The present disclosure relates to environmental comfort systems and more particularly to remote monitoring and diagnosis of residential and light commercial environmental comfort systems.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent it is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
A residential or light commercial HVAC (heating, ventilation, or air conditioning) system controls environmental parameters, such as temperature and humidity, of a residence. The HVAC system may include, but is not limited to, components that provide heating, cooling, humidification, and dehumidification. The target values for the environmental parameters, such as a temperature set point, may be specified by a homeowner.
In
The thermostat 122 may direct that the circulator blower 114 be turned on at all times or only when a heat request or cool request is present. The circulator blower 114 may also be turned on at a scheduled time or on demand. In various implementations, the circulator blower 114 can operate at multiple speeds or at any speed within a predetermined range. One or more switching relays (not shown) may be used to control the circulator blower 114 and/or to select a speed of the circulator blower 114.
The thermostat 122 also provides the heat and/or cool requests to the control module 118. When a heat request is made, the control module 118 causes a burner 126 to ignite. Heat from combustion is introduced to the return air provided by the circulator blower 114 in a heat exchanger 130. The heated air is supplied to the residence and is referred to as supply air.
The burner 126 may include a pilot light, which is a small constant flame for igniting the primary flame in the burner 126. Alternatively, an intermittent pilot may be used in which a small flame is first lit prior to igniting the primary flame in the burner 126. A sparker may be used for an intermittent pilot implementation or for direct burner ignition. Another ignition option includes a hot surface igniter, which heats a surface to a high enough temperature that when gas is introduced, the heated surface causes combustion to begin. Fuel for combustion, such as natural gas, may be provided by a gas valve 128.
The products of combustion are exhausted outside of the residence, and an inducer blower 134 may be turned on prior to ignition of the burner 126. The inducer blower 134 provides a draft to remove the products of combustion from the burner 126. The inducer blower 134 may remain running while the burner 126 is operating. In addition, the inducer blower 134 may continue running for a set period of time after the burner 126 turns off. In a high efficiency furnace, the products of combustion may not be hot enough to have sufficient buoyancy to exhaust via conduction. Therefore, the inducer blower 134 creates a draft to exhaust the products of combustion.
A single enclosure, which will be referred to as an air handler unit 208, may include the filter 110, the circulator blower 114, the control module 118, the burner 126, the heat exchanger 130, the inducer blower 134, an expansion valve 188, an evaporator 192, and a condensate pan 196.
In the HVAC system of
A control module 200 receives a cool request from the control module 118 and controls the compressor 180 accordingly. The control module 200 also controls a condenser fan 204, which increases heat exchange between the condenser 184 and outside air. In such a split system, the compressor 180, the condenser 184, the control module 200, and the condenser fan 204 are located outside of the residence, often in a single condensing unit 212.
In various implementations, the control module 200 may simply include a run capacitor, a start capacitor, and a contactor or relay. In fact, in certain implementations, the start capacitor may be omitted, such as when a scroll compressor instead of a reciprocating compressor is being used. The compressor 180 may be a variable capacity compressor and may respond to a multiple-level cool request. For example, the cool request may indicate a mid-capacity call for cool or a high-capacity call for cool.
The electrical lines provided to the condensing unit 212 may include a 240 volt mains power line and a 24 volt switched control line. The 24 volt control line may correspond to the cool request shown in
Monitoring of operation of components in the condensing unit 212 and the air handler unit 208 has traditionally been performed by multiple discrete sensors, measuring current individually to each component. For example, a sensor may sense the current drawn by a motor, another sensor measures resistance or current flow of an igniter, and yet another sensor monitors a state of a gas valve. However, the cost of these sensors and the time required for installation has made monitoring cost prohibitive.
An apparatus for monitoring a heating, ventilation, or air conditioning (HVAC) system includes an indoor unit monitor module electrically connected to a current sensor and first and second refrigerant temperature sensors. The current sensor generates a first current signal based on aggregate current consumed by components of an indoor unit of the HVAC system. The refrigerant temperature sensors generate first and second refrigerant temperature signals, respectively based on measured temperatures refrigerant circulating within the HVAC system. The indoor unit monitor module receives, from a secondary monitoring module, a second current signal based on aggregate current consumed by components of an outdoor unit of the HVAC system. The indoor unit monitor module transmits data to a remote server to assess whether a failure has occurred or is likely to occur in the components of the HVAC system. The data is based on the current signals and the refrigerant temperature signals.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
In the drawings, reference numbers may be reused to identify similar and/or identical elements.
According to the present disclosure, sensing/monitoring modules can be integrated with a residential or light commercial HVAC (heating, ventilation, or air conditioning) system. As used in this application, the term HVAC can encompass all environmental comfort systems in a building, including heating, cooling, humidifying, and dehumidifying, and covers devices such as furnaces, heat pumps, humidifiers, dehumidifiers, and air conditioners. The term HVAC is a broad term, in that an HVAC system according to this application does not necessarily include both heating and air conditioning, and may instead have only one or the other.
In split HVAC systems with an air handler unit (often, indoors) and a condensing unit (often, outdoors), an air handler monitor module and a condensing monitor module, respectively, can be used. The air handler monitor module and the condensing monitor module may be integrated by the manufacturer of the HVAC system, may be added at the time of the installation of the HVAC system, and/or may be retrofitted to an existing system.
The air handler monitor and condensing monitor modules monitor operating parameters of associated components of the HVAC system. For example, the operating parameters may include power supply current, power supply voltage, operating and ambient temperatures, fault signals, and control signals. The air handler monitor and condensing monitor modules may communicate data between each other, while one or both of the air handler monitor and condensing monitor modules uploads data to a remote location. The remote location may be accessible via any suitable network, including the Internet.
The remote location includes one or more computers, which will be referred to as servers. The servers execute a monitoring system on behalf of a monitoring company. The monitoring system receives and processes the data from the air handler monitor and condensing monitor modules of customers who have such systems installed. The monitoring system can provide performance information, diagnostic alerts, and error messages to a customer and/or third parties, such as a designated HVAC contractor.
The air handler monitor and condensing monitor modules may each sense an aggregate current for the respective unit without measuring individual currents of individual components. The aggregate current data may be processed using frequency domain analysis, statistical analysis, and state machine analysis to determine operation of individual components based on the aggregate current data. This processing may happen partially or entirely in a server environment, remote from the customer's building or residence.
Based on measurements from the air handler monitor and condensing monitor modules, the monitoring company can determine whether HVAC components are operating at their peak performance and can advise the customer and the contractor when performance is reduced. This performance reduction may be measured for the system as a whole, such as in terms of efficiency, and/or may be monitored for one or more individual components.
In addition, the monitoring system may detect and/or predict failures of one or more components of the system. When a failure is detected, the customer can be notified and potential remediation steps can be taken immediately. For example, components of the HVAC system may be shut down to minimize damage of HVAC components and/or prevent water damage. The contractor can also be notified that a service call will be required. Depending on the contractual relationship between the customer and the contractor, the contractor may immediately schedule a service call to the building.
The monitoring system may provide specific information to the contractor, including identifying information of the customer's HVAC system, including make and model numbers, as well as indications of the specific part numbers that appear to be failing. Based on this information, the contractor can allocate the correct repair personnel that have experience with the specific HVAC system and/or component. In addition, the service technician is able to bring replacement parts, avoiding return trips after diagnosis.
Depending on the severity of the failure, the customer and/or contractor may be advised of relevant factors in determining whether to repair the HVAC system or replace some or all of the components of the HVAC system. For example only, these factors may include relative costs of repair versus replacement, and may include quantitative or qualitative information about advantages of replacement equipment. For example, expected increases in efficiency and/or comfort with new equipment may be provided. Based on historical usage data and/or electricity or other commodity prices, the comparison may also estimate annual savings resulting from the efficiency improvement.
As mentioned above, the monitoring system may also predict impending failures. This allows for preventative maintenance and repair prior to an actual failure. Alerts regarding detected or impending failures reduce the time when the HVAC system is out of operation and allows for more flexible scheduling for both the customer and contractor. If the customer is out of town, these alerts may prevent damage from occurring when the customer is not present to detect the failure of the HVAC system. For example, failure of heat in winter may lead to pipes freezing and bursting.
Alerts regarding potential or impending failures may specify statistical timeframes before the failure is expected. For example only, if a sensor is intermittently providing bad data, the monitoring system may specify an expected amount of time before it is likely that the sensor effectively stops working due to the prevalence of bad data. Further, the monitoring system may explain, in quantitative or qualitative terms, how the current operation and/or the potential failure will affect operation of the HVAC system. This enables the customer to prioritize and budget for repairs.
For the monitoring service, the monitoring company may charge a periodic rate, such as a monthly rate. This charge may be billed directly to the customer and/or may be billed to the contractor. The contractor may pass along these charges to the customer and/or may make other arrangements, such as by requiring an up-front payment upon installation and/or applying surcharges to repairs and service visits.
For the air handler monitor and condensing monitor modules, the monitoring company or contractor may charge the customer the equipment cost, including the installation cost, at the time of installation and/or may recoup these costs as part of the monthly fee. Alternatively, rental fees may be charged for the air handler monitor and condensing monitor modules, and once the monitoring service is stopped, the air handler monitor and condensing monitor modules may be returned.
The monitoring service may allow the customer and/or contractor to remotely monitor and/or control HVAC components, such as setting temperature, enabling or disabling heating and/or cooling, etc. In addition, the customer may be able to track energy usage, cycling times of the HVAC system, and/or historical data. Efficiency and/or operating costs of the customer's HVAC system may be compared against HVAC systems of neighbors, whose buildings will be subject to the same or similar environmental conditions. This allows for direct comparison of HVAC system and overall building efficiency because environmental variables, such as temperature and wind, are controlled.
The monitoring system can be used by the contractor during and after installation, during and after repair to verify operation of the air handler monitor and condensing monitor modules, as well as to verify correct installation of the components of the HVAC system. In addition, the customer may review this data in the monitoring system for assurance that the contractor correctly installed and configured the HVAC system. In addition to being uploaded to the remote monitoring service (also referred to as the cloud), monitored data may be transmitted to a local device in the building. For example, a smartphone, laptop, or proprietary portable device may receive monitoring information to diagnose problems and receive real-time performance data. Alternatively, data may be uploaded to the cloud and then downloaded onto a local computing device, such as via the Internet from an interactive web site.
The historical data collected by the monitoring system may allow the contractor to properly specify new HVAC components and to better tune configuration, including dampers and set points of the HVAC system. The information collected may be helpful in product development and assessing failure modes. The information may be relevant to warranty concerns, such as determining whether a particular problem is covered by a warranty. Further, the information may help to identify conditions, such as unauthorized system modifications, that could potentially void warranty coverage.
Original equipment manufacturers may subsidize partially or fully the cost of the monitoring system and air handler and condensing monitor modules in return for access to this information. Installation and service contractors may also subsidize some or all of these costs in return for access to this information, and for example, in exchange for being recommended by the monitoring system. Based on historical service data and customer feedback, the monitoring system may provide contractor recommendations to customers.
In
The present disclosure is not limited, and applies to other systems including, as examples only, systems where the components of the air handler unit 304 and the condensing unit 308 are located in close proximity to each other or even in a single enclosure. The single enclosure may be located inside or outside of the building 300. In various implementations, the air handler unit 304 may be located in a basement, garage, or attic. In ground source systems, where heat is exchanged with the earth, the air handler unit 304 and the condensing unit 308 may be located near the earth, such as in a basement, crawlspace, garage, or on the first floor, such as when the first floor is separated from the earth by only a concrete slab.
According to the principles of the present disclosure, a condensing monitor module 316 is located within or in close proximity to the condensing unit 308. The condensing monitor module 316 monitors parameters of the condensing unit 308 including current, voltage, and temperatures.
In one implementation, the current measured is a single power supply current that represents the aggregate current draw of the entire condensing unit 308 from an electrical panel 318. A current sensor 320 measures the current supplied to the condensing unit 308 and provides measured data to the condensing monitor module 316. For example only, the condensing unit 308 may receive an AC line voltage of approximately 240 volts. The current sensor 320 may sense current of one of the legs of the 240 volt power supply. A voltage sensor (not shown) may sense the voltage of one or both of the legs of the AC voltage supply. The current sensor 320 may include a current transformer, a current shunt, and/or a hall effect device. In various implementations, a power sensor may be used in addition to or in place of the current sensor 320. Current may be calculated based on the measured power, or profiles of the power itself may be used to evaluate operation of components of the condensing unit 308.
An air handler monitor module 322 monitors the air handler unit 304. For example, the air handler monitor module 322 may monitor current, voltage, and various temperatures. In one implementation, the air handler monitor module 322 monitors an aggregate current drawn by the entire air handler unit 304. When the air handler unit 304 provides power to an HVAC control module 360, the aggregate current includes current drawn by the HVAC control module 360. A current sensor 324 measures current delivered to the air handler unit 304 by the electrical panel 318. The current sensor 324 may be similar to the current sensor 320. Voltage sensors (not shown) may be located near the current sensors 324 and 320. The voltage sensors provide voltage data to the air handler unit 304 and the condensing unit 308.
The air handler monitor module 322 and the condensing monitor module 316 may evaluate the voltage to determine various parameters. For example, frequency, amplitude, RMS voltage, and DC offset may be calculated based on the measured voltage. In situations where 3-phase power is used, the order of the phases may be determined. Information about when the voltage crosses zero may be used to synchronize various measurements and to determine frequency based on counting the number of zero crossings within a predetermine time period.
The air handler unit 304 includes a blower, a burner, and an evaporator. In various implementations, the air handler unit 304 includes an electrical heating device instead of or in addition to the burner. The electrical heating device may provide backup or secondary heat. The condensing monitor module 316 and the air handler monitor module 322 share collected data with each other. When the current measured is the aggregate current draw, in either the air handler monitor module 322 or the condensing monitor module 316, contributions to the current profile are made by each component. It may be difficult, therefore, to easily determine in the time domain how the measured current corresponds to individual components. However, when additional processing is available, such as in a monitoring system, which may include server and other computing resources, additional analysis, such as frequency domain analysis, can be performed.
The frequency domain analysis may allow individual contributions of HVAC system components to be determined. Some of the advantages of using an aggregate current measurement may include reducing the number of current sensors that would otherwise be necessary to monitor each of the HVAC system components. This reduces bill of materials costs, as well as installation costs and potential installation problems. Further, providing a single time domain current stream may reduce the amount of bandwidth necessary to upload the current data. Nevertheless, the present disclosure could also be used with additional current sensors.
Further, although not shown in the figures, additional sensors, such as pressure sensors, may be included and connected to the air handler monitor module 322 and/or the condensing monitor module 316. The pressure sensors may be associated with return air pressure or supply air pressure, and/or with pressures at locations within the refrigerant loop. Air flow sensors may measure mass air flow of the supply air and/or the return air. Humidity sensors may measure relative humidity of the supply air and/or the return air, and may also measure ambient humidity inside or outside the building 300.
In various implementations, the principles of the present disclosure may be applied to monitoring other systems, such as a hot water heater, a boiler heating system, a refrigerator, a refrigeration case, a pool heater, a pool pump/filter, etc. As an example, the hot water heater may include an igniter, a gas valve (which may be operated by a solenoid), an igniter, an inducer blower, and a pump. Aggregate current readings can be analyzed by the monitoring company to assess operation of the individual components of the hot water heater. Aggregate loads, such as the hot water heater or the air handler unit 304, may be connected to an AC power source via a smart outlet, a smart plug, or a high amp load control switch, each of which may provide an indication when a connected device is activated.
In one implementation, which is shown in
In various other implementations, the condensing monitor module 316 may transmit data from the air handler monitor module 322 and the condensing monitor module 316 to an external wireless receiver. The external wireless receiver may be a proprietary receiver for a neighborhood in which the building 300 is located, or may be an infrastructure receiver, such as a metropolitan area network (such as WiMAX), a WiFi access point, or a mobile phone base station.
In the implementation of
The air handler monitor module 322 may communicate with the customer router 338 via a gateway 346. The gateway 346 translates information received from the air handler monitor module 322 into TCP/IP (Transmission Control Protocol/Internet Protocol) packets and vice versa. The gateway 346 then forwards those packets to the customer router 338. The gateway 346 may connect to the customer router 338 using a wired or wireless connection. The air handler monitor module 322 may communicate with the gateway 346 using a wired or wireless connection. For example, the interface between the gateway 346 and the customer router 338 may be Ethernet (IEEE 802.3) or WiFi (IEEE 802.11).
The interface between the air handler monitor module 322 and the gateway 346 may include a wireless protocol, such as Bluetooth, ZigBee (IEEE 802.15.4), 900 Megahertz, 2.4 Gigahertz, WiFi (IEEE 802.11), and other proprietary or standardized protocols. The air handler monitor module 322 may communicate with the condensing monitor module 316 using wired or wireless protocols. For example only, the air handler monitor module 322 and the condensing monitor module 316 may communicate using power line communications, which may be sent over a line voltage (such as 240 volts) or a stepped-down voltage, such as 24 volts, or a dedicated communications line.
The air handler monitor module 322 and the condensing monitor module 316 may transmit data within frames conforming to the ClimateTalk™ standard, which may include the ClimateTalk Alliance HVAC Application Profile v1.1, released Jun. 23, 2011, the ClimateTalk Alliance Generic Application Profile, v1.1, released Jun. 23, 2011, and the ClimateTalk Alliance Application Specification, v1.1, released Jun. 23, 2011, the entire disclosures of which are hereby incorporated by reference. In various implementations, the gateway 346 may encapsulate ClimateTalk™ frames into IP packets, which are transmitted to the monitoring system 330. The monitoring system 330 then extracts the ClimateTalk™ frames and parses the data contained within the ClimateTalk™ frames. The monitoring system 330 may send return information, including monitoring control signals and/or HVAC control signals, using ClimateTalk™.
The wireless communications described in the present disclosure can be conducted in full or partial compliance with IEEE standard 802.11-2012, IEEE standard 802.16-2009, IEEE standard 802.20-2008, and/or Bluetooth Core Specification v4.0. In various implementations, Bluetooth Core Specification v4.0 may be modified by one or more of Bluetooth Core Specification Addendums 2, 3, or 4. In various implementations, IEEE 802.11-2012 may be supplemented by draft IEEE standard 802.11ac, draft IEEE standard 802.11ad, and/or draft IEEE standard 802.11ah. In addition, other proprietary or standardized wireless or wired protocol may be used between monitor modules, gateway,
For example, the interface between the gateway 346 and the customer router 338 may be Ethernet (IEEE 802.3) or WiFi (IEEE 802.11). The interface between the air handler monitor module 322 and the gateway 346 may include a wireless protocol, such as Bluetooth, ZigBee (IEEE 802.15.4), 900 Megahertz, 2.4 Gigahertz, WiFi (IEEE 802.11), and other proprietary or standardized protocols
The HVAC control module 360 controls operation of the air handler unit 304 and the condensing unit 308. The HVAC control module 360 may operate based on control signals from a thermostat 364. The thermostat 364 may transmit requests for fan, heat, and cool to the HVAC control module 360. One or more of the control signals may be intercepted by the air handler monitor module 322. Various implementations of interaction between the control signals and the air handler monitor module 322 are shown below in
Additional control signals may be present in various HVAC systems. For example only, a heat pump may include additional control signals, such as a control signal for a reversing valve (not shown). The reversing valve selectively reverses the flow of refrigerant from what is shown in the figures depending on whether the system is heating the building or cooling the building. Further, when the flow of refrigerant is reversed, the roles of the evaporator and condenser are reversed—i.e., refrigerant evaporation occurs in what is labeled the condenser while refrigerant condensation occurs in what is labeled as the evaporator.
The thermostat 364 and/or the HVAC control module 360 may include control signals for secondary heating and/or secondary cooling, which may be activated when the primary heating or primary cooling is insufficient. In dual fuel systems, such as systems operating from either electricity or natural gas, control signals related to the selection of the fuel may be monitored. Further, additional status and error signals may be monitored, such as a defrost status signal, which may be asserted when the compressor is shut off and a defrost heater operates to melt frost from an evaporator.
In various implementations, the thermostat 364 may use the gateway 346 to communicate with the Internet 334. In one implementation, the thermostat 364 does not communicate directly with the air handler monitor module 322 or the condensing monitor module 316. Instead, the thermostat 364 communicates with the monitoring system 330, which may then provide information or control signals to the air handler monitor module 322 and/or the condensing monitor module 316 based on information from the thermostat 364. Using the monitoring system 330, the customer or contractor may send signals to the thermostat 364 to manually enable heating or cooling (regardless of current temperature settings), or to change set points, such as desired instant temperature and temperature schedules. In addition, information from the thermostat 364, such as current temperature and historical temperature trends, may be viewed.
The monitoring system 330 may provide alerts for situations such as detected or predicted failures to the customer computer 342 and/or to any other electronic device of the customer. For example, the monitoring system 330 may provide an alert to a mobile device 368 of the customer, such as a mobile phone or a tablet. The alerts are shown in
The monitoring system 330 also interacts with a contractor device 372. The contractor device 372 may then interface with mobile devices carried by individual contractors. Alternatively, the monitoring system 330 may directly provide alerts to predetermined mobile devices of the contractor. In the event of an impending or detected failure, the monitoring system 330 may provide information regarding identification of the customer, identification of the HVAC system, the part or parts related to the failure, and/or the skills required to perform the maintenance.
In various implementations, the monitoring system 330 may transmit a unique identifier of the customer or the building to the contractor device 372. The contractor device 372 may include a database indexed by the unique identifier, which stores information about the customer including the customer's address, contractual information such as service agreements, and detailed information about the installed HVAC equipment.
The air handler monitor module 322 and the condensing monitor module 316 may receive respective sensor signals, such as water sensor signals. For example, the air handler monitor module 322 may receive signals from a float switch 376, a condensate sensor 380, and a conduction sensor 384. The condensate sensor 380 may include a device as described in commonly assigned patent application Ser. No. 13/162,798, filed Jun. 17, 2011, titled Condensate Liquid Level Sensor and Drain Fitting, the entire disclosure of which is hereby incorporated by reference.
Where the air handler unit 304 is performing air conditioning, condensation occurs and is captured in a condensate pan. The condensate pan drains, often via a hose, into a floor drain or a condensate pump, which pumps the condensate to a suitable drain. The condensate sensor 380 detects whether the drain hose has been plugged, a condition which will eventually cause the condensate pan to overflow, potentially causing damage to the HVAC system and to surrounding portions of the building 300.
The air handler unit 304 may be located on a catch pan, especially in situations where the air handler unit 304 is located above living space of the building 300. The catch pan may include the float switch 376. When enough liquid accumulates in the catch pan, the float switch 376 provides an over-level signal to the air handler monitor module 322.
The conduction sensor 384 may be located on the floor or other surface where the air handler unit 304 is located. The conduction sensor 384 may sense water leaks that are for one reason or another not detected by the float switch 376 or the condensate sensor 380, including leaks from other systems such as a hot water heater.
In
Alternatively, leads from the air handler monitor module 322 may be attached to the same location as the fan and heat signals, such as by putting multiple spade lugs underneath a signal screw head. The cool signal from the thermostat 364 may be disconnected from the HVAC control module 360 and attached to the air handler monitor module 322. The air handler monitor module 322 then provides a switched cool signal to the HVAC control module 360. This allows the air handler monitor module 322 to interrupt operation of the air conditioning system, such as upon detection of water by one of the water sensors. The air handler monitor module 322 may also interrupt operation of the air conditioning system based on information from the condensing monitor module 316, such as detection of a locked rotor condition in the compressor.
In
In
In
The control line monitor module 504 may also receive additional control signals, depending on application, including second stage heat, second stage cool, reversing valve direction, defrost status signal, and dual fuel selection.
A wireless transceiver 512 communicates using an antenna 516 with a wireless host, such as a gateway 346, a mobile phone base station, or a WiFi (IEEE 802.11) or WiMax (IEEE 802.16) base station. A formatting module 520 forms data frames, such as ClimateTalk™ frames, including data acquired by the air handler monitor module 322. The formatting module 520 provides the data frames to the wireless transceiver 512 via a switching module 524.
The switching module 524 receives data frames from the monitoring system 330 via the wireless transceiver 512. Additionally or alternatively, the data frames may include control signals. The switching module 524 provides the data frames received from the wireless transceiver 512 to the formatting module 520. However, if the data frames are destined for the condensing monitor module 316, the switching module 524 may instead transmit those frames to a power-line communication module 528 for transmission to the condensing monitor module 316.
A power supply 532 provides power to some or all of the components of the air handler monitor module 322. The power supply 532 may be connected to line voltage, which may be single phase 120 volt AC power. Alternatively, the power supply 532 may be connected to a stepped-down voltage, such as a 24 volt power supply already present in the HVAC system. When the power received by the power supply 532 is also provided to the condensing monitor module 316, the power-line communication module 528 can communicate with the condensing monitor module 316 via the power supply 532. In other implementations, the power supply 532 may be distinct from the power-line communication module 528. The power-line communication module 528 may instead communicate with the condensing monitor module 316 using another connection, such as the switched cool signal (which may be a switched 24 volt line) provided to the condensing monitor module 316, another control line, a dedicated communications line, etc.
In various implementations, power to some components of the air handler monitor module 322 may be provided by 24 volt power from the thermostat 364. For example only, the cool request from the thermostat 364 may provide power to the compressor interrupt module 508. This may be possible when the compressor interrupt module 508 does not need to operate (and therefore does not need to be powered) unless the cool request is present, thereby powering the compressor interrupt module 508.
Data frames from the condensing monitor module 316 are provided to the switching module 524, which forwards those frames to the wireless transceiver 512 for transmission to the gateway 346. In various implementations, data frames from the condensing monitor module 316 are not processed by the air handler monitor module 322 other than to forward the frames to the gateway 346. In other implementations, the air handler monitor module 322 may combine data gathered by the air handler monitor module 322 with data gathered by the condensing monitor module 316 and transmit combined data frames.
In addition, the air handler monitor module 322 may perform data gathering or remedial operations based on the information from the condensing monitor module 316. For example only, the condensing monitor module 316 may transmit a data frame to the air handler monitor module 322 indicating that the air handler monitor module 322 should monitor various inputs. For example only, the condensing monitor module 316 may signal that the compressor is about to start running or has started running. The air handler monitor module 322 may then monitor related information.
Therefore, the formatting module 520 may provide such a monitoring indication from the condensing monitor module 316 to a trigger module 536. The trigger module 536 determines when to capture data, or if data is being continuously captured, which data to store, process, and/or forward. The trigger module 536 may also receive a signal from an error module 540. The error module 540 may monitor an incoming current and generate an error signal when the current is at too high of a level for too long of a time.
The condensing monitor module 316 may be configured similarly to the air handler monitor module 322. In the condensing monitor module 316, a corresponding error module may determine that a high current level indicates a locked rotor condition of the compressor. For example only, a baseline run current may be stored, and a current threshold calculated by multiplying the baseline run current by a predetermined factor. The locked rotor condition may then be determined when a measurement of current exceeds the current threshold. This processing may occur locally because a quick response time to a locked rotor is beneficial.
The error module 540 may instruct the trigger module 536 to capture information to help diagnose this error and/or may send a signal to the compressor interrupt module 508 to disable the compressor. The disable signal received by the compressor interrupt module 508 may cause disabling of the compressor interrupt module 508 when either the error module 540 or the formatting module 520 indicates that the interruption is required. This logical operation is illustrated with an OR gate 542.
The formatting module 520 may disable the compressor based on an instruction from the monitoring system 330 and/or the condensing monitor module 316. For example, the monitoring system 330 may instruct the formatting module 520 to disable the compressor based on a request by a utility company. For example, during peak load times, the utility company may request air conditioning to be turned off in return for a discount on electricity prices. This shut off can be implemented via the monitoring system 330.
A water monitoring module 544 may monitor the conduction sensor 384, the float switch 376, and the condensate sensor 380. For example, when a resistivity of the conduction sensor 384 decreases below a certain value, which would happen in the presence of water, the water monitoring module 544 may signal to the error module 540 that water is present.
The water monitoring module 544 may also detect when the float switch 376 detects excessive water, which may be indicated by a closing or an opening of the float switch 376. The water monitoring module 544 may also detect when resistivity of the condensate sensor 380 changes. In various implementations, detection of the condensate sensor 380 may not be armed until a baseline current reading is made, such as at the time when the air handler monitor module 322 is powered on. Once the condensate sensor 380 is armed, a change in current may be interpreted as an indication that a blockage has occurred. Based on any of these water signals, the water monitoring module 544 may signal to the error module 540 that the compressor should be disabled.
A temperature tracking module 548 tracks temperatures of one or more HVAC components. For example, the temperature tracking module 548 may monitor the temperature of supply air and of return air. The temperature tracking module 548 may provide average values of temperature to the formatting module 520. For example only, the averages may be running averages. The filter coefficients of the running averages may be predetermined and may be modified by the monitoring system 330.
The temperature tracking module 548 may monitor one or more temperatures related to the air conditioning system. For example, a liquid line provides refrigerant to an expansion valve of the air handler unit 304 from a condenser of the condensing unit 308. A temperature may be measured along the refrigerant line before and/or after the expansion valve. The expansion valve may include, for example, a thermostatic expansion valve, a capillary tube, or an automatic expansion valve.
The temperature tracking module 548 may additionally or alternatively monitor one or more temperatures of an evaporator coil of the air handler unit 304. The temperatures may be measured along the refrigerant line at or near the beginning of the evaporator coil, at or near an end of the evaporator coil, or at one or more midpoints. In various implementations, the placement of the temperature sensor may be dictated by physical accessibility of the evaporator coil. The temperature tracking module 548 may be informed of the location of the temperature sensor. Alternatively, data about temperature location may be stored as part of installation data, which may be available to the formatting module 520 and/or to the monitoring system 330, which can use this information to accurately interpret the received temperature data.
A power calculation module 552 monitors voltage and current. In one implementation, these are the aggregate power supply voltage and the aggregate power supply current, which represents the total current consumed by all of the components of the air handler unit 304. The power calculation module 552 may perform a point-by-point power calculation by multiplying the voltage and current. Point-by-point power values and/or an average value of the point-by-point power is provided to the formatting module 520.
A current recording module 556 records values of the aggregate current over a period of time. The aggregate current may be sensed by a current sensor that is installed within the air handler unit 304 or along the electrical cable providing power to the air handler unit 304 (see current sensor 324 in
The aggregate current includes current drawn by all energy-consuming components of the air handler unit 304. For example only, the energy-consuming components can include a gas valve solenoid, an igniter, a circulator blower motor, an inducer blower motor, a secondary heat source, an expansion valve controller, a furnace control panel, a condensate pump, and a transformer, which may provide power to a thermostat. The energy-consuming components may also include the air handler monitor module 322 itself and the condensing monitor module 316.
It may be difficult to isolate the current drawn by any individual energy-consuming component. Further, it may be difficult to quantify or remove distortion in the aggregate current, such as distortion that may be caused by fluctuations of the voltage level of incoming AC power. As a result, processing is applied to the current, which includes, for example only, filtering, statistical processing, and frequency domain processing.
In the implementation of
A clock 564 allows the formatting module 520 to apply a time stamp to each data frame that is generated. In addition, the clock 564 may allow the trigger module 536 to periodically generate a trigger signal. The trigger signal may initiate collection and/or storage and processing of received data. Periodic generation of the trigger signal may allow the monitoring system 330 to receive data from the air handler monitor module 322 frequently enough to recognize that the air handler monitor module 322 is still functioning.
A voltage tracking module 568 measures the AC line voltage, and may provide raw voltage values or an average voltage value (such as an average of absolute values of the voltage) to the formatting module 520. Instead of average values, other statistical parameters may be calculated, such as RMS (root mean squared) or mean squared.
Based on the trigger signal, a series of frames may be generated and sent. For example only, the frames may be generated contiguously for 105 seconds and then intermittently for every 15 seconds until 15 minutes has elapsed. Each frame may include a time stamp, RMS voltage, RMS current, real power, average temperature, conditions of status signals, status of liquid sensors, FFT current data, and a flag indicating the source of the trigger signal. Each of these values may correspond to a predetermined window of time, or, frame length.
The voltage and current signals may be sampled by an analog-to-digital converter at a certain rate, such as 1920 samples per second. The frame length may be measured in terms of samples. When a frame is 256 samples long, at a sample rate of 1920 samples per second, there are 7.5 frames every second (or, 0.1333 seconds per frame). Generation of the trigger signal is described in more detail below in
The formatting module 520 may receive a request for a single frame from the monitoring system 330. The formatting module 520 therefore provides a single frame in response to the request. For example only, the monitoring system 330 may request a frame every 30 seconds or some other periodic interval, and the corresponding data may be provided to a contractor monitoring the HVAC system in real time.
In
The current recording module 556 of
In the condensing monitoring module 316, the temperature tracking module 548 may track an ambient temperature. When the condensing monitor module 316 is located outdoors, the ambient temperature represents an outside temperature. As discussed above, the temperature sensor supplying the ambient temperature may be located outside of an enclosure housing a compressor or condenser. Alternatively, the temperature sensor may be located within the enclosure, but exposed to circulating air. In various implementations the temperature sensor may be shielded from direct sunlight and may be exposed to an air cavity that is not directly heated by sunlight. In various implementations, online (including Internet-based) weather data based on geographical location of the building may be used to determine sun load, ambient air temperature, precipitation, and humidity.
The temperature tracking module 548 may monitor temperatures of the refrigerant line at various points, such as before the compressor (referred to as a suction line temperature), after the compressor (referred to as a compressor discharge temperature), after the condenser (referred to as a liquid line out temperature), and/or at one or more points along the condenser coil. The location of temperature sensors may be dictated by a physical arrangement of the condenser coils. During installation, the location of the temperature sensors may be recorded.
Additionally or alternatively, a database may be available that specifies where temperature sensors are placed. This database may be referenced by installers and may allow for accurate cloud processing of the temperature data. The database may be used for both air handler sensors and compressor/condenser sensors. The database may be prepopulated by the monitoring company or may be developed by trusted installers, and then shared with other installation contractors. The temperature tracking module 548 and/or a cloud processing function may determine an approach temperature, which is a measurement of how close the condenser has been able to make the liquid line out temperature to the ambient air temperature.
In
When installing an air handler monitor module 600 in the air handler unit 208, power is provided to the air handler monitor module 600. For example, a transformer 604 can be connected to an AC line in order to provide AC power to the air handler monitor module 600. The air handler monitor module 600 may measure voltage of the incoming line based on this transformed power supply. For example, the transformer 604 may be a 10-to-1 transformer and therefore provide either a 12V or 24V AC supply to the air handler monitor module 600 depending on whether the air handler unit 208 is operating on nominal 120V or nominal 240V power.
A current sensor 608 measures incoming current to the air handler unit 208. The current sensor 608 may include a current transformer that snaps around one power lead of the incoming AC power. For simplicity of illustration, the control module 118 is not shown to be connected to the various components and sensors of the air handler unit 208. In addition, routing of the AC power to various powered components of the air handler unit 208, such as the circulator blower 114, the gas valve 128, and the inducer blower 134, are also not shown for simplicity. The current sensor 608 measures the entire current entering the air handler unit 208 and therefore represents an aggregate current of voltage of each of the current-consuming components of the air handler unit 208.
A condensate sensor 612 measures condensate levels in the condensate pan 196. If a level of condensate gets too high, this may indicate a plug in the condensate pan 196 or a problem with hoses or pumps used for drainage from the condensate pan 196. Although shown in
A return air sensor 616 is located in a return air plenum 620. The return air sensor 616 may measure temperature, pressure, and/or mass airflow. In various implementations, a thermistor may be multiplexed as both a temperature sensor and a hot wire mass airflow sensor. In various implementations, the return air sensor 616 is upstream of the filter 110 but downstream of any bends in the return air plenum 620. A supply air sensor 624 is located in a supply air plenum 628. The supply air sensor 624 may measure air temperature, air pressure, and/or mass air flow. The supply air sensor 624 may include a thermistor that is multiplexed to measure both temperature and, as a hot wire sensor, mass airflow. In various implementations, such as is shown in
The air handler monitor module 600 also receives a suction line temperature from a suction line temperature sensor 632. The suction line temperature sensor 632 measures refrigerant temperature in the refrigerant line between the evaporator 192 and the compressor 180 (shown in
The air handler monitor module 600 also monitors control signals from the thermostat 364. Because one or more of these control signals is also transmitted to the condensing until is also transmitted to the condensing unit 212 (shown in
The thermostat 364 may also communicate with the customer router 338 using WiFi. In various implementations, the air handler monitor module 600 and the thermostat 364 do not communicate directly; however, because they are both connected through the customer router 338 to a remote monitoring system, the remote monitoring system may allow for control of one based on inputs from the other. Specifically, various faults identified based on information from the air handler monitor module 600 may cause the remote monitoring system to adjust temperature set points of the thermostat 364 and/or display warning or alert messages on the thermostat 364.
In
In
The monitoring server 664 notifies a review server 668 when a problem is identified or a fault is predicted. A technician device 672 operated by a technician is used to review this information and monitor, such as in real-time, data from the air handler monitor module 600 via the monitoring server 664. The technician using the technician device 672 verifies the problem or fault and assuming that the problem or fault is either already present or impending, instructs the review server 668 to send an alert to either or both of a contractor device 676 or a customer device 680. In various implementations, minor problems may be reported to the contractor device 676 only so as not to alarm the customer or inundate the customer with alerts. In various implementations, the technician device 672 may be remote from the monitoring system 660 but connected via a wide area network. For example only, the technician device may include a computing device such as a laptop, desktop, or tablet.
With the contractor device 676, the contractor can access a contractor portal 684, which provides historical and real-time data from the air handler monitor module 600. The contractor using the contractor device 676 may also contact the technician using the technician device 672. The customer using the customer device 680 may access a customer portal 688 in which a graphical view of the system status as well as alert information is shown. The contractor portal 684 and the customer portal 688 may be implemented in a variety of ways according to the present disclosure, including as an interactive web page, a computer application, and/or an app for a smartphone or tablet.
In various implementations, data shown by the customer portal may be more limited and/or more delayed when compared to data visible in the contractor portal 684. In various implementation, the contractor device 676 can be used to request data from the air handler monitor module 600, such as when commissioning a new installation.
In
At 716, fan, heat, and common lines from the air handler monitor module are connected to terminals on the HVAC control module. In various implementations, the fan, heat, and common lines originally going to the HVAC control module may be disconnected and connected to the air handler monitor module. This may be done for HVAC control modules where additional lines cannot be connected in parallel with the original fan, heat, and common lines.
At 720, a current sensor such as a snap-around current transformer, is connected to mains power to the HVAC system. At 724, power and common leads are connected to the HVAC transformer, which may provide 24 volt power to the air handler monitor module. In various implementations, the common lead may be omitted, relying on the common lead discussed at 716. Continuing at 728, a temperature sensor is placed in the supply air duct work and connected to the air handler monitor module. At 732, a temperature sensor is placed in the return air duct work and connected to the air handler monitor module. At 734, a temperature sensor is placed in a predetermined location, such as a middle loop, of the evaporator coil. At 736, water sensors are installed and connected to the air handler monitor module.
At 740, mains power to the compressor/condenser unit is disconnected. At 744, the power supply of the condensing monitor module is connected to the compressor/condenser unit's input power. For example, the condensing monitor module may include a transformer that steps down the line voltage into a voltage usable by the condensing monitor module. At 748, a current sensor is attached around the compressor/condenser unit's power input. At 752, a voltage sensor is connected to the compressor/condenser unit's power input.
At 756, a temperature sensor is installed on the liquid line, such as at the input or the output to the condenser. The temperature sensor may be wrapped with insulation to thermally couple the temperature sensor to the liquid in the liquid line and thermally isolate the temperature sensor from the environment. At 760, the temperature sensor is placed in a predetermined location of the condenser coil and insulated. At 764, the temperature sensor is placed to measure ambient air. The temperature sensor may be located outside of the condensing unit 308 or in a space of the condensing unit 308 in which outside air circulates. At 768, mains power to the air handler and the compressor/condenser unit is restored.
In
In addition, it may be necessary for the customer to upgrade their router and/or install a second router or wireless access point to allow for a strong signal to be received by the air handler monitor module. The remaining installation may be suspended until a viable WiFi signal has been established or the installation may proceed and commissioning of the system and checking network connectivity can be tested remotely or in person once a strong WiFi signal is available to the air handler monitor module. In various implementations, the air handler monitor module may include a wired network port, which may allow for a run of network cable to provide network access to the air handler monitor module for purposes of testing. The cable can be removed after the system has been commissioned with the expectation that a strong WiFi signal will subsequently be provided.
For example only, power may be supplied to the air handler monitor module to ensure that WiFi connectivity is not only present, but compatible with the air handler monitor module. The power may be temporary, such as a wall-wart transformer or a battery pack, which does not remain with the installed air handler monitor module. In various implementations, the air handler monitor module may be used to test WiFi connectivity before attempting any signal detection or troubleshooting with another device, such as a portable computer.
Control continues at 808, where mains power is disconnected to the air handler unit. If access to an electrical panel possible, mains power to both the air handler unit and the condensing unit should be removed as soon as possible in the process. At 812, the installer opens the air handler unit and at 816, a voltage transformer is installed, connected to AC power, and connected to the air handler monitor module. At 820, a current sensor is attached around one lead of the AC power input to the air handler unit. At 824, control lines including fan, heat, cooling, and common are connected from the existing control module to the air handler monitor module.
In various implementations, the air handler monitor module may be connected in series with one of the control lines, such as the call for cool line. For these implementations, the call for cool line may be disconnected from the preexisting control module and connected to a lead on a wiring harness of the air handler monitor module. Then a second lead on the wiring harness of the air handler monitor module can be connected to the location on the preexisting control module where the call for cool line had previously been connected.
At 828, the air handler unit is closed and the air handler monitor module is mounted to the exterior of the air handler unit, such as with tape and/or magnets. At 832, a supply air sensor is installed in a hole drilled in a supply air plenum. The supply air sensor may be a single physical device that includes a pressure sensor and a temperature sensor. Similarly, a return air sensor is installed in a hole drilled in a return air plenum.
At 836, a liquid line temperature sensor is placed on the liquid refrigerant line leading to the evaporator, and a suction line temperature sensor is placed on a suction refrigerant line leading to the compressor. In various implementations, these sensors may be thermally coupled to the respective refrigerant lines using a thermal paste and may be wrapped in an insulating material to minimize the sensors' responsiveness to surrounding air temperature. At 840, a condensate sensor is installed proximate to the condensate pan and connected to the air handler monitor module.
At 844, the installer moves to the condensing unit and disconnects mains power to the condensing unit if not already disconnected. At 848, the installer opens the condensing unit and at 852, the installer installs a voltage transformer connected to AC power and attaches leads from the condensing monitor module to the transformer. At 856, a current sensor is attached around one of the power leads entering the condensing unit. At 860, control lines (including cool and common) from terminals on the existing control board are connected to the condensing monitor module. At 864, the condensing unit is closed and at 868, mains power to the air handler unit and condensing unit is restored.
At 872, communication with the remote monitoring system is tested. Then at 876, the air handler monitor module the condensing monitor module are activated. At this time, the installer can provide information to the remote monitoring system including identification of control lines that were connected to the air handler monitor module and condensing monitor module. In addition, information such as the HVAC system type, year installed, manufacturer, model number, BTU rating, filter type, filter size, tonnage, etc.
In addition, because the condensing unit may have been installed separately from the furnace, the installer may also record and provide to the remote monitoring system the manufacturer and model number of the condensing unit, the year installed, the refrigerant type, the tonnage, etc. At 880, baseline tests are run. For example, this may include running a heating cycle and a cooling cycle, which the remote monitoring system records and uses to identify initial efficiency metrics. Further, baseline profiles for current, power, and frequency domain current can be established. Installation may then be complete.
The installer may collect a device fee, an installation fee, and/or a subscription fee from the customer. In various implementations, the subscription fee, the installation fee, and the device fee may be rolled into a single system fee, which the customer pays upon installation. The system fee may include the subscription fee for a set number of years, such as 1, 2, 5, or 10, or may be a lifetime subscription, which may last for the life of the home or the ownership of the building by the customer.
In
Control continues at 904, where control determines whether a request for a frame has been received from the monitoring system. If such a request has been received, control transfers to 908; otherwise, control transfers to 912. At 908, a frame is logged, which includes measuring voltage, current, temperatures, control lines, and water sensor signals. Calculations are performed, including averages, powers, RMS, and FFT. Then a frame is transmitted to the monitoring system. In various implementations, monitoring of one or more control signals may be continuous. Therefore, when a remote frame request is received, the most recent data is used for the purpose of calculation. Control then returns to 900.
Referring now to 912, control determines whether one of the control lines has turned on. If so, control transfers to 916; otherwise, control transfers to 920. Although 912 refers to the control line being turned on, in various other implementations, control may transfer to 916 when a state of a control line changes—i.e., when the control line either turns on or turns off. This change in status may be accompanied by signals of interest to the monitoring system. Control may also transfer to 916 in response to an aggregate current of either the air handler unit or the compressor/condenser unit.
At 920, control determines whether a remote window request has been received. If so, control transfers to 916; otherwise, control transfers to 924. The window request is for a series of frames, such as is described below. At 924, control determines whether current is above a threshold, and if so, control transfers to 916; otherwise, control transfers to 928. At 928, control determines whether the alive timer is above a threshold such as 60 minutes. If so, control transfers to 908; otherwise, control returns to 904.
At 916, a window timer is reset. A window of frames is a series of frames, as described in more detail here. At 932, control begins logging frames continuously. At 936, control determines whether the window timer has exceeded a first threshold, such as 105 seconds. If so, control continues at 940; otherwise, control remains at 936, logging frames continuously. At 940, control switches to logging frames periodically, such as every 15 seconds.
Control continues at 944, where control determines whether the HVAC system is still on. If so, control continues at 948; otherwise, control transfers to 952. Control may determine that the HVAC system is on when an aggregate current of the air handler unit and/or of the condensing unit exceeds a predetermined threshold. Alternatively, control may monitor control lines of the air handler unit and/or the condensing unit to determine when calls for heat or cool have ended. At 948, control determines whether the window timer now exceeds a second threshold, such as 15 minutes. If so, control transfers to 952; otherwise, control returns to 944 while control continues logging frames periodically.
At 952, control stops logging frames periodically and performs calculations such as power, average, RMS, and FFT. Control continues at 956 where the frames are transmitted. Control then returns to 900. Although shown at the end of frame capture, 952 and 956 may be performed at various times throughout logging of the frames instead of at the end. For example only, the frames logged continuously up until the first threshold may be sent as soon as the first threshold is reached. The remaining frames up until the second threshold is reached may each be sent out as it is captured.
In various implementations, the second threshold may be set to a high value, such as an out of range high, which effectively means that the second threshold will never be reached. In such implementations, the frames are logged periodically for as long as the HVAC system remains on.
A server of the monitoring system includes a processor and memory, where the memory stores application code that processes data received from the air handler monitor and condensing monitor modules and determines existing and/or impending failures, as described in more detail below. The processor executes this application code and stores received data either in the memory or in other forms of storage, including magnetic storage, optical storage, flash memory storage, etc. While the term server is used in this application, the application is not limited to a single server.
A collection of servers, which may together operate to receive and process data from the air handler monitor and condensing monitor modules of multiple buildings. A load balancing algorithm may be used between the servers to distribute processing and storage. The present application is not limited to servers that are owned, maintained, and housed by a monitoring company. Although the present disclosure describes diagnostics and processing and alerting occurring in the monitoring system 330, some or all of these functions may be performed locally using installed equipment and/or customer resources, such as a customer computer.
The servers may store baselines of frequency data for the HVAC system of a building. The baselines can be used to detect changes indicating impending or existing failures. For example only, frequency signatures of failures of various components may be pre-programmed, and may be updated based on observed evidence from contractors. For example, once a malfunctioning HVAC system has been diagnosed, the monitoring system may note the frequency data leading up to the malfunction and correlate that frequency signature with the diagnosed cause of the malfunction. For example only, a computer learning system, such as a neural network or a genetic algorithm, may be used to refine frequency signatures. The frequency signatures may be unique to different types of HVAC systems and/or may share common characteristics. These common characteristics may be adapted based on the specific type of HVAC system being monitored.
The monitoring system may also receive current data in each frame. For example, when 7.5 frames per seconds are received, current data having a 7.5 Hz resolution is available. The current and/or the derivative of this current may be analyzed to detect impending or existing failures. In addition, the current and/or the derivative may be used to determine when to monitor certain data, or points at which to analyze obtained data. For example, frequency data obtained at a predetermined window around a certain current event may be found to correspond to a particular HVAC system component, such as activation of a hot surface igniter.
Components of the present disclosure may be connected to metering systems, such as utility (including gas and electric) metering systems. Data may be uploaded to the monitoring system 330 using any suitable method, including communications over a telephone line. These communications may take the form of digital subscriber line (DSL) or may use a modem operating at least partially within vocal frequencies. Uploading to the monitoring system 330 may be confined to certain times of day, such as at night time or at times specified by the contractor or customer. Further, uploads may be batched so that connections can be opened and closed less frequently. Further, in various implementations, uploads may occur only when a fault or other anomaly has been detected.
Methods of notification are not restricted to those disclosed above. For example, notification of HVAC problems may take the form of push or pull updates to an application, which may be executed on a smart phone or other mobile device or on a standard computer. Notifications may also be viewed using web applications or on local displays, such as the thermostat 364 or other displays located throughout the building or on the air handler monitor module 322 or the condensing monitor module 316.
In
At 1016, control determines whether there is a need for a new consumable, such as an air filter or humidifier element. If so, control transfers to 1020; otherwise, control transfers to 1024. At 1020, the consumable is sent to the customer. The air filter may be sent directly to the customer from the operator of the remote monitoring system or a partner company. Alternatively, a designated HVAC contractor may be instructed to send or personally deliver the consumable to the customer. In addition, the HVAC contractor may offer to install the consumable for the customer or may install the consumable as part of a service plan. In situations where the customer has not opted for consumable coverage, the remote monitoring system may instead send an alert to the customer and/or the contractor that a replacement consumable is needed. This alert may be sent out in advance of when the consumable should be replaced to give the customer or contractor sufficient time to acquire and install the consumable. Control then returns to 1008.
At 1024, control determines whether there has been an efficiency decrease. If so, control transfers to 1028; otherwise, control transfers to 1032. At 1028, control determines whether the efficiency decrease is greater than a first threshold. If so, control transfers to 1036; otherwise, control transfers to 1040. This first threshold may be a higher threshold indicating that the efficiency decrease is significant and should be addressed. This threshold may be set based on baseline performance of the customer's system, performance of similar systems in a surrounding area, performance of similar systems throughout a wide geographic area but normalized for environmental parameters, and/or based on manufacturer-supplied efficiency metrics.
At 1036, the customer and designated contractor are notified and control returns to 1008. At 1040, control determines whether the efficiency decrease is greater than a second threshold. This second threshold may be lower than the first threshold and may indicate gradual deterioration of the HVAC system. As a result, if the efficiency decrease is greater than this second threshold, control transfers to 1044; otherwise, control simply returns to 1008. At 1044, the decrease in efficiency may not be significant enough to notify the customer; however, the contractor is notified and control returns to 1008. The contractor may schedule an appointment with the customer and/or may note the decrease in efficiency for the next visit to the customer.
At 1032, control determines whether a potential fault is predicted based on data from the local devices at the customer building. If so, control transfers to 1048; otherwise, control transfers to 1052. At 1048, control determines whether the fault is expected imminently. If so, and if corresponding service is recommended, control transfers to 1056, where the customer and the designated contractor are notified. This may allow the customer to make arrangements with the contractor and/or make arrangements to secure a backup source of heating or cooling. For example only, an imminent fault predicted late at night may be too late for service by the contractor. The customer may therefore plan accordingly for a potentially cold or warm building in the morning and make appropriate arrangements. The prediction of the fault may allow for the contractor to schedule a visit as the contractor opens in the morning. Control then returns to 1008.
If the fault is not expected imminently, or if service is not recommended, at 1048, the contractor may be notified at 1060. The contractor may then schedule a visit to the customer to determine whether a part should be preemptively replaced and to discuss other service options with the customer. Control then returns to 1008. At 1052, if a failure is detected, control transfers to 1064; otherwise, control returns to 1008. At 1064, if the failure is verified, such as through automatic or manual mechanisms, control transfers to 1066; otherwise, control returns to 1008. At 1066, if the failure is determined to be with the monitoring hardware, control transfers to 1060 to notify the contractor; otherwise, the failure is with the HVAC system, and control transfers to 1068. At 1068, the contractor and customer are notified of the failure and control returns to 1008.
In various implementations, the customer may be given the option to receive all data and all alerts sent to the contractor. Although this may be more information than a regular customer needs, certain customers may appreciate the additional data and the more frequent contact. The determinations made in 1028, 1040, 1048, 1064, and 1066 may each be made partially or fully by a technician. This may reduce false positives and confirm correct diagnosis of failures and faults based on the technician's experience with the intricacies of HVAC systems and automated algorithms.
In
In
In
In
In
The processing module 1400 may then perform each prediction or detection task with relevant data from the event data 1402. In various implementations, certain processing operations are common to more than one detection or prediction operation. This data may therefore be cached and reused. The processing module 1400 receives information about equipment configuration 1410, such as control signal mapping.
Rules and limits 1414 determine whether sensor values are out of bounds, which may indicate sensor failures. In addition, the rules and limits 1414 may indicate that sensor values cannot be trusted when parameters such as current and voltage are outside of predetermined limits. For example only, if the AC voltage sags, such as during a brownout, data taken during that time may be discarded as unreliable.
De-bouncing and counter holds 1418 may store counts of anomaly detection. For example only, detection of a single solenoid-operated gas valve malfunction may increment a counter, but not trigger a fault. Only if multiple solenoid-operated gas valve failures are detected is an error signaled. This can eliminate false positives. For example only, a single failure of an energy-consuming component may cause a corresponding counter to be incremented by one, while detection of proper operation may lead to the corresponding counter being decremented by one. In this way, if faulty operation is prevalent, the counter will eventually increase to a point where an error is signaled. Records and reference files 1422 may store frequency and time domain data establishing baselines for detection and prediction. De-bouncing encompasses an averaging process that may remove glitches and/or noise. For example, a moving or windowed average may be applied to input signals to avoid spurious detection of a transition when in fact only a spike (or, glitch) of noise was present.
A basic failure-to-function fault may be determined by comparing control line state against operational state based on current and/or power. Basic function may be verified by temperature, and improper operation may contribute to a counter being incremented. This analysis may rely on return air temperature, supply air temperature, liquid line in temperature, voltage, current, real power, control line status, compressor discharge temperature, liquid line out temperature, and ambient temperature.
Sensor error faults may be detected by checking sensor values for anomalous operation, such as may occur for open-circuit or short-circuit faults. The values for those determinations may be found in the rules and limits 1414. This analysis may rely on return air temperature, supply air temperature, liquid line in temperature (which may correspond to a temperature of the refrigerant line in the air handler, before or after the expansion valve), control line status, compressor discharge temperature, liquid line out temperature, and ambient temperature.
When the HVAC system is off, sensor error faults may also be diagnosed. For example, based on control lines indicating that the HVAC system has been off for an hour, processing module 1400 may check whether the compressor discharge temperature, liquid line out temperature, and ambient temperature are approximately equal. In addition, the processing module 1400 may also check that the return air temperature, the supply air temperature, and the liquid line in temperature are approximately equal.
The processing module 1400 may compare temperature readings and voltages against predetermined limits to determine voltage faults and temperature faults. These faults may cause the processing module 1400 to ignore various faults that could appear present when voltages or temperatures are outside of the predetermined limits.
The processing module 1400 may check the status of discrete sensors to determine whether specifically-detected fault conditions are present. For example only, the status of condensate, float switch, and floor sensor water sensors are checked. The water sensors may be cross-checked against operating states of the HVAC system. For example only, if the air conditioning system is not running, it would not be expected that the condensate tray would be filling with water. This may instead indicate that one of the water sensors is malfunctioning. Such a determination could initiate a service call to fix the sensor so that it can properly identify when an actual water problem is present.
The processing module 1400 may determine whether the proper sequence of furnace initiation is occurring. This may rely on event and daily accumulation files 1426. The processing module 1400 may perform state sequence decoding, such as by looking at transitions as shown in
The processing module 1400 may determine whether a flame probe or flame sensor is accurately detecting flame. State sequence decoding may be followed by determining whether a series of furnace initiations are performed. If so, this may indicate that the flame probe is not detecting flame and the burner is therefore being shut off. The frequency of retries may increase over time when the flame probe is not operating correctly.
The processing module 1400 may evaluate heat pump performance by comparing thermal performance against power consumption and unit history. This may rely on data concerning equipment configuration 1410, including compressor maps when available.
The processing module 1400 may determine refrigerant level of the air conditioning system. For example, the processing module 1400 may analyze the frequency content of the compressor current and extract frequencies at the third, fifth, and seventh harmonics of the power line frequencies. This data may be compared, based on ambient temperature, to historical data from when the air conditioning system was known to be fully charged. Generally, as charge is lost, the surge frequency may decrease. Additional data may be used for reinforcement of a low refrigerant level determination, such as supply air temperature, return air temperature, liquid line in temperature, voltage, real power, control line status, compressor discharge temperature, and liquid line out temperature.
The processing module 1400 may alternatively determine a low refrigerant charge by monitoring deactivation of the compressor motor by a protector switch, may indicate a low refrigerant charge condition. To prevent false positives, the processing module 1400 may ignore compressor motor deactivation that happens sooner than a predetermined delay after the compressor motor is started, as this may instead indicate another problem, such as a stuck rotor.
The processing module 1400 may determine the performance of a capacitor in the air handler unit, such as a run capacitor for the circulator blower. Based on return air temperature, supply air temperature, voltage, current, real power, control line status, and FFT data, the processing module 1400 determines the time and magnitude of the start current and checks the start current curve against a reference. In addition, steady state current may be compared over time to see whether an increase results in a corresponding increase in the difference between the return air temperature and the supply air temperature.
Similarly, the processing module 1400 determines whether the capacitor in the compressor/condenser unit is functioning properly. Based on compressor discharge temperature, liquid line out temperature, ambient temperature, voltage, current, real power, control line status, and FFT current data, control determines a time and magnitude of start current. This start current is checked against a reference in the time and/or frequency domains. The processing module 1400 may compensate for changes in ambient temperature and in liquid line in temperature. The processing module 1400 may also verify that increases in steady state current result in a corresponding increase in the difference between the compressor discharge temperature and the liquid line in temperature.
The processing module may calculate and accumulate energy consumption data over time. The processing module may also store temperatures on a periodic basis and at the end of heat and cool cycles. In addition, the processing module 1400 may record lengths of run times. An accumulation of run times may be used in determining the age of wear items, which may benefit from servicing, such as oiling, or preemptive replacing.
The processing module 1400 may also grade the customer's equipment. The processing module 1400 compares heat flux generated by the HVAC equipment against energy consumption. The heat flux may be indicated by return air temperature and/or indoor temperature, such as from a thermostat. The processing module 1400 may calculate the envelope of the building to determine the net flux. The processing module 1400 may compare the equipment's performance, when adjusted for building envelope, against other similar systems. Significant deviations may cause an error to be indicated.
The processing module 1400 uses a change in current or power and the type of circulator blower motor to determine the change in load. This change in load can be used to determine whether the filter is dirty. The processing module 1400 may also use power factor, which may be calculated based on the difference in phase between voltage and current. Temperatures may be used to verify reduced flow and eliminate other potential reasons for observed current or power changes in the circulator blower motor. The processing module 1400 may also determine when an evaporator coil is closed. The processing module 1400 uses a combination of loading and thermal data to identify the signature of a coil that is freezing or frozen. This can be performed even when there is no direct temperature measurement of the coil itself.
FFT analysis may show altered compressor load from high liquid fraction. Often, a frozen coil is caused by a fan failure, but the fan failure itself may be detected separately. The processing module 1400 may use return air temperature, supply air temperature, liquid line in temperature, voltage, current, real power, and FFT data from both the air handler unit and the compressor condenser unit. In addition, the processing module 1400 may monitor control line status, switch statuses, compressor discharge temperature, liquid line out temperature, and ambient temperature. When a change in loading occurs that might be indicative of a clogged filter, but the change happened suddenly, a different cause may be to blame.
The processing module 1400 identifies a condenser blockage by examining the approach temperature, which is the difference between the liquid line out temperature and the ambient temperature. When the refrigerant has not been sufficiently cooled from the condenser discharge temperature (the input to the condenser) to the liquid line out temperature (output of the condenser), adjusted based on ambient temperature, the condenser may be blocked. Other data can be used to exclude other possible causes of this problem. The other data may include supply air temperature, return air temperature, voltage, current, real power, FFT data, and control line status both of the air handler unit and the compressor condenser unit.
The processing module 1400 determines whether the installed equipment is oversized for the building. Based on event and daily accumulation files, the processing module evaluates temperature slopes at the end of the heating and/or cooling run. Using run time, duty cycle, temperature slopes, ambient temperature, and equipment heat flux versus building flux, appropriateness of equipment sizing can be determined. When equipment is oversized, there are comfort implications. For example, in air conditioning, short runs do not circulate air sufficiently, so moisture is not pulled out of the air. Further, the air conditioning system may never reach peak operating efficiency during a short cycle.
The processing module 1400 evaluates igniter positive temperature coefficient based on voltage, current, real power, control line status, and FFT data from the air handler unit. The processing module compares current level and slope during warm-up to look for increased resistance. Additionally, the processing module may use FFT data on warm-up to detect changes in the curve shape and internal arcing.
The processing module also evaluates igniter negative temperature coefficient based on voltage, current, real power, control line status, and FFT data from the air handler unit. The processing module 1400 compares current level and slope during warm-up to look for increased resistance. The processing module 1400 checks initial warm-up and trough currents. In addition, the processing module 1400 may use FFT data corresponding to warm-up to detect changes in the curve shape and internal arcing.
The processing module 1400 can also evaluate the positive temperature coefficient of a nitride igniter based on voltage, current, real power, control line status, and FFT data from the air handler unit. The processing module 1400 compares voltage level and current slope during warm-up to look for increased resistance. In addition, the processing module 1400 uses FFT data corresponding to warm-up to detect changes in the curve shape, drive voltage pattern, and internal arcing. Changes in drive voltage may indicate igniter aging, so those adjustments should be distinguished from changes to compensate for gas content and other furnace components.
In
Of the sensor inputs below, some sensor inputs are used for principle diagnosis while other sensor inputs are used to rule out alternative diagnoses and to verify a diagnosis. Some sensors may be suggestive but weakly correlated with a fault, while other sensors are more strongly indicative of the fault. Therefore, sensors may have varying contributions to detection of any given fault.
Indoor current is a measure of aggregate current supplied to the air handler unit, including components such as the inducer blower, the circulator blower, the control circuitry, and the air handler monitor module. The current may be sampled multiple times per second, allowing transients to be captured and various processing performed, such as derivatives and integrals.
The time domain current data may be transformed into frequency domain data, such as by using a fast Fourier transform (FFT). Indoor voltage may be measured, which corresponds to an AC voltage of power provided to the air handler unit. In various implementations, the indoor voltage may be sampled less frequently than the current and may be an average, RMS, or peak-to-peak value.
The indoor voltage may be used along with the indoor current to calculate power, and the indoor voltage may be used to adjust various limits. For example only, when the indoor voltage is sagging (less than the expected nominal value), various components of the HVAC system may be expected to consume additional current. The indoor voltage may therefore be used to normalize current readings. An indoor power factor may be determined based on phase shift between the indoor current and the indoor voltage. The indoor power may be measured directly and/or calculated based on one or more of indoor current, indoor voltage, and indoor power factor.
Inside module temperature corresponds to a temperature of the air handler monitor module. For example only, this temperature may be of a housing of the air handler monitor module, of an airspace enclosed by the housing, or of a circuit board of the air handler monitor module. A temperature sensor may be placed in a location close to a circuit board component that is expected to run hottest. In this way, as long as the hottest component is operating below a specified threshold, the entire air handler monitor module should be operating within acceptable temperature limits.
In various implementations, the temperature of the air handler monitor module may approach ambient temperature in the space where the HVAC system is installed when the air handler monitor module is not processing and transmitting data. In other words, once the HVAC system has been off for a period of time, the temperature measured by the air handler monitor module may be a reasonable estimate of conditioned space temperature where the air handler unit is located, with perhaps a known offset for heat generated by background operation of the air handler monitor module.
Outdoor current corresponds to an aggregate current consumed by the condenser unit, including the condenser fan, the compressor, and the condenser monitor module. Similar to the air handler monitor module, voltage, power factor, power, and FFT data may be measured, estimated, and/or calculated. In various implementations, current values may be measured and sent to a remote monitoring system where FFTs are performed. Alternatively, as discussed above, the FFTs may be calculated in a local device, such as the air handler monitor module and/or the condenser monitor module, and the FFT data can be uploaded. When the FFT data is uploaded, it may be unnecessary to upload full-resolution time-domain data, and therefore time-domain data that is uploaded may be passed through a decimation filter to decrease bandwidth and storage requirements.
Supply air temperature and return air temperature are measured. The difference between them is often referred to as a supply/return air temperature split. The return air temperature may be measured at any point prior to the evaporator coil and furnace element. The furnace element may be a gas burner and/or an electric element. In various implementations, such as in heat pump systems, the evaporator acts as a condenser in a heating mode and therefore a separate furnace element is not present. The return air temperature may be measured before or after the filter and may be before or after the circulator blower.
The supply air temperature is measured after the evaporator coil, and may be measured after any hard bends in the supply air plenum, which may prevent the supply air temperature sensor from measuring a temperature of a pocket of cool or warm air trapped by bends in the ductwork. Such a location may also allow for any other sensors installed along with the temperature sensor to be free of ductwork restrictions. For example only, a separate airflow sensor, or the temperature sensor being used in an airflow mode, may need to be in a straight section of ductwork to achieve an accurate reading. Turbulence created before and after bends in the ductwork may result in less accurate airflow data.
Pressures and temperatures of refrigerant in an air conditioning or heat pump refrigerant-cycle system may be measured. Pressure sensors may be expensive and therefore the faults listed below are detected using algorithms that do not require pressure data. Various temperatures of the refrigerant may be measured, and as shown, a liquid line temperature corresponds to temperature of the refrigerant traveling from the condenser to the evaporator but prior to the expansion valve. Suction line temperature is the temperature of refrigerant being sucked into the compressor from the output side of the evaporator. Temperature sensors (not shown) may also be located between the compressor and the condenser (compressor discharge temperature) and at various points along the condenser coil and the evaporator coil.
A differential pressure between supply and return air may be measured, and may be in units of inches of water column. Two sides of the differential pressure sensor may be installed alongside the supply air and return air temperature sensors and may be packaged together in a single housing. In various other implementations, separate absolute pressure sensors may be installed in the supply air and return air ductwork, and differential pressure could then be calculated by subtracting the values.
The condenser monitor module may also include a temperature sensor that measures a temperature of the condenser monitor module, such as on an exterior of the condenser monitor module, an interior of the condenser monitor module, or a location proximate to circuitry. When the condenser unit is not operating, the outside module temperature may approach outside ambient temperature.
Also measured is a call for cool (Y), which activates the compressor to provide cooling, and in a heat pump system, instructs a reversing valve to be in a cooling position. A call for heat (W) is measured and may actuate a furnace element and/or instruct a reversing valve of a heat pump to switch to a heating mode. Further a call for fan (G) signal may be monitored. In various implementations, multistage heating (W2), cooling (Y2), and/or fan (G2) signals may be monitored. In second stage heating, an additional element may be used and/or a current or gas consumption may be increased. In second stage cooling, a speed of the compressor may be increased. Meanwhile, for a second stage fan, a fan speed may be increased.
Internet-connected thermostats may allow the remote monitoring system to receive data from the thermostat, including programmed setpoints, thermostat-measured temperature and humidity, and command state (including whether calls are being made for cool, heat, or fan). A general purpose sensor input allows for current and future sensors to be interfaced to the local devices and then transmitted to the remote monitoring system.
Additional sensors that may be used with the monitoring system of the present disclosure include static pressure, refrigerant pressure, and refrigerant flow. Refrigerant flow sensors may include acoustic sensors, thermal sensors, Coriolis sensors, Impeller sensors, etc. An infrared temperature sensor may be used to measure temperatures including coil temperatures, burner temperatures, etc. Acoustic & vibration sensors may be used for bearing and balance monitoring, expansion valve operation, and general system noise.
Visual (image, including digital imaging) sensors may be used to analyze the air filter, coils (for particulate matter as well as freezing), flame size and quality, fan operation and condition, etc. Mass air flow sensors may enable true efficiency and Seasonal energy efficiency ratio (SEER) measurement. Optical sensors may assess air filter condition as well as coils (again, for particulate matter as well as freezing). Laser sensors may be used to assess the air filter or coils, fan speed, and particle count for indoor air quality.
Radar sensors may be used to measure fan speed. Capacitive moisture sensors can be used to detect moisture in a pan in which the air handler unit is installed, in a condensate tray, on the floor, in a pump basin, in a sump pump, etc. A float switch may measure water level either on a continuum or in a binary fashion for various locations, including a tray, a tray pump basin, and a sump pump. An ultraviolet (UV) light monitor measures the output of UV lights installed to kill viruses, mold, spores, fungi, and bacteria.
Further sensors include humidity, smoke, carbon monoxide, exhaust temperature, exhaust carbon monoxide level, and exhaust carbon dioxide level. Magnetic sensors measure fan speed. A frost sensor measures heat pump frost and evaporator freezing conditions. A compressor discharge temperature sensor measures superheat.
For an electric heater, current is converted to heat in an electrical element. A fault of the this element can be detected based on current measurements. For a given pattern of calls for heat and/or second stage heat, a certain current profile is expected. This expected current profile may be, as described above, specified by a manufacturer and/or a contractor, or may be determined over one or more system runs. For example, when commissioning a monitoring system, a baseline of current data may be established.
When measured current deviates from the baseline by more than a predefined amount (which may be expressed in absolute terms or as a percentage), a fault of the electric heater is determined. For example, if current does not increase as expected, the heater element will not be able to produce sufficient heat. If the current increases too fast, a short circuit condition may be present. Protection circuitry in the furnace will shut the furnace down, but the measured deviation may allow for determination of the source of the problem.
As the heater element deteriorates, the measured current may be delayed with respect to the baseline. As this delay increases, and as the frequency of observing this delay increases, a fault is predicted. This prediction indicates that the heater element may be reaching an end of lifetime and may cease to function in the near future.
For electric heating, a current measurement that tracks a baseline but then decreases below a threshold may indicate that tripping (which may be caused by overheating or overcurrent conditions) is occurring.
A heating fault may be identified when, for a given call for heat pattern, the supply/return air temperature split indicates insufficient heating. The threshold may be set at a predetermined percentage of the expected supply/return air temperature split.
A heating shutdown fault may be determined when a temperature split rises to within an expected range but then falls below the expected range. This may indicate that one or more of the pressure sensors has caused the heating to stop. As these shutdowns become more frequent, a more severe fault may be declared, indicating that the heater may soon fail to provide adequate heat for the conditioned space because the heater is repeatedly shutting down.
When a call for heat is made, the furnace will progress through a sequence of states. For example only, the sequence may begin with activating the inducer blower, opening the gas valve, igniting the gas, and turning on the circulator blower. Each of these states may be detectable in current data, although frequency-domain as well as time-domain data may be necessary to reliably determine certain states. When this sequence of states appears to indicate that the furnace is restarting, a fault may be declared. A furnace restart may be detected when the measured current matches a baseline current profile for a certain number of states and then diverges from the baseline current profile for the next state or states.
Furnace restarts may occur occasionally for various reasons, but as the number and frequency of furnace restart events increases, an eventual fault is predicted. For example only, if 50% of calls for heat involve one or more furnace restarts, a fault may be declared indicating that soon the furnace may fail to start altogether or may require so many restarts that sufficient heating will not be available.
An overheating fault may be declared when a temperature exceeds an expected value, such a baseline value, by more than a predetermined amount. For example, when the supply/return air temperature split is greater than a predetermined threshold, the heat exchanger may be operating at too high of a temperature.
A flame rollout switch is a safety device that detects overly high burner assembly temperatures, which may be caused by a reduction in airflow, such as a restricted flue. A fault in the flame rollout switch may be diagnosed based on states of the furnace sequence, as determined by measured current. For example, a trip of the flame rollout switch may generally occur during the same heating state for a given system. In various implementations, the flame rollout switch will be a single-use protection mechanism, and therefore a trip of the flame rollout switch is reported as a fault that will prevent further heating from occurring.
A blower fault is determined based on variation of measured current from a baseline. The measured current may be normalized according to measured voltage, and differential pressure may also be used to identify a blower fault. As the duration and magnitude of deviation between the measured current and the expected current increase, the severity of the fault increases. As the current drawn by the blower goes up, the risk of a circuit breaker or internal protection mechanism tripping increases, which may lead to loss of heating.
A permanent-split capacitor motor is a type of AC induction motor. A fault in this motor may be detected based on variation of power, power factor, and variation from a baseline. A fault in this motor, which may be used as a circulator blower, may be confirmed based on a differential air pressure. As the deviation increases, the severity of the fault increases.
A fault with spark ignition may be detected based on fault of the furnace to progress passed the state at which the spark ignition should ignite the air/fuel mixture. A signature of the spark igniter may be baselined in the frequency domain. Absence of this profile at the expected time may indicate that the spark igniter has failed to operate. Meanwhile, when a profile corresponding to the spark igniter is present but deviates from the baseline, this is an indication that the spark igniter may be failing. As the variation from the baseline increases, the risk of fault increases. In addition to current-based furnace state monitoring, the supply/return temperature split may verify that the heater has failed to commence heating.
A hot surface igniter fault is detected based on analyzing current to determine furnace states. When the current profile indicates that igniter retries have occurred, this may indicate an impending fault of the hot surface igniter. In addition, changes in the igniter profile compared to a baseline may indicate an impending fault. For example, an increase in drive level indicated in either time-domain or frequency-domain current data, an increase in effective resistance, or frequency domain indication of internal arcing may indicate an impending fault of the hot surface igniter.
A fault in the inducer fan or blower is detected based on heater states determined according to current. Faults may be predicted based on frequency domain analysis of inducer fan operation that indicate operational problems, such as fan blades striking the fan housing, water being present in the housing, bearing issues, etc. In various implementations, analysis of the inducer fan may be performed during a time window prior to the circulator blower beginning. The current drawn by the circulator blower may mask any current drawn by the inducer blower.
A fault in the fan pressure switch may be detected when the time-domain current indicates that the furnace restarted but blower fault does not appear to be present and ignition retries were not performed. In other words, the furnace may be operating as expected with the issue that the fan pressure switch does not recognize that the blower motor is not operating correctly. Service may be called to replace the fan pressure switch. In various implementations, the fan pressure switch may fail gradually, and therefore an increase in the number of furnace restarts attributed to the fan pressure switch may indicate an impending fault with the fan pressure switch.
A flame probe vault is detected when a flame has been properly created, but the flame probe does not detect the flame. This is determined when there are ignition retries but frequency-domain data indicates that the igniter appears to be operating properly. Frequency-domain data may also indicate that the gas valve is functioning properly, isolating the fault to the flame probe. A fault in the gas valve may be detected based on the sequence of states in the furnace as indicated by the current. Although the amount of current drawn by the gas valve may be small, a signature corresponding to the gas valve may still be present in the frequency domain. When the signature is not present, and the furnace does not run, the absence of the signature may indicate a fault with the gas valve.
A coil, such as an evaporator coil, may freeze, such as when inadequate airflow fails to deliver enough heat to refrigerant in the coil. Detecting a freezing coil may rely on a combination of inputs, and depends on directional shifts in sensors including temperatures, voltage, time domain current, frequency domain current, power factor, and power measurements. In addition, voltage, current, frequency domain current, and power data may allow other faults to be ruled out.
A dirty filter may be detected in light of changes in power, current, and power factor coupled with a decrease in temperature split and reduced pressure. The power, current, and power factor may be dependent on motor type. When a mass airflow sensor is available, the mass flow sensor may be able to directly indicate a flow restriction in systems using a permanent split capacitor motor.
Faults with compressor capacitors, including run and start capacitors, may be determined based on variations in power factor of the condenser monitor module. A rapid change in power factor may indicate an inoperative capacitor while a gradual change indicates a degrading capacitor. Because capacitance varies with air pressure, outside air temperature may be used to normalize power factor and current data. A fault related to the circulator blower or inducer blower resulting from an imbalanced bearing or a blade striking the respective housing may be determined based on a variation in frequency domain current signature.
A general failure to cool may be assessed after 15 minutes from the call for cool. A difference between a supply air temperature and return air temperature indicates that little or no cooling is taking place on the supply air. A similar failure to cool determination may be made after 30 minutes. If the system is unable to cool by 15 minutes but is able to cool by 30 minutes, this may be an indication that operation of the cooling system is degrading and a fault may occur soon.
Low refrigerant charge may be determined when, after a call for cool, supply and return temperature measurements exhibit lack of cooling and a temperature differential between refrigerant in the suction line and outside temperature varies from a baseline by more than a threshold. In addition, low charge may be indicated by decreasing power consumed by the condenser unit. An overcharge condition of the refrigerant can be determined when, after a call for cool, a difference between liquid line temperature and outside air temperature is smaller than expected. A difference between refrigerant temperature in the liquid line and outside temperature is low compared to a baseline when refrigerant is overcharged.
Low indoor airflow may be assessed when a call for cool and fan is present, and the differential between return and supply air increases above a baseline, suction line decreases below a baseline, pressure increases, and indoor current deviates from a baseline established according to the motor type. Low outdoor airflow through the condenser is determined when a call for cool is present, and a differential between refrigerant temperature in the liquid line and outside ambient temperature increases above a baseline and outdoor current also increases above a baseline.
A possible flow restriction is detected when the return/supply air temperature split and the liquid line temperature is low while a call for cool is present. An outdoor run capacitor fault may be declared when, while a call for cool is present, power factor decreases rapidly. A general increase in power fault may be declared when a call for cool is present and power increases above a baseline. The baseline may be normalized according to outside air temperature and may be established during initial runs of the system, and/or may be specified by a manufacturer. A general fault corresponding to a decrease in capacity may be declared when a call for cool is present and the return/supply air temperature split, air pressure, and indoor current indicate a decrease in capacity.
In a heat pump system, a general failure to heat fault may be declared after 15 minutes from when a call for heat occurred and the supply/return air temperature split is below a threshold. Similarly, a more severe fault is declared if the supply/return air temperature split is below the same or different threshold after 30 minutes. A low charge condition of the heat pump may be determined when a call for heat is present and a supply/return air temperature split indicates a lack of heating, a difference between supply air and liquid line temperatures is less than a baseline, and a difference between return air temperature and liquid line temperature is less than a baseline. A high charge condition of the heat pump may be determined when a call for heat is present, a difference between supply air temperature and liquid line temperature is high, a difference between a liquid line temperature and return air temperature is low, and outdoor power increases.
Low indoor airflow in a heat pump system, while a call for heat and fan are present, is detected when the supply/return air temperature split is high, pressure increases, and indoor current deviates from a baseline, where the baseline is based on motor type. Low outdoor airflow on a heat pump is detected when a call for heat is present, the supply/return air temperature split indicates a lack of heating as a function of outside air temperature, and outdoor power increases.
A flow restriction in a heat pump system is determined when a call for heat is present, supply/return air temperature split does not indicate heating is occurring, runtime is increasing, and a difference between supply air and liquid line temperature increases. A general increase in power consumption fault for heat pump system may indicate a loss of efficiency, and is detected when a call for heat is present and power increases above a baseline as a function of outside air temperature.
A capacity decrease in a heat pump system may be determined when a call for heat is present, a supply/return air temperature split indicates a lack of heating, and pressure split in indoor current indicate a decreased capacity. Outside air temperature affects capacity, and therefore the threshold to declare a low capacity fault is adjusted in response to outside air temperature.
A reversing valve fault is determined when a call for heat is present but supply/return air temperature split indicates that cooling is occurring. Similarly, a reversing valve fault is determined when a call for cool is present but supply/return air temperature split indicates that heating is occurring.
A defrost fault may be declared in response to outdoor current, voltage, power, and power factor data, and supply/return air temperature split, refrigerant supply line temperature, suction line temperature, and outside air temperature indicating that frost is occurring on the outdoor coil, and defrost has failed to activate. When a fault due to the reversing valve is ruled out, a general defrost fault may be declared.
Excessive compressor tripping in a heat pump system may be determined when a call for cool or heating is present, supply/return air temperature split lacks indication of the requested cooling or heating, and outdoor fan motor current rapidly decreases. A fault for compressor short cycling due to pressure limits being exceeded may be detected when a call for cool is present, supply/return air temperature split does not indicate cooling, and there is a rapid decrease in outdoor current and a short runtime. A compressor bearing fault may be declared when an FFT of outdoor current indicates changes in motor loading, support for this fault is provided by power factor measurement. A locked rotor of the compressor motor may be determined when excessive current is present at a time when the compressor is slow to start. A locked rotor is confirmed with power and power factor measurements.
Thermostat short cycling is identified when a call for cool is removed prior to a full cooling sequence being completed. For example, this may occur when a supply register is too close to the thermostat, and leads to the thermostat prematurely believing the house has reached a desired temperature.
When a call for heat and a call for cool are present at the same time, a fault with the thermostat or with the control signal wiring is present. When independent communication between a monitor module and a thermostat is possible, such as when a thermostat is Internet-enabled, thermostat commands can be compared to actual signals on control lines and discrepancies indicate faults in control signal wiring.
True efficiency, or true SEER, may be calculated using energy inputs and thermal output where mass flow is used to directly measure output. Envelope efficiency can be determined by comparing heat transfer during off cycles of the HVAC system against thermal input to measure envelope performance. The envelope refers to the conditioned space, such as a house or building, and its ability to retain heat and cool, which includes losses due to air leaks as well as effectiveness of insulation.
An over-temperature determination may be made for the air handler monitor module based on the indoor module temperature and the condenser monitor module based on the outside module temperature. When either of these temperatures exceeds a predetermined threshold, a fault is identified and service may be called to prevent damage to components, electrical or otherwise, of the air handler monitor module and the condenser monitor module.
A fault corresponding to disconnection of a current sensor can be generated when a measured current is zero or close to zero. Because the measured current is an aggregate current and includes at least current provided to the corresponding monitor module, measured current should always be non-zero. A fault may be signaled when current sensor readings are out of range, where the range may be defined by a design of the current sensor, and/or may be specified by operating parameters of the system.
Faults related to temperature sensors being opened or shorted may be directly measured. More subtle temperature sensor faults may be determined during an idle time of the HVAC system. As the HVAC system is not running, temperatures may converge. For example, supply air and return air temperatures should converge on a single temperature, while supply line and liquid line temperatures should also converge.
The indoor module temperature may approximately correspond to temperature in the supply and return air ductwork, potentially offset based on heat generated by the control board. This generated heat may be characterized during design and can therefore be subtracted out when estimating air temperature from the board temperature measurements.
Voltage alerts may signal a fault with the power supply to the air handler unit or the condensing unit, both high and low limits are applied to the air handler unit voltage as well as the condensing unit voltage.
Condensate sensor fault indicates that condensate water is backing up in the condensate tray which receives condensed water from the evaporator coil, and in various implementations, may also receive water produced by combustion in the furnace. When the condensate sensor indicates that the level has been high for a longer period of time, or when the condensate sensor detects that the condensate sensor is fully submerged in water, a more severe fault may be triggered indicating that action should be taken to avoid water overflow.
If current exceeding a predetermined idle value is detected but no call has been made for immediate cool or fan, a fault is declared. For example only, an electronically commutated motor (ECM) blower that is malfunctioning may start running even when not instructed to. This action would be detected and generate a fault.
When temperatures of the home fall outside of predefined limits a fault is declared. Temperatures of the home may be based on the average of temperature sensors, including supply air and return air. The indoor module temperature compensated by an offset may also be used to determine home temperature when the air handler unit is within the conditioned space.
A compressor fault is declared when a call for cool results in current sufficient to run the condenser fan, but not enough current to run the condenser fan and the compressor. A contactor fault may be declared when a call for cool has been made but no corresponding current increase is detected. However, if a current sensor fault has been detected, that is considered to be the cause and therefore the contactor fault is preempted.
A contactor failure to open fault, such as when contactor contacts weld, can be determined when the call for cool is removed but the current remains at the same level, indicating continued compressor operation. A fault may be declared when a general purpose sensor has been changed and that change was not expected. Similarly, when a general purpose sensor is disconnected and that disconnection was not expected, a fault may be declared.
In systems where ultraviolet (UV) lights are used to control growth of mold and bacteria on the evaporator, a UV light sensor may monitor output of the UV light and indicate when that light output falls below a threshold.
A sensor may detect a wet floor condition, and may be implemented as a conduction sensor where a decrease in resistance indicates a presence of water. A general purpose wet tray sensor indicates that a tray in which the air handler unit is located is retaining water.
A condensate pump water sensor generates a fault when a water level in the condensate pump is above a threshold. Condensate pumps may be used where a drain is not available, including in many attic mount systems. In some buildings, a sump pump is dug below grade and a pump is installed to pump out water before the water leaches into the foundation. For example, in a residence, a corner of the basement in areas that have a relatively high water table may have a sump pump. Although the sump pump may not be directly related to the HVAC system, a high level of water in the sump pump may indicate that the pump has failed or that it is not able to keep up with the water entering the sump.
The foregoing description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical OR. It should be understood that one or more steps within a method may be executed in different order (or concurrently) without altering the principles of the present disclosure.
In this application, including the definitions below, the term module may be replaced with the term circuit. The term module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC); a digital, analog, or mixed analog/digital discrete circuit; a digital, analog, or mixed analog/digital integrated circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that executes code; memory (shared, dedicated, or group) that stores code executed by a processor; other suitable hardware components that provide the described functionality; or a combination of some or all of the above, such as in a system-on-chip.
The term code, as used above, may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, and/or objects. The term shared processor encompasses a single processor that executes some or all code from multiple modules. The term group processor encompasses a processor that, in combination with additional processors, executes some or all code from one or more modules. The term shared memory encompasses a single memory that stores some or all code from multiple modules. The term group memory encompasses a memory that, in combination with additional memories, stores some or all code from one or more modules. The term memory may be a subset of the term computer-readable medium. The term computer-readable medium does not encompass transitory electrical and electromagnetic signals propagating through a medium, and may therefore be considered tangible and non-transitory. Non-limiting examples of a non-transitory tangible computer readable medium include nonvolatile memory, volatile memory, magnetic storage, and optical storage.
The apparatuses and methods described in this application may be partially or fully implemented by one or more computer programs executed by one or more processors. The computer programs include processor-executable instructions that are stored on at least one non-transitory tangible computer readable medium. The computer programs may also include and/or rely on stored data.
This application claims the benefit of U.S. Provisional Application No. 61/800,636 filed on Mar. 15, 2013. The entire disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2054542 | Hoelle | Sep 1936 | A |
2296822 | Wolfert | Sep 1942 | A |
2631050 | Haeberlein | Mar 1953 | A |
2804839 | Hallinan | Sep 1957 | A |
2961606 | Mead | Nov 1960 | A |
2962702 | Derr et al. | Nov 1960 | A |
2978879 | Heidorn | Apr 1961 | A |
3027865 | Kautz et al. | Apr 1962 | A |
3047696 | Heidorn | Jul 1962 | A |
3082951 | Kayan | Mar 1963 | A |
3107843 | Finn | Oct 1963 | A |
3170304 | Hale | Feb 1965 | A |
3232519 | Long | Feb 1966 | A |
3278111 | Parker | Oct 1966 | A |
3327197 | Marquis | Jun 1967 | A |
3339164 | Landis et al. | Aug 1967 | A |
3400374 | Schumann | Sep 1968 | A |
3513662 | Golber | May 1970 | A |
3581281 | Martin et al. | May 1971 | A |
3585451 | Day, III | Jun 1971 | A |
3653783 | Sauder | Apr 1972 | A |
3660718 | Pinckaers | May 1972 | A |
3665339 | Liu | May 1972 | A |
3665399 | Zehr et al. | May 1972 | A |
3697953 | Schoenwitz | Oct 1972 | A |
3707851 | McAshan, Jr. | Jan 1973 | A |
3729949 | Talbot | May 1973 | A |
3735377 | Kaufman | May 1973 | A |
3742302 | Neill | Jun 1973 | A |
3742303 | Dageford | Jun 1973 | A |
3767328 | Ladusaw | Oct 1973 | A |
3777240 | Neill | Dec 1973 | A |
3783681 | Hirt et al. | Jan 1974 | A |
3820074 | Toman | Jun 1974 | A |
3882305 | Johnstone | May 1975 | A |
3924972 | Szymaszek | Dec 1975 | A |
3927712 | Nakayama | Dec 1975 | A |
3935519 | Pfarrer et al. | Jan 1976 | A |
3950962 | Odashima | Apr 1976 | A |
3960011 | Renz et al. | Jun 1976 | A |
3978382 | Pfarrer et al. | Aug 1976 | A |
3998068 | Chirnside | Dec 1976 | A |
4006460 | Hewitt et al. | Feb 1977 | A |
4014182 | Granryd | Mar 1977 | A |
4018584 | Mullen | Apr 1977 | A |
4019172 | Srodes | Apr 1977 | A |
4024725 | Uchida et al. | May 1977 | A |
4027289 | Toman | May 1977 | A |
4034570 | Anderson et al. | Jul 1977 | A |
4038061 | Anderson et al. | Jul 1977 | A |
4045973 | Anderson et al. | Sep 1977 | A |
4046532 | Nelson | Sep 1977 | A |
RE29450 | Goldsby et al. | Oct 1977 | E |
4060716 | Pekrul et al. | Nov 1977 | A |
4066869 | Apaloo et al. | Jan 1978 | A |
4090248 | Swanson et al. | May 1978 | A |
4102150 | Kountz | Jul 1978 | A |
4102394 | Botts | Jul 1978 | A |
4104888 | Reedy et al. | Aug 1978 | A |
4105063 | Bergt | Aug 1978 | A |
4112703 | Kountz | Sep 1978 | A |
4132086 | Kountz | Jan 1979 | A |
4136730 | Kinsey | Jan 1979 | A |
4137057 | Piet et al. | Jan 1979 | A |
4137725 | Martin | Feb 1979 | A |
4142375 | Abe et al. | Mar 1979 | A |
4143707 | Lewis et al. | Mar 1979 | A |
4146085 | Wills | Mar 1979 | A |
RE29966 | Nussbaum | Apr 1979 | E |
4151725 | Kountz et al. | May 1979 | A |
4153003 | Willis | May 1979 | A |
4156350 | Elliott et al. | May 1979 | A |
4161106 | Savage et al. | Jul 1979 | A |
4165619 | Girard | Aug 1979 | A |
4171622 | Yamaguchi et al. | Oct 1979 | A |
4173871 | Brooks | Nov 1979 | A |
4178988 | Cann et al. | Dec 1979 | A |
RE30242 | del Toro et al. | Apr 1980 | E |
4197717 | Schumacher | Apr 1980 | A |
4205381 | Games et al. | May 1980 | A |
4209994 | Mueller et al. | Jul 1980 | A |
4211089 | Mueller et al. | Jul 1980 | A |
4217761 | Cornaire et al. | Aug 1980 | A |
4220010 | Mueller et al. | Sep 1980 | A |
4227862 | Andrew et al. | Oct 1980 | A |
4232530 | Mueller | Nov 1980 | A |
4233818 | Lastinger | Nov 1980 | A |
4236379 | Mueller | Dec 1980 | A |
4244182 | Behr | Jan 1981 | A |
4246763 | Mueller et al. | Jan 1981 | A |
4248051 | Darcy et al. | Feb 1981 | A |
4251988 | Allard et al. | Feb 1981 | A |
4257795 | Shaw | Mar 1981 | A |
4259847 | Pearse, Jr. | Apr 1981 | A |
4267702 | Houk | May 1981 | A |
4270174 | Karlin et al. | May 1981 | A |
4271898 | Freeman | Jun 1981 | A |
4281358 | Plouffe et al. | Jul 1981 | A |
4284849 | Anderson et al. | Aug 1981 | A |
4286438 | Clarke | Sep 1981 | A |
4290480 | Sulkowski | Sep 1981 | A |
4296727 | Bryan | Oct 1981 | A |
4301660 | Mueller et al. | Nov 1981 | A |
4306293 | Marathe | Dec 1981 | A |
4307775 | Saunders et al. | Dec 1981 | A |
4308725 | Chiyoda | Jan 1982 | A |
4311188 | Kojima et al. | Jan 1982 | A |
4319461 | Shaw | Mar 1982 | A |
4321529 | Simmonds et al. | Mar 1982 | A |
4325223 | Cantley | Apr 1982 | A |
4328678 | Kono et al. | May 1982 | A |
4328680 | Stamp, Jr. et al. | May 1982 | A |
4333316 | Stamp, Jr. et al. | Jun 1982 | A |
4333317 | Sawyer | Jun 1982 | A |
4336001 | Andrew et al. | Jun 1982 | A |
4338790 | Saunders et al. | Jul 1982 | A |
4338791 | Stamp, Jr. et al. | Jul 1982 | A |
4345162 | Hammer et al. | Aug 1982 | A |
4346755 | Alley et al. | Aug 1982 | A |
4350021 | Lundstrom | Sep 1982 | A |
4350023 | Kuwabara et al. | Sep 1982 | A |
4351163 | Johannsen | Sep 1982 | A |
4356703 | Vogel | Nov 1982 | A |
4361273 | Levine et al. | Nov 1982 | A |
4365983 | Abraham et al. | Dec 1982 | A |
4370098 | McClain et al. | Jan 1983 | A |
4372119 | Gillbrand et al. | Feb 1983 | A |
4376926 | Senor | Mar 1983 | A |
4381549 | Stamp, Jr. et al. | Apr 1983 | A |
4382367 | Roberts | May 1983 | A |
4384462 | Overman et al. | May 1983 | A |
4387368 | Day, III et al. | Jun 1983 | A |
4387578 | Paddock | Jun 1983 | A |
4390058 | Otake et al. | Jun 1983 | A |
4390321 | Langlois et al. | Jun 1983 | A |
4390922 | Pelliccia | Jun 1983 | A |
4395886 | Mayer | Aug 1983 | A |
4395887 | Sweetman | Aug 1983 | A |
4399548 | Castleberry | Aug 1983 | A |
4402054 | Osborne et al. | Aug 1983 | A |
4406133 | Saunders et al. | Sep 1983 | A |
4407138 | Mueller | Oct 1983 | A |
4408660 | Sutoh et al. | Oct 1983 | A |
4412788 | Shaw et al. | Nov 1983 | A |
4415896 | Allgood | Nov 1983 | A |
4418388 | Allgor et al. | Nov 1983 | A |
4420947 | Yoshino | Dec 1983 | A |
4425010 | Bryant et al. | Jan 1984 | A |
4429578 | Darrel et al. | Feb 1984 | A |
4432232 | Brantley et al. | Feb 1984 | A |
4434390 | Elms | Feb 1984 | A |
4441329 | Dawley | Apr 1984 | A |
4448038 | Barbier | May 1984 | A |
4449375 | Briccetti | May 1984 | A |
4451929 | Yoshida | May 1984 | A |
4460123 | Beverly | Jul 1984 | A |
4463571 | Wiggs | Aug 1984 | A |
4463574 | Spethmann et al. | Aug 1984 | A |
4463576 | Burnett et al. | Aug 1984 | A |
4465229 | Kompelien | Aug 1984 | A |
4467230 | Rovinsky | Aug 1984 | A |
4467385 | Bandoli et al. | Aug 1984 | A |
4467613 | Behr et al. | Aug 1984 | A |
4470092 | Lombardi | Sep 1984 | A |
4470266 | Briccetti et al. | Sep 1984 | A |
4474024 | Eplett et al. | Oct 1984 | A |
4474542 | Kato et al. | Oct 1984 | A |
4479389 | Anderson, III et al. | Oct 1984 | A |
4484452 | Houser, Jr. | Nov 1984 | A |
4489551 | Watanabe et al. | Dec 1984 | A |
4490986 | Paddock | Jan 1985 | A |
4494383 | Nagatomo et al. | Jan 1985 | A |
4495779 | Tanaka et al. | Jan 1985 | A |
4496296 | Arai et al. | Jan 1985 | A |
4497031 | Froehling et al. | Jan 1985 | A |
4498310 | Imanishi et al. | Feb 1985 | A |
4499739 | Matsuoka et al. | Feb 1985 | A |
4502084 | Hannett | Feb 1985 | A |
4502833 | Hibino et al. | Mar 1985 | A |
4502842 | Currier et al. | Mar 1985 | A |
4502843 | Martin | Mar 1985 | A |
4505125 | Baglione | Mar 1985 | A |
4506518 | Yoshikawa et al. | Mar 1985 | A |
4507934 | Tanaka et al. | Apr 1985 | A |
4510547 | Rudich, Jr. | Apr 1985 | A |
4510576 | MacArthur et al. | Apr 1985 | A |
4512161 | Logan et al. | Apr 1985 | A |
4516407 | Watabe | May 1985 | A |
4517468 | Kemper et al. | May 1985 | A |
4520674 | Canada et al. | Jun 1985 | A |
4523435 | Lord | Jun 1985 | A |
4523436 | Schedel et al. | Jun 1985 | A |
4527247 | Kaiser et al. | Jul 1985 | A |
4527399 | Lord | Jul 1985 | A |
4535607 | Mount | Aug 1985 | A |
4538420 | Nelson | Sep 1985 | A |
4538422 | Mount et al. | Sep 1985 | A |
4539820 | Zinsmeyer | Sep 1985 | A |
4540040 | Fukumoto et al. | Sep 1985 | A |
4545210 | Lord | Oct 1985 | A |
4545214 | Kinoshita | Oct 1985 | A |
4548549 | Murphy et al. | Oct 1985 | A |
4549403 | Lord et al. | Oct 1985 | A |
4549404 | Lord | Oct 1985 | A |
4550770 | Nussdorfer et al. | Nov 1985 | A |
4553400 | Branz | Nov 1985 | A |
4555057 | Foster | Nov 1985 | A |
4555910 | Sturges | Dec 1985 | A |
4557317 | Harmon, Jr. | Dec 1985 | A |
4558181 | Blanchard et al. | Dec 1985 | A |
4561260 | Nishi et al. | Dec 1985 | A |
4563624 | Yu | Jan 1986 | A |
4563877 | Harnish | Jan 1986 | A |
4563878 | Baglione | Jan 1986 | A |
4567733 | Mecozzi | Feb 1986 | A |
4568909 | Whynacht | Feb 1986 | A |
4574871 | Parkinson et al. | Mar 1986 | A |
4575318 | Blain | Mar 1986 | A |
4577977 | Pejsa | Mar 1986 | A |
4580947 | Shibata et al. | Apr 1986 | A |
4583373 | Shaw | Apr 1986 | A |
4589060 | Zinsmeyer | May 1986 | A |
4593367 | Slack et al. | Jun 1986 | A |
4598764 | Beckey | Jul 1986 | A |
4602484 | Bendikson | Jul 1986 | A |
4603556 | Suefuji et al. | Aug 1986 | A |
4604036 | Sutou et al. | Aug 1986 | A |
4611470 | Enstrom | Sep 1986 | A |
4612775 | Branz et al. | Sep 1986 | A |
4614089 | Dorsey | Sep 1986 | A |
4617804 | Fukushima et al. | Oct 1986 | A |
4620286 | Smith et al. | Oct 1986 | A |
4620424 | Tanaka et al. | Nov 1986 | A |
4621502 | Ibrahim et al. | Nov 1986 | A |
4627245 | Levine | Dec 1986 | A |
4627483 | Harshbarger, III et al. | Dec 1986 | A |
4627484 | Harshbarger, Jr. et al. | Dec 1986 | A |
4630572 | Evans | Dec 1986 | A |
4630670 | Wellman et al. | Dec 1986 | A |
4642034 | Terauchi | Feb 1987 | A |
4642782 | Kemper et al. | Feb 1987 | A |
4644479 | Kemper et al. | Feb 1987 | A |
4646532 | Nose | Mar 1987 | A |
4648044 | Hardy et al. | Mar 1987 | A |
4649515 | Thompson et al. | Mar 1987 | A |
4649710 | Inoue et al. | Mar 1987 | A |
4653280 | Hansen et al. | Mar 1987 | A |
4653285 | Pohl | Mar 1987 | A |
4655688 | Bohn et al. | Apr 1987 | A |
4660386 | Hansen et al. | Apr 1987 | A |
4662184 | Pohl et al. | May 1987 | A |
4674292 | Ohya et al. | Jun 1987 | A |
4677830 | Sumikawa et al. | Jul 1987 | A |
4680940 | Vaughn | Jul 1987 | A |
4682473 | Rogers, III | Jul 1987 | A |
4684060 | Adams et al. | Aug 1987 | A |
4685615 | Hart | Aug 1987 | A |
4686835 | Alsenz | Aug 1987 | A |
4689967 | Han et al. | Sep 1987 | A |
4697431 | Alsenz | Oct 1987 | A |
4698978 | Jones | Oct 1987 | A |
4698981 | Kaneko et al. | Oct 1987 | A |
4701824 | Beggs et al. | Oct 1987 | A |
4703325 | Chamberlin et al. | Oct 1987 | A |
4706152 | DeFilippis et al. | Nov 1987 | A |
4706469 | Oguni et al. | Nov 1987 | A |
4712648 | Mattes et al. | Dec 1987 | A |
4713717 | Pejouhy et al. | Dec 1987 | A |
4715190 | Han et al. | Dec 1987 | A |
4715792 | Nishizawa et al. | Dec 1987 | A |
4716582 | Blanchard et al. | Dec 1987 | A |
4716957 | Thompson et al. | Jan 1988 | A |
4720980 | Howland | Jan 1988 | A |
4722018 | Pohl | Jan 1988 | A |
4722019 | Pohl | Jan 1988 | A |
4724678 | Pohl | Feb 1988 | A |
4735054 | Beckey | Apr 1988 | A |
4735060 | Alsenz | Apr 1988 | A |
4744223 | Umezu | May 1988 | A |
4745765 | Pettitt | May 1988 | A |
4745766 | Bahr | May 1988 | A |
4745767 | Ohya et al. | May 1988 | A |
4750332 | Jenski et al. | Jun 1988 | A |
4750672 | Beckey et al. | Jun 1988 | A |
4751501 | Gut | Jun 1988 | A |
4751825 | Voorhis et al. | Jun 1988 | A |
4754410 | Leech et al. | Jun 1988 | A |
4755957 | White et al. | Jul 1988 | A |
4765150 | Persem | Aug 1988 | A |
4768346 | Mathur | Sep 1988 | A |
4768348 | Noguchi | Sep 1988 | A |
4783752 | Kaplan et al. | Nov 1988 | A |
4787213 | Gras et al. | Nov 1988 | A |
4790142 | Beckey | Dec 1988 | A |
4796142 | Libert | Jan 1989 | A |
4796466 | Farmer | Jan 1989 | A |
4798055 | Murray et al. | Jan 1989 | A |
4805118 | Rishel | Feb 1989 | A |
4807445 | Matsuoka et al. | Feb 1989 | A |
4820130 | Eber et al. | Apr 1989 | A |
4829779 | Munson et al. | May 1989 | A |
4831560 | Zaleski | May 1989 | A |
4831832 | Alsenz | May 1989 | A |
4831833 | Duenes et al. | May 1989 | A |
4835706 | Asahi | May 1989 | A |
4835980 | Oyanagi et al. | Jun 1989 | A |
4838037 | Wood | Jun 1989 | A |
4841734 | Torrence | Jun 1989 | A |
4843575 | Crane | Jun 1989 | A |
4845956 | Berntsen et al. | Jul 1989 | A |
4848099 | Beckey et al. | Jul 1989 | A |
4848100 | Barthel et al. | Jul 1989 | A |
4850198 | Helt et al. | Jul 1989 | A |
4850204 | Bos et al. | Jul 1989 | A |
4852363 | Kampf et al. | Aug 1989 | A |
4853693 | Eaton-Williams | Aug 1989 | A |
4856286 | Sulfstede et al. | Aug 1989 | A |
4858676 | Bolfik et al. | Aug 1989 | A |
4866635 | Kahn et al. | Sep 1989 | A |
4866944 | Yamazaki | Sep 1989 | A |
4869073 | Kawai et al. | Sep 1989 | A |
4873836 | Thompson | Oct 1989 | A |
4875589 | Lacey et al. | Oct 1989 | A |
4877382 | Caillat et al. | Oct 1989 | A |
4878355 | Beckey et al. | Nov 1989 | A |
4881184 | Abegg, III et al. | Nov 1989 | A |
4882747 | Williams | Nov 1989 | A |
4882908 | White | Nov 1989 | A |
4884412 | Sellers et al. | Dec 1989 | A |
4885707 | Nichol et al. | Dec 1989 | A |
4885914 | Pearman | Dec 1989 | A |
4887436 | Enomoto et al. | Dec 1989 | A |
4887857 | VanOmmeren | Dec 1989 | A |
4889280 | Grald et al. | Dec 1989 | A |
4893480 | Matsui et al. | Jan 1990 | A |
4899551 | Weintraub | Feb 1990 | A |
4903500 | Hanson | Feb 1990 | A |
4903759 | Lapeyrouse | Feb 1990 | A |
4904993 | Sato | Feb 1990 | A |
4909041 | Jones | Mar 1990 | A |
4909076 | Busch et al. | Mar 1990 | A |
4910966 | Levine et al. | Mar 1990 | A |
4913625 | Gerlowski | Apr 1990 | A |
4916633 | Tychonievich et al. | Apr 1990 | A |
4916909 | Mathur et al. | Apr 1990 | A |
4916912 | Levine et al. | Apr 1990 | A |
4918690 | Markkula, Jr. et al. | Apr 1990 | A |
4918932 | Gustafson et al. | Apr 1990 | A |
4924404 | Reinke, Jr. | May 1990 | A |
4924418 | Bachman et al. | May 1990 | A |
4928750 | Nurczyk | May 1990 | A |
4932588 | Fedter et al. | Jun 1990 | A |
4939909 | Tsuchiyama et al. | Jul 1990 | A |
4943003 | Shimizu et al. | Jul 1990 | A |
4944160 | Malone et al. | Jul 1990 | A |
4945491 | Rishel | Jul 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4949550 | Hanson | Aug 1990 | A |
4953784 | Yasufuku et al. | Sep 1990 | A |
4959970 | Meckler | Oct 1990 | A |
4964060 | Hartsog | Oct 1990 | A |
4964125 | Kim | Oct 1990 | A |
4966006 | Thuesen et al. | Oct 1990 | A |
4967567 | Proctor et al. | Nov 1990 | A |
4970496 | Kirkpatrick | Nov 1990 | A |
4974427 | Diab | Dec 1990 | A |
4974665 | Zillner, Jr. | Dec 1990 | A |
4975024 | Heckel | Dec 1990 | A |
4977751 | Hanson | Dec 1990 | A |
4985857 | Bajpai et al. | Jan 1991 | A |
4987748 | Meckler | Jan 1991 | A |
4990057 | Rollins | Feb 1991 | A |
4990893 | Kiluk | Feb 1991 | A |
4991770 | Bird et al. | Feb 1991 | A |
5000009 | Clanin | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5009074 | Goubeaux et al. | Apr 1991 | A |
5009075 | Okoren | Apr 1991 | A |
5009076 | Winslow | Apr 1991 | A |
5012629 | Rehman et al. | May 1991 | A |
5018357 | Livingstone et al. | May 1991 | A |
5018665 | Sulmone | May 1991 | A |
RE33620 | Persem | Jun 1991 | E |
5022234 | Goubeaux et al. | Jun 1991 | A |
5039009 | Baldwin et al. | Aug 1991 | A |
5042264 | Dudley | Aug 1991 | A |
5051720 | Kittirutsunetorn | Sep 1991 | A |
5056036 | Van Bork | Oct 1991 | A |
5056329 | Wilkinson | Oct 1991 | A |
5058388 | Shaw et al. | Oct 1991 | A |
5062278 | Sugiyama | Nov 1991 | A |
5065593 | Dudley et al. | Nov 1991 | A |
5067099 | McCown et al. | Nov 1991 | A |
RE33775 | Behr et al. | Dec 1991 | E |
5070468 | Niinomi et al. | Dec 1991 | A |
5071065 | Aalto et al. | Dec 1991 | A |
5073091 | Burgess et al. | Dec 1991 | A |
5073862 | Carlson | Dec 1991 | A |
5076067 | Prenger et al. | Dec 1991 | A |
5076494 | Ripka | Dec 1991 | A |
5077983 | Dudley | Jan 1992 | A |
5083438 | McMullin | Jan 1992 | A |
5086385 | Launey et al. | Feb 1992 | A |
5088297 | Maruyama et al. | Feb 1992 | A |
5094086 | Shyu | Mar 1992 | A |
5095712 | Narreau | Mar 1992 | A |
5095715 | Dudley | Mar 1992 | A |
5099654 | Baruschke et al. | Mar 1992 | A |
5102316 | Caillat et al. | Apr 1992 | A |
5103391 | Barrett | Apr 1992 | A |
5107500 | Wakamoto et al. | Apr 1992 | A |
5109222 | Welty | Apr 1992 | A |
5109676 | Waters et al. | May 1992 | A |
5109700 | Hicho | May 1992 | A |
5109916 | Thompson | May 1992 | A |
5115406 | Zatezalo et al. | May 1992 | A |
5115643 | Hayata et al. | May 1992 | A |
5115644 | Alsenz | May 1992 | A |
5115967 | Wedekind | May 1992 | A |
5118260 | Fraser, Jr. | Jun 1992 | A |
5119466 | Suzuki | Jun 1992 | A |
5119637 | Bard et al. | Jun 1992 | A |
5121610 | Atkinson et al. | Jun 1992 | A |
5123017 | Simpkins et al. | Jun 1992 | A |
5123252 | Hanson | Jun 1992 | A |
5123253 | Hanson et al. | Jun 1992 | A |
5123255 | Ohizumi | Jun 1992 | A |
5125067 | Erdman | Jun 1992 | A |
RE34001 | Wrobel | Jul 1992 | E |
5127232 | Paige et al. | Jul 1992 | A |
5131237 | Valbjorn | Jul 1992 | A |
5136855 | Lenarduzzi | Aug 1992 | A |
5140394 | Cobb, III et al. | Aug 1992 | A |
5141407 | Ramsey et al. | Aug 1992 | A |
5142877 | Shimizu | Sep 1992 | A |
5150584 | Tomasov et al. | Sep 1992 | A |
5156539 | Anderson et al. | Oct 1992 | A |
5167494 | Inagaki et al. | Dec 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5170936 | Kubo et al. | Dec 1992 | A |
5181389 | Hanson et al. | Jan 1993 | A |
5186014 | Runk | Feb 1993 | A |
5197666 | Wedekind | Mar 1993 | A |
5199855 | Nakajima et al. | Apr 1993 | A |
5200872 | D'Entremont et al. | Apr 1993 | A |
5200987 | Gray | Apr 1993 | A |
5201862 | Pettitt | Apr 1993 | A |
5203178 | Shyu | Apr 1993 | A |
5203179 | Powell | Apr 1993 | A |
5209076 | Kauffman et al. | May 1993 | A |
5209400 | Winslow et al. | May 1993 | A |
5219041 | Greve | Jun 1993 | A |
5224354 | Ito et al. | Jul 1993 | A |
5224835 | Oltman | Jul 1993 | A |
5226472 | Benevelli et al. | Jul 1993 | A |
5228300 | Shim | Jul 1993 | A |
5228304 | Ryan | Jul 1993 | A |
5228307 | Koce | Jul 1993 | A |
5230223 | Hullar et al. | Jul 1993 | A |
5231844 | Park | Aug 1993 | A |
5233841 | Jyrek | Aug 1993 | A |
5235526 | Saffell | Aug 1993 | A |
5237830 | Grant | Aug 1993 | A |
5241664 | Ohba et al. | Aug 1993 | A |
5241833 | Ohkoshi | Sep 1993 | A |
5243827 | Hagita et al. | Sep 1993 | A |
5243829 | Bessler | Sep 1993 | A |
5245833 | Mei et al. | Sep 1993 | A |
5248244 | Ho et al. | Sep 1993 | A |
5251453 | Stanke et al. | Oct 1993 | A |
5251454 | Yoon | Oct 1993 | A |
5255977 | Eimer et al. | Oct 1993 | A |
5257506 | DeWolf et al. | Nov 1993 | A |
5262704 | Farr | Nov 1993 | A |
5265434 | Alsenz | Nov 1993 | A |
5269458 | Sol | Dec 1993 | A |
5271556 | Helt et al. | Dec 1993 | A |
5274571 | Hesse et al. | Dec 1993 | A |
5276630 | Baldwin et al. | Jan 1994 | A |
5279458 | DeWolf et al. | Jan 1994 | A |
5282728 | Swain | Feb 1994 | A |
5284026 | Powell | Feb 1994 | A |
5289362 | Liebl et al. | Feb 1994 | A |
5290154 | Kotlarek et al. | Mar 1994 | A |
5291752 | Alvarez et al. | Mar 1994 | A |
5299504 | Abele | Apr 1994 | A |
5303112 | Zulaski et al. | Apr 1994 | A |
5303560 | Hanson et al. | Apr 1994 | A |
5311451 | Barrett | May 1994 | A |
5311562 | Palusamy et al. | May 1994 | A |
5316448 | Ziegler et al. | May 1994 | A |
5320506 | Fogt | Jun 1994 | A |
5333460 | Lewis et al. | Aug 1994 | A |
5335507 | Powell | Aug 1994 | A |
5336058 | Yokoyama | Aug 1994 | A |
5347476 | McBean, Sr. | Sep 1994 | A |
5351037 | Martell et al. | Sep 1994 | A |
5362206 | Westerman et al. | Nov 1994 | A |
5362211 | Iizuka et al. | Nov 1994 | A |
5368446 | Rode | Nov 1994 | A |
5369958 | Kasai et al. | Dec 1994 | A |
5381669 | Bahel et al. | Jan 1995 | A |
5381692 | Winslow et al. | Jan 1995 | A |
5388176 | Dykstra et al. | Feb 1995 | A |
5395042 | Riley et al. | Mar 1995 | A |
5410230 | Bessler et al. | Apr 1995 | A |
5414792 | Shorey | May 1995 | A |
5415008 | Bessler | May 1995 | A |
5416781 | Ruiz | May 1995 | A |
5423190 | Friedland | Jun 1995 | A |
5423192 | Young et al. | Jun 1995 | A |
5426952 | Bessler | Jun 1995 | A |
5431026 | Jaster | Jul 1995 | A |
5432500 | Scripps | Jul 1995 | A |
5435145 | Jaster | Jul 1995 | A |
5435148 | Sandofsky et al. | Jul 1995 | A |
5440890 | Bahel et al. | Aug 1995 | A |
5440891 | Hindmon, Jr. et al. | Aug 1995 | A |
5440895 | Bahel et al. | Aug 1995 | A |
5446677 | Jensen et al. | Aug 1995 | A |
5450359 | Sharma et al. | Sep 1995 | A |
5452291 | Eisenhandler et al. | Sep 1995 | A |
5454229 | Hanson et al. | Oct 1995 | A |
5457965 | Blair et al. | Oct 1995 | A |
5460006 | Torimitsu | Oct 1995 | A |
5467011 | Hunt | Nov 1995 | A |
5467264 | Rauch et al. | Nov 1995 | A |
5469045 | Dove et al. | Nov 1995 | A |
5475986 | Bahel et al. | Dec 1995 | A |
5478212 | Sakai et al. | Dec 1995 | A |
5481481 | Frey et al. | Jan 1996 | A |
5481884 | Scoccia | Jan 1996 | A |
5483141 | Uesugi | Jan 1996 | A |
5491978 | Young et al. | Feb 1996 | A |
5495722 | Manson et al. | Mar 1996 | A |
5499512 | Jurewicz et al. | Mar 1996 | A |
5509786 | Mizutani et al. | Apr 1996 | A |
5511387 | Tinsler | Apr 1996 | A |
5512883 | Lane, Jr. | Apr 1996 | A |
5515267 | Alsenz | May 1996 | A |
5515692 | Sterber et al. | May 1996 | A |
5519301 | Yoshida et al. | May 1996 | A |
5528908 | Bahel et al. | Jun 1996 | A |
5532534 | Baker et al. | Jul 1996 | A |
5533347 | Ott et al. | Jul 1996 | A |
5535136 | Standifer | Jul 1996 | A |
5535597 | An | Jul 1996 | A |
5546015 | Okabe | Aug 1996 | A |
5546073 | Duff et al. | Aug 1996 | A |
5546756 | Ali | Aug 1996 | A |
5546757 | Whipple, III | Aug 1996 | A |
5548966 | Tinsler | Aug 1996 | A |
5555195 | Jensen et al. | Sep 1996 | A |
5562426 | Watanabe et al. | Oct 1996 | A |
5563490 | Kawaguchi et al. | Oct 1996 | A |
5564280 | Schilling et al. | Oct 1996 | A |
5566084 | Cmar | Oct 1996 | A |
5570085 | Bertsch | Oct 1996 | A |
5570258 | Manning | Oct 1996 | A |
5572643 | Judson | Nov 1996 | A |
5577905 | Momber et al. | Nov 1996 | A |
5579648 | Hanson et al. | Dec 1996 | A |
5581229 | Hunt | Dec 1996 | A |
5586445 | Bessler | Dec 1996 | A |
5586446 | Torimitsu | Dec 1996 | A |
5590830 | Kettler et al. | Jan 1997 | A |
5592058 | Archer et al. | Jan 1997 | A |
5592824 | Sogabe et al. | Jan 1997 | A |
5596507 | Jones et al. | Jan 1997 | A |
5600960 | Schwedler et al. | Feb 1997 | A |
5602749 | Vosburgh | Feb 1997 | A |
5602757 | Haseley et al. | Feb 1997 | A |
5602761 | Spoerre et al. | Feb 1997 | A |
5610339 | Haseley et al. | Mar 1997 | A |
5611674 | Bass et al. | Mar 1997 | A |
5613841 | Bass et al. | Mar 1997 | A |
5615071 | Higashikata et al. | Mar 1997 | A |
5616829 | Balaschak et al. | Apr 1997 | A |
5623834 | Bahel et al. | Apr 1997 | A |
5628201 | Bahel et al. | May 1997 | A |
5630325 | Bahel et al. | May 1997 | A |
5635896 | Tinsley et al. | Jun 1997 | A |
5641270 | Sgourakes et al. | Jun 1997 | A |
5643482 | Sandelman et al. | Jul 1997 | A |
5650936 | Loucks et al. | Jul 1997 | A |
5651263 | Nonaka et al. | Jul 1997 | A |
5655379 | Jaster et al. | Aug 1997 | A |
5655380 | Calton | Aug 1997 | A |
5656765 | Gray | Aug 1997 | A |
5656767 | Garvey, III et al. | Aug 1997 | A |
5666815 | Aloise | Sep 1997 | A |
5682949 | Ratcliffe et al. | Nov 1997 | A |
5684463 | Diercks et al. | Nov 1997 | A |
5689963 | Bahel et al. | Nov 1997 | A |
5691692 | Herbstritt | Nov 1997 | A |
5694010 | Oomura et al. | Dec 1997 | A |
5696501 | Ouellette et al. | Dec 1997 | A |
5699670 | Jurewicz et al. | Dec 1997 | A |
5706007 | Fragnito et al. | Jan 1998 | A |
5707210 | Ramsey et al. | Jan 1998 | A |
5711785 | Maxwell | Jan 1998 | A |
5713724 | Centers et al. | Feb 1998 | A |
5714931 | Petite et al. | Feb 1998 | A |
5715704 | Cholkeri et al. | Feb 1998 | A |
5718822 | Richter | Feb 1998 | A |
5724571 | Woods | Mar 1998 | A |
5729474 | Hildebrand et al. | Mar 1998 | A |
5737931 | Ueno et al. | Apr 1998 | A |
5741120 | Bass et al. | Apr 1998 | A |
5743109 | Schulak | Apr 1998 | A |
5745114 | King et al. | Apr 1998 | A |
5749238 | Schmidt | May 1998 | A |
5751916 | Kon et al. | May 1998 | A |
5752385 | Nelson | May 1998 | A |
5754450 | Solomon et al. | May 1998 | A |
5754732 | Vlahu | May 1998 | A |
5757664 | Rogers et al. | May 1998 | A |
5757892 | Blanchard et al. | May 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5764509 | Gross et al. | Jun 1998 | A |
5772214 | Stark | Jun 1998 | A |
5772403 | Allison et al. | Jun 1998 | A |
5782101 | Dennis | Jul 1998 | A |
5784232 | Farr | Jul 1998 | A |
5790898 | Kishima et al. | Aug 1998 | A |
5795381 | Holder | Aug 1998 | A |
5798941 | McLeister | Aug 1998 | A |
5802860 | Barrows | Sep 1998 | A |
5805856 | Hanson | Sep 1998 | A |
5807336 | Russo et al. | Sep 1998 | A |
5808441 | Nehring | Sep 1998 | A |
5810908 | Gray et al. | Sep 1998 | A |
5812061 | Simons | Sep 1998 | A |
5825597 | Young | Oct 1998 | A |
5827963 | Selegatto et al. | Oct 1998 | A |
5839094 | French | Nov 1998 | A |
5839291 | Chang et al. | Nov 1998 | A |
5841654 | Verissimo et al. | Nov 1998 | A |
5857348 | Conry | Jan 1999 | A |
5860286 | Tulpule | Jan 1999 | A |
5861807 | Leyden et al. | Jan 1999 | A |
5867998 | Guertin | Feb 1999 | A |
5869960 | Brand | Feb 1999 | A |
5873257 | Peterson | Feb 1999 | A |
5875430 | Koether | Feb 1999 | A |
5875638 | Tinsler | Mar 1999 | A |
5884494 | Okoren et al. | Mar 1999 | A |
5887786 | Sandelman | Mar 1999 | A |
5900801 | Heagle et al. | May 1999 | A |
5904049 | Jaster et al. | May 1999 | A |
5918200 | Tsutsui et al. | Jun 1999 | A |
5924295 | Park | Jul 1999 | A |
5924486 | Ehlers et al. | Jul 1999 | A |
5926103 | Petite | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5930773 | Crooks et al. | Jul 1999 | A |
5934087 | Watanabe et al. | Aug 1999 | A |
5939974 | Heagle et al. | Aug 1999 | A |
5946922 | Viard et al. | Sep 1999 | A |
5947693 | Yang | Sep 1999 | A |
5947701 | Hugenroth | Sep 1999 | A |
5949677 | Ho | Sep 1999 | A |
5950443 | Meyer et al. | Sep 1999 | A |
5953490 | Wiklund et al. | Sep 1999 | A |
5956658 | McMahon | Sep 1999 | A |
5971712 | Kann | Oct 1999 | A |
5975854 | Culp, III et al. | Nov 1999 | A |
5984645 | Cummings | Nov 1999 | A |
5986571 | Flick | Nov 1999 | A |
5987903 | Bathla | Nov 1999 | A |
5988986 | Brinken et al. | Nov 1999 | A |
5995347 | Rudd et al. | Nov 1999 | A |
5995351 | Katsumata et al. | Nov 1999 | A |
6006142 | Seem et al. | Dec 1999 | A |
6006171 | Vines et al. | Dec 1999 | A |
6011368 | Kalpathi et al. | Jan 2000 | A |
6013108 | Karolys et al. | Jan 2000 | A |
6017192 | Clack et al. | Jan 2000 | A |
6020702 | Farr | Feb 2000 | A |
6023420 | McCormick et al. | Feb 2000 | A |
6026651 | Sandelman | Feb 2000 | A |
6028522 | Petite | Feb 2000 | A |
6035653 | Itoh et al. | Mar 2000 | A |
6035661 | Sunaga et al. | Mar 2000 | A |
6038871 | Gutierrez et al. | Mar 2000 | A |
6041605 | Heinrichs | Mar 2000 | A |
6041609 | Hornsleth et al. | Mar 2000 | A |
6041856 | Thrasher et al. | Mar 2000 | A |
6042344 | Lifson | Mar 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6047557 | Pham et al. | Apr 2000 | A |
6050098 | Meyer et al. | Apr 2000 | A |
6050780 | Hasegawa et al. | Apr 2000 | A |
6052731 | Holdsworth et al. | Apr 2000 | A |
6057771 | Lakra | May 2000 | A |
6065946 | Lathrop | May 2000 | A |
6068447 | Foege | May 2000 | A |
6070110 | Shah et al. | May 2000 | A |
6075530 | Lucas et al. | Jun 2000 | A |
6077051 | Centers et al. | Jun 2000 | A |
6081750 | Hoffberg et al. | Jun 2000 | A |
6082495 | Steinbarger et al. | Jul 2000 | A |
6082971 | Gunn et al. | Jul 2000 | A |
6085530 | Barito | Jul 2000 | A |
6088659 | Kelley et al. | Jul 2000 | A |
6088688 | Crooks et al. | Jul 2000 | A |
6092370 | Tremoulet, Jr. et al. | Jul 2000 | A |
6092378 | Das et al. | Jul 2000 | A |
6092992 | Imblum et al. | Jul 2000 | A |
6095674 | Verissimo et al. | Aug 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6102665 | Centers et al. | Aug 2000 | A |
6110260 | Kubokawa | Aug 2000 | A |
6119949 | Lindstrom | Sep 2000 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6125642 | Seener et al. | Oct 2000 | A |
6128583 | Dowling | Oct 2000 | A |
6128953 | Mizukoshi | Oct 2000 | A |
6129527 | Donahoe et al. | Oct 2000 | A |
6138461 | Park et al. | Oct 2000 | A |
6142741 | Nishihata et al. | Nov 2000 | A |
6144888 | Lucas et al. | Nov 2000 | A |
6145328 | Choi | Nov 2000 | A |
6147601 | Sandelman et al. | Nov 2000 | A |
6152375 | Robison | Nov 2000 | A |
6152376 | Sandelman et al. | Nov 2000 | A |
6153942 | Roseman et al. | Nov 2000 | A |
6153993 | Oomura et al. | Nov 2000 | A |
6154488 | Hunt | Nov 2000 | A |
6157310 | Milne et al. | Dec 2000 | A |
6158230 | Katsuki | Dec 2000 | A |
6160477 | Sandelman et al. | Dec 2000 | A |
6169979 | Johnson | Jan 2001 | B1 |
6172476 | Tolbert, Jr. et al. | Jan 2001 | B1 |
6174136 | Kilayko et al. | Jan 2001 | B1 |
6176686 | Wallis et al. | Jan 2001 | B1 |
6177884 | Hunt et al. | Jan 2001 | B1 |
6178362 | Woolard et al. | Jan 2001 | B1 |
6179214 | Key et al. | Jan 2001 | B1 |
6181033 | Wright | Jan 2001 | B1 |
6190442 | Redner | Feb 2001 | B1 |
6191545 | Kawabata et al. | Feb 2001 | B1 |
6192282 | Smith et al. | Feb 2001 | B1 |
6199018 | Quist et al. | Mar 2001 | B1 |
6211782 | Sandelman et al. | Apr 2001 | B1 |
6213731 | Doepker et al. | Apr 2001 | B1 |
6215405 | Handley et al. | Apr 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6223543 | Sandelman | May 2001 | B1 |
6223544 | Seem | May 2001 | B1 |
6228155 | Tai | May 2001 | B1 |
6230501 | Bailey, Sr. et al. | May 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6234019 | Caldeira | May 2001 | B1 |
6240733 | Brandon et al. | Jun 2001 | B1 |
6240736 | Fujita et al. | Jun 2001 | B1 |
6244061 | Takagi et al. | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6260004 | Hays et al. | Jul 2001 | B1 |
6266968 | Redlich | Jul 2001 | B1 |
6268664 | Rolls et al. | Jul 2001 | B1 |
6272868 | Grabon et al. | Aug 2001 | B1 |
6276901 | Farr et al. | Aug 2001 | B1 |
6279332 | Yeo et al. | Aug 2001 | B1 |
6290043 | Ginder et al. | Sep 2001 | B1 |
6293114 | Kamemoto | Sep 2001 | B1 |
6293767 | Bass | Sep 2001 | B1 |
6302654 | Millet et al. | Oct 2001 | B1 |
6304934 | Pimenta et al. | Oct 2001 | B1 |
6324854 | Jayanth | Dec 2001 | B1 |
6327541 | Pitchford et al. | Dec 2001 | B1 |
6332327 | Street et al. | Dec 2001 | B1 |
6334093 | More | Dec 2001 | B1 |
6349883 | Simmons et al. | Feb 2002 | B1 |
6359410 | Randolph | Mar 2002 | B1 |
6360551 | Renders | Mar 2002 | B1 |
6366889 | Zaloom | Apr 2002 | B1 |
6375439 | Missio | Apr 2002 | B1 |
6378315 | Gelber et al. | Apr 2002 | B1 |
6381971 | Honda | May 2002 | B2 |
6385510 | Hoog et al. | May 2002 | B1 |
6389823 | Loprete et al. | May 2002 | B1 |
6390779 | Cunkelman | May 2002 | B1 |
6391102 | Bodden et al. | May 2002 | B1 |
6393848 | Roh et al. | May 2002 | B2 |
6397606 | Roh et al. | Jun 2002 | B1 |
6397612 | Kernkamp et al. | Jun 2002 | B1 |
6406265 | Hahn et al. | Jun 2002 | B1 |
6406266 | Hugenroth et al. | Jun 2002 | B1 |
6408228 | Seem et al. | Jun 2002 | B1 |
6408258 | Richer | Jun 2002 | B1 |
6412293 | Pham et al. | Jul 2002 | B1 |
6414594 | Guerlain | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6433791 | Selli et al. | Aug 2002 | B2 |
6437691 | Sandelman et al. | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6438981 | Whiteside | Aug 2002 | B1 |
6442953 | Trigiani et al. | Sep 2002 | B1 |
6449972 | Pham et al. | Sep 2002 | B2 |
6450771 | Centers et al. | Sep 2002 | B1 |
6451210 | Sivavec et al. | Sep 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
6454177 | Sasao et al. | Sep 2002 | B1 |
6454538 | Witham et al. | Sep 2002 | B1 |
6456928 | Johnson | Sep 2002 | B1 |
6457319 | Ota et al. | Oct 2002 | B1 |
6457948 | Pham | Oct 2002 | B1 |
6460731 | Estelle et al. | Oct 2002 | B2 |
6462654 | Sandelman et al. | Oct 2002 | B1 |
6463747 | Temple | Oct 2002 | B1 |
6466971 | Humpleman et al. | Oct 2002 | B1 |
6467280 | Pham et al. | Oct 2002 | B2 |
6471486 | Centers et al. | Oct 2002 | B1 |
6474084 | Gauthier et al. | Nov 2002 | B2 |
6484520 | Kawaguchi et al. | Nov 2002 | B2 |
6487457 | Hull et al. | Nov 2002 | B1 |
6490506 | March | Dec 2002 | B1 |
6492923 | Inoue et al. | Dec 2002 | B1 |
6497554 | Yang et al. | Dec 2002 | B2 |
6501240 | Ueda et al. | Dec 2002 | B2 |
6501629 | Marriott | Dec 2002 | B1 |
6502409 | Gatling et al. | Jan 2003 | B1 |
6505087 | Lucas et al. | Jan 2003 | B1 |
6505475 | Zugibe et al. | Jan 2003 | B1 |
6510350 | Steen, III et al. | Jan 2003 | B1 |
6522974 | Sitton | Feb 2003 | B2 |
6523130 | Hickman et al. | Feb 2003 | B1 |
6526766 | Hiraoka et al. | Mar 2003 | B1 |
6529590 | Centers | Mar 2003 | B1 |
6529839 | Uggerud et al. | Mar 2003 | B1 |
6533552 | Centers et al. | Mar 2003 | B2 |
6535123 | Sandelman et al. | Mar 2003 | B2 |
6535270 | Murayama | Mar 2003 | B1 |
6535859 | Yablonowski et al. | Mar 2003 | B1 |
6537034 | Park et al. | Mar 2003 | B2 |
6542062 | Herrick | Apr 2003 | B1 |
6549135 | Singh et al. | Apr 2003 | B2 |
6551069 | Narney, II et al. | Apr 2003 | B2 |
6553774 | Ishio et al. | Apr 2003 | B1 |
6558126 | Hahn et al. | May 2003 | B1 |
6560976 | Jayanth | May 2003 | B2 |
6571280 | Hubacher | May 2003 | B1 |
6571566 | Temple et al. | Jun 2003 | B1 |
6571586 | Ritson et al. | Jun 2003 | B1 |
6574561 | Alexander et al. | Jun 2003 | B2 |
6577959 | Chajec et al. | Jun 2003 | B1 |
6577962 | Afshari | Jun 2003 | B1 |
6578373 | Barbier | Jun 2003 | B1 |
6583720 | Quigley | Jun 2003 | B1 |
6589029 | Heller | Jul 2003 | B1 |
6591620 | Kikuchi et al. | Jul 2003 | B2 |
6595475 | Svabek et al. | Jul 2003 | B2 |
6595757 | Shen | Jul 2003 | B2 |
6598056 | Hull et al. | Jul 2003 | B1 |
6601397 | Pham et al. | Aug 2003 | B2 |
6604093 | Etzion et al. | Aug 2003 | B1 |
6609070 | Lueck | Aug 2003 | B1 |
6609078 | Starling et al. | Aug 2003 | B2 |
6615594 | Jayanth et al. | Sep 2003 | B2 |
6616415 | Renken et al. | Sep 2003 | B1 |
6618578 | Petite | Sep 2003 | B1 |
6618709 | Sneeringer | Sep 2003 | B1 |
6621443 | Selli et al. | Sep 2003 | B1 |
6622925 | Carner et al. | Sep 2003 | B2 |
6622926 | Sartain et al. | Sep 2003 | B1 |
6628764 | Petite | Sep 2003 | B1 |
6629420 | Renders | Oct 2003 | B2 |
6631298 | Pagnano et al. | Oct 2003 | B1 |
6636893 | Fong | Oct 2003 | B1 |
6643567 | Kolk et al. | Nov 2003 | B2 |
6644848 | Clayton et al. | Nov 2003 | B1 |
6647735 | Street et al. | Nov 2003 | B2 |
6658373 | Rossi et al. | Dec 2003 | B2 |
6662584 | Whiteside | Dec 2003 | B1 |
6662653 | Scaliante et al. | Dec 2003 | B1 |
6671586 | Davis et al. | Dec 2003 | B2 |
6672846 | Rajendran et al. | Jan 2004 | B2 |
6675591 | Singh et al. | Jan 2004 | B2 |
6679072 | Pham et al. | Jan 2004 | B2 |
6684349 | Gullo et al. | Jan 2004 | B2 |
6685438 | Yoo et al. | Feb 2004 | B2 |
6698218 | Goth et al. | Mar 2004 | B2 |
6701725 | Rossi et al. | Mar 2004 | B2 |
6708083 | Orthlieb et al. | Mar 2004 | B2 |
6708508 | Demuth et al. | Mar 2004 | B2 |
6709244 | Pham | Mar 2004 | B2 |
6711470 | Hartenstein et al. | Mar 2004 | B1 |
6711911 | Grabon et al. | Mar 2004 | B1 |
6717513 | Sandelman et al. | Apr 2004 | B1 |
6721770 | Morton et al. | Apr 2004 | B1 |
6725182 | Pagnano et al. | Apr 2004 | B2 |
6732538 | Trigiani et al. | May 2004 | B2 |
6745107 | Miller | Jun 2004 | B1 |
6747557 | Petite et al. | Jun 2004 | B1 |
6758050 | Jayanth et al. | Jul 2004 | B2 |
6758051 | Jayanth et al. | Jul 2004 | B2 |
6760207 | Wyatt et al. | Jul 2004 | B2 |
6772096 | Murakami et al. | Aug 2004 | B2 |
6772598 | Rinehart | Aug 2004 | B1 |
6775995 | Bahel et al. | Aug 2004 | B1 |
6784807 | Petite et al. | Aug 2004 | B2 |
6785592 | Smith et al. | Aug 2004 | B1 |
6786473 | Alles | Sep 2004 | B1 |
6799951 | Lifson et al. | Oct 2004 | B2 |
6804993 | Selli | Oct 2004 | B2 |
6811380 | Kim | Nov 2004 | B2 |
6813897 | Bash | Nov 2004 | B1 |
6816811 | Seem | Nov 2004 | B2 |
6823680 | Jayanth | Nov 2004 | B2 |
6829542 | Reynolds et al. | Dec 2004 | B1 |
6832120 | Frank et al. | Dec 2004 | B1 |
6832898 | Yoshida et al. | Dec 2004 | B2 |
6836737 | Petite et al. | Dec 2004 | B2 |
6837922 | Gorin | Jan 2005 | B2 |
6839790 | Barros De Almeida et al. | Jan 2005 | B2 |
6854345 | Alves et al. | Feb 2005 | B2 |
6862498 | Davis et al. | Mar 2005 | B2 |
6868678 | Mei et al. | Mar 2005 | B2 |
6868686 | Ueda et al. | Mar 2005 | B2 |
6869272 | Odachi et al. | Mar 2005 | B2 |
6870486 | Souza et al. | Mar 2005 | B2 |
6885949 | Selli | Apr 2005 | B2 |
6889173 | Singh | May 2005 | B2 |
6891838 | Petite et al. | May 2005 | B1 |
6892546 | Singh et al. | May 2005 | B2 |
6897772 | Scheffler et al. | May 2005 | B1 |
6900738 | Crichlow | May 2005 | B2 |
6901066 | Helgeson | May 2005 | B1 |
6904385 | Budike, Jr. | Jun 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6922155 | Evans et al. | Jul 2005 | B1 |
6931445 | Davis | Aug 2005 | B2 |
6934862 | Sharood et al. | Aug 2005 | B2 |
6952658 | Greulich et al. | Oct 2005 | B2 |
6956344 | Robertson et al. | Oct 2005 | B2 |
6964558 | Hahn et al. | Nov 2005 | B2 |
6966759 | Hahn et al. | Nov 2005 | B2 |
6968295 | Carr | Nov 2005 | B1 |
6973410 | Seigel | Dec 2005 | B2 |
6973793 | Douglas et al. | Dec 2005 | B2 |
6973794 | Street et al. | Dec 2005 | B2 |
6976366 | Starling et al. | Dec 2005 | B2 |
6978225 | Retlich et al. | Dec 2005 | B2 |
6981384 | Dobmeier et al. | Jan 2006 | B2 |
6983321 | Trinon et al. | Jan 2006 | B2 |
6983889 | Alles | Jan 2006 | B2 |
6986469 | Gauthier et al. | Jan 2006 | B2 |
6987450 | Marino et al. | Jan 2006 | B2 |
6990821 | Singh et al. | Jan 2006 | B2 |
6992452 | Sachs et al. | Jan 2006 | B1 |
6996441 | Tobias | Feb 2006 | B1 |
6997390 | Alles | Feb 2006 | B2 |
6998807 | Phillips et al. | Feb 2006 | B2 |
6998963 | Flen et al. | Feb 2006 | B2 |
6999996 | Sunderland | Feb 2006 | B2 |
7000422 | Street et al. | Feb 2006 | B2 |
7003378 | Poth | Feb 2006 | B2 |
7009510 | Douglass et al. | Mar 2006 | B1 |
7010925 | Sienel et al. | Mar 2006 | B2 |
7019667 | Petite et al. | Mar 2006 | B2 |
7024665 | Ferraz et al. | Apr 2006 | B2 |
7024870 | Singh et al. | Apr 2006 | B2 |
7030752 | Tyroler | Apr 2006 | B2 |
7031880 | Seem et al. | Apr 2006 | B1 |
7035693 | Cassiolato et al. | Apr 2006 | B2 |
7039532 | Hunter | May 2006 | B2 |
7042180 | Terry et al. | May 2006 | B2 |
7042350 | Patrick et al. | May 2006 | B2 |
7043339 | Maeda et al. | May 2006 | B2 |
7043459 | Peevey | May 2006 | B2 |
7047753 | Street et al. | May 2006 | B2 |
7053766 | Fisler et al. | May 2006 | B2 |
7053767 | Petite et al. | May 2006 | B2 |
7054271 | Brownrigg et al. | May 2006 | B2 |
7062580 | Donaires | Jun 2006 | B2 |
7062830 | Alles | Jun 2006 | B2 |
7063537 | Selli et al. | Jun 2006 | B2 |
7072797 | Gorinevsky | Jul 2006 | B2 |
7075327 | Dimino et al. | Jul 2006 | B2 |
7079810 | Petite et al. | Jul 2006 | B2 |
7079967 | Rossi et al. | Jul 2006 | B2 |
7082380 | Wiebe et al. | Jul 2006 | B2 |
7089125 | Sonderegger | Aug 2006 | B2 |
7091847 | Capowski et al. | Aug 2006 | B2 |
7092767 | Pagnano et al. | Aug 2006 | B2 |
7092794 | Hill et al. | Aug 2006 | B1 |
7096153 | Guralnik et al. | Aug 2006 | B2 |
7102490 | Flen et al. | Sep 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7110843 | Pagnano et al. | Sep 2006 | B2 |
7110898 | Montijo et al. | Sep 2006 | B2 |
7113376 | Nomura et al. | Sep 2006 | B2 |
7114343 | Kates | Oct 2006 | B2 |
7123020 | Hill et al. | Oct 2006 | B2 |
7123458 | Mohr et al. | Oct 2006 | B2 |
7124728 | Carey et al. | Oct 2006 | B2 |
7126465 | Faltesek | Oct 2006 | B2 |
7130170 | Wakefield et al. | Oct 2006 | B2 |
7130832 | Bannai et al. | Oct 2006 | B2 |
7134295 | Maekawa | Nov 2006 | B2 |
7137550 | Petite | Nov 2006 | B1 |
7142125 | Larson et al. | Nov 2006 | B2 |
7145438 | Flen et al. | Dec 2006 | B2 |
7145462 | Dewing et al. | Dec 2006 | B2 |
7159408 | Sadegh et al. | Jan 2007 | B2 |
7162884 | Alles | Jan 2007 | B2 |
7163158 | Rossi et al. | Jan 2007 | B2 |
7171372 | Daniel et al. | Jan 2007 | B2 |
7174728 | Jayanth | Feb 2007 | B2 |
7180412 | Bonicatto et al. | Feb 2007 | B2 |
7184861 | Petite | Feb 2007 | B2 |
7188482 | Sadegh et al. | Mar 2007 | B2 |
7188779 | Alles | Mar 2007 | B2 |
7201006 | Kates | Apr 2007 | B2 |
7207496 | Alles | Apr 2007 | B2 |
7209840 | Petite et al. | Apr 2007 | B2 |
7212887 | Shah et al. | May 2007 | B2 |
7222493 | Jayanth et al. | May 2007 | B2 |
7224740 | Hunt | May 2007 | B2 |
7225193 | Mets et al. | May 2007 | B2 |
7227450 | Garvy et al. | Jun 2007 | B2 |
7228691 | Street et al. | Jun 2007 | B2 |
7230528 | Kates | Jun 2007 | B2 |
7234313 | Bell et al. | Jun 2007 | B2 |
7236765 | Bonicatto et al. | Jun 2007 | B2 |
7244294 | Kates | Jul 2007 | B2 |
7246014 | Forth et al. | Jul 2007 | B2 |
7255285 | Troost et al. | Aug 2007 | B2 |
7257501 | Zhan et al. | Aug 2007 | B2 |
7260505 | Felke et al. | Aug 2007 | B2 |
7261762 | Kang et al. | Aug 2007 | B2 |
7263073 | Petite et al. | Aug 2007 | B2 |
7263446 | Morin et al. | Aug 2007 | B2 |
7266812 | Pagnano | Sep 2007 | B2 |
7270278 | Street et al. | Sep 2007 | B2 |
7274995 | Zhan et al. | Sep 2007 | B2 |
7275377 | Kates | Oct 2007 | B2 |
7286945 | Zhan et al. | Oct 2007 | B2 |
7290398 | Wallace et al. | Nov 2007 | B2 |
7290989 | Jayanth | Nov 2007 | B2 |
7295128 | Petite | Nov 2007 | B2 |
7295896 | Norbeck | Nov 2007 | B2 |
7317952 | Bhandiwad et al. | Jan 2008 | B2 |
7328192 | Stengard et al. | Feb 2008 | B1 |
7330886 | Childers et al. | Feb 2008 | B2 |
7331187 | Kates | Feb 2008 | B2 |
7336168 | Kates | Feb 2008 | B2 |
7337191 | Haeberle et al. | Feb 2008 | B2 |
7343750 | Lifson et al. | Mar 2008 | B2 |
7343751 | Kates | Mar 2008 | B2 |
7346463 | Petite et al. | Mar 2008 | B2 |
7346472 | Moskowitz et al. | Mar 2008 | B1 |
7349824 | Seigel | Mar 2008 | B2 |
7350112 | Fox et al. | Mar 2008 | B2 |
7351274 | Helt et al. | Apr 2008 | B2 |
7352545 | Wyatt et al. | Apr 2008 | B2 |
7363200 | Lu | Apr 2008 | B2 |
7376712 | Granatelli et al. | May 2008 | B1 |
7377118 | Esslinger | May 2008 | B2 |
7383030 | Brown et al. | Jun 2008 | B2 |
7383158 | Krocker et al. | Jun 2008 | B2 |
7392661 | Alles | Jul 2008 | B2 |
7397907 | Petite | Jul 2008 | B2 |
7400240 | Shrode et al. | Jul 2008 | B2 |
7412842 | Pham | Aug 2008 | B2 |
7414525 | Costea et al. | Aug 2008 | B2 |
7421351 | Navratil | Sep 2008 | B2 |
7421374 | Zhan et al. | Sep 2008 | B2 |
7421850 | Street et al. | Sep 2008 | B2 |
7424343 | Kates | Sep 2008 | B2 |
7424345 | Norbeck | Sep 2008 | B2 |
7424527 | Petite | Sep 2008 | B2 |
7432824 | Flen et al. | Oct 2008 | B2 |
7433854 | Joseph et al. | Oct 2008 | B2 |
7434742 | Mueller et al. | Oct 2008 | B2 |
7437150 | Morelli et al. | Oct 2008 | B1 |
7440560 | Barry | Oct 2008 | B1 |
7440767 | Ballay et al. | Oct 2008 | B2 |
7443313 | Davis et al. | Oct 2008 | B2 |
7444251 | Nikovski et al. | Oct 2008 | B2 |
7445665 | Hsieh et al. | Nov 2008 | B2 |
7447603 | Bruno | Nov 2008 | B2 |
7447609 | Guralnik et al. | Nov 2008 | B2 |
7451606 | Harrod | Nov 2008 | B2 |
7454439 | Gansner et al. | Nov 2008 | B1 |
7458223 | Pham | Dec 2008 | B2 |
7468661 | Petite et al. | Dec 2008 | B2 |
7469546 | Kates | Dec 2008 | B2 |
7474992 | Ariyur | Jan 2009 | B2 |
7480501 | Petite | Jan 2009 | B2 |
7483810 | Jackson et al. | Jan 2009 | B2 |
7484376 | Pham | Feb 2009 | B2 |
7490477 | Singh et al. | Feb 2009 | B2 |
7491034 | Jayanth | Feb 2009 | B2 |
7503182 | Bahel et al. | Mar 2009 | B2 |
7510126 | Rossi et al. | Mar 2009 | B2 |
7523619 | Kojima et al. | Apr 2009 | B2 |
7528711 | Kates | May 2009 | B2 |
7533070 | Guralnik et al. | May 2009 | B2 |
7537172 | Rossi et al. | May 2009 | B2 |
7552030 | Guralnik et al. | Jun 2009 | B2 |
7552596 | Galante et al. | Jun 2009 | B2 |
7555364 | Poth et al. | Jun 2009 | B2 |
7574333 | Lu | Aug 2009 | B2 |
7580812 | Ariyur et al. | Aug 2009 | B2 |
7594407 | Singh et al. | Sep 2009 | B2 |
7596959 | Singh et al. | Oct 2009 | B2 |
7606683 | Bahel et al. | Oct 2009 | B2 |
7631508 | Braun et al. | Dec 2009 | B2 |
7636901 | Munson et al. | Dec 2009 | B2 |
7644591 | Singh et al. | Jan 2010 | B2 |
7648077 | Rossi et al. | Jan 2010 | B2 |
7648342 | Jayanth | Jan 2010 | B2 |
7650425 | Davis et al. | Jan 2010 | B2 |
7660700 | Moskowitz et al. | Feb 2010 | B2 |
7660774 | Mukherjee et al. | Feb 2010 | B2 |
7664613 | Hansen | Feb 2010 | B2 |
7665315 | Singh et al. | Feb 2010 | B2 |
7686872 | Kang | Mar 2010 | B2 |
7693809 | Gray | Apr 2010 | B2 |
7697492 | Petite | Apr 2010 | B2 |
7703694 | Mueller et al. | Apr 2010 | B2 |
7704052 | Iimura et al. | Apr 2010 | B2 |
7706320 | Davis et al. | Apr 2010 | B2 |
7724131 | Chen | May 2010 | B2 |
7726583 | Maekawa | Jun 2010 | B2 |
7734451 | MacArthur et al. | Jun 2010 | B2 |
7738999 | Petite | Jun 2010 | B2 |
7739378 | Petite | Jun 2010 | B2 |
7742393 | Bonicatto et al. | Jun 2010 | B2 |
7752853 | Singh et al. | Jul 2010 | B2 |
7752854 | Singh et al. | Jul 2010 | B2 |
7756086 | Petite et al. | Jul 2010 | B2 |
7791468 | Bonicatto et al. | Sep 2010 | B2 |
7844366 | Singh | Nov 2010 | B2 |
7845179 | Singh et al. | Dec 2010 | B2 |
7848827 | Chen | Dec 2010 | B2 |
7848900 | Steinberg et al. | Dec 2010 | B2 |
7877218 | Bonicatto et al. | Jan 2011 | B2 |
7885959 | Horowitz et al. | Feb 2011 | B2 |
7885961 | Horowitz et al. | Feb 2011 | B2 |
7905098 | Pham | Mar 2011 | B2 |
7908116 | Steinberg et al. | Mar 2011 | B2 |
7908117 | Steinberg et al. | Mar 2011 | B2 |
7922914 | Verdegan et al. | Apr 2011 | B1 |
7937623 | Ramacher et al. | May 2011 | B2 |
7941294 | Shahi et al. | May 2011 | B2 |
7949494 | Moskowitz et al. | May 2011 | B2 |
7949615 | Ehlers et al. | May 2011 | B2 |
7963454 | Sullivan et al. | Jun 2011 | B2 |
7966152 | Stluka et al. | Jun 2011 | B2 |
7967218 | Alles | Jun 2011 | B2 |
7978059 | Petite et al. | Jul 2011 | B2 |
7987679 | Tanaka et al. | Aug 2011 | B2 |
7996045 | Bauer et al. | Aug 2011 | B1 |
7999668 | Cawthorne et al. | Aug 2011 | B2 |
8000314 | Brownrigg et al. | Aug 2011 | B2 |
8002199 | Habegger | Aug 2011 | B2 |
8005640 | Chiefetz et al. | Aug 2011 | B2 |
8010237 | Cheung et al. | Aug 2011 | B2 |
8013732 | Petite et al. | Sep 2011 | B2 |
8019567 | Steinberg et al. | Sep 2011 | B2 |
8029608 | Breslin | Oct 2011 | B1 |
8031650 | Petite et al. | Oct 2011 | B2 |
8034170 | Kates | Oct 2011 | B2 |
8036844 | Ling et al. | Oct 2011 | B2 |
8040231 | Kuruvila et al. | Oct 2011 | B2 |
8041539 | Guralnik et al. | Oct 2011 | B2 |
8046107 | Zugibe et al. | Oct 2011 | B2 |
8061417 | Gray | Nov 2011 | B2 |
8064412 | Petite | Nov 2011 | B2 |
8065886 | Singh et al. | Nov 2011 | B2 |
8068997 | Ling et al. | Nov 2011 | B2 |
8090477 | Steinberg | Jan 2012 | B1 |
8090559 | Parthasarathy et al. | Jan 2012 | B2 |
8090824 | Tran et al. | Jan 2012 | B2 |
8095337 | Kolbet et al. | Jan 2012 | B2 |
8108200 | Anne et al. | Jan 2012 | B2 |
8125230 | Bharadwaj et al. | Feb 2012 | B2 |
8131497 | Steinberg et al. | Mar 2012 | B2 |
8131506 | Steinberg et al. | Mar 2012 | B2 |
8134330 | Alles | Mar 2012 | B2 |
8150720 | Singh et al. | Apr 2012 | B2 |
8156208 | Bornhoevd et al. | Apr 2012 | B2 |
8170968 | Colclough et al. | May 2012 | B2 |
8171136 | Petite | May 2012 | B2 |
8175846 | Khalak et al. | May 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8182579 | Woo et al. | May 2012 | B2 |
8214175 | Moskowitz et al. | Jul 2012 | B2 |
8228648 | Jayanth et al. | Jul 2012 | B2 |
8239922 | Sullivan et al. | Aug 2012 | B2 |
8258763 | Nakamura et al. | Sep 2012 | B2 |
8279565 | Hall et al. | Oct 2012 | B2 |
8280536 | Fadell et al. | Oct 2012 | B1 |
8328524 | Iimura et al. | Dec 2012 | B2 |
8380556 | Singh et al. | Feb 2013 | B2 |
8393169 | Pham | Mar 2013 | B2 |
9168315 | Scaringe et al. | Oct 2015 | B1 |
9310439 | Pham et al. | Apr 2016 | B2 |
20010005320 | Ueda et al. | Jun 2001 | A1 |
20010025349 | Sharood et al. | Sep 2001 | A1 |
20010054291 | Roh et al. | Dec 2001 | A1 |
20010054293 | Gustafson et al. | Dec 2001 | A1 |
20010054294 | Tsuboi | Dec 2001 | A1 |
20020000092 | Sharood et al. | Jan 2002 | A1 |
20020013679 | Petite | Jan 2002 | A1 |
20020016639 | Smith et al. | Feb 2002 | A1 |
20020017057 | Weder | Feb 2002 | A1 |
20020018724 | Millet et al. | Feb 2002 | A1 |
20020020175 | Street et al. | Feb 2002 | A1 |
20020029575 | Okamoto | Mar 2002 | A1 |
20020031101 | Petite et al. | Mar 2002 | A1 |
20020035495 | Spira et al. | Mar 2002 | A1 |
20020040280 | Morgan | Apr 2002 | A1 |
20020064463 | Park et al. | May 2002 | A1 |
20020067999 | Suitou et al. | Jun 2002 | A1 |
20020082747 | Kramer | Jun 2002 | A1 |
20020082924 | Koether | Jun 2002 | A1 |
20020093259 | Sunaga et al. | Jul 2002 | A1 |
20020095269 | Natalini et al. | Jul 2002 | A1 |
20020103655 | Boies et al. | Aug 2002 | A1 |
20020113877 | Welch | Aug 2002 | A1 |
20020117992 | Hirono et al. | Aug 2002 | A1 |
20020118106 | Brenn | Aug 2002 | A1 |
20020127120 | Hahn et al. | Sep 2002 | A1 |
20020138217 | Shen et al. | Sep 2002 | A1 |
20020139128 | Suzuki et al. | Oct 2002 | A1 |
20020143482 | Karanam et al. | Oct 2002 | A1 |
20020152298 | Kikta et al. | Oct 2002 | A1 |
20020157408 | Egawa et al. | Oct 2002 | A1 |
20020157409 | Pham et al. | Oct 2002 | A1 |
20020159890 | Kajiwara et al. | Oct 2002 | A1 |
20020161545 | Starling et al. | Oct 2002 | A1 |
20020163436 | Singh et al. | Nov 2002 | A1 |
20020170299 | Jayanth et al. | Nov 2002 | A1 |
20020173929 | Seigel | Nov 2002 | A1 |
20020187057 | Loprete et al. | Dec 2002 | A1 |
20020189267 | Singh et al. | Dec 2002 | A1 |
20020193890 | Pouchak | Dec 2002 | A1 |
20020198629 | Ellis | Dec 2002 | A1 |
20030004660 | Hunter | Jan 2003 | A1 |
20030004765 | Wiegand | Jan 2003 | A1 |
20030005710 | Singh et al. | Jan 2003 | A1 |
20030006884 | Hunt | Jan 2003 | A1 |
20030014218 | Trigiani et al. | Jan 2003 | A1 |
20030019221 | Rossi et al. | Jan 2003 | A1 |
20030036810 | Petite | Feb 2003 | A1 |
20030037555 | Street et al. | Feb 2003 | A1 |
20030050737 | Osann | Mar 2003 | A1 |
20030050824 | Suermondt et al. | Mar 2003 | A1 |
20030051490 | Jayanth | Mar 2003 | A1 |
20030055603 | Rossi et al. | Mar 2003 | A1 |
20030055663 | Struble | Mar 2003 | A1 |
20030063983 | Ancel et al. | Apr 2003 | A1 |
20030070438 | Kikuchi et al. | Apr 2003 | A1 |
20030070544 | Mulvaney et al. | Apr 2003 | A1 |
20030074285 | Hoffman et al. | Apr 2003 | A1 |
20030077179 | Collins et al. | Apr 2003 | A1 |
20030078677 | Hull et al. | Apr 2003 | A1 |
20030078742 | VanderZee et al. | Apr 2003 | A1 |
20030089493 | Takano et al. | May 2003 | A1 |
20030094004 | Pham et al. | May 2003 | A1 |
20030108430 | Yoshida et al. | Jun 2003 | A1 |
20030115890 | Jayanth et al. | Jun 2003 | A1 |
20030135786 | Vollmar et al. | Jul 2003 | A1 |
20030137396 | Durej et al. | Jul 2003 | A1 |
20030150924 | Peter | Aug 2003 | A1 |
20030150926 | Rosen | Aug 2003 | A1 |
20030150927 | Rosen | Aug 2003 | A1 |
20030171851 | Brickfield et al. | Sep 2003 | A1 |
20030183085 | Alexander | Oct 2003 | A1 |
20030191606 | Fujiyama et al. | Oct 2003 | A1 |
20030199247 | Striemer | Oct 2003 | A1 |
20030205143 | Cheng | Nov 2003 | A1 |
20030213851 | Burd et al. | Nov 2003 | A1 |
20030216837 | Reich et al. | Nov 2003 | A1 |
20030216888 | Ridolfo | Nov 2003 | A1 |
20030233172 | Granqvist et al. | Dec 2003 | A1 |
20040016241 | Street et al. | Jan 2004 | A1 |
20040016244 | Street et al. | Jan 2004 | A1 |
20040016251 | Street et al. | Jan 2004 | A1 |
20040016253 | Street et al. | Jan 2004 | A1 |
20040019584 | Greening et al. | Jan 2004 | A1 |
20040024495 | Sunderland | Feb 2004 | A1 |
20040026522 | Keen et al. | Feb 2004 | A1 |
20040037706 | Hahn et al. | Feb 2004 | A1 |
20040042904 | Kim | Mar 2004 | A1 |
20040047406 | Hunt | Mar 2004 | A1 |
20040049715 | Jaw | Mar 2004 | A1 |
20040059691 | Higgins | Mar 2004 | A1 |
20040068390 | Saunders | Apr 2004 | A1 |
20040078695 | Bowers et al. | Apr 2004 | A1 |
20040079093 | Gauthier et al. | Apr 2004 | A1 |
20040093879 | Street et al. | May 2004 | A1 |
20040095237 | Chen et al. | May 2004 | A1 |
20040111186 | Rossi et al. | Jun 2004 | A1 |
20040117166 | Cassiolato | Jun 2004 | A1 |
20040133314 | Ehlers et al. | Jul 2004 | A1 |
20040133367 | Hart | Jul 2004 | A1 |
20040140772 | Gullo et al. | Jul 2004 | A1 |
20040140812 | Scallante et al. | Jul 2004 | A1 |
20040144106 | Douglas et al. | Jul 2004 | A1 |
20040153437 | Buchan | Aug 2004 | A1 |
20040159113 | Singh et al. | Aug 2004 | A1 |
20040159114 | Demuth et al. | Aug 2004 | A1 |
20040183687 | Petite et al. | Sep 2004 | A1 |
20040184627 | Kost et al. | Sep 2004 | A1 |
20040184928 | Millet et al. | Sep 2004 | A1 |
20040184929 | Millet et al. | Sep 2004 | A1 |
20040184930 | Millet et al. | Sep 2004 | A1 |
20040184931 | Millet et al. | Sep 2004 | A1 |
20040187502 | Jayanth et al. | Sep 2004 | A1 |
20040191073 | Iimura et al. | Sep 2004 | A1 |
20040210419 | Wiebe et al. | Oct 2004 | A1 |
20040213384 | Alles et al. | Oct 2004 | A1 |
20040230582 | Pagnano et al. | Nov 2004 | A1 |
20040230899 | Pagnano et al. | Nov 2004 | A1 |
20040239266 | Lee et al. | Dec 2004 | A1 |
20040258542 | Wiertz et al. | Dec 2004 | A1 |
20040261431 | Singh et al. | Dec 2004 | A1 |
20050040249 | Wacker et al. | Feb 2005 | A1 |
20050043923 | Forster et al. | Feb 2005 | A1 |
20050053471 | Hong et al. | Mar 2005 | A1 |
20050056031 | Jeong | Mar 2005 | A1 |
20050066675 | Manole et al. | Mar 2005 | A1 |
20050073532 | Scott et al. | Apr 2005 | A1 |
20050086341 | Enga et al. | Apr 2005 | A1 |
20050100449 | Hahn et al. | May 2005 | A1 |
20050103036 | Maekawa | May 2005 | A1 |
20050125439 | Nourbakhsh et al. | Jun 2005 | A1 |
20050126190 | Lifson et al. | Jun 2005 | A1 |
20050131624 | Gaessler et al. | Jun 2005 | A1 |
20050149570 | Sasaki et al. | Jul 2005 | A1 |
20050154495 | Shah | Jul 2005 | A1 |
20050159924 | Shah et al. | Jul 2005 | A1 |
20050166610 | Jayanth | Aug 2005 | A1 |
20050169636 | Aronson et al. | Aug 2005 | A1 |
20050172647 | Thybo et al. | Aug 2005 | A1 |
20050195775 | Petite et al. | Sep 2005 | A1 |
20050198063 | Thomas et al. | Sep 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050204756 | Dobmeier et al. | Sep 2005 | A1 |
20050207741 | Shah et al. | Sep 2005 | A1 |
20050214148 | Ogawa et al. | Sep 2005 | A1 |
20050222715 | Ruhnke et al. | Oct 2005 | A1 |
20050228607 | Simons | Oct 2005 | A1 |
20050229612 | Hrejsa et al. | Oct 2005 | A1 |
20050229777 | Brown et al. | Oct 2005 | A1 |
20050232781 | Herbert et al. | Oct 2005 | A1 |
20050235660 | Pham | Oct 2005 | A1 |
20050235661 | Pham | Oct 2005 | A1 |
20050235662 | Pham | Oct 2005 | A1 |
20050235663 | Pham | Oct 2005 | A1 |
20050235664 | Pham | Oct 2005 | A1 |
20050247194 | Kang et al. | Nov 2005 | A1 |
20050251293 | Seigel | Nov 2005 | A1 |
20050252220 | Street et al. | Nov 2005 | A1 |
20050262856 | Street et al. | Dec 2005 | A1 |
20050262923 | Kates | Dec 2005 | A1 |
20060010898 | Suharno et al. | Jan 2006 | A1 |
20060015777 | Loda | Jan 2006 | A1 |
20060020426 | Singh | Jan 2006 | A1 |
20060021362 | Sadegh et al. | Feb 2006 | A1 |
20060032245 | Kates | Feb 2006 | A1 |
20060032246 | Kates | Feb 2006 | A1 |
20060032247 | Kates | Feb 2006 | A1 |
20060032248 | Kates | Feb 2006 | A1 |
20060032379 | Kates | Feb 2006 | A1 |
20060036349 | Kates | Feb 2006 | A1 |
20060041335 | Rossi et al. | Feb 2006 | A9 |
20060042276 | Doll et al. | Mar 2006 | A1 |
20060071089 | Kates | Apr 2006 | A1 |
20060074917 | Chand et al. | Apr 2006 | A1 |
20060097063 | Zeevi | May 2006 | A1 |
20060098576 | Brownrigg et al. | May 2006 | A1 |
20060117773 | Street et al. | Jun 2006 | A1 |
20060123807 | Sullivan et al. | Jun 2006 | A1 |
20060129339 | Bruno | Jun 2006 | A1 |
20060130500 | Gauthier et al. | Jun 2006 | A1 |
20060137364 | Braun et al. | Jun 2006 | A1 |
20060137368 | Kang et al. | Jun 2006 | A1 |
20060138866 | Bergmann et al. | Jun 2006 | A1 |
20060140209 | Cassiolato et al. | Jun 2006 | A1 |
20060151037 | Lepola et al. | Jul 2006 | A1 |
20060179854 | Esslinger | Aug 2006 | A1 |
20060182635 | Jayanth | Aug 2006 | A1 |
20060185373 | Butler et al. | Aug 2006 | A1 |
20060196196 | Kates | Sep 2006 | A1 |
20060196197 | Kates | Sep 2006 | A1 |
20060201168 | Kates | Sep 2006 | A1 |
20060222507 | Jayanth | Oct 2006 | A1 |
20060229739 | Morikawa | Oct 2006 | A1 |
20060235650 | Vinberg et al. | Oct 2006 | A1 |
20060238388 | Jayanth | Oct 2006 | A1 |
20060242200 | Horowitz et al. | Oct 2006 | A1 |
20060244641 | Jayanth et al. | Nov 2006 | A1 |
20060256488 | Benzing et al. | Nov 2006 | A1 |
20060259276 | Rossi et al. | Nov 2006 | A1 |
20060271589 | Horowitz et al. | Nov 2006 | A1 |
20060271623 | Horowitz et al. | Nov 2006 | A1 |
20060280627 | Jayanth | Dec 2006 | A1 |
20070002505 | Watanabe et al. | Jan 2007 | A1 |
20070006124 | Ahmed et al. | Jan 2007 | A1 |
20070027735 | Rokos | Feb 2007 | A1 |
20070067512 | Donaires et al. | Mar 2007 | A1 |
20070089434 | Singh et al. | Apr 2007 | A1 |
20070089435 | Singh et al. | Apr 2007 | A1 |
20070089438 | Singh et al. | Apr 2007 | A1 |
20070089439 | Singh et al. | Apr 2007 | A1 |
20070089440 | Singh et al. | Apr 2007 | A1 |
20070101750 | Pham et al. | May 2007 | A1 |
20070159978 | Anglin et al. | Jul 2007 | A1 |
20070186569 | Street et al. | Aug 2007 | A1 |
20070204635 | Tanaka et al. | Sep 2007 | A1 |
20070204921 | Alles | Sep 2007 | A1 |
20070205296 | Bell et al. | Sep 2007 | A1 |
20070229305 | Bonicatto et al. | Oct 2007 | A1 |
20070239894 | Thind et al. | Oct 2007 | A1 |
20080000241 | Larsen et al. | Jan 2008 | A1 |
20080015797 | Kates | Jan 2008 | A1 |
20080016888 | Kates | Jan 2008 | A1 |
20080051945 | Kates | Feb 2008 | A1 |
20080058970 | Perumalsamy et al. | Mar 2008 | A1 |
20080078289 | Sergi et al. | Apr 2008 | A1 |
20080109185 | Cheung et al. | May 2008 | A1 |
20080114569 | Seigel | May 2008 | A1 |
20080121729 | Gray | May 2008 | A1 |
20080186898 | Petite | Aug 2008 | A1 |
20080209925 | Pham | Sep 2008 | A1 |
20080216494 | Pham et al. | Sep 2008 | A1 |
20080216495 | Kates | Sep 2008 | A1 |
20080223051 | Kates | Sep 2008 | A1 |
20080234869 | Yonezawa et al. | Sep 2008 | A1 |
20080315000 | Gorthala et al. | Dec 2008 | A1 |
20080319688 | Kim | Dec 2008 | A1 |
20090007777 | Cohen et al. | Jan 2009 | A1 |
20090030555 | Gray | Jan 2009 | A1 |
20090037142 | Kates | Feb 2009 | A1 |
20090038010 | Ma et al. | Feb 2009 | A1 |
20090055465 | DePue et al. | Feb 2009 | A1 |
20090057424 | Sullivan et al. | Mar 2009 | A1 |
20090057428 | Geadelmann et al. | Mar 2009 | A1 |
20090068947 | Petite | Mar 2009 | A1 |
20090071175 | Pham | Mar 2009 | A1 |
20090072985 | Patel et al. | Mar 2009 | A1 |
20090093916 | Parsonnet et al. | Apr 2009 | A1 |
20090094998 | McSweeney et al. | Apr 2009 | A1 |
20090096605 | Petite et al. | Apr 2009 | A1 |
20090099699 | Steinberg et al. | Apr 2009 | A1 |
20090106601 | Ngai et al. | Apr 2009 | A1 |
20090112672 | Flamig et al. | Apr 2009 | A1 |
20090119036 | Jayanth et al. | May 2009 | A1 |
20090125151 | Steinberg et al. | May 2009 | A1 |
20090140880 | Flen et al. | Jun 2009 | A1 |
20090151374 | Kasahara | Jun 2009 | A1 |
20090187281 | Kates | Jul 2009 | A1 |
20090215424 | Petite | Aug 2009 | A1 |
20090229469 | Campbell et al. | Sep 2009 | A1 |
20090241570 | Kuribayashi et al. | Oct 2009 | A1 |
20090296832 | Hunt | Dec 2009 | A1 |
20090324428 | Tolbert, Jr. et al. | Dec 2009 | A1 |
20100006042 | Pitonyak et al. | Jan 2010 | A1 |
20100011962 | Totsugi | Jan 2010 | A1 |
20100017465 | Brownrigg et al. | Jan 2010 | A1 |
20100039984 | Brownrigg | Feb 2010 | A1 |
20100044449 | Tessier | Feb 2010 | A1 |
20100070084 | Steinberg et al. | Mar 2010 | A1 |
20100070234 | Steinberg et al. | Mar 2010 | A1 |
20100070666 | Brindle | Mar 2010 | A1 |
20100078493 | Alles | Apr 2010 | A1 |
20100081357 | Alles | Apr 2010 | A1 |
20100081372 | Alles | Apr 2010 | A1 |
20100089076 | Schuster et al. | Apr 2010 | A1 |
20100102136 | Hadzidedic et al. | Apr 2010 | A1 |
20100168924 | Tessier et al. | Jul 2010 | A1 |
20100169030 | Parlos | Jul 2010 | A1 |
20100179703 | Singh et al. | Jul 2010 | A1 |
20100191487 | Rada et al. | Jul 2010 | A1 |
20100194582 | Petite | Aug 2010 | A1 |
20100214709 | Hall et al. | Aug 2010 | A1 |
20100217550 | Crabtree et al. | Aug 2010 | A1 |
20100250054 | Petite | Sep 2010 | A1 |
20100257410 | Cottrell et al. | Oct 2010 | A1 |
20100262299 | Cheung et al. | Oct 2010 | A1 |
20100265909 | Petite et al. | Oct 2010 | A1 |
20100280667 | Steinberg | Nov 2010 | A1 |
20100282857 | Steinberg | Nov 2010 | A1 |
20100287489 | Alles | Nov 2010 | A1 |
20100305718 | Clark et al. | Dec 2010 | A1 |
20100308119 | Steinberg et al. | Dec 2010 | A1 |
20100312881 | Davis et al. | Dec 2010 | A1 |
20100318227 | Steinberg et al. | Dec 2010 | A1 |
20100330985 | Addy | Dec 2010 | A1 |
20110004350 | Cheifetz et al. | Jan 2011 | A1 |
20110022429 | Yates et al. | Jan 2011 | A1 |
20110023045 | Yates et al. | Jan 2011 | A1 |
20110023945 | Hayashi et al. | Feb 2011 | A1 |
20110040785 | Steenberg et al. | Feb 2011 | A1 |
20110042541 | Spencer et al. | Feb 2011 | A1 |
20110045454 | McManus et al. | Feb 2011 | A1 |
20110054842 | Kates | Mar 2011 | A1 |
20110071960 | Singh | Mar 2011 | A1 |
20110077896 | Steinberg et al. | Mar 2011 | A1 |
20110083450 | Turner et al. | Apr 2011 | A1 |
20110102159 | Olson et al. | May 2011 | A1 |
20110103460 | Bonicatto | May 2011 | A1 |
20110106471 | Curtis et al. | May 2011 | A1 |
20110118905 | Mylaraswamy et al. | May 2011 | A1 |
20110121952 | Bonicatto et al. | May 2011 | A1 |
20110144932 | Alles | Jun 2011 | A1 |
20110166828 | Steinberg et al. | Jul 2011 | A1 |
20110181438 | Millstein et al. | Jul 2011 | A1 |
20110184563 | Foslien et al. | Jul 2011 | A1 |
20110185895 | Freen | Aug 2011 | A1 |
20110190910 | Lombard et al. | Aug 2011 | A1 |
20110212700 | Petite | Sep 2011 | A1 |
20110218957 | Coon et al. | Sep 2011 | A1 |
20110264324 | Petite et al. | Oct 2011 | A1 |
20110264409 | Jayanth et al. | Oct 2011 | A1 |
20110290893 | Steinberg | Dec 2011 | A1 |
20110307103 | Cheung et al. | Dec 2011 | A1 |
20110309953 | Petite et al. | Dec 2011 | A1 |
20110310929 | Petite et al. | Dec 2011 | A1 |
20110315019 | Lyon et al. | Dec 2011 | A1 |
20110320050 | Petite et al. | Dec 2011 | A1 |
20120005590 | Lombard et al. | Jan 2012 | A1 |
20120054242 | Ferrara et al. | Mar 2012 | A1 |
20120065783 | Fadell et al. | Mar 2012 | A1 |
20120065935 | Steinberg et al. | Mar 2012 | A1 |
20120066168 | Fadell et al. | Mar 2012 | A1 |
20120075092 | Petite et al. | Mar 2012 | A1 |
20120092154 | Petite | Apr 2012 | A1 |
20120125559 | Fadell et al. | May 2012 | A1 |
20120125592 | Fadell et al. | May 2012 | A1 |
20120126019 | Warren et al. | May 2012 | A1 |
20120126020 | Filson et al. | May 2012 | A1 |
20120126021 | Warren et al. | May 2012 | A1 |
20120128025 | Huppi et al. | May 2012 | A1 |
20120130546 | Matas et al. | May 2012 | A1 |
20120130547 | Fadell et al. | May 2012 | A1 |
20120130548 | Fadell et al. | May 2012 | A1 |
20120130679 | Fadell et al. | May 2012 | A1 |
20120131504 | Fadell et al. | May 2012 | A1 |
20120143528 | Kates | Jun 2012 | A1 |
20120179300 | Warren et al. | Jul 2012 | A1 |
20120186774 | Matsuoka et al. | Jul 2012 | A1 |
20120191257 | Corcoran et al. | Jul 2012 | A1 |
20120199660 | Warren et al. | Aug 2012 | A1 |
20120203379 | Sloo et al. | Aug 2012 | A1 |
20120221150 | Arensmeier | Aug 2012 | A1 |
20120229521 | Hales, IV et al. | Sep 2012 | A1 |
20120232969 | Fadell et al. | Sep 2012 | A1 |
20120233478 | Mucignat et al. | Sep 2012 | A1 |
20120239207 | Fadell et al. | Sep 2012 | A1 |
20120239221 | Mighdoll et al. | Sep 2012 | A1 |
20120245968 | Beaulieu et al. | Sep 2012 | A1 |
20120248210 | Warren et al. | Oct 2012 | A1 |
20120248211 | Warren et al. | Oct 2012 | A1 |
20120260804 | Kates | Oct 2012 | A1 |
20120265491 | Drummy | Oct 2012 | A1 |
20120265586 | Mammone | Oct 2012 | A1 |
20120271673 | Riley | Oct 2012 | A1 |
20120291629 | Tylutki et al. | Nov 2012 | A1 |
20120318135 | Hoglund et al. | Dec 2012 | A1 |
20120318137 | Ragland et al. | Dec 2012 | A1 |
20130066479 | Shetty et al. | Mar 2013 | A1 |
20130182285 | Matsuhara et al. | Jul 2013 | A1 |
20130287063 | Kates | Oct 2013 | A1 |
20140000290 | Kates | Jan 2014 | A1 |
20140000291 | Kates | Jan 2014 | A1 |
20140000292 | Kates | Jan 2014 | A1 |
20140000293 | Kates | Jan 2014 | A1 |
20140000294 | Kates | Jan 2014 | A1 |
20140012422 | Kates | Jan 2014 | A1 |
20140074730 | Arensmeier | Mar 2014 | A1 |
20140262134 | Arensmeier | Sep 2014 | A1 |
20140266755 | Arensmeier | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1147440 | May 1983 | CA |
2528778 | Dec 2004 | CA |
2567264 | Jul 2007 | CA |
173493 | Nov 1934 | CH |
1133425 | Oct 1996 | CN |
1169619 | Jan 1998 | CN |
1297522 | May 2001 | CN |
1356472 | Jul 2002 | CN |
1742427 | Mar 2006 | CN |
1922445 | Feb 2007 | CN |
101048713 | Oct 2007 | CN |
101156033 | Apr 2008 | CN |
101270908 | Sep 2008 | CN |
101361244 | Feb 2009 | CN |
101466193 | Jun 2009 | CN |
101506600 | Aug 2009 | CN |
101802521 | Aug 2010 | CN |
101821693 | Sep 2010 | CN |
842351 | Jun 1952 | DE |
764179 | Apr 1953 | DE |
1144461 | Feb 1963 | DE |
1403516 | Oct 1968 | DE |
1403467 | Oct 1969 | DE |
3118638 | May 1982 | DE |
3133502 | Jun 1982 | DE |
3422398 | Dec 1985 | DE |
29723145 | Apr 1998 | DE |
0060172 | Sep 1982 | EP |
0085246 | Aug 1983 | EP |
0124603 | Nov 1984 | EP |
0254253 | Jan 1988 | EP |
0346152 | Dec 1989 | EP |
0351272 | Jan 1990 | EP |
0351833 | Jan 1990 | EP |
0355255 | Feb 1990 | EP |
0361394 | Apr 1990 | EP |
0398436 | Nov 1990 | EP |
0410330 | Jan 1991 | EP |
0419857 | Apr 1991 | EP |
0432085 | Jun 1991 | EP |
0453302 | Oct 1991 | EP |
0479421 | Apr 1992 | EP |
0557023 | Aug 1993 | EP |
0579374 | Jan 1994 | EP |
0660213 | Jun 1995 | EP |
0747598 | Dec 1996 | EP |
0877462 | Nov 1998 | EP |
0982497 | Mar 2000 | EP |
1008816 | Jun 2000 | EP |
1087142 | Mar 2001 | EP |
1087184 | Mar 2001 | EP |
1138949 | Oct 2001 | EP |
1139037 | Oct 2001 | EP |
1187021 | Mar 2002 | EP |
1209427 | May 2002 | EP |
1241417 | Sep 2002 | EP |
1245912 | Oct 2002 | EP |
1245913 | Oct 2002 | EP |
1393034 | Mar 2004 | EP |
1435002 | Jul 2004 | EP |
1487077 | Dec 2004 | EP |
2180270 | Apr 2010 | EP |
2472862 | Jul 1981 | FR |
2582430 | Nov 1986 | FR |
2589561 | May 1987 | FR |
2628558 | Sep 1989 | FR |
2660739 | Oct 1991 | FR |
2062919 | May 1981 | GB |
2064818 | Jun 1981 | GB |
2075774 | Nov 1981 | GB |
2116635 | Sep 1983 | GB |
2229295 | Sep 1990 | GB |
56010639 | Feb 1981 | JP |
59145392 | Aug 1984 | JP |
61046485 | Mar 1986 | JP |
62116844 | May 1987 | JP |
63061783 | Mar 1988 | JP |
63302238 | Dec 1988 | JP |
01014554 | Jan 1989 | JP |
02110242 | Apr 1990 | JP |
02294580 | Dec 1990 | JP |
04080578 | Mar 1992 | JP |
06058273 | Mar 1994 | JP |
08021675 | Jan 1996 | JP |
08087229 | Apr 1996 | JP |
08284842 | Oct 1996 | JP |
H08261541 | Oct 1996 | JP |
2000350490 | Dec 2000 | JP |
2002155868 | May 2002 | JP |
2003018883 | Jan 2003 | JP |
2003176788 | Jun 2003 | JP |
2004316504 | Nov 2004 | JP |
2005188790 | Jul 2005 | JP |
2005241089 | Sep 2005 | JP |
2005345096 | Dec 2005 | JP |
2006046219 | Feb 2006 | JP |
2006046519 | Feb 2006 | JP |
2006274807 | Oct 2006 | JP |
2009002651 | Jan 2009 | JP |
2009229184 | Oct 2009 | JP |
2010048433 | Mar 2010 | JP |
10-1998-0036844 | Aug 1998 | KR |
1020000000261 | Jan 2000 | KR |
1020000025265 | May 2000 | KR |
1020020041977 | Jun 2002 | KR |
20030042857 | Jun 2003 | KR |
20040021281 | Mar 2004 | KR |
1020040021281 | Mar 2004 | KR |
1020060020353 | Mar 2006 | KR |
30009 | Jun 2003 | RU |
55218 | Jul 2006 | RU |
8601262 | Feb 1986 | WO |
8703988 | Jul 1987 | WO |
8705097 | Aug 1987 | WO |
8802527 | Apr 1988 | WO |
8806703 | Sep 1988 | WO |
9718636 | May 1997 | WO |
9748161 | Dec 1997 | WO |
9917066 | Apr 1999 | WO |
9961847 | Dec 1999 | WO |
9965681 | Dec 1999 | WO |
0021047 | Apr 2000 | WO |
0051223 | Aug 2000 | WO |
0169147 | Sep 2001 | WO |
0214968 | Feb 2002 | WO |
0249178 | Jun 2002 | WO |
0275227 | Sep 2002 | WO |
02090840 | Nov 2002 | WO |
02090913 | Nov 2002 | WO |
02090914 | Nov 2002 | WO |
03031996 | Apr 2003 | WO |
03090000 | Oct 2003 | WO |
2004049088 | Jun 2004 | WO |
2005022049 | Mar 2005 | WO |
2005065355 | Jul 2005 | WO |
2005073686 | Aug 2005 | WO |
2005108882 | Nov 2005 | WO |
2006023075 | Mar 2006 | WO |
2006025880 | Mar 2006 | WO |
2006091521 | Aug 2006 | WO |
2008010988 | Jan 2008 | WO |
WO-2008079108 | Jul 2008 | WO |
2008144864 | Dec 2008 | WO |
2009058356 | May 2009 | WO |
2009061370 | May 2009 | WO |
2010138831 | Dec 2010 | WO |
2011069170 | Jun 2011 | WO |
2012092625 | Jul 2012 | WO |
2012118550 | Sep 2012 | WO |
Entry |
---|
Watt, James; Development of Empirical Temperature and Humidity-Based Degraded-Condition Indicators for Low-Tonnage Air Conditioners; ESL-TH-97/12-03; Dec. 1997. |
Ultrasite User's Guide BEC Supplement, Computer Process Controls, Oct. 6, 1997. |
Ultrasite User's Guide BCU Supplement, Computer Process Controls, Sep. 4, 1997. |
Ultrasite User's Guide RMCC Supplement, Computer Process Controls, Jun. 9, 1997. |
Texas Instruments, Inc. Mechanical Data for “PT (S-PQFP-G48) Plastic Quad Flatpack,” Revised Dec. 1996, 2 pages. |
Honeywell, Excel 5000® System, Excel Building Supervisor, 74-2033-1, Copyright © 1996, Rev. Jun. 1996, 12 pages. |
UltraSite User's Guide, Computer Process Controls, Apr. 1, 1996. |
Honeywell, Excel 5000® System, Excel Building Supervisor—Integrated, 74-2034, Copyright © 1994, Rev. Nov. 1994, 12 pages. |
Tamarkin, Tom D., “Automatic Meter Reading,” Public Power magazine, vol. 50, No. 5, Sep.-Oct. 1992, http://www.energycite.com/news/amr.html, 6 pages. |
Palani, M. et al, The Effect of Reducted Evaporator Air Flow on the Performance of a Residential Central Air Conditioner, ESL-HH-92-05-04, Energy Systems Laboratory, Mechanical Engineering Department, Texas A&M University, Eighth Symposium on Improving Building System in Hot and Humid Climates, May 13-14, 1992. |
Palani, M. et al, Monitoring the Performance of a Residential Central Air Conditioner under Degraded Conditions on a Test Bench, ESL-TR-92105-05, May 1992. |
European Search Report for EP 82306809.3; Apr. 28, 1983; 1 Page. |
European Search Report for EP 91 30 3518; Jul. 22, 1991; 1 Page. |
European Search Report for EP 93 30 4470; Oct. 26, 1993; 1 Page. |
International Search Report; International Application No. PCT/IB96/01435; May 23, 1997; 1 Page. |
European Search Report for EP 96 30 4219; Dec. 1, 1998; 2 Pages. |
International Search Report; International Application No. PCT/US98/18710; Jan. 26, 1999; 1 Page. |
European Search Report for EP 94 30 3484; Apr. 3, 1997; 1 Page. |
European Search Report for EP 98 30 3525; May 28, 1999; 2 Pages. |
European Search Report for EP 99 30 6052; Dec. 28, 1999; 3 Pages. |
European Search Report for EP 01 30 7547; Feb. 20, 2002; 1 Page. |
European Search Report for Application No. EP 01 30 1752, dated Mar. 26, 2002. |
European Search Report for EP 02 25 0266; May 17, 2002; 3 Pages. |
International Search Report, International Application No. PCT/US02/13456, dated Aug. 22, 2002, 2 Pages. |
International Search Report for PCT/US02/13459; ISA/US; date mailed Sep. 19, 2002. |
European Search Report for Application No. EP 02 25 1531, dated Sep. 30, 2002. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 14, 2003. |
Written Opinion regarding PCT/US02/13459, dated Apr. 23, 2003. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jun. 18, 2003. |
International Preliminary Examination Report regarding PCT/US02/13456, dated Sep. 15, 2003. |
Office Action regarding U.S. Appl. No. 10/061,964, dated Oct. 3, 2003. |
Response to Rule 312 Communication regarding U.S. Appl. No. 09/977,552, dated Oct. 31, 2003. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Dec. 3, 2003. |
Final Office Action regarding U.S. Appl. No. 10/061,964, dated Mar. 8, 2004. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Apr. 26, 2004. |
Office Action regarding U.S. Appl. No. 10/286,419, dated Jun. 10, 2004. |
European Search Report for EP 02 72 9050, Jun. 17, 2004, 2 pages. |
Supplementary European Search Report for EP 02 73 1544, Jun. 18, 2004, 2 Pages. |
Notice of Allowance regarding U.S. Appl. No. 10/061,964, dated Jul. 19, 2004. |
International Search Report, International Application No. PCT/US04/13384; Dated Aug. 1, 2004; 1 Page. |
International Search Report, International Application No. PCT/US2004/027654, dated Aug. 25, 2004, 4 Pages. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Sep. 7, 2004. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 18, 2004. |
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/286,419, dated Dec. 2, 2004. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Feb. 4, 2005. |
European Search Report regarding Application No. EP02729051, dated Feb. 17, 2005. |
Office Action regarding U.S. Appl. No. 10/698,048, dated Mar. 21, 2005. |
Office Action dated May 4, 2005 from Related U.S. Appl. No. 10/916,223. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated May 13, 2005. |
Office Action regarding U.S. Appl. No. 10/675,137, dated Jun. 29, 2005. |
Non-Final Office Action regarding U.S. Appl. No. 13/176,021, dated May 8, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 13/435,543, dated Jun. 21, 2012. |
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jun. 27, 2012. |
Notice of Allowance regarding U.S. Appl. No. 11/776,879, dated Jul. 9, 2012. |
Notice of Allowance regarding U.S. Appl. No. 13/303,286, dated Jul. 19, 2012. |
Patent Examination Report No. 3 regarding Australian Patent Application No. 2008325240, dated Jul. 19, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/685,375, mailed Aug. 6, 2012. |
Final Office Action for U.S. Appl. No. 11/850,846, mailed Aug. 13, 2012. |
European Search Report regarding Application No. 04022784.5-2315 / 1500821, dated Aug. 14, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/955,355, dated Sep. 11, 2012. |
Notice of Allowance and Fee(s) Due regarding U.S. Appl. No. 12/789,562, dated Oct. 26, 2012. |
European Search Report for Application No. EP 12 182 243.1, dated Oct. 29, 2012. |
Extended European Search Report regarding Application No. 12182243.1-2311, dated Oct. 29, 2012. |
Non-Final Office Action for U.S. Appl. No. 13/030,549, dated Nov. 5, 2012. |
Notification of First Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200880122964.6, dated Nov. 5, 2012. Translation provided by Unitalen Attorneys at Law. |
Record of Oral Hearing regarding U.S. Appl. No. 09/977,552, dated Nov. 29, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 12/943,626, dated Dec. 20, 2012. |
First Examination Report regarding Australian Patent Application No. 2010319488, dated Jan. 10, 2013. |
Second Office Action regarding Chinese Patent Application No. 200910211779.0, dated Feb. 4, 2013. English translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Mar. 12, 2013. |
International Search Report regarding Application No. PCT/US2013/021161, mailed May 8, 2013. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2013/021161, mailed May 8, 2013. |
Non-Final Office Action in U.S. Appl. No. 11/850,846, mailed May 24, 2013. |
Non-Final Office Action in U.S. Appl. No. 13/784,890, mailed Jun. 11, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jul. 3, 2013. |
First Office Action regarding Canadian Patent Application No. 2,777,349, dated Jul. 19, 2013. |
Third Office Action regarding Chinese Patent Application No. 200910211779.0, dated Sep. 4, 2013. English translation provided by Unitalen Attorneys at Law. |
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Sep. 16, 2013. |
First Examination Report regarding Australian Patent Application No. 2012241185, dated Sep. 27, 2013. |
Notice of Grounds for Refusal regarding Korean Patent Application No. 10-2009-7000850, mailed Oct. 4, 2013. English translation provided by Y.S. Chang & Associates. |
Final Office Action regarding U.S. Appl. No. 13/770,123, dated Nov. 15, 2013. |
First Office Action regarding Chinese Patent Application No. 201110349785.X, dated Nov. 21, 2013, and Search Report. English translation provided by Unitalen Attorneys at Law. |
Advisory Action regarding U.S. Appl. No. 12/261,643, dated Nov. 22, 2013. |
Non-Final Office Action regarding U.S. Appl. No. 13/932,611, mailed Nov. 25, 2013. |
Office Action regarding U.S. Appl. No. 13/737,566, dated Dec. 20, 2013. |
Final Office Action regarding U.S. Appl. No. 13/784,890, mailed Dec. 30, 2013. |
Fourth Office Action regarding Chinese Patent Application No. 200910211779.0, dated Jan. 6, 2014. English translation provided by Unitalen Attorneys at Law. |
European Search Report regarding Application No. 07811712.4-1608 / 2069638 PCT/US2007019563, dated Jan. 7, 2014. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,479, dated Jan. 16, 2014. |
Final Office Action regarding U.S. Appl. No. 11/850,846, mailed Jan. 17, 2014. |
International Search Report for PCT/US2012/026973, Sep. 3, 2012, 5 pages. |
International Search Report for PCT/US2013/061389, Jan. 22, 2014, 7 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Oct. 4, 2013; 11 pages. |
Restriction from related U.S. Appl. No. 13/269,188 dated Apr. 9, 2013; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Aug. 14, 2012; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Jul. 17, 2014; 10 pages. |
Non Final Office Action from related U.S. Appl. No. 13/269,188 dated Feb. 20, 2014; 9 pages. |
Final Office Action from related U.S. Appl. No. 13/269,188 dated May 23, 2013; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Oct. 24, 2013; 8 pages. |
Final Office Action from related U.S. Appl. No. 13/767,479 dated Mar. 14, 2014; 6 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,742 dated Oct. 7, 2013; 9 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jan. 31, 2014; 7 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,742 dated Jun. 2, 2014; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,810 dated Nov. 15, 2013; 9 pages. |
Notice of Allowance from related U.S. Appl. No. 13/835,810 dated Mar. 20, 2014; 9 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Oct. 30, 2013; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/835,621 dated Apr. 2, 2014; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Oct. 23, 2013; 8 pages. |
Final Office Action from related U.S. Appl. No. 13/836,043 dated Mar. 12, 2014; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,043 dated Jul. 11, 2014; 5 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Oct. 15, 2013; 11 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,244 dated Feb. 20, 2014; 10 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,244 dated Jul. 2, 2014; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/836,453 dated Aug. 20, 2013; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Jan. 14, 2014; 8 pages. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Apr. 21, 2014; 8 pages. |
Non Final Office Action from related U.S. Appl. No. 13/369,067 dated Jan. 16, 2014; 16 pages. |
Final Office Action from related U.S. Appl. No. 13/369,067 dated May 1, 2014; 19 pages. |
Non Final Office Action from related U.S. Appl. No. 13/767,479 dated Jul. 23, 2014; 9 pages. |
Final Office Action regarding U.S. Appl. No. 13/932,611, mailed May 28, 2014. |
Supplementary European Search Report regarding Application No. EP 07 81 1712, dated Jan. 7, 2014. |
Non-Final Office Action regarding U.S. Appl. No. 13/770,123, dated Jun. 11, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Jun. 18, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/943,626, dated Jun. 19, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 12/261,643, dated Jun. 23, 2014. |
Extended European Search Report regarding Application No. 07796879.0-1602 / 2041501 PCT/US2007016135, dated Jul. 14, 2014. |
Interview Summary from related U.S. Appl. No. 12/054,011 dated Jan. 30, 2012. |
Written Opinion from related PCT Application No. PCT/US2014/028074 mailed Jun. 19, 2014. |
Advisory Action from related U.S. Appl. No. 13/784,890 dated Mar. 14, 2014. |
International Search Report from related PCT Application No. PCT/US2014/028074 mailed Jun. 19, 2014. |
Examiner's Answer from related U.S. Appl. No. 13/784,890 dated Jul. 3, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/835,810 dated Aug. 5, 2014. |
Non Final Office Action for related U.S. Appl. No. 13/369,067 dated Aug. 12, 2014. |
Notice of Allowance from related U.S. Appl. No. 13/836,453 dated Aug. 4, 2014. |
Non Final Office Action for related U.S. Appl. No. 13/835,621 dated Aug. 8, 2014. |
Trane EarthWise™ CenTra Vac™ Water-Cooled Liquid Chillers 165-3950 Tons 50 and 60 Hz; CTV PRC007-EN; Oct. 2002; 56 pages. |
Final Office Action regarding U.S. Appl. No. 11/098,575, dated Jun. 17, 2010. |
Restriction Requirement regarding U.S. Appl. No. 10/940,877, dated Jul. 25, 2005. |
Notice of Allowance for U.S. Appl. No. 10/698,048, dated Sep. 1, 2005. |
International Search Report for International Application No. PCT/US2005/11154, dated Oct. 19, 2005. |
Office Action dated Oct. 27, 2005 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Nov. 8, 2005 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,601. |
Office Action dated Nov. 9, 2005 from Related U.S. Appl. No. 11/130,871. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 09/977,552, dated Nov. 10, 2005. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 14, 2005. |
Notice of Allowance and Notice of Allowability regarding U.S. Appl. No. 10/675,137, dated Dec. 16, 2005. |
First Examination Communication regarding European Application No. EP02729051.9, dated Dec. 23, 2005. |
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Jan. 6, 2006 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,601. |
Examiner's First Report on Australian Patent Application No. 2002259066, dated Mar. 1, 2006. |
International Search Report for International Application No. PCT/US04/43859, dated Mar. 2, 2006. |
Office Action dated Mar. 30, 2006 from Related U.S. Appl. No. 11/130,569. |
Office Action dated Apr. 19, 2006 from Related U.S. Appl. No. 10/916,223. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated May 2, 2006. |
Office Action dated Jun. 22, 2009 from Related U.S. Appl. No. 12/050,821. |
Second Examination Communication regarding European Application No. EP02729051.9, dated Jul. 3, 2006. |
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 11/130,562. |
Office Action dated Jul. 11, 2006 from Related U.S. Appl. No. 10/916,222. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 12, 2006. |
Notice of Allowance dated Jul. 13, 2006 from Related U.S. Appl. No. 11/130,601. |
Office Action dated Jul. 27, 2006 from Related U.S. Appl. No. 11/130,871. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2006. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Oct. 27, 2006. |
Office Action dated Nov. 14, 2006 from Related U.S. Appl. No. 11/130,569. |
Office Action dated Nov. 16, 2006 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Jan. 23, 2007 from Related U.S. Appl. No. 10/916,222. |
Election/Restriction Requirement regarding U.S. Appl. No. 09/977,552, dated Jan. 25, 2007. |
Office Action dated Feb. 1, 2007 from Related U.S. Appl. No. 11/130,562. |
First Office Action received from the Chinese Patent Office dated Feb. 2, 2007 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office. |
Notice of Allowance dated Feb. 12, 2007 from Related U.S. Appl. No. 11/130,871. |
International Search Report, International Application No. PCT/US2006/040964, dated Feb. 15, 2007, 2 Pages. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 2, 2007. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Apr. 12, 2007. |
Office Action Communication regarding U.S. Appl. No. 09/977,552, dated Apr. 18, 2007. |
Notice of Allowance dated May 2, 2007 from Related U.S. Appl. No. 11/130,569. |
Office Action regarding U.S. Appl. No. 10/940,877, dated May 21, 2007. |
Notice of Allowance dated May 29, 2007 from Related U.S. Appl. No. 11/130,569. |
First Office Action from the Patent Office of the People's Republic of China dated Jun. 8, 2007, Application No. 200480027753.6 and Translation provided by CCPIT. |
Notice of Allowance dated Jun. 11, 2007 from Related U.S. Appl. No. 10/916,222. |
Office Action dated Jun. 27, 2007 from Related U.S. Appl. No. 11/417,557. |
First Office Action from the Patent Office of the People's Republic of China regarding Application No. 200510005907.8, dated Jun. 29, 2007. |
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,609. |
Office Action dated Jul. 11, 2007 from Related U.S. Appl. No. 11/417,701. |
European Search Report for Application No. EP 04 81 5853, dated Jul. 17, 2007. |
Final Office Action regarding U.S. Appl. No. 11/497,579, dated May 14, 2010. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jun. 8, 2010. |
Office Action regarding U.S. Appl. No. 11/497,644, dated Jun. 14, 2010. |
Supplementary European Search Report regarding European Application No. EP06790063, dated Jun. 15, 2010. |
First Office Action from the State Intellectual Property Office of the People's Republic of China regarding Chinese Patent Application No. 200890100287.3, issued Oct. 25, 2010. Translation provided by Unitalen Attorneys at Law. |
Interview Summary regarding U.S. Appl. No. 11/497,579, dated Jul. 15, 2010. |
Examiner Interview Summary regarding U.S. Appl. No. 11/394,380, dated Jul. 29, 2010. |
Second Office Action regarding Chinese Patent Application No. 200780030810X, dated Aug. 4, 2010. English translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action mailed Aug. 13, 2010 for U.S. Appl. No. 12/054,011. |
Office Action regarding U.S. Appl. No. 11/850,846, dated Aug. 13, 2010. |
Office Action regarding U.S. Appl. No. 11/776,879, dated Sep. 17, 2010. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Sep. 24, 2010. |
First Office Action regarding Chinese Patent Application No. 200780032977.X, dated Sep. 27, 2010. English translation provided by Unitalen Attorneys at Law. |
Final Office Action mailed Dec. 7, 2010 for U.S. Appl. No. 12/054,011. |
Final Office Action regarding U.S. Appl. No. 11/497,644, dated Dec. 22, 2010. |
First Office Action regarding Chinese Patent Application No. 2010117657.8, dated Dec. 29, 2010. English translation provided by Unitalen Attorneys at Law. |
International Search Report regarding Application No. PCT/US2010/036601, mailed Dec. 29, 2010. |
Written Opinion of the International Searching Authority regarding Application No. PCT/US2010/036601, mailed Dec. 29, 2010. |
Official Action regarding Australian Patent Application No. 2008325240, dated Jan. 19, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jan. 24, 2011. |
Non-Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jan. 27, 2011. |
Second Office Action regarding Chinese Patent Application No. 200890100287.3, dated Jan. 27, 2011. English translation provided by Unitalen Attorneys at Law. |
Examiner's First Report on Australian Patent Application No. 2008319275, dated Jan. 31, 2011. |
Final Office Action regarding U.S. Appl. No. 11/337,918, dated Feb. 17, 2011. |
Non-Final Office Action mailed Mar. 3, 2011 for U.S. Appl. No. 12/054,011. |
Notice of Allowance regarding U.S. Appl. No. 12/685,424, dated Apr. 25, 2011. |
First Office Action regarding Chinese Application No. 200880106319.5, dated May 25, 2011. English translation provided by Unitalen Attorneys at Law. |
Communication from European Patent Office concerning Substantive Examination regarding European Patent Application No. 06790063.9, dated Jun. 6, 2011. |
International Search Report regarding Application No. PCT/US2010/056315, mailed Jun. 28, 2011. |
Final Office Action for U.S. Appl. No. 12/054,011, dated Jun. 30, 2011. |
Final Office Action regarding U.S. Appl. No. 12/261,643, dated Jul. 7, 2011. |
Final Office Action regarding U.S. Appl. No. 11/214,179, dated Jul. 21, 2011. |
Office Action regarding U.S. Appl. No. 12/261,677, dated Aug. 4, 2011. |
Third Office Action regarding Chinese Application No. 2005100059078 from the State Intellectual Property Office of People's Republic of China, dated Aug. 24, 2011. Translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action for U.S. Appl. No. 12/054,011, dated Oct. 20, 2011. |
Office Action regarding U.S. Appl. No. 12/261,643, dated Nov. 2, 2011. |
Notice of Allowance and Fees Due, Interview Summary and Notice of Allowability regarding U.S. Appl. No. 11/214,179, dated Nov. 23, 2011. |
Fourth Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 200510005907.8, dated Dec. 8, 2011. Translation provided by Unitalen Attorneys at Law. |
Notice of Allowance regarding U.S. Appl. No. 12/261,677, dated Dec. 15, 2011. |
Examiner's First Report on Australian Patent Application No. 2007292917 dated Jan. 10, 2012. |
Non-Final Office Action in U.S. Appl. No. 12/685,375, mailed Jan. 19, 2012. |
Office Action regarding U.S. Appl. No. 12/261,643, dated Feb. 15, 2012. |
Examiner's Report No. 2 regarding Australian Patent Application No. 2008325240, dated Mar. 5, 2012. |
Issue Notification regarding U.S. Appl. No. 11/214,179, dated Mar. 14, 2012. |
Non-Final Office Action for U.S. Appl. No. 11/776,879, dated Mar. 16, 2012. |
Office Action regarding U.S. Appl. No. 13/303,286, dated Mar. 26, 2012. |
Non-Final Office Action for U.S. Appl. No. 12/054,011, dated Apr. 10, 2012. |
Non-Final Office Action regarding U.S. Appl. No. 11/850,846, dated Apr. 24, 2012. |
First Office Action regarding Chinese Patent Application No. 200910211779.0, dated May 3, 2012. English translation provided by Unitalen Attorneys at Law. |
International Preliminary Report on Patentability regarding Application No. PCT/US2010/056315, mailed May 24, 2012. |
European Search Report for Application No. EP 06 02 6263, dated Jul. 17, 2007. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Jul. 23, 2007. |
Notice of Allowance dated Jul. 25, 2007 from Related U.S. Appl. No. 10/916,223. |
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,609. |
Office Action dated Aug. 17, 2007 from Related U.S. Appl. No. 11/417,701. |
Office Action dated Aug. 21, 2007 from Related U.S. Appl. No. 11/417,557. |
Office Action dated Sep. 18, 2007 from Related U.S. Appl. No. 11/130,562. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Sep. 21, 2007. |
International Search Report and Written Opinion of the International Searching Authority regarding International Application No. PCT/US06/33702, dated Sep. 26, 2007. |
International Search Report, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007. |
Written Opinion of the International Searching Authority, Int'l. App. No. PCT/US 06/05917, dated Sep. 26, 2007. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Oct. 2, 2007. |
International Search Report for International Application No. PCT/US2007/016135 dated Oct. 22, 2007. |
Notice of Allowance dated Oct. 26, 2007 from Related U.S. Appl. No. 10/916,223. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Nov. 13, 2007. |
Notice of Allowance dated Dec. 3, 2007 from Related U.S. Appl. No. 11/130,562. |
Notice of Allowance dated Dec. 21, 2007 from Related U.S. Appl. No. 11/417,609. |
Office Action regarding U.S. Appl. No. 09/977,552, dated Jan. 11, 2008. |
International Search Report for International Application No. PCT/US07/019563, dated Jan. 15, 2008, 3 Pages. |
Written Opinion of the International Searching Authority regarding International Application No. PCT/US2007/019563, dated Jan. 15, 2008. |
Office Action dated Feb. 15, 2008 from Related U.S. Appl. No. 11/417,557. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Mar. 25, 2008. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Mar. 25, 2008. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Mar. 26, 2008. |
Office Action regarding U.S. Appl. No. 11/256,641, dated Apr. 29, 2008. |
First Office Action issued by the Chinese Patent Office on May 30, 2008 regarding Application No. 200580013451.8. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Jun. 5, 2008. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Jun. 5, 2008. |
Office Action dated Jul. 1, 2008 from Related U.S. Appl. No. 11/927,425. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Jul. 7, 2008. |
Office Action dated Jul. 16, 2008 from Related U.S. Appl. No. 11/417,701. |
Office Action dated Jul. 24, 2008 from Related U.S. Appl. No. 11/417,557. |
International Search Report from PCT /US2008/060900, Aug. 4, 2008, 6 pages. |
First Office Action issued by the Chinese Patent Office for Application No. 200480015875.3, dated Sep. 5, 2008. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Sep. 9, 2008. |
Examiner Interview regarding U.S. Appl. No. 11/256,641, dated Sep. 16, 2008. |
Final Office Action regarding U.S. Appl. No. 09/977,552, dated Oct. 22, 2008. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Oct. 28, 2008. |
Notice of Allowance dated Nov. 3, 2008 from Related U.S. Appl. No. 11/417,701. |
Non-Final Office Action regarding U.S. Appl. No. 11/214,179, dated Nov. 5, 2008. |
Examiner Interview Summary regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008. |
International Search Report for International Application No. PCT/US2008/009618, dated Dec. 8, 2008. |
Office Action regarding U.S. Appl. No. 10/940,877, dated Dec. 8, 2008. |
Written Opinion of International Searching Authority for International Application No. PCT/US2008/009618, dated Dec. 8, 2008. |
First Official Report regarding Australian Patent Application No. 2007214381, dated Dec. 12, 2008. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Dec. 15, 2008. |
Office Action for U.S. Appl. No. 11/497,644, dated Dec. 19, 2008. |
Office Action for U.S. Appl. No. 11/394,380, dated Jan. 6, 2009. |
Office Action dated Jan. 18, 2006 from Related U.S. Appl. No. 11/130,871. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Jan. 29, 2009. |
Honeywell, Alerts and Delta T Diagnostics with Prestige® 2.0 IAQ Thermostat, 69-2678-02, Sep. 2011. |
Honeywell, RedLINK™ Wireless Comfort Systems brochure, 50-1194, Sep. 2011. |
Honeywell, Prestige System Installation Guide, THX9321/9421 Prestige® IAQ and RF EIM, 64-2490-03, Jul. 2011. |
About CABA: CABA eBulletin, http://www.caba.org/aboutus/ebulletin/issue17/domosys.html, 2 pages. |
The LS2000 Energy Management System, User Guide, http://www.surfnetworks.com/htmlmanuals/IonWorksEnergyManagement-LS2000-Load-Shed -System-by-Surf-Networks,Inc.html, Sep. 2004, 20 pages. |
Case Studies: Automated Meter Reading and Load Shed System, http://groupalpha.corn/CaseStudies2.html, Aug. 23, 2004, 1 page. |
Nickles, Donald, “Broadband Communications Over Power Transmission Lines,” A Guest Lecture From the Dr. Shreekanth Mandaynam Engineering Frontiers Lecture Series, May 5, 2004, 21 pages. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Appendix C, pp. 1060-1063, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 4, pp. 176-201, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 5, pp. 239-245, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section II, Chapter 6, p. 322, Copyright 2004. |
Jeffus, Larry, “Refrigeration and Air Conditioning: An Introduction to HVAC/R,” Section IV, Chapter 9, pp. 494-504, Copyright 2004. |
HVAC Service Assistant, ACRx Efficiency and Capacity Estimating Technology, Field Diagnostics, 2004. |
Reh, F. John, “Cost Benefit Analysis”, http://management.about.com/cs/money/a/CostBenefit.htm, Dec. 8, 2003. |
Udelhoven, Darrell, “Air Conditioning System Sizing for Optimal Efficiency,” http:/ /www.udarrell.com/ airconditioning-sizing.html, Oct. 6, 2003, 7 pages. |
Texas Instruments, Inc., Product catalog for “TRF690 1 Single-Chip RF Transceiver,” Copyright 2001-2003, Revised Oct. 2003, 27 pages. |
Advanced Utility Metering: Period of Performance, Subcontractor Report, National Renewable Energy Laboratory, Sep. 2003, 59 pages. |
Honeywell, Advanced Portable A/C Diagnostics, The HVAC Service Assistant, 2003. |
Vandenbrink et al.,“Design of a Refrigeration Cycle Evaporator Unit,” Apr. 18, 2003. |
Udelhoven, Darrell, “Air Conditioner EER, SEER Ratings, BTUH Capacity Ratings, & Evaporator Heat Load,” http://www.udarrell.com/air-conditioner-capacity-seer.html, Apr. 3, 2003, 15 pages. |
The Honeywell HVAC Service Assistant, A Tool for Reducing Electrical Power Demand and Energy Consumption, Field Diagnostics, 2003. |
Honeywell, HVAC Service Assistant, TRGpro PalmTM OS Interface and HVAC Service Assistant A7075A1000, 2002. |
“Air Conditioning Equipment and Diagnostic Primer,” Field Diagnostic Services, Inc., Sep. 9, 2002. |
Udelhoven, Darrell, “Optimizing Air Conditioning Efficiency TuneUp Optimizing the Condensor Output, Seer, Air, HVAC Industry,” http://www.udarrell.com/air-conditioning-efficiency.html, Jul. 19, 2002, 13 pages. |
Honeywell, A7075A1000 HVAC Service Assistant, 2001. |
LIPA Launches Free, First-in-Nation Internet-Based Air Conditioner Control Program to Help LIPA and Its Customers Conserve Electricity & Save Money, Apr. 19, 2001, http://www.lipower.org/newscmter/pr/2001/aprilI9—0I.html, 3 pages. |
K. A. Manske et al.; Evaporative Condenser Control in Industrial Refrigeration Systems; University of Wisconsin—Madison, Mechanical Engineering Department; International Journal of Refrigeration, vol. 24, No. 7; pp. 676-691; 2001, 21 pages. |
Flow & Level Measurement: Mass Flowmeters, http://www.omega.com/literature/transactions/volume4/T9904-10-MASS.html, 2001, 19 pages. |
Frequently Asked Questions, http://www.lipaedge.com/faq.asp, Copyright © 2001, 5 pages. |
Translation of claims and Abstract of KR Patent Laying-Open No. 2000-0000261. |
BChydro, “Power Factor” Guides to Energy Management: The GEM Series, Oct. 1999. |
Ultrasite 32 User's Guide, Computer Process Controls, Sep. 28, 1999. |
Refrigeration Monitor and Case Control Installation and Operation Manual, Computer Process Controls, Aug. 12, 1999. |
Liao et al., A Correlation of Optimal Heat Rejection Pressures in Transcritical Carbon Dioxide Cycles, Applied Thermal Engineering 20 (2000), Jul. 25, 1999, 831-841. |
Einstein RX-300 Refrigeration Controller Installation and Operation Manual, Computer Process Controls, Apr. 1, 1998, 329 pages. |
Building Control Unit (BCU) Installation and Operation Manual, Computer Process Controls, Jan. 28, 1998, 141 pages. |
Building Environmental Control (BEC) Installation and Operation Manual, Computer Process Controls, Jan. 5, 1998, 153 pages. |
Low-Cost Multi-Service Home Gateway Creates New Business Opportunities, Coactive Networks, Copyright 1998-1999, 7 pages. |
Pin, C. et al., “Predictive Models as Means to Quantify the Interactions of Spoilage Organisms,” International Journal of Food Microbiology, vol. 41, No. 1, 1998, pp. 59-72, XP-002285119. |
Notice of Allowance regarding U.S. Appl. No. 13/835,742, mailed Apr. 17, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/836,453, mailed Apr. 15, 2015. |
Advisory Action regarding U.S. Appl. No. 13/269,188, dated Apr. 13, 2015. |
U.S. Office Action regarding U.S. Appl. No. 13/269,188, dated May 8, 2015. |
U.S. Office Action regarding U.S. Appl. No. 14/212,632, dated May 15, 2015. |
First Chinese Office Action regarding Application No. 201380005300.2, dated Apr. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Advisory Action and Interview Summary regarding U.S. Appl. No. 13/407,180, dated May 27, 2015. |
Interview Summary regarding U.S. Appl. No. 13/407,180, dated Jun. 11, 2015. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Jun. 16, 2015. |
Extended European Search Report regarding European Application No. 08845689.2-1608/2207964, dated Jun. 19, 2015. |
Extended European Search Report regarding European Application No. 08848538.8-1608 / 2220372, dated Jun. 19, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/932,611, dated Jul. 6, 2015. |
Restriction Requirement regarding U.S. Appl. No. 14/244,967, dated Jul. 14, 2015. |
Interview Summary regarding U.S. Appl. No. 13/369,067, dated Jul. 16, 2015. |
Interview Summary regarding U.S. Appl. No. 11/214,179, dated Jan. 30, 2009. |
Final Office Action regarding U.S. Appl. No. 11/256,641, dated Feb. 2, 2009. |
Office Action dated Feb. 3, 2009 from Related U.S. Appl. No. 11/866,295. |
International Search Report for International Application No. PCT/US2008/012362, dated Feb. 12, 2009. |
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/033,765. |
Office Action dated Feb. 13, 2009 from Related U.S. Appl. No. 12/050,821. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/098,582, dated Feb. 24, 2009. |
Second Office Action issued by the Chinese Patent Office for Application No. 200480015875.3, dated Feb. 27, 2009. |
Second Office Action issued by the Chinese Patent Office on Mar. 6, 2009 regarding Application No. 200580013451.8. |
International Preliminary Report on Patentability regarding International Application No. PCT/US2007/019563 dated Mar. 10, 2009. |
Written Opinion of the International Searching Authority for International Application No. PCT/US2008/012364 dated Mar. 12, 2009. |
International Search Report for International Application No. PCT/US2008/012364 dated Mar. 13, 2009. |
Final Office Action regarding U.S. Appl. No. 10/940,877, dated Apr. 27, 2009. |
Office Action dated May 6, 2009 from Related U.S. Appl. No. 11/830,729. |
Notice of Allowance and Fees Due and Notice of Allowability regarding U.S. Appl. No. 11/256,641, dated May 19, 2009. |
Final Office Action regarding U.S. Appl. No. 11/214,179, dated May 29, 2009. |
Office Action dated Jun. 17, 2009 from Related U.S. Appl. No. 12/033,765. |
Office Action dated Jun. 19, 2009 from Related U.S. Appl. No. 11/866,295. |
Second Office action issued by the Chinese Patent Office dated Jun. 19, 2009 regarding Application No. 200510005907.8, translation provided by CCPIT Patent and Trademark Law Office. |
Third Office Action issued by the Chinese Patent Office on Jun. 19, 2009 regarding Application No. 200580013451.8, translated by CCPIT Patent and Trademark Law Office. |
Second Office Action received from the Chinese Patent Office dated Jun. 26, 2009 regarding Application No. 200480011463.2, translated by CCPIT Patent and Trademark Law Office. |
Office Action for U.S. Appl. No. 11/497,644, dated Jul. 10, 2009. |
Office Action regarding U.S. Appl. No. 11/098,575, dated Jul. 13, 2009. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Jul. 20, 2009. |
Notice of Panel Decision from Pre-Appeal Brief Review regarding U.S. Appl. No. 09/977,552, dated Aug. 4, 2009. |
Office Action regarding U.S. Appl. No. 11/098,582, dated Aug. 4, 2009. |
Office Action regarding U.S. Appl. No. 11/337,918, dated Aug. 17, 2009. |
Advisory Action regarding U.S. Appl. No. 11/214,179, dated Aug. 28, 2009. |
Notice of Allowance regarding U.S. Appl. No. 10/940,877, dated Sep. 4, 2009. |
Office Action regarding U.S. Appl. No. 11/394,380, dated Sep. 25, 2009. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Sep. 28, 2009. |
Office Action for U.S. Appl. No. 11/497,579, dated Oct. 27, 2009. |
Examination Report received from Australian Government IP Australia dated Oct. 29, 2009 regarding patent application No. 2008202088. |
Second Official Report regarding Australian Patent Application No. 2007214381, dated Oct. 30, 2009. |
Advisory Action Before the Filing of an Appeal Brief regarding U.S. Appl. No. 11/098,575, dated Nov. 16, 2009. |
Supplementary European Search Report regarding Application No. PCT/US2006/005917, dated Nov. 23, 2009. |
Examiner-Initiated Interview Summary regarding U.S. Appl. No. 11/214,179, dated Dec. 11, 2009. |
Examiner's Answer regarding U.S. Appl. No. 09/977,552, dated Dec. 17, 2009. |
First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009. |
Non-Final Office Action for U.S. Appl. No. 11/098,575 dated Jan. 27, 2010. |
Office Action regarding U.S. Appl. No. 11/497,644, dated Jan. 29, 2010. |
Restriction Requirement regarding U.S. Appl. No. 11/214,179, dated Feb. 2, 2010. |
Final Office action regarding U.S. Appl. No. 11/337,918, dated Feb. 4, 2010. |
Office Action regarding U.S. Appl. No. 11/120,166, dated Feb. 17, 2010. |
Office Action regarding U.S. Appl. No. 11/098,582 dated Mar. 3, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/009618, dated Mar. 24, 2010. |
Interview Summary regarding U.S. Appl. No. 11/098,582, dated Apr. 27, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/012362, dated May 4, 2010. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/012364, dated May 4, 2010. |
Interview Summary regarding U.S. Appl. No. 11/497,644, dated May 4, 2010. |
Applicant-Initiated Interview Summary and Advisory Action regarding U.S. Appl. No. 13/369,067, dated Jul. 23, 2015. |
Faramarzi et al., “Performance Evaluation of Rooftop Air Conditioning Units at High Ambient Temperatures,” 2004 ACEEE Summer Study on Energy Efficiency in Buildings—http://aceee.org/files/proceedings/2004/data/papers/SSO4—Panel3—Paper05.pdf. |
Notice of Allowance regarding U.S. Appl. No. 12/261,643, mailed Jul. 29, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Aug. 13, 2015. |
Notice of Allowance and Interview Summary regarding U.S. Appl. No. 13/269,188, dated Aug. 26, 2015. |
Office Action regarding Indian Patent Application No. 733/KOLNP/2009, dated Aug. 12, 2015. |
Applicant-Initiated Interview Summary regarding U.S. Appl. No. 14/212,632, dated Sep. 2, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/369,067, dated Sep. 2, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/407,180, dated Sep. 4, 2015. |
Final Office Action regarding U.S. Appl. No. 13/770,479, dated Sep. 4, 2015. |
Search Report regarding European Patent Application No. 13736303.2-1806, dated Sep. 17, 2015. |
First Office Action regarding Chinese Patent Application No. 201280010796.8, dated Sep. 14, 2015. Translation provided by Unitalen Attorneys At Law. |
Notice of Allowance regarding U.S. Appl. No. 13/770,123, dated Oct. 1, 2015. |
Office Action regarding Australian Patent Application No. 2013323760, dated Sep. 25, 2015. |
Office Action and Interview Summary regarding U.S. Appl. No. 14/244,967, dated Oct. 7, 2015. |
Office Action regarding U.S. Appl. No. 14/255,519, dated Nov. 9, 2015. |
Office Action regarding U.S. Appl. No. 14/212,632, dated Nov. 19, 2015. |
Interview Summary regarding U.S. Appl. No. 13/770,479, dated Nov. 25, 2015. |
Office Action regarding Chinese Patent Application No. 201380049458.X, dated Nov. 13, 2015. Translation provided by Unitalen Attorneys at Law. |
Search Report regarding European Patent Application No. 08251185.8-1605 / 2040016, dated Dec. 4, 2015. |
Interview Summary regarding U.S. Appl. No. 12/054,011, dated Jan. 30, 2012. |
Office Action regarding U.S. Appl. No. 14/193,568, dated Nov. 3, 2015. |
Office Action regarding Chinese Patent Application No. 201380005300.2, dated Jan. 4, 2016. Translation provided by Unitalen Attorneys at Law. |
Office Action regarding Australian Patent Application No. 2015207920, dated Dec. 4, 2015. |
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Feb. 9, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Feb. 12, 2016. |
Office Action regarding European Patent Application No. 08848538.8-1608, dated Feb. 3, 2016. |
Advisory Action regarding U.S. Appl. No. 14/212,632, dated Mar. 8, 2016. |
Office Action regarding U.S. Appl. No. 14/212,632, dated Apr. 7, 2016. |
Office Action regarding U.S. Appl. No. 12/943,626, dated May 4, 2016. |
Office Action regarding Australian Patent Application No. 2014229103, dated Apr. 28, 2016. |
Office Action regarding U.S. Appl. No. 14/617,451, dated Jun. 2, 2016. |
Office Action regarding U.S. Appl. No. 14/193,568, dated Jun. 1, 2016. |
Office Action regarding U.S. Appl. No. 14/080,473, dated Jun. 6, 2016. |
U.S. Appl. No. 12/261,643, filed Oct. 30, 2008. |
U.S. Appl. No. 12/943,626, filed Nov. 10, 2010. |
U.S. Appl. No. 13/269,188, filed Oct. 7, 2011. |
U.S. Appl. No. 13/369,067, filed Feb. 8, 2012. |
U.S. Appl. No. 13/407,180, filed Feb. 28, 2012. |
U.S. Appl. No. 13/767,479, filed Feb. 14, 2013. |
U.S. Appl. No. 13/770,123, filed Feb. 19, 2013. |
U.S. Appl. No. 13/770,479, filed Feb. 19, 2013. |
U.S. Appl. No. 13/784,890, filed Mar. 5, 2013. |
U.S. Appl. No. 13/835,621, filed Mar. 15, 2013. |
U.S. Appl. No. 13/835,742, filed Mar. 15, 2013. |
U.S. Appl. No. 13/835,810, filed Mar. 15, 2013. |
U.S. Appl. No. 13/836,043, filed Mar. 15, 2013. |
U.S. Appl. No. 13/836,453, filed Mar. 15, 2013. |
U.S. Appl. No. 13/932,611, filed Jul. 1, 2013. |
U.S. Appl. No. 14/033,604, filed Sep. 23, 2013. |
U.S. Appl. No. 14/080,473, filed Nov. 14, 2013. |
U.S. Appl. No. 14/212,632, filed Mar. 14, 2014. |
U.S. Appl. No. 14/244,967, filed Apr. 4, 2014. |
U.S. Appl. No. 14/255,519, filed Apr. 17, 2014. |
U.S. Appl. No. 14/300,782, filed Jun. 10, 2014. |
U.S. Appl. No. 14/607,782, filed Jan. 28, 2015. |
U.S. Appl. No. 14/617,451, filed Feb. 10, 2015. |
International Search Report and Written Opinion of the ISA regarding International Application No. PCT/US2014/032927, ISA/KR dated Aug. 21, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/836,043, dated Oct. 9, 2014. |
Notice of Allowance for related U.S. Appl. No. 13/836,244, dated Oct. 30, 2014. |
Office Action for related U.S. Appl. No. 13/269,188, dated Oct. 6, 2014. |
Office Action for related U.S. Appl. No. 13/767,479, dated Oct. 21, 2014. |
International Search Report and Written Opinion for related PCT Application No. PCT/US2014/028859, dated Aug. 22, 2014. |
Non Final Office Action for U.S. Appl. No. 13/407,180, dated Dec. 2, 2014. |
Notice of Allowance and Fees Due regarding U.S. Appl. No. 13/737,566, dated Sep. 24, 2014. |
Second Office Action from the State Intellectual Property Office of People's Republic of China regarding Chinese Patent Application No. 201110349785.X, dated Jul. 25, 2014. Translation provided by Unitalen Attorneys at Law. |
Examiner's Report No. 1 regarding Australian Patent Application No. 2013202431, dated Nov. 25, 2014. |
Patent Examination Report for Austrialian Application No. 2012223466 dated Jan. 6, 2015. |
Notice of Allowance for U.S. Appl. No. 13/835,742 dated Dec. 24, 2014. |
Notice of Allowance for U.S. Appl. No. 13/835,810 date Jan. 2, 2015. |
Notice of Allowance for U.S. Appl. No. 13/836,453 dated Dec. 24, 2014. |
Office Action for U.S. Appl. No. 13/835,621 dated Dec. 29, 2014. |
Final Office Action for U.S. Appl. No. 13/770,123 dated Dec. 22, 2014. |
Notice of Allowance for U.S. Appl. No. 13/836,043 dated Feb. 4, 2015. |
Office Action for U.S. Appl. No. 13/767,479 dated Feb. 6, 2015. |
Office Action for U.S. Appl. No. 13/269,188 dated Feb. 10, 2015. |
Office Action for Canadian Application No. 2,828,740 dated Jan. 12, 2015. |
Third Chinese Office Action regarding Application No. 201110349785.X, dated Jan. 30, 2015. Translation provided by Unitalen Attorneys at Law. |
Non-Final Office Action regrding U.S. Appl. No. 13/932,611, dated Jan. 30, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/835,621, dated Mar. 10, 2015. |
Interview Summary regarding U.S. Appl. No. 13/269,188, mailed Mar. 18, 2015. |
Final Office Action and Interview Summary regarding U.S. Appl. No. 13/407,180, mailed Mar. 13, 2015. |
Office Action regarding U.S. Appl. No. 13/770,479, mailed Mar. 16, 2015. |
Office Action regarding U.S. Appl. No. 13/770,123, mailed Apr. 2, 2015. |
Notice of Allowance regarding U.S. Appl. No. 13/767,479, dated Mar. 31, 2015. |
Office Action from U.S. Appl. No. 13/369,067 dated Apr. 3, 2015. |
Haiad et al., “EER & SEER as Predictors of Seasonal Energy Performance”, Oct. 2004, Southern California Edison, http://www.doe2.com/download/DEER/SEER%2BProgThermostats/EER-SEER—CASE—ProjectSummary—Oct2004—V6a.pdf. |
“Manual for Freezing and Air Conditioning Technology,” Fan Jili, Liaoning Science and Technology Press, Sep. 1995 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009). |
“Small-type Freezing and Air Conditioning Operation,” Chinese State Economy and Trading Committee, China Meteorological Press, Mar. 2003 (cited in First Office Action issued by the Chinese Patent Office regarding Application No. 200780030810.X dated Dec. 25, 2009). |
Home Comfort Zones, Save Energy with MyTemp™ Zone Control, Dec. 2009. |
Home Comfort Zones, MyTemp Room-by-Room Zone Control, Nov. 2009. |
Li et al., “Development, Evaluation, and Demonstration of a Virtual Refrigerant Charge Sensor,” Jan. 2009, HVAC&R Research, Oct. 27, 2008, 21 pages. |
Home Comfort Zones, MyTemp User Manual v4.3, May 2008. |
Home Comfort Zones, Smart Controller™ MyTemp™ Room by Room Temperature Control and Energy Management, User Manual, Aug. 2007. |
“A Practical Example of a Building's Automatic Control,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007, regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office. |
“Product Performance Introduction of York Company,” cited in First Office Action from the Patent Office of the People's Republic of China dated Jun. 29, 2007 regarding Application No. 200510005907.8, including translation by CCPIT Patent and Trademark Law Office. |
Torcellini, P., et al., “Evaluation of the Energy Performance and Design Process of the Thermal Test Facility at the National Renewable Energy Laboratory”, dated Feb. 2005. |
Cost Cutting Techniques Used by the Unscrupulous, http://www.kellyshvac.com/howto.html, Oct. 7, 2004, 3 pages. |
Search Report regarding European Patent Application No. 13841699.5, dated Jun. 30, 2016. |
Office Action regarding Chinese Patent Application No. 201480016023.X, dated Jun. 22, 2016. Translation provided by Unitalen Attorneys at Law. |
Interview Summary regarding U.S. Appl. No. 14/617,451, dated Jul. 28, 2016. |
Office Action regarding U.S. Appl. No. 14/208,636, dated Aug. 4, 2016. |
Advisory Action regarding U.S. Appl. No. 14/193,568, dated Aug. 10, 2016. |
Office Action regarding U.S. Appl. No. 14/727,756, dated Aug. 22, 2016. |
Office Action regarding U.S. Appl. No. 14/244,967, dated Aug. 29, 2016. |
Office Action regarding U.S. Appl. No. 15/096,196, dated Sep. 13, 2016. |
Office Action regarding Canadian Patent Application No. 2,904,734, dated Sep. 13, 2016. |
Number | Date | Country | |
---|---|---|---|
20140262134 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61800636 | Mar 2013 | US |