Not applicable.
Not applicable.
Not applicable.
Heating, ventilation, and air conditioning systems (HVAC systems) sometimes comprise an auxiliary heat transfer component (AHTC). An AHTC may be configured to provide a heating effect, a cooling effect, or both. In some embodiments, an AHTC may be disposed within a so-called “air handling unit” (hereinafter referred to as an “AHU”) that may comprise a primary heat exchanger (hereinafter referred to as a PHE) and one or more fans and/or blowers configured to selectively force air through the AHTC and/or the PHE of an HVAC system for delivery into a building or space to be conditioned by the HVAC system.
In some embodiments of the disclosure, an HVAC system is provided that comprises an airflow path, a primary heat exchanger disposed along the airflow path, wherein the airflow path at least partially passes through the primary heat exchanger, and a multipurpose cabinet selectively configurable between at least a first configuration for housing a first type of auxiliary heat transfer component and a second configuration for housing a second type of auxiliary heat transfer component, wherein the airflow path at least partially passes through the multipurpose cabinet.
In other embodiments of the disclosure, a multipurpose cabinet for an HVAC system is provided that comprises a plurality of walls, at least one backing plate, and a front cover. In some embodiments, the plurality of walls and the front cover are configurable to be joined together to at least partially envelope a space the multipurpose cabinet comprises a first configuration for housing at least a portion of a first type of auxiliary heat exchange component within the space and wherein the multipurpose cabinet comprises a second configuration for, to the exclusion of the first type of auxiliary heat exchange component, housing at least a portion of a second type of auxiliary heat exchange component within the space.
In still other embodiments of the disclosure, an air handling unit for an HVAC system is provided that comprises a blower cabinet, a blower at least partially carried within the blower cabinet, a primary heat exchanger cabinet, a primary heat exchanger at least partially carried within the primary heat exchanger cabinet, and a multipurpose cabinet comprising a first configuration for housing at least a portion of a first type of auxiliary heat exchange component within the multipurpose cabinet and a second configuration for, to the exclusion of the first type of auxiliary heat exchange component, housing at least a portion of a second type of auxiliary heat exchange component within the multipurpose cabinet.
For a more complete understanding of the present disclosure and the advantages thereof, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
HVAC systems may comprise an auxiliary heat transfer component (AHTC) in addition to a primary heat exchanger (PHE). In some embodiments, the AHTC may be configured for use in the case of failure of a PHE. In other embodiments, an AHTC may be configured for use in concert with a PHE to provide the HVAC system with supplemental heat transfer capacity. For example, when a heating PHE, such as a furnace, is used in combination with a heating AHTC, the total heating capacity of the HVAC system may comprise at least the sum of the heating capacities of the heating AHTC and the heating PHE. Similarly, when a cooling PHE, such as an evaporator coil, is used in combination with a cooling AHTC, the total cooling capacity of the HVAC system may comprise at least the sum of the cooling capacities of the cooling AHTC and the cooling PHE.
In other embodiments of an HVAC system, an AHTC may be configured for simultaneous use with a PHE to provide the HVAC system an improved ability to more accurately deliver a desired rate of heat transfer and/or to deliver air to a conditioned space at a selected temperature with greater control. For example, because a cooling PHE may cool air to a temperature below a desired delivery temperature, a heating AHTC may be used to warm the air so that a selected delivery temperature may be achieved. Similarly, because a heating PHE may heat air to a temperature above a desired delivery temperature, a cooling AHTC may be used to cool the air so that a selected delivery temperature may be achieved.
In some embodiments, a single PHE may selectively provide heating or cooling, as may be the case of a heat exchanger of a so-called heat pump system. Similarly, an AHTC may selectively provide heating or cooling, as may be the case of a hydronic heat exchanger (HHE) which primarily uses heated or cooled water as a heat transfer medium. In other embodiments, an AHTC may comprise one or more resistive electrical heat elements (REHE) that are configured to generate heat by converting electrical energy into heat energy.
While some embodiments of an REHE may generate temperatures of about 160° F. or above, an HHE may generate temperatures that typically do not exceed 180° F. Further, while an REHE requires a supply of electrical energy and associated electrical switching components, an HHE, in some cases, may require only a water input line and a water output line. As described above, the operating conditions and structural requirements of various types of AHTCs may be different. Those differences may lead to undesirably high manufacturing costs and/or inefficiencies related to manufacturing multiple types of AHTC enclosure models and/or AHTC cabinet models suitable for housing the various types of AHTCs.
There is a need for an HVAC system comprising a cabinet that is suitable for use with multiple types of AHTCs. Accordingly, the present disclosure provides systems and methods for safely and effectively housing various types of AHTCs within a so-called “multipurpose cabinet” for AHTCs. In some embodiments, a multipurpose cabinet may comprise materials and other features to safely house an REHE and its required electrical connections while also being configured to alternatively safely house an HHE and its required water input line and water output line, the multipurpose cabinet being generally configured to house one type of AHTC at any one time. In some embodiments, the multipurpose cabinet may comprise features provided to allow easy insertion and/or removal of a plurality of types of AHTCs. For example, in some embodiments, a multipurpose cabinet may comprise features well suited for allowing easy insertion, removal, and/or housing an REHE when the multipurpose cabinet is arranged in a first configuration and alternatively well suited for allowing easy insertion, removal, and/or housing an HHE when the multipurpose cabinet is arranged in a second configuration. In some embodiments, the multipurpose cabinet may be formed integrally with an AHU. In some embodiments, the multipurpose cabinet may be removable from an AHU in a modular and/or quick-connect manner. In some embodiments, the multipurpose cabinet may be configured for installation remote from an AHU and may be configured for insertion along an airflow path of an HVAC system that is downstream or upstream of an AHU.
The outdoor unit 104 comprises a compressor 118, an outdoor heat exchanger (sometimes referred to as a condenser coil) 120, and an outdoor fan 122. In operation of the compressor 118 to provide a cooling effect, refrigerant may be compressed by the compressor 118 and pumped through a discharge line 124 to the outdoor heat exchanger 120. The outdoor fan 122 may be operated to cool the refrigerant passing through the outdoor heat exchanger 120 and the refrigerant may be passed through a liquid line 126 to the primary heat exchanger 114. Prior to reaching the PHE 114, the refrigerant may be passed through a refrigerant expansion device 128 which results in a cooling of the refrigerant. The refrigerant may be returned to the compressor 118 through a suction line 130. The cooled refrigerant cools the PHE 114 and the blower 112 may be operated to move air along an airflow path 132. The airflow path 132, in some embodiments, at least partially originates and at least partially terminates in a space 134 conditioned by the HVAC system 100. Most generally, the airflow path 132 may be configured to pass through the AHU 102 so that the air following the airflow path 132 may be selectively conditioned by the PHE 114 and/or the AHTC 116. Of course, in alternative embodiments, such as, but not limited to, heat pump HVAC systems, an HVAC system 100 may be configured differently from the manner shown in
In some embodiments, the HVAC system 100 may further comprise a water temperature adjustment device 136. The water temperature adjustment device 136 may comprise a boiler, a water chiller refrigeration system, and/or any other suitable component for selectively adjusting the temperature of water. In some embodiments, the temperature of water may be adjusted by the water temperature adjustment device 136 and the water may thereafter be forced by a pump 138 from the water temperature adjustment device 136 to the AHTC 116 through an inlet line 140. During operation of the blower 112, air may interact with the AHTC 116 in a manner that results in an adjustment of the air temperature prior to delivering the air to the space 134. In some embodiments, water may be returned to the water temperature adjustment device 136 via an outlet line 142.
It will be appreciated that in cases where the multipurpose cabinet 110 may be configured in a second configuration to house an AHTC 116 comprising an REHE, the HVAC system 100 may not comprise one or more of the above-described water temperature adjustment device 136, pump 138, inlet line 140, and outlet line 142. Instead, the HVAC system may further comprise electrical switches and electrical power supply wires routed to the AHTC 116 to selectively power the REHE.
The AHU 102 is referred to as a so-called blow-through AHU 102 because the blower 112 may be located upstream along the airflow path 132 relative to the PHE 114. In this embodiment, the multipurpose cabinet 110 is located adjacent the primary heat exchanger cabinet 108 and downstream relative to both the primary heat exchanger cabinet 108 and the blower cabinet 106.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The AHTC 116 comprising the HHE 144 may be installed into the multipurpose cabinet 110 by sliding the AHTC 116 into the multipurpose cabinet until a rear portion of the AHTC 116 engages and/or is spatially constrained by the HHE backing plate 156 and the AHTC front mounting bracket 160 engages and/or is spatially constrained by the one or more shelves 158. After such insertion, the water inlet line 140 and water outlet line 142 may be passed through access aperture 164 of the front cover 154 and the lines 140, 142 may be joined to the HHE. Additionally, electrical wires and/or conduit may be passed through holes 162 of the multifunction cabinet 110. Depending on the orientation of the multifunction cabinet 110 relative to its surroundings, the holes 162 of the left wall 148, the right wall 150, or the top crossbar 152 may be used to accept the electrical wires and/or conduit therethrough. After the inlet line 140 and the outlet line 142 are connected as described above, the front cover 154 may be assembled to the left wall 148 and the right wall 150.
Referring now to
In some embodiments, the AHTC 116 comprising the REHE 166 may be installed into the multipurpose cabinet 110 by sliding the AHTC 116 into the multipurpose cabinet 110 until a rear portion of the AHTC 116 engages and/or is spatially constrained by the REHE backing plate 168 and the AHTC front mounting bracket 160 engages and/or is spatially constrained by the one or more shelves 158. After such insertion, electrical wires may be passed through holes 162 and connected to the REHE 166 and electrical components may be carried within a concavity of the AHTC front mounting bracket 160. In this second configuration, a front portion of a breaker 170 associated with the REHE 166 may be allowed to protrude at least partially into the access aperture 164 of the front cover 154, thereby allowing convenient access to the breaker 170. In some embodiments, the AHTC front mounting bracket 160 may serve as a baffle to prevent air leakage from the multifunction cabinet 110.
Referring now to
Referring now to
At least one embodiment is disclosed and variations, combinations, and/or modifications of the embodiment(s) and/or features of the embodiment(s) made by a person having ordinary skill in the art are within the scope of the disclosure. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiment(s) are also within the scope of the disclosure. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, RI, and an upper limit, Ru, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=RI+k * (Ru−RI), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . 50 percent, 51 percent, 52 percent, . . . 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed. Use of the term “optionally” with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having should be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of. Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present invention.