The present invention relates generally to heating, ventilating, air conditioning and refrigeration systems, and more particularly to techniques for controlling fluid flow in such systems.
A wide range of applications exist for heating, ventilating, air conditioning and refrigeration (HVAC&R) systems. For example, residential, light commercial, commercial and industrial systems are used to control temperatures and air quality in residences and buildings. Such systems often are dedicated to either heating or cooling, although systems are common that perform both of these functions. Very generally, these systems operate by implementing a thermal cycle in which fluids are heated and cooled to provide the desired temperature in a controlled space, typically the inside of a residence or building. Similar systems are used for vehicle heating and cooling, and as well as for general refrigeration.
Controlled fluids within such systems are typically confined with enclosed circuits and include various refrigerants. Refrigerants are specifically formulated to undergo phase changes within the normal operating temperatures and pressures of the systems so that considerable quantities of heat can be exchanged by virtue of the latent heat of vaporization of the circulated refrigerant. In most such systems, for example, the refrigerant is evaporated in one heat exchanger to draw heat from air circulating through the heat exchanger for cooling purposes. Conversely, the refrigerant is then condensed in a different heat exchanger to release heat from the refrigerant and thereby heat an air stream. Depending upon whether the evaporating heat exchanger and condensing heat exchanger are inside of the controlled space or outside of the controlled space, the system will function to heat or cool the air within the space.
A number of locations in such systems are subject to careful control of the flow of circulating refrigerant. For example, a distributor is commonly provided upstream of the evaporating heat exchanger to form separate paths for refrigerant flowing through that device. Other locations of fluid control include reversing valves used to change the direction of flow in heat pumps, valves used to control the flow direction of refrigerant for defrosting external evaporating coils during winter months (typically also the reversing valve of a heat pump) and so forth.
While such fluid control devices are useful and offer highly efficient and functional systems, further improvement is desired. For example, it would be desirable to allow for a higher degree of control of individual circuits, and control of existing circuits in a way that would use less energy or provide a more cost-effective solution.
The present invention relates to a heat exchanger system with a plurality of valves for simultaneously and independently metering fluid flow through heat exchanger tubes in a first direction. The system includes bypass valving coupled fluidly around the plurality of valves and control circuitry coupled to the bypass valving. The control circuitry is configured to selectively open the bypass valving when the fluid is flowing through the heat exchanger in a second direction opposite to the first direction to direct the fluid around the plurality of valves.
The present invention also relates to a heat exchanger system with a plurality of valves each fluidly coupled to a respective heat exchanger tube or tube group and each configured to simultaneously and independently meter fluid flow through the respective heat exchanger tube or tube group. The system includes bypass valving coupled fluidly around the plurality of valves and configured to selectively bypass the plurality of valves in response to a signal from control circuitry.
The present invention further relates to a method for promoting heat exchange to or from a fluid. The method includes circulating a refrigerant through a plurality of valves to regulate flow through heat exchanger tubes in a first direction when the heat exchanger is functioning as an evaporator, circulating the refrigerant through the plurality of valves to regulate flow through the heat exchanger tubes in a second direction to defrost the heat exchanger tubes, and bypassing the plurality of vavles by circulating the refrigerant through a bypass valving coupled fluidly around the plurality of valves to flow refrigerant through the heat exchanger tubes in a second direction opposite to the first direction when the heat exchanger is functioning as a condenser.
The present invention further relates to a heat exchanger system with a plurality of flow paths for circulating a fluid through a heat exchanger, each of the plurality of flow paths having a first valve for metering fluid flow through the flow path. The system also includes a valve bank fluidly coupled to each of the plurality of flow paths and configured to selectively direct the fluid from each of the plurality of the flow paths to a sensor.
The present invention further relates to a heat pump system with a compressor configured to compress a refrigerant, a heat exchanger configured to evaporate the refrigerant in a heat pump mode of operation and to condense the refrigerant in an air conditioning mode of operation, an accumulator configured to store the refrigerant in the heat pump mode of operation, and bypass valving coupled fluidly around the heat exchanger and configured to tap vapor phase refrigerant upstream of the heat exchanger and to circulate the tapped vapor phase refrigerant to the accumulator in the heat pump mode of operation.
When the system shown in
Outdoor unit 16 draws in environmental air through its sides as indicated by the arrows directed to the sides of the unit, forces the air through the outer unit coil by a means of a fan (not shown), and expels the air as indicated by the arrows above the outdoor unit. When operating as an air conditioner, the air is heated by the condenser coil within the outdoor unit and exits the top of the unit at a temperature higher than when it entered the sides. Air is blown over indoor coil 18 and is then circulated through residence 10 by means of ductwork 20, as indicated by the arrows entering and exiting ductwork 20. The overall system operates to maintain a desired temperature as set by a thermostat 22. When the temperature sensed inside the residence is higher than the set point on the thermostat (plus a small amount), the air conditioner will become operative to refrigerate additional air for circulation through the residence. When the temperature reaches the set point (minus a small amount), the unit will stop the refrigeration cycle temporarily.
When the unit in
Chiller 30, which includes heat exchangers for both evaporating and condensing a refrigerant as described above, cools water that is circulated to the air handlers. Air blown over additional coils that receive the water in the air handlers causes the water to increase in temperature and the circulated air to decrease in temperature. The cooled air is then routed to various locations in the building via additional ductwork. Ultimately, distribution of the air is routed to diffusers that deliver the cooled air to offices, apartments, hallways, and any other interior spaces within the building. In many applications, thermostats or other command devices (not shown in
System 40 cools an environment by cycling refrigerant within closed refrigeration loop 42 through a condenser 46, a compressor 48, an expansion device 50, and an evaporator 52. The refrigerant enters condenser 46 as a high pressure and temperature vapor and flows through the multichannel tubes of the condenser. A fan 54, which is driven by a motor 56, draws air across the multichannel tubes. The fan may push or pull air across the tubes. As the air flows across the tubes, heat transfers from the refrigerant vapor to the air, producing heated air 58 and causing the refrigerant vapor to condense into a liquid. The liquid refrigerant then flows into an expansion device 50 where the refrigerant expands to become a low pressure and temperature liquid. Typically, expansion device 50 will be a thermal expansion valve (TXV); however, according to other exemplary embodiments, the expansion device may be an orifice or a capillary tube. After the refrigerant exits the expansion device, some vapor refrigerant may be present in addition to the liquid refrigerant.
From expansion device 50, the refrigerant enters evaporator 52 and flows through the evaporator multichannel tubes. A fan 60, which is driven by a motor 62, draws air across the multichannel tubes. As the air flows across the tubes, heat transfers from the air to the refrigerant liquid, producing cooled air 64 and causing the refrigerant liquid to boil into a vapor. According to certain embodiments, the fan may be replaced by a pump that draws fluid through the evaporator. The evaporator may be a shell-and-tube heat exchanger, brazed plate heat exchanger, or other suitable heat exchanger.
The refrigerant then flows to compressor 48 as a low pressure and temperature vapor. Compressor 48 reduces the volume available for the refrigerant vapor, consequently, increasing the pressure and temperature of the vapor refrigerant. The compressor may be any suitable compressor such as a screw compressor, reciprocating compressor, rotary compressor, swing link compressor, scroll compressor, or turbine compressor. Compressor 48 is driven by a motor 66 that receives power from a variable speed drive (VSD) or a direct AC or DC power source. According to an exemplary embodiment, motor 66 receives fixed line voltage and frequency from an AC power source although in certain applications the motor may be driven by a variable voltage or frequency drive. The motor may be a switched reluctance (SR) motor, an induction motor, an electronically commutated permanent magnet motor (ECM), or any other suitable motor type. The refrigerant exits compressor 48 as a high temperature and pressure vapor that is ready to enter the condenser and begin the refrigeration cycle again.
The control devices 44, which include control circuitry 68, an input device 70, and a temperature sensor 72, govern the operation of the refrigeration cycle. Control circuitry 68 is coupled to the motors 56, 62, and 66 that drive condenser fan 54, evaporator fan 60, and compressor 48, respectively. Control circuitry 68 uses information received from input device 70 and sensor 72 to determine when to operate the motors 56, 62, and 66 that drive the air conditioning system. In certain applications, the input device may be a conventional thermostat. However, the input device is not limited to thermostats, and more generally, any source of a fixed or changing set point may be employed. These may include local or remote command devices, computer systems and processors, and mechanical, electrical and electromechanical devices that manually or automatically set a temperature-related signal that the system receives. For example, in a residential air conditioning system, the input device may be a programmable 24-volt thermostat that provides a temperature set point to the control circuitry. Sensor 72 determines the ambient air temperature and provides the temperature to control circuitry 68. Control circuitry 68 then compares the temperature received from the sensor to the temperature set point received from the input device. If the temperature is higher than the set point, control circuitry 68 may turn on motors 56, 62, and 66 to run air conditioning system 40. The control circuitry may execute hardware or software control algorithms to regulate the air conditioning system. According to exemplary embodiments, the control circuitry may include an analog to digital (A/D) converter, a microprocessor, a non-volatile memory, and an interface board. Other devices may, of course, be included in the system, such as additional pressure and/or temperature transducers or switches that sense temperatures and pressures of the refrigerant, the heat exchangers, the inlet and outlet air, and so forth.
Heat pump system 74 includes an outside coil 80 and an inside coil 82 that both operate as heat exchangers. The coils may function either as an evaporator or a condenser depending on the heat pump operation mode. For example, when heat pump system 74 is operating in cooling (or “AC”) mode, outside coil 80 functions as a condenser, releasing heat to the outside air, while inside coil 82 functions as an evaporator, absorbing heat from the inside air. When heat pump system 74 is operating in heating mode, outside coil 80 functions as an evaporator, absorbing heat from the outside air, while inside coil 82 functions as a condenser, releasing heat to the inside air. A reversing valve 84 is positioned on reversible loop 76 between the coils to control the direction of refrigerant flow and thereby to switch the heat pump between heating mode and cooling mode.
Heat pump system 74 also includes two metering devices 86 and 88 for decreasing the pressure and temperature of the refrigerant before it enters the evaporator. The metering devices also regulate the refrigerant flow entering the evaporator so that the amount of refrigerant entering the evaporator equals, or approximately equals, the amount of refrigerant exiting the evaporator. The metering device used depends on the heat pump operation mode. For example, when heat pump system 74 is operating in cooling mode, refrigerant bypasses metering device 86 and flows through metering device 88 before entering inside coil 82, which acts as an evaporator. In another example, when heat pump system 74 is operating in heating mode, refrigerant bypasses metering device 88 and flows through metering device 86 before entering outside coil 80, which acts as an evaporator. According to other exemplary embodiments, a single metering device may be used for both heating mode and cooling mode. The metering devices typically are thermal expansion valves (TXV), but also may be orifices or capillary tubes.
The refrigerant enters the evaporator, which is outside coil 80 in heating mode and inside coil 82 in cooling mode, as a low temperature and pressure liquid. Some vapor refrigerant also may be present as a result of the expansion process that occurs in metering device 86 or 88. The refrigerant flows through multichannel tubes in the evaporator and absorbs heat from the air changing the refrigerant into a vapor. In cooling mode, the indoor air flowing across the multichannel tubes also may be dehumidified. The moisture from the air may condense on the outer surface of the multichannel tubes and consequently be removed from the air.
After exiting the evaporator, the refrigerant passes through reversing valve 84 and into a compressor 90. Compressor 90 decreases the volume of the refrigerant vapor, thereby, increasing the temperature and pressure of the vapor. The compressor may be any suitable compressor such as a screw compressor, reciprocating compressor, rotary compressor, swing link compressor, scroll compressor, or turbine compressor.
From compressor 90, the increased temperature and pressure vapor refrigerant flows into a condenser, the location of which is determined by the heat pump mode. In cooling mode, the refrigerant flows into outside coil 80 (acting as a condenser). A fan 92, which is powered by a motor 94, draws air across the multichannel tubes containing refrigerant vapor. According to certain exemplary embodiments, the fan may be replaced by a pump that draws fluid across the multichannel tubes. The heat from the refrigerant is transferred to the outside air causing the refrigerant to condense into a liquid. In heating mode, the refrigerant flows into inside coil 82 (acting as a condenser). A fan 96, which is powered by a motor 98, draws air across the multichannel tubes containing refrigerant vapor. The heat from the refrigerant is transferred to the inside air causing the refrigerant to condense into a liquid.
After exiting the condenser, the refrigerant flows through the metering device (86 in heating mode and 88 in cooling mode) and returns to the evaporator (outside coil 80 in heating mode and inside coil 82 in cooling mode) where the process begins again.
In both heating and cooling modes, a motor 100 drives compressor 90 and circulates refrigerant through reversible refrigeration/heating loop 76. The motor may receive power either directly from an AC or DC power source or from a variable speed drive (VSD). The motor may be a switched reluctance (SR) motor, an induction motor, an electronically commutated permanent magnet motor (ECM), or any other suitable motor type.
The operation of motor 100 is controlled by control circuitry 102. Control circuitry 102 receives information from an input device 104 and sensors 106, 108, and 110 and uses the information to control the operation of heat pump system 74 in both cooling mode and heating mode. For example, in cooling mode, input device 104 provides a temperature set point to control circuitry 102. Sensor 110 measures the ambient indoor air temperature and provides it to control circuitry 102. Control circuitry 102 then compares the air temperature to the temperature set point and engages compressor motor 100 and fan motors 94 and 98 to run the cooling system if the air temperature is above the temperature set point. In heating mode, control circuitry 102 compares the air temperature from sensor 110 to the temperature set point from input device 104 and engages motors 94, 98, and 100 to run the heating system if the air temperature is below the temperature set point.
Control circuitry 102 also uses information received from input device 104 to switch heat pump system 74 between heating mode and cooling mode. For example, if input device 104 is set to cooling mode, control circuitry 102 will send a signal to a solenoid 112 to place reversing valve 84 in an air conditioning position 114. Consequently, the refrigerant will flow through reversible loop 76 as follows: the refrigerant exits compressor 90, is condensed in outside coil 80, is expanded by metering device 88, and is evaporated by inside coil 82. If the input device is set to heating mode, control circuitry 102 will send a signal to solenoid 112 to place reversing valve 84 in a heat pump position 116. Consequently, the refrigerant will flow through the reversible loop 76 as follows: the refrigerant exits compressor 90, is condensed in inside coil 82, is expanded by metering device 86, and is evaporated by outside coil 80.
The control circuitry may execute hardware or software control algorithms to regulate heat pump system 74. According to exemplary embodiments, the control circuitry may include an analog to digital (A/D) converter, a microprocessor, a non-volatile memory, and an interface board.
The control circuitry also may initiate a defrost cycle when the system is operating in heating mode. When the outdoor temperature approaches freezing, moisture in the outside air that is directed over outside coil 80 may condense and freeze on the coil. Sensor 106 measures the outside air temperature, and sensor 108 measures the temperature of outside coil 80. These sensors provide the temperature information to the control circuitry which determines when to initiate a defrost cycle. For example, if either sensor 106 or 108 provides a temperature below freezing to the control circuitry, system 74 may be placed in defrost mode. In defrost mode, solenoid 112 is actuated to place reversing valve 84 in air conditioning position 114, and motor 94 is shut off to discontinue air flow over the multichannel tubes. System 74 then operates in cooling mode until the increased temperature and pressure refrigerant flowing through outside coil 80 defrosts the coil. Once sensor 108 detects that coil 80 is defrosted, control circuitry 102 returns the reversing valve 84 to heat pump position 116. As will be appreciated by those skilled in the art, the defrost cycle can be set to occur at many different time and temperature combinations.
It should be noted that while reference is made in the present discussion to “multichannel” tubes used in HVAC&R systems, other types and configurations of tubes may be used in conjunction with certain embodiments described herein, particularly those relating to valving and the control of flow to enhance system performance.
Flow through either or both of the heat exchangers in the systems described above may be performed in a closed-loop and individualized manner as illustrated diagrammatically in
As discussed in greater detail below, the control valving 118 may include small individually controlled valves which regulate the flow through each of the flow paths of the heat exchanger. The control valving 118 may be housed within a common distributor, provided as separate components, or housed within other structures. In certain embodiments, the small individually controlled valves may include pneumatic or hydraulic silicon valves with orifices ranging from approximately 0.01 mm to 1.75 mm. However, in other embodiments, the valves may be constructed of other suitable materials and may have orifices of any size. Further, the valves may allow for proportional control, on/off control, and the like. The system also includes one or more sensors as indicated by reference numeral 124, which may include sensors for both temperature and pressure. In certain embodiments, individual sensors may be provided for each group of tubes, or even for individual tubes of the heat exchanger. In certain other embodiments a single temperature and pressure sensor may be provided. The number of sensors may be varied in specific embodiments based upon the degree of individualized controlled desired for the flow of refrigerant.
The sensors are coupled to control circuitry 126 for directing signals representative of the sensed parameters to the control circuitry. Such control circuitry may include any suitable processors, memory, computers, field programmable gate arrays, and so forth. More generally, the control circuitry may be independent of or the same as the control circuitry used for regulating the overall operation of the system as described above. In certain embodiments, specific and separate control circuitry may be provided (e.g., local to the associated heat exchanger) that can nevertheless be interfaced with the overall control circuitry, such that control circuitry 126 receives the sensed parameter signals and regulates operation of the control valving 118 in a closed-loop manner. In operation, then, the control valving 118 is commanded to open or close flow paths (or to meter flow) to circulate refrigerant through the heat exchanger, with air, as indicated by arrow 128 being drawn or forced through the heat exchanger to heat or cool the air as described above.
As noted above, the individualized control of fluid flow through the heat exchanger flow paths can be performed on an individual tube basis, or on a group of tubes. In general, a balance will be struck between the quality of control desired, with generally superior or optimized control being provided with individual regulation of flow through individual flow paths each instrumented separately, and the cost of such control. Where component costs can be sufficiently reduced, for example, optimal control may be provided by individual valving on each individual flow tube which may also be equipped with its own sensors for closed-loop regulation. Acceptable compromises might include, however, grouping tubes together for full control and for sensing purposes. Moreover, any suitable devices may be utilized for regulating the control of fluid flow, with a presently contemplated devices including small MEMS valves of the type commercially available from Microstaq Inc. of Austin, Tex. Such valves require very little energy for control purposes, and can regulate or meter flow based upon a simple control input from the control circuitry.
In the arrangement of
To facilitate optimal defrosting, then, control valving is provided for optimizing flow through the various flow paths. In a presently contemplated embodiment, an individual control valve bank 236 includes a series of flow control valves which may be generally of the type described above with respect to
Bypass valving 238 is also provided to permit flow to bypass the valve bank 236. In certain embodiments, bypass valving 238 may include small individually controlled valves that provide for on/off control, proportional control, and the like. However, any suitable type of valves may be employed in the bypass valving. Such bypass valving may, in practice, be built mechanically into the valve bank 236, or separate valving may be provided. The bypass valving 238 allows for regulation of flow through the separate flow path of the heat exchanger during the defrost cycle operation as described above, but allows metering via the valve bank 236 to be avoided during normal AC mode operation of the heat pump. That is, as will be appreciated by those skilled in the art, during AC mode operation, the flow of refrigerant through the heat exchanger will be reversed as compared to direction of arrows 232 in
As will be appreciated by those skilled in the art, because heat exchanger 80 in heat pump mode will function as an evaporator, there is no need for vapor present in the line at the location of vapor tap 258 to be circulated through this heat exchanger. In fact, tapping of vapor upstream of this heat exchanger will improve the efficiency and performance of the system, by avoiding the unnecessary super heating of the vapor and promoting more efficient phase change heating of the liquid entering the heat exchanger. When the system operates in AC mode, then, valve 260 may be closed and the system may operate normally, drawing stored refrigerant from the accumulator 256 for circulation. In certain embodiments, control circuitry, such as described above with respect to
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application claims priority from and the benefit of U.S. Provisional Application Ser. No. 61/013,364, entitled “HVAC&R SYSTEM EMPLOYING UNIQUE VALVING,” filed Dec. 13, 2007; and PCT Application Serial No. PCT/US08/86665, entitled “HVAC&R SYSTEM VALVING,” filed Dec. 12, 2008 which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61013364 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US08/86665 | Dec 2008 | US |
Child | 12780527 | US |