 are provided in respective crossover conduits 178, 180 to selectively permit flow of the first fluid therethrough.
A second conduit 186 is included in the second circuit 164. The second conduit 186 is in fluid communication with an engine 188 of the hybrid vehicle to circulate the first fluid therethrough and remove heat therefrom. A heat exchanger 190 is disposed in the second conduit 186 downstream of the engine 188. The heat exchanger 190 can be any conventional heat exchanger such as a radiator for the vehicle, for example. A first bypass conduit 192 is provided to permit bypassing of the heat exchanger 190 and a second bypass conduit 194 is provided to create a recirculation circuit. Flow through the second bypass conduit 194 is controlled by a flow valve 196. It is understood that more or fewer valves may be used as desired to control flow of the first fluid through the second conduit 186. A pump 198 is disposed in the second conduit 186 to circulate the first fluid therethrough. An expansion tank 200 is provided to account for expansion of the first fluid during operation of the system 160. An exhaust gas heat recovery device 202 is provided to permit heat recovery from exhaust gases.
A first thermoelectric device (TED) 204 is disposed adjacent the first conduit 166. The first TED 204 includes a first heat transfer surface 206 and a second heat transfer surface 208. The first heat transfer surface 206 is in thermal communication with the first conduit 166 of the first circuit 162. The first TED 204 is in electrical communication with a control system (not shown). The control system controls an electric current sent to the first TED 204. When the current is delivered in one direction, one of the first heat transfer surface 206 and the second heat transfer surface 208 generates thermal energy or heat, and the other of the first heat transfer surface 206 and the second heat transfer surface 208 absorbs thermal energy or heat. When the current is reversed, the one of the first heat transfer surface 206 and the second heat transfer surface 208 which was generating heat now absorbs heat and the other of the first heat transfer surface 206 and the second heat transfer surface 208 now generates heat. Additionally, when the current is increased, a heating and cooling capacity of the TED is increased Likewise, when the current is decreased, the heating and cooling capacity of the TED is decreased. Although a single thermoelectric device is shown, it is understood that additional thermoelectric devices can be used, as desired.
An air conduit 210 in fluid communication with a source of air (not shown) is provided to supply the conditioned air to the passenger compartment of the vehicle. The air conduit 210 includes a first heat exchanger 212 disposed therein. The heat exchanger 212 can be any conventional type of heat exchanger. The air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204.
In operation, the system 160 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 210. The system 160 can operate in a heating mode and a cooling mode. Additionally, if a second TED is added as discussed for
In a first heating mode where the engine 188 is operating and the electric motor is not operating, the first heat exchanger 212 and the first TED 204 transfer heat into the air stream. The pump 168 of the first circuit 162 is not operating to circulate the first fluid through the first conduit 166. The pump 198 of the second circuit 164 is operating to circulate the first fluid through the second conduit 186. A portion of the flow of the first fluid may be permitted to flow through the heat exchanger 190, or if additional valves are use, flow through the heat exchanger 190 can be militated against. Heat is transferred into the first fluid by the engine 188.
The valve 182 is positioned to permit flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to absorb heat and remove some heat from the first fluid. The first fluid then flows to the first heat exchanger 212. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 generates heat which is transferred to the air flowing in the air conduit 210.
The valve 184 is positioned to permit flow through the first heat exchanger 212. In the first fluid flowing through the first heat exchanger 212, heat is removed therefrom and transferred to the air flowing in the air conduit 210. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 212 and the first TED 204.
In a second heating mode, where the engine 188 is not operating and the electric motor is operating, the first TED 204 transfers heat into the air stream. The pump 168 of the first circuit 162 is operating to circulate the first fluid through the first conduit 166. The diverter valve 176 is positioned to militate against flow of the first fluid to the heat exchanger 170 and permit flow to the battery compartment 172. Heat is transferred into the first fluid by the battery compartment 172. The pump 198 of the second circuit 164 is not operating to circulate the first fluid through the second conduit 186. It is understood that if the engine 188 is operating, or if there is residual heat in the engine 188 requiring removal, the pump 198 can be operated to cause the first fluid to flow through the heat exchanger 190 and recirculate back to the pump 198. If this is necessary, the valve 196 is positioned to permit flow therethrough to recirculate the flow of the first fluid back to the pump 198.
The valve 182 is positioned to militate against flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The valve 184 is positioned to militate against flow through the first heat exchanger 212.
The valve 174 is positioned to permit flow of the first fluid from the battery compartment 172 to the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to absorb heat and remove heat from the first fluid. The first fluid then flows back to the pump 168 for recirculation. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 generates heat which is transferred to the air flowing in the air conduit 210. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first TED 204.
In a cooling mode, where the engine 188 is not operating and the electric motor is operating, the first TED 204 removes heat from the air stream. The pump 168 of the first circuit 162 is operating to circulate the first fluid through the first conduit 166. The diverter valve 176 is positioned to militate against flow of the first fluid to the battery compartment 172 and permit flow to the heat. exchanger 170. Heat is removed from the first fluid by the heat exchanger 170. The pump 198 of the second circuit 164 is not operating to circulate the first fluid through the second conduit 186. It is understood that if the engine 188 is operating, or if there is residual heat in the engine 188 requiring removal, the pump 198 can be operated to cause the first fluid to flow through the heat exchanger 190 and recirculate back to the pump 198. If this is necessary, the valve 196 is positioned to permit flow therethrough to recirculate the flow of the first fluid back to the pump 198.
The valve 182 is positioned to militate against flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The valve 184 is positioned to militate against flow through the first heat exchanger 212.
The valve 174 is positioned to permit flow of the first fluid from the heat exchanger 170 to the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to generate heat which is absorbed by the first fluid. The first fluid then flows back to the pump 168 for recirculation. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 absorbs heat from the air flowing in the air conduit 210. Therefore, cooled air is delivered to the passenger compartment of the vehicle from the first TED 204.
In the embodiment shown, a pump 222 is provided to selectively circulate the first fluid through the first conduit 166 and a crossover conduit 224. A flow valve 226 is disposed in the crossover conduit 224 to selectively permit flow of the first fluid therethrough. It is understood that more or fewer valves may be used as desired.
In operation, the system 220 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 210. The system 220 can operate in a heating mode and a cooling mode. Additionally, if a second TED is added as discussed for
In a first heating mode where the engine 188 is operating and the electric motor is not operating, the first heat exchanger 212 and the first TED 204 transfer heat into the air stream. The pump 222 is operating to circulate the first fluid through the crossover conduit 224. The pump 198 of the second circuit 164 is operating to circulate the first fluid through the second conduit 186. A portion of the flow of the first fluid may be permitted to flow through the heat exchanger 190, or if additional valves are use, flow through the heat exchanger 190 can be militated against. Heat is transferred into the first fluid by the engine 188.
The valve 182 is positioned to permit flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to absorb heat and remove some heat from the first fluid. The first fluid then flows through to the pump 222. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 generates heat which is transferred to the air flowing in the air conduit 210.
The valve 226 is positioned to permit flow through the first heat exchanger 212. In the first fluid flowing through the first heat exchanger 212, heat is removed therefrom and transferred to the air flowing in the air conduit 210. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first heat exchanger 212 and the first TED 204.
In a second heating mode, where the engine 188 is not operating and the electric motor is operating, the first TED 204 transfers heat into the air stream. The pump 222 is operating to circulate the first fluid through the first conduit 166. The diverter valve 176 is positioned to militate against flow of the first fluid to the heat exchanger 170 and permit flow to the battery compartment 172. Heat is transferred into the first fluid by the battery compartment 172. The pump 198 of the second circuit 164 is not operating to circulate the first fluid through the second conduit 186. It is understood that if the engine 188 is operating, or if there is residual heat in the engine 188 requiring removal, the pump 198 can be operated to cause the first fluid to flow through the heat exchanger 190 and recirculate back to the pump 198. If this is necessary, the valve 196 is positioned to permit flow therethrough to recirculate the flow of the first fluid back to the pump 198.
The valve 182 is positioned to militate against flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The valve 226 is positioned to militate against flow through the first heat exchanger 212.
The valve 174 is positioned to permit flow of the first fluid from the battery compartment 172 to the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to absorb heat and remove heat from the first fluid. The first fluid then flows back to the pump 222 for recirculation. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 generates heat which is transferred to the air flowing in the air conduit 210. Therefore, heated air is delivered to the passenger compartment of the vehicle from the first TED 204.
In a cooling mode, where the engine 188 is not operating and the electric motor is operating, the first TED 204 removes heat from the air stream. The pump 222 is operating to circulate the first fluid through the first conduit 166. The diverter valve 176 is positioned to militate against flow of the first fluid to the battery compartment 172 and permit flow to the heat exchanger 170. Heat is removed from the first fluid by the heat exchanger 170. The pump 198 of the second circuit 164 is not operating to circulate the first fluid through the second conduit 186. It is understood that if the engine 188 is operating, or if there is residual heat in the engine 188 requiring removal, the pump 198 can be operated to cause the first fluid to flow through the heat exchanger 190 and recirculate back to the pump 198. If this is necessary, the valve 196 is positioned to permit flow therethrough to recirculate the flow of the first fluid back to the pump 198.
The valve 182 is positioned to militate against flow of the first fluid from the engine 188 into thermal communication with the first heat transfer surface 206 of the first TED 204. The valve 226 is positioned to militate against flow through the first heat exchanger 212.
The valve 174 is positioned to permit flow of the first fluid from the heat exchanger 170 to the first heat transfer surface 206 of the first TED 204. The controller causes the current to the first TED 204 to flow to cause the first heat transfer surface 206 to generate heat which is absorbed by the first fluid. The first fluid then flows back to the pump 222 for recirculation. The air flowing in the air conduit 210 is in thermal communication with the second heat transfer surface 208 of the first TED 204. The second heat transfer surface 208 absorbs heat from the air flowing in the air conduit 210. Therefore, cooled air is delivered to the passenger compartment of the vehicle from the first TED 204.
In the embodiment shown, the valve 196 has been removed from the system. It is understood that more or fewer valves may be used as desired.
In operation, the system 230 conditions the air flowing from the source of air for supply of the conditioned air to the passenger compartment of the vehicle. A flow direction of the air from the source of air is indicated by the arrow in the air conduit 210. The system 230 can operate in a heating mode and a cooling mode. Additionally, if a second TED is added as discussed for
The operation of the system 230 is the same as described above for
In the embodiment shown, a point at which a return conduit 242 connects to the second conduit 186 has been changed. The return conduit 242 connects directly into the second conduit 186, where the previous connection was made upstream of the exhaust gas heat recovery device 202. The operation of the system 240 is the same as described above for
From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.
This application is a continuation of U.S. application Ser. No. 12/609,499, entitled HVAC SYSTEM FOR A HYBRID VEHICLE, filed Oct. 30, 2009, which claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application No. 61/139,494, entitled HVAC SYSTEM FOR A HYBRID VEHICLE, filed Dec. 19, 2008. This application is a continuation of U.S. application Ser. No. 12/862,674, entitled HYBRID VEHICLE TEMPERATURE CONTROL SYSTEMS AND METHODS, filed Aug. 24, 2010, which is a continuation of U.S. application Ser. No. 11/497,700, entitled HVAC SYSTEM FOR HYBRID VEHICLES USING THERMOELECTRIC DEVICES, filed Aug. 2, 2006, now U.S. Pat. No. 7,779,639. Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are incorporated by reference under 37 CFR 1.57 and made a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
413136 | Dewey | Oct 1889 | A |
2363168 | Findley | Nov 1944 | A |
2499901 | Brown, Jr. | Mar 1950 | A |
2944404 | Fritts | Jul 1960 | A |
2949014 | Belton, Jr. et al. | Aug 1960 | A |
2984077 | Gaskill | May 1961 | A |
2997514 | Roeder, Jr. | Aug 1961 | A |
3085405 | Frantti | Apr 1963 | A |
3125860 | Reich | Mar 1964 | A |
3136577 | Richard | Jun 1964 | A |
3137142 | Venema | Jun 1964 | A |
3138934 | Roane | Jun 1964 | A |
3196620 | Elfving et al. | Jul 1965 | A |
3212275 | Tillman, Jr. | Oct 1965 | A |
3213630 | Mole | Oct 1965 | A |
3236056 | Phillips et al. | Feb 1966 | A |
3252504 | Newton | May 1966 | A |
3391727 | Topouszian | Jul 1968 | A |
3527621 | Newton | Sep 1970 | A |
3561224 | Hampden et al. | Feb 1971 | A |
3599437 | Panas | Aug 1971 | A |
3635037 | Hubert | Jan 1972 | A |
3681929 | Schering | Aug 1972 | A |
3779307 | Weiss et al. | Dec 1973 | A |
3817043 | Zoleta | Jun 1974 | A |
3885126 | Sugiyama et al. | May 1975 | A |
4038831 | Gaudel et al. | Aug 1977 | A |
4051691 | Dawkins | Oct 1977 | A |
4065936 | Fenton et al. | Jan 1978 | A |
4193271 | Honigsbaum | Mar 1980 | A |
4229687 | Newman | Oct 1980 | A |
4280330 | Harris et al. | Jul 1981 | A |
4314008 | Blake | Feb 1982 | A |
4324845 | Stockel | Apr 1982 | A |
4444851 | Maru | Apr 1984 | A |
4448157 | Eckstein et al. | May 1984 | A |
4494380 | Cross | Jan 1985 | A |
4531379 | Diefenthaler, Jr. | Jul 1985 | A |
4658599 | Kajiwara | Apr 1987 | A |
4665707 | Hamilton | May 1987 | A |
4665971 | Sakurai | May 1987 | A |
4707995 | Assaf | Nov 1987 | A |
4753682 | Cantoni | Jun 1988 | A |
4823554 | Trachtenberg et al. | Apr 1989 | A |
4848090 | Peters | Jul 1989 | A |
4858069 | Hughes | Aug 1989 | A |
4865929 | Eck | Sep 1989 | A |
4905475 | Tuomi | Mar 1990 | A |
4907060 | Nelson et al. | Mar 1990 | A |
4922721 | Robertson et al. | May 1990 | A |
4922998 | Carr | May 1990 | A |
4947735 | Guillemin | Aug 1990 | A |
4988847 | Argos et al. | Jan 1991 | A |
4999576 | Levinson | Mar 1991 | A |
5015545 | Brooks | May 1991 | A |
5029446 | Suzuki | Jul 1991 | A |
5038569 | Shirota et al. | Aug 1991 | A |
5042566 | Hildebrand | Aug 1991 | A |
5071652 | Jones et al. | Dec 1991 | A |
5092129 | Bayes et al. | Mar 1992 | A |
5097829 | Quisenberry | Mar 1992 | A |
5111664 | Yang | May 1992 | A |
5119640 | Conrad | Jun 1992 | A |
5121047 | Goedken et al. | Jun 1992 | A |
5141826 | Bohm et al. | Aug 1992 | A |
5167129 | Akasaka | Dec 1992 | A |
5193347 | Apisdorf | Mar 1993 | A |
5197291 | Levinson | Mar 1993 | A |
5198930 | Muratomi | Mar 1993 | A |
5229702 | Boehling | Jul 1993 | A |
5232516 | Hed | Aug 1993 | A |
5269146 | Kerner | Dec 1993 | A |
5291960 | Brandenburg et al. | Mar 1994 | A |
5300197 | Mitani et al. | Apr 1994 | A |
5303771 | Des Champs | Apr 1994 | A |
5316078 | Cesaroni | May 1994 | A |
5385020 | Gwilliam et al. | Jan 1995 | A |
5386823 | Chen | Feb 1995 | A |
5395708 | Hall | Mar 1995 | A |
5407130 | Uyeki et al. | Apr 1995 | A |
5419980 | Okamoto et al. | May 1995 | A |
5431021 | Gwilliam et al. | Jul 1995 | A |
5448891 | Nakagiri et al. | Sep 1995 | A |
5450894 | Inoue et al. | Sep 1995 | A |
5483807 | Abersfelder et al. | Jan 1996 | A |
5497625 | Manz et al. | Mar 1996 | A |
5499504 | Mill et al. | Mar 1996 | A |
5549153 | Baruschke et al. | Aug 1996 | A |
5566774 | Yoshida | Oct 1996 | A |
5576512 | Doke | Nov 1996 | A |
5592363 | Atarashi et al. | Jan 1997 | A |
5605047 | Park et al. | Feb 1997 | A |
5623195 | Bullock et al. | Apr 1997 | A |
5653111 | Attey et al. | Aug 1997 | A |
5673964 | Roan et al. | Oct 1997 | A |
5694770 | Bruck et al. | Dec 1997 | A |
5705770 | Ogassawara et al. | Jan 1998 | A |
5713426 | Okamura | Feb 1998 | A |
5722249 | Miller, Jr. | Mar 1998 | A |
5725048 | Burk et al. | Mar 1998 | A |
5802856 | Schaper et al. | Sep 1998 | A |
5816236 | Moroi et al. | Oct 1998 | A |
5871859 | Parise | Feb 1999 | A |
5890371 | Rajasubramanian et al. | Apr 1999 | A |
5899086 | Noda et al. | May 1999 | A |
5901572 | Peiffer et al. | May 1999 | A |
RE36242 | Apisdorf | Jun 1999 | E |
5918930 | Kawai et al. | Jul 1999 | A |
5921088 | Imaizumi et al. | Jul 1999 | A |
5955772 | Shakouri et al. | Sep 1999 | A |
5964092 | Tozuka et al. | Oct 1999 | A |
5966941 | Ghoshal | Oct 1999 | A |
5975856 | Welle | Nov 1999 | A |
5977785 | Burward-Hoy | Nov 1999 | A |
5987890 | Chiu et al. | Nov 1999 | A |
6028263 | Kobayashi et al. | Feb 2000 | A |
6050326 | Evans | Apr 2000 | A |
6057050 | Parise | May 2000 | A |
6059198 | Moroi et al. | May 2000 | A |
6082445 | Dugan | Jul 2000 | A |
6084172 | Kishi et al. | Jul 2000 | A |
6105659 | Pocol et al. | Aug 2000 | A |
6119463 | Bell | Sep 2000 | A |
6122588 | Shehan et al. | Sep 2000 | A |
6138466 | Lake et al. | Oct 2000 | A |
6138749 | Kawai et al. | Oct 2000 | A |
6158225 | Muto et al. | Dec 2000 | A |
6203939 | Wilson | Mar 2001 | B1 |
6205802 | Drucker et al. | Mar 2001 | B1 |
6205805 | Takahashi et al. | Mar 2001 | B1 |
6213198 | Shikata et al. | Apr 2001 | B1 |
6223539 | Bell | May 2001 | B1 |
6270015 | Hirota | Aug 2001 | B1 |
6293107 | Kitagawa | Sep 2001 | B1 |
6294721 | Oravetz et al. | Sep 2001 | B1 |
6324860 | Maeda et al. | Dec 2001 | B1 |
6334311 | Kim et al. | Jan 2002 | B1 |
6346668 | McGrew | Feb 2002 | B1 |
6347521 | Kadotani et al. | Feb 2002 | B1 |
6366832 | Lomonaco et al. | Apr 2002 | B2 |
6393842 | Kim | May 2002 | B2 |
6401462 | Bielinski | Jun 2002 | B1 |
6412287 | Hughes et al. | Jul 2002 | B1 |
6438964 | Giblin | Aug 2002 | B1 |
6455186 | Moores, Jr. et al. | Sep 2002 | B1 |
6457324 | Zeigler et al. | Oct 2002 | B2 |
6464027 | Dage et al. | Oct 2002 | B1 |
6474073 | Uetsuji et al. | Nov 2002 | B1 |
6474081 | Feuerecker | Nov 2002 | B1 |
6481213 | Carr et al. | Nov 2002 | B2 |
6510696 | Guttman et al. | Jan 2003 | B2 |
6530920 | Whitcroft et al. | Mar 2003 | B1 |
6539725 | Bell | Apr 2003 | B2 |
6554088 | Severinsky et al. | Apr 2003 | B2 |
6560968 | Ko | May 2003 | B2 |
6569550 | Khelifa | May 2003 | B2 |
6570362 | Estes et al. | May 2003 | B1 |
RE38128 | Gallup et al. | Jun 2003 | E |
6588217 | Ghoshal | Jul 2003 | B2 |
6605773 | Kok | Aug 2003 | B2 |
6606877 | Tomita et al. | Aug 2003 | B2 |
6607142 | Boggs et al. | Aug 2003 | B1 |
6611115 | Wakashiro et al. | Aug 2003 | B2 |
6640889 | Harte et al. | Nov 2003 | B1 |
6645666 | Moores, Jr. et al. | Nov 2003 | B1 |
6653002 | Parise | Nov 2003 | B1 |
6682844 | Gene | Jan 2004 | B2 |
6700052 | Bell | Mar 2004 | B2 |
6705089 | Chu et al. | Mar 2004 | B2 |
6722139 | Moon et al. | Apr 2004 | B2 |
6732534 | Spry | May 2004 | B2 |
6767666 | Nemoto | Jul 2004 | B2 |
6792259 | Parise | Sep 2004 | B1 |
6796399 | Satou et al. | Sep 2004 | B2 |
6803766 | Kobayashi et al. | Oct 2004 | B2 |
6807811 | Lee | Oct 2004 | B2 |
6810977 | Suzuki | Nov 2004 | B2 |
6862892 | Meyer et al. | Mar 2005 | B1 |
6883602 | Drucker | Apr 2005 | B2 |
6886356 | Kubo et al. | May 2005 | B2 |
6894369 | Irino et al. | May 2005 | B2 |
6896047 | Currle et al. | May 2005 | B2 |
6907739 | Bell | Jun 2005 | B2 |
6910345 | Horstmann et al. | Jun 2005 | B2 |
6942728 | Caillat et al. | Sep 2005 | B2 |
6949309 | Moores, Jr. et al. | Sep 2005 | B2 |
6951114 | Grisham et al. | Oct 2005 | B2 |
6959555 | Bell | Nov 2005 | B2 |
6973799 | Kuehl et al. | Dec 2005 | B2 |
6986247 | Parise | Jan 2006 | B1 |
7007491 | Grimm et al. | Mar 2006 | B2 |
7014945 | Moores, Jr. et al. | Mar 2006 | B2 |
7056616 | Moores, Jr. et al. | Jun 2006 | B2 |
7061208 | Nishihata et al. | Jun 2006 | B2 |
7089756 | Hu | Aug 2006 | B2 |
7100369 | Yamaguchi et al. | Sep 2006 | B2 |
7171955 | Perkins | Feb 2007 | B2 |
7230404 | Kimoto et al. | Jun 2007 | B2 |
7246496 | Goenka et al. | Jul 2007 | B2 |
7252904 | Moores, Jr. et al. | Aug 2007 | B2 |
7270910 | Yahnker et al. | Sep 2007 | B2 |
7310953 | Pham et al. | Dec 2007 | B2 |
7326490 | Moores, Jr. et al. | Feb 2008 | B2 |
7363766 | Eisenhour | Apr 2008 | B2 |
7380586 | Gawthrop | Jun 2008 | B2 |
7384704 | Scott | Jun 2008 | B2 |
7426835 | Bell | Sep 2008 | B2 |
7629530 | Inaoka | Dec 2009 | B2 |
7743614 | Goenka et al. | Jun 2010 | B2 |
7779639 | Goenka | Aug 2010 | B2 |
7784289 | Scherer et al. | Aug 2010 | B2 |
7788933 | Goenka | Sep 2010 | B2 |
7863866 | Wolf | Jan 2011 | B2 |
7870892 | Gawthrop | Jan 2011 | B2 |
7926293 | Bell | Apr 2011 | B2 |
7946120 | Bell | May 2011 | B2 |
8069674 | Bell | Dec 2011 | B2 |
8104294 | Reeve | Jan 2012 | B2 |
8359871 | Woods et al. | Jan 2013 | B2 |
8408012 | Goenka et al. | Apr 2013 | B2 |
8490412 | Bell et al. | Jul 2013 | B2 |
8495884 | Bell et al. | Jul 2013 | B2 |
8631659 | Goenka | Jan 2014 | B2 |
8783397 | Goenka et al. | Jul 2014 | B2 |
20010029974 | Cohen et al. | Oct 2001 | A1 |
20020092307 | Ghoshal | Jul 2002 | A1 |
20020095943 | Hatakeyama et al. | Jul 2002 | A1 |
20030140636 | Van Winkle | Jul 2003 | A1 |
20030145605 | Moon et al. | Aug 2003 | A1 |
20030230443 | Cramer et al. | Dec 2003 | A1 |
20040025516 | Van Winkle | Feb 2004 | A1 |
20040050076 | Palfy et al. | Mar 2004 | A1 |
20040093889 | Bureau et al. | May 2004 | A1 |
20040098991 | Heyes | May 2004 | A1 |
20040237541 | Murphy | Dec 2004 | A1 |
20050000473 | Ap et al. | Jan 2005 | A1 |
20050011199 | Grisham et al. | Jan 2005 | A1 |
20050061497 | Amaral | Mar 2005 | A1 |
20050067862 | Iqbal et al. | Mar 2005 | A1 |
20050074646 | Rajashekara et al. | Apr 2005 | A1 |
20050133206 | Scott | Jun 2005 | A1 |
20050139692 | Yamamoto | Jun 2005 | A1 |
20050178128 | Harwood et al. | Aug 2005 | A1 |
20050247446 | Gawthrop | Nov 2005 | A1 |
20050257531 | Kadle et al. | Nov 2005 | A1 |
20050257545 | Ziehr et al. | Nov 2005 | A1 |
20050268621 | Kadle et al. | Dec 2005 | A1 |
20050278863 | Bahash et al. | Dec 2005 | A1 |
20060005548 | Ruckstuhl | Jan 2006 | A1 |
20060011152 | Hayes | Jan 2006 | A1 |
20060028182 | Yang et al. | Feb 2006 | A1 |
20060059933 | Axakov et al. | Mar 2006 | A1 |
20060060236 | Kim | Mar 2006 | A1 |
20060075758 | Rice et al. | Apr 2006 | A1 |
20060124165 | Bierschenk et al. | Jun 2006 | A1 |
20060130490 | Petrovski | Jun 2006 | A1 |
20060137358 | Feher | Jun 2006 | A1 |
20060150657 | Spurgeon et al. | Jul 2006 | A1 |
20060157102 | Nakajima et al. | Jul 2006 | A1 |
20060188418 | Park et al. | Aug 2006 | A1 |
20060254284 | Ito et al. | Nov 2006 | A1 |
20060254285 | Lin | Nov 2006 | A1 |
20070000255 | Elliot et al. | Jan 2007 | A1 |
20070017666 | Goenka et al. | Jan 2007 | A1 |
20070056295 | De Vilbiss | Mar 2007 | A1 |
20070193617 | Taguchi | Aug 2007 | A1 |
20070214799 | Goenka | Sep 2007 | A1 |
20070272290 | Sims et al. | Nov 2007 | A1 |
20080017362 | Kwon et al. | Jan 2008 | A1 |
20080090137 | Buck et al. | Apr 2008 | A1 |
20080239675 | Speier | Oct 2008 | A1 |
20080307796 | Bell et al. | Dec 2008 | A1 |
20080311466 | Yang et al. | Dec 2008 | A1 |
20090000310 | Bell et al. | Jan 2009 | A1 |
20090025770 | Lofy | Jan 2009 | A1 |
20090118869 | Cauchy et al. | May 2009 | A1 |
20100031987 | Bell | Feb 2010 | A1 |
20100052374 | Bell et al. | Mar 2010 | A1 |
20100101238 | LaGrandeur et al. | Apr 2010 | A1 |
20100101239 | LaGrandeur et al. | Apr 2010 | A1 |
20100112419 | Jang et al. | May 2010 | A1 |
20100155018 | Goenka et al. | Jun 2010 | A1 |
20100287952 | Goenka | Nov 2010 | A1 |
20100291414 | Bell et al. | Nov 2010 | A1 |
20100313576 | Goenka | Dec 2010 | A1 |
20110067742 | Bell et al. | Mar 2011 | A1 |
20110079023 | Goenka et al. | Apr 2011 | A1 |
20110107773 | Gawthrop | May 2011 | A1 |
20110236731 | Bell et al. | Sep 2011 | A1 |
20110244300 | Closek et al. | Oct 2011 | A1 |
20110287285 | Yoon | Nov 2011 | A1 |
20120266608 | Kadle et al. | Oct 2012 | A1 |
20120285758 | Bell et al. | Nov 2012 | A1 |
20130059190 | Kossakovski et al. | Mar 2013 | A1 |
20130174579 | Goenka et al. | Jul 2013 | A1 |
20130183566 | Wayne et al. | Jul 2013 | A1 |
20130192271 | Ranalli et al. | Aug 2013 | A1 |
20130192272 | Ranalli et al. | Aug 2013 | A1 |
20130216887 | Wayne et al. | Aug 2013 | A1 |
20130317728 | Hall et al. | Nov 2013 | A1 |
20130327063 | Gawthrop | Dec 2013 | A1 |
20140060086 | Ranalli | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
1195090 | Oct 1998 | CN |
13 01 454 | Aug 1969 | DE |
2319155 | Oct 1974 | DE |
197 30 678 | Jan 1999 | DE |
198 29 440 | Jan 2000 | DE |
199 51 224 | May 2001 | DE |
20 105 487 | Oct 2001 | DE |
10 2009 003 737 | Oct 2010 | DE |
0 389 407 | Sep 1990 | EP |
0418995 | Mar 1991 | EP |
0 545 021 | Jun 1993 | EP |
0 791 497 | Aug 1997 | EP |
1641067 | Mar 2006 | EP |
1 932 695 | Jun 2008 | EP |
2806666 | Sep 2001 | FR |
2903057 | Jan 2008 | FR |
231 192 | May 1926 | GB |
1 040 485 | Aug 1966 | GB |
2 267 338 | Dec 1993 | GB |
2 333 352 | Jul 1999 | GB |
39-27735 | Dec 1964 | JP |
56-18231 | Feb 1981 | JP |
01 131830 | May 1989 | JP |
01 200122 | Aug 1989 | JP |
01 281344 | Nov 1989 | JP |
04 103925 | Apr 1992 | JP |
4-165234 | Jun 1992 | JP |
05-37521 | May 1993 | JP |
6-024235 | Feb 1994 | JP |
06-135218 | May 1994 | JP |
07-089334 | Apr 1995 | JP |
07-54189 | Jun 1995 | JP |
07-253224 | Oct 1995 | JP |
08-316388 | Nov 1996 | JP |
09042801 | Feb 1997 | JP |
09-254630 | Sep 1997 | JP |
9-276076 | Oct 1997 | JP |
10035268 | Feb 1998 | JP |
11-042933 | Feb 1999 | JP |
11-301254 | Nov 1999 | JP |
11-342731 | Dec 1999 | JP |
2000 130883 | May 2000 | JP |
2000-161721 | Jun 2000 | JP |
2000-274788 | Oct 2000 | JP |
2000-318434 | Nov 2000 | JP |
2002-13758 | Jan 2002 | JP |
2002059736 | Feb 2002 | JP |
2003-237357 | Aug 2003 | JP |
2004 050874 | Feb 2004 | JP |
2005 212564 | Aug 2005 | JP |
2005-302851 | Oct 2005 | JP |
2006 015965 | Jan 2006 | JP |
2007-161110 | Jun 2007 | JP |
2008-047371 | Feb 2008 | JP |
2008-094366 | Apr 2008 | JP |
2008-108509 | May 2008 | JP |
2009-245730 | Oct 2009 | JP |
2001 111646 | Dec 2001 | KR |
10-2002-0057600 | Jun 2007 | KR |
10-2011-0013876 | Feb 2011 | KR |
66619 | Feb 1973 | LU |
337 227 | May 1971 | SE |
184886 | Jul 1966 | SU |
WO 9501500 | Jan 1995 | WO |
WO 9605475 | Feb 1996 | WO |
WO 9747930 | Dec 1997 | WO |
WO 9909360 | Feb 1999 | WO |
WO 9910191 | Mar 1999 | WO |
WO 9958907 | Nov 1999 | WO |
WO 0200458 | Jan 2002 | WO |
WO 03014634 | Feb 2003 | WO |
WO 2005023571 | Mar 2005 | WO |
WO 2006037178 | Apr 2006 | WO |
WO 2006064432 | Jun 2006 | WO |
WO 2007001289 | Jan 2007 | WO |
WO 2007021273 | Feb 2007 | WO |
WO 2008147305 | Apr 2008 | WO |
WO 2014110524 | Jul 2014 | WO |
WO 2014120688 | Aug 2014 | WO |
Entry |
---|
Behr, “Li-on Battery Cooling”, Power Point Presentation, Stuttgart, May 20, 2009, 13 pages. |
Chinese First Office Action for CN Appl. No. 201080032250.3, dated Nov. 26, 2013. |
Behr, “Thermal Management for Hybrid Vehicles”, Power Point Presentation, Technical Press Day 2009, 20 pages. |
Esfahanian, Vahid et al., “Design and Simulation of Air Cooled Battery Thermal Management System Using Thermoelectric for a Hybrid Electric Bus”, Proceedings of the FISITA 2012 World Automotive Congress, vol. 3, Lecture notes in Electrical Engineering, vol. 191, 2013. |
Heckenberger, Thomas, “Li-on Battery Cooling,” BEHR Power Point Presentation, Technical Press Day, Stuttgart, May 20, 2009, 13 pages. |
Horie, et al., “A Study on an Advanced Lithium-ion Battery System for EVs”, The World Electric Vehicle Journal, 2008, vol. 2, Issue 2, pp. 25-31. |
Jeon, et al., “Development of Battery Pack Design for High Power Li-Ion Battery Pack of HEV”, The World Electric Vehicle Association of Journal, 2007, vol. 1, pp. 94-99. |
Jeon, et al., “Thermal modeling of cylindrical lithium ion battery during discharge cycle,” Energy Conversion and Management, Aug. 2011, vol. 52, Issues 8-9, pp. 2973-2981. |
Morawietz, et al., “Thermoelektrische Modellierung eines Lithium-Lonen-Energiespeichers fuer den Fahrzeugeinsatz,” VDI-Berichte, Nov. 2008, Issue 2030, pp. 299-318. |
Sabbah et al., “Passive Thermal Management System for Plug-in Hybrid and Comparison with Active Cooling: Limitation of Temperature Rise and Uniformity of Temperature Distribution”, ECS Transactions, 2008, vol. 13, Issue 19, pp. 41-52. |
Number | Date | Country | |
---|---|---|---|
20130174579 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61139494 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12609499 | Oct 2009 | US |
Child | 13783113 | US | |
Parent | 12862674 | Aug 2010 | US |
Child | 12609499 | US | |
Parent | 11497700 | Aug 2006 | US |
Child | 12862674 | US |