The present invention relates to the field of high voltage direct current power transmission, and in particular to high voltage direct current breakers.
A High Voltage Direct Current (HVDC) breaker is a switching device capable of making, breaking and continuously carrying a DC current at a high voltage. An HVDC breaker is often used as a component in an HVDC system for power transmission.
Since there are no natural zero-crossings of the current or voltage in a direct current system, special attention has to be given to HVDC circuit breaker design. The power transmitted via an HVDC system is typically very high, and can for example be in the order of GW. When breaking the current in an HVDC system with a mechanical interrupter in the HVDC breaker, an arc is built up between the interrupter contacts, which can only be extinguished by forcing a current zero. As the arc has a negative resistance, a resonant circuit has been introduced in order to create artificial current zeros in mechanical HVDC breakers. Furthermore, a non-linear resistor is typically connected in parallel with the resonant circuit. Once the arc current has been forced to zero, the current is commutated to the non-linear resistor, which absorbs the energy of the interruption process and limits the voltage. Known further techniques for facilitating the extinguishing of the arc are the use of an inert gas, such as SF6, or the placement of the interrupter contacts in a vacuum vessel. As an alternative to mechanical HVDC breakers, solid state HVDC breakers are proposed in the art which make use of a power semiconductor switch as interrupter.
A problem to which the present invention relates is how to obtain an HVDC voltage breaker that could efficiently be used for breaking an HVDC current during normal operation as well as in a line fault situation.
The invention relates to an HVDC breaker comprising at least two HVDC breaker sections connected in series, wherein at least one of the HVDC breaker sections or at least one group of the HVDC breaker sections is arranged to be controlled individually from the other HVDC breaker sections. The HVDC breaker is arranged in a manner so that the number of HVDC breaker sections tripped upon tripping of the HVDC breaker depends on the operational event in response to which the tripping occurs.
By tripping the HVDC breaker it is meant that the state of the HVDC breaker is changed from a closed to an open state while current is flowing through the HVDC breaker, where according to the invention not always all series connected sections of the HVDC breaker are operated but only a certain number of them. In order to be able to trip—or operate—only a certain number of the HVDC breaker sections, the sections are arranged to be controlled individually either in groups or even one by one or a mixture thereof. The number of HVDC breaker sections which is tripped depends on the operational event in response to which the tripping occurs. This has the advantage that the breaking capability of the HVDC breaker can be adapted to the demands of the present operational event. A suitable balance between fast breaking operation and disturbances in the system caused by the breaking operation can be found for each operational event individually.
In one aspect, an HVDC breaker section comprises at least one mechanical interrupter and/or at least one power semiconductor interrupter.
In another aspect, at least one HVDC breaker section comprises a section status indicating device arranged to detect if the operation of an HVDC breaker section has been unsuccessful. The section status indicating device is further arranged to generate a section status signal indicative of unsuccessful operation in case an HVDC breaker section has not operated successfully. Hereby, it is achieved that an unsuccessful operation of an HVDC breaker section can be quickly detected, and a major impact of such fault upon the breaking procedure can often be avoided.
In yet another aspect, the HVDC breaker comprises at least one redundant HVDC breaker section, i.e. at least one HVDC breaker section more than actually needed for the full operation of the HVDC breaker. Hereby is achieved that an efficient breaking operation may be ensured even in the event of one or more faulty HVDC breaker sections.
The invention further relates to a control apparatus for controlling the tripping of an HVDC breaker. The control apparatus comprises: a system status signal interface arranged to receive system status signals of at least two different types, wherein the system status signal type is indicative of an operational event in an HVDC system of which the HVDC breaker forms a part; a section actuating signal interface arranged to transmit, to the HVDC breaker, a section actuating signal causing at least one individually controllable HVDC breaker section and/or group of HVDC breaker sections of the HVDC breaker to trip; and an actuating control mechanism connected to the system status signal interface and to the section actuating signal interface. The actuating control mechanism is arranged to determine, based on information relating to the type of at least one received system status signal, the number of HVDC breaker sections and/or groups of HVDC breaker sections that should be tripped, and to send, via the section actuating signal interface, a corresponding section actuating signal or signals to trip said number of HVDC breaker sections and/or groups of HVDC breaker sections.
In one aspect, the actuating control mechanism of the control apparatus is further arranged to select which of the HVDC breaker sections and/or groups of HVDC breaker sections are to be tripped in response to the receipt of the system status signal and to send, via the section actuating signal interface, the corresponding section actuating signal or signals to trip the selected HVDC breaker sections and/or groups of HVDC breaker sections.
In another aspect, the control apparatus further comprises: an interface arranged to receive, from a section status indicating device, a section status signal indicative of unsuccessful operation of an HVDC breaker section. In this aspect, the actuating control mechanism is arranged to send, in response to receipt of a section status signal indicative of unsuccessful operation of an HVDC breaker section, a section actuating signal to trip a currently closed HVDC breaker section or group of HVDC breaker sections.
The invention also relates to an HVDC breaker system including a control apparatus and an HVDC breaker according to the embodiments described above, as well as to an HVDC power transmission system comprising such HVDC breaker system.
The invention further relates to a method of interrupting a DC current in an HVDC system, the method comprising: receiving, in a control apparatus for controlling an HVDC breaker having at least two HVDC breaker sections, a system status signal the type of which is indicative of an operational event requiring the interruption of the DC current; determining, in dependence on the type of the system status signal received, the number of HVDC breaker sections and/or groups of HVDC breaker sections to be used for interruption of the DC current; and sending, to the HVDC breaker, a corresponding section actuating signal or signals to trip said number of HVDC breaker sections and/or groups of HVDC breaker sections.
An example of an HVDC circuit breaker 100 is schematically illustrated in
When a current-carrying circuit which comprises the HVDC circuit breaker 100 of
An example of a HVDC system 200 wherein two HVDC converters 205 are connected by means of an HVDC line 210 is schematically illustrated in
The HVDC converter 205 which is shown in
Equipment of HVDC system 200 being located on the AC side of HVDC converter 205 is said to form part of the AC side of the HVDC system 200, whereas equipment located between the HVDC converters 205 is said to form part of the DC side of the HVDC system 200. An AC circuit breaker 220 is shown on the AC side of HVDC system 200, as well as a transformer 225. On the DC side, an arrester 235 is included on both sides of the breaker 100 in order to protect the HVDC system 200 from overvoltages. Furthermore, current measurement equipment 240 is included on the DC side in order to facilitate for measurement of the current in the HVDC line 210, as well as voltage measurement equipment 245 for measuring the voltage at a position in the HVDC system 200. Current measurement equipment 240 could for be a DC current transducer of any type. Voltage measurement equipment 245 of
An HVDC breaker 100 is typically dimensioned for breaking of a particular current at a particular voltage. For example, the non-linear resistance 120 can be designed so that its resistance drops at a particular voltage, this voltage value for example being selected in such a way that the voltage drop at the rated surge current of the breaker 100 will be in accordance with the rated voltage of the breaker 100; the capacitance 130 can be chosen so that the current oscillations upon opening of the interrupter 105 will be sufficiently large to extinguish the arc current, etc. The voltage across the non-linear resistance 120 at rated surge current is often referred to as the Switching Impulse Protection Level (SIPL).
When an HVDC breaker 100 is used for interrupting a DC current in a short circuit or earth fault situation, hereinafter referred to as a line fault situation, the breaking time is often a critical factor for limiting the disturbance of power transmission in the un-faulty part of the system. The stresses of the system and the risk of damage caused by a short circuit current typically increases the longer time the short circuit current is allowed to flow in the system.
However, the interruption of a DC current in an HVDC system 200 by means of an HVDC breaker 100 may be desired under a number of different circumstances. As discussed above, in case of a line fault on the HVDC line 210, the breaking of the HVDC line 210 may be very urgent in order to limit the disturbances and damages caused by short-circuit currents. It may also sometimes be desired to disconnect the HVDC line 210 under normal operation. For example, an HVDC breaker 100 could be used for disconnection of an HVDC converter 205 from the HVDC line 210; for disconnection of an HVDC line 210 from a multi-station HVDC system 200; etc. However, the requirements on an HVDC breaker 100 for breaking an HVDC line 210 during normal operation are typically different to those on an HVDC breaker 100 for breaking a faulty line. In a line fault situation such as a short circuit or earth fault, the voltage required over the breaker 100 generally exceeds the rated voltage. When breaking the HVDC line 210 during normal operation, on the other hand, the required voltage is considerably smaller, typically in the order of 20-40% of the rated voltage. If a breaker 100 designed to set up a considerably higher counter voltage is used for breaking of the HVDC line during normal operation, voltage transients will occur, which will stress and disturb other parts of the system 200.
During normal operation, it is typically of importance that the breaking of the HVDC line 210 does not disturb the operation of the HVDC system 200 in an unacceptable manner, whereas time might not be such a critical factor—if the breaking of the current takes time, no harm is done. In a short-circuit or earth fault situation, on the other hand, breaking of the current is urgent, and a fast breaking of the current generally has a higher priority than keeping the disturbances in other parts of HVDC system 200 at a low level. Furthermore, the voltage stress will be less as the voltage on one side of the HVDC breaker 100 is nil. At breaking of normal load, the voltage on both sides of the HVDC breaker 100 amounts to the rated voltage, on top of which the transients of from the HVDC breaker 100 will be added.
The absolute value of the time derivative of the current through the non-linear resistor 120 increases with increasing voltage over the non-linear resistor 120. Hence, the properties of the non-linear resistor 120 effects the current breaking time of HVDC breaker 100. The higher the voltage over the non-linear resistance 120, the higher will be the rate of decrease of the current. A large value of the SIPL of the non-linear resistor 120 is thus desired in a line fault situation. However, with a larger SIPL, larger transients will occur, which will stress the arresters 235, etc of a system 200. Hence, in an HVDC breaker 100 for breaking an HVDC line 210 during normal operation, a smaller value of the SIPL of the non-linear resistor 120 would typically be desired than in a line fault situation. With a non-linear resistor 120 having a smaller SIPL, the transients will be smaller, at the expense of breaking operation speed.
By connecting a set of HVDC breaker sections in series, the HVDC breaker sections and/or pre-selected groups of the HVDC breaker sections being individually controllable, an HVDC breaker which is suitable for breaking an HVDC line 210 both in a line fault situation and during normal operation can be achieved. An HVDC breaker 300 comprising a set of HVDC breaker sections 305 is schematically illustrated in
In an HVDC breaker 300 comprising a set of HVDC breaker sections 305 which are connected in series, the non-linear resistors 120 of the HVDC breaker sections 305 which are tripped in response to an operational event will act together to absorb the energy of the interruption process. Hence, the voltage over each non-linear resistor 120 will be less than if an HVDC breaker 100 having only one HVDC breaker section were to be used. Thus, non-linear resistors 120 having a lower SIPL value could be used. As a consequence, the maximum voltage experienced by capacitance 130 will be lower, and the physical size of a capacitor providing the capacitance 130 can be reduced.
By providing a set of series-connected HVDC breaker sections 305 in an HVDC breaker 300, where the sections are individually controllable either one by one or in groups or in a mixture thereof, the breaking capacity of the HVDC breaker 300 can be adapted to the demands of a particular operational event. For example, an HVDC breaker 300 could be designed so that when all HVDC breaker sections 305 of the set are tripped at the same time, the HVDC breaking capability of the HVDC breaker 300 corresponds to the requirements of a line fault situation. Hence, in the operational event of a line fault situation, all the HVDC breaker sections 305 of such an HVDC breaker 300 would be tripped. On the other hand, in the operational event of disconnecting an HVDC converter 205 or an HVDC line 210 during normal operation, for maintenance purposes for example, it may be sufficient to trip only one or some of the HVDC breaker sections 305 of such HVDC breaker 300, since the time requirement is not as strict. Any voltage transients arising from the line breaking action will hence be smaller than if a large HVDC breaker 100, designed to break the HVDC line 200 in a line fault situation, was to be tripped.
Hence, an HVDC breaker 300 comprising a set of series-connected, individually controllable HVDC breaker sections 305 or groups of HVDC breaker sections can be adjusted to the present demands, and provide on-demand current breaking properties.
The number of HVDC breaker sections 305 to be tripped in response to a particular operational event could depend on the type of event. Examples of operational events which could require the tripping of one or more HVDC breaker sections 305 or groups of HVDC breaker sections 305 of HVDC breaker 300 are: a scheduled disconnection of an HVDC converter 205; an earth fault on the HVDC line 210 connected via the HVDC breaker 300; the loss of auxiliary power to an HVDC converter 205, etc. A suitable number of HVDC sections 305 and/or groups of HVDC sections 305 to be tripped could be set for a particular event so that a suitable balance between a fast breaking operation and small transients is obtained.
An example of an HVDC breaker system 401 comprising an HVDC breaker 300 and a control apparatus 400 for individually controlling the tripping action of the HVDC breaker sections 305 of an HVDC breaker 300 is schematically illustrated in
The control apparatus 400 of
The system status signal interface 410 is arranged to receive system status signals 420. A system status signal 420 could for example be a signal generated by a protection device arranged to detect a particular fault occurring in a particular part of the HVDC system 200. Examples of protection devices which could generate a system status signal 420 are the current measurement equipment 240 and the voltage measurement equipment 245 of
An operations and maintenance (O & M) system could also be arranged to generate a system status signal 420 which is received by the system status signal interface 410, if desired, for example in case of a scheduled breaking operation of the HVDC line 210. A system status signal 420 could also be manually entered into system status signal interface 410 by means of a user interface.
Any system status signals 420 received by the system status signal interface 410 will be relayed to the actuating control mechanism 405. The actuating control mechanism is arranged to receive at least two types of system status signals 420. System status signals 420 to which the actuating control mechanism 405 is arranged to respond to in the same manner will be referred to as being of the same system status signal type. Different system status signals 420 of the same type may come from different system status signal sources. Based on the type or types of the received system status signal or signals 420, the actuating control mechanism 405 will determine the number of HVDC breaker sections 305 and/or groups of HVDC breaker sections 305 to trip. Furthermore, the actuating control mechanism 405 will send, via section actuating signal interface 415 to the HVDC breaker 300, at least one section actuating signal 435 indicative of the number of HVDC breaker sections 305 and/or groups of HVDC breaker sections 305 which should be tripped. In one implementation, such section actuating signal 435 is sent as an individual section actuating signal 435 to each of the interrupters 105 of the HVDC breaker sections 305 that should be tripped (cf.
In
The section status signal 445 could be seen as a type of system status signal 420, and the section status signal interface 450 could be seen as part of the system status signal interface 410. The same, or different, physical interfaces could be used for implementation of the system status signal interface 410 and the section status signal interface 450. Furthermore, the interfaces 410 and 415 could be the same, or different, physical interfaces.
An actuating control mechanism could preferably be designed so that if system status signals of different types are received at the same time, the signal of the type requiring the opening of the highest number of HVDC breaker sections 305 will prevail. In this way, it can be ensured that the required number of HVDC breaker sections 305 will always be instructed to open.
An HVDC breaker 300 could be designed to include one or more redundant HVDC breaker sections 305, so that the tripping of less than all HVDC breaker sections 305 would be required also in the worst case line fault scenario. This can be achieved by ensuring that the sum of the SIPL-values of the non-linear resistors 130 of less than all HVDC breaker sections 305 exceeds the rated line voltage of the HVDC breaker 300, so that the counter voltage generated across the HVDC breaker 300 upon tripping of less than all HVDC breaker sections 305 will exceed the rated voltage with sufficient margin to interrupt the current. Thus, in case a faulty operation of an HVDC breaker section 305 is discovered by the actuating control mechanism 405, for example by receipt of a section status indicating signal 445, there will be another HVDC breaker section 305 to trip also in the worst case scenario.
A redundant HVDC breaker section 305 could also be provided, if desired, in an HVDC breaker 300 wherein no section status indicating device 440 is provided. In such an implementation, all HVDC breaker sections 305, including the redundant HVDC breaker section, could be immediately tripped in response to a worst case line fault scenario, thus yielding a breaking speed—when all HVDC breaker sections 305 operate correctly—that exceeds the requirements for breaking a short circuited HVDC line 210.
A flowchart schematically illustrating the operation of an example of an actuating control mechanism 405 is shown in
At step 500 of
In one embodiment, step 505 could include a decision, not only relating to how many HVDC breaker sections 305 and/or groups thereof should be tripped in response to one or more system status signals 420, but could also include a step of selecting which HVDC breaker sections 305 and/or groups thereof should be tripped in the event of part-tripping of the HVDC breaker 300, i.e. in the event when less than all HVDC breaker sections 305 are to be opened in order to break the current. Also in the event of part-tripping, the remaining and thereby closed HVDC breaker sections 305 could eventually be opened once the current has been interrupted, as will be discussed below. Selecting which HVDC breaker sections 305 and/or groups thereof should be opened could for example be performed based on a value obtained from a random number generator, or based on information on which HVDC breaker sections 305 and/or groups thereof were used last time the HVDC breaker 300 was partly tripped, or on information relating to how many times each HVDC breaker section 305 has been tripped, or on the type of the received system status signal 420, or in any other suitable way. By varying which HVDC breaker sections 305 and/or groups thereof are tripped upon part-tripping of an HVDC breaker 300, and/or varying which HVDC breaker section 305 is the redundant breaker section 305—if any—, the usage of the different HVDC breaker sections 305 can be approximately the same. Thus, the different HVDC breaker sections 305 will be aged at approximately the same rate. Furthermore, the chances of detecting a faulty HVDC breaker section 300 will increase. In one embodiment, a step of selecting which HVDC breaker sections and/or groups thereof to trip is instead performed in the HVDC breaker 300, the selection being based on similar principles. Alternatively, no selection step is performed, so that the same HVDC breaker sections 305 will be tripped in response to the same type of system status signals 420.
In one embodiment, the HVDC breaker sections 305 and/or groups thereof that are tripped upon a particular operational event are tripped at the same time, and any further HVDC breaker sections 305 will remain closed. In another embodiment, if opening of less than all HVDC breaker sections 305 is required for breaking the arc current, some or all of the remaining and thereby closed HVDC breaker sections 305 could also be opened once the current has been interrupted, in order to reduce the maximum voltage that each non-linear resistor 130 would risk to experience. For example, once the current has been interrupted by immediate tripping of the required HVDC breaker sections 305, the remaining closed HVDC breaker sections 305 could be tripped in a sequence, one after the other, with a particular time interval; for example in the range of 10-100 ms. The timing of the tripping of the different HVDC breaker sections 305 could for example be controlled by the actuating control mechanism 405 sending the section actuating signals 435 in a sequential manner. Alternatively, once the arc current has been interrupted, the remaining closed HVDC breaker sections 305 could be opened all at the same time. The time interval between the tripping of different HVDC breaker sections 305 could depend on the operational event in response to which the tripping occurs, or could be independent on operational event.
As mentioned in relation to
In one implementation, a section status indicating device 440 of an HVDC breaker section 305 will only send a section status signal 445 if the tripping of the HVDC breaker section 305 was unsuccessful. Hence, in this implementation, step 605 could be omitted, and step 610 would unconditionally be entered upon receipt of a section status signal 445.
The actuating control mechanism 435 could be implemented by means of hardware, or a suitable combination of hardware and software.
The actuating control mechanism 405 of
For each of the system status signal types of which the actuating control mechanism 405 is arranged to receive system status signals 420 from more than one source, the actuating control mechanism 405 comprises an input OR-gate. Input OR-gates 700a-d of
Although in
Actuating control mechanism 405 further comprises, for each HVDC breaker section 305 to be controlled by the control apparatus 400 of which the actuating control mechanism 405 forms a part, a relay device 710. In
The output from an input OR-gate 700 can be connected to the input of one or more relay devices 710, so that the receipt of an system status signal 420 will cause a section actuating signal 435 to be sent to one or more HVDC breaker sections 305 of an HVDC breaker 300. The output from an input OR-gate 700 can for example be connected to an input of a relay device 710 either directly or semi-directly—via an output OR-gate 715, as discussed below—, or via one or more time delay mechanisms 720. A time delay mechanism 720 is arranged to delay the transmission of the tripping signal 705 to the relay device 710 by a time period τ. Four time delay mechanisms 720ii-v are included in the actuating control mechanism 405 of
A relay device 710 can be connected to more than one input OR-gates 700, so that the transmission of a section actuating signal 435 by the relay device 710 can be triggered by more than one type of system status signal 420.
Hence, the connection between an input OR-gate 700 and a relay device 710 can for example be a direct connection; a connection via a further OR-gate 715, referred to as an output OR-gate 715, to which other OR-gates 700 serving other system status signal types are also connected; a connection via a delay mechanism 720; or a connection via a delay mechanism 720 and an output OR-gate 715. A direct connection can be used when the triggering of a section actuating signal 435 by a particular relay device 710 should occur immediately and only in response to one type of system status signal 420. No such connection is shown in
As mentioned above, the HVDC breaker 300 to be controlled by the actuating control mechanism 405 of
The actuating control mechanism of
Input AND-OR-gates 700a-e and output OR-gates 715i-v of
System status signal interface 410, section actuating signal interface 415 and section status signal interface 450 are not shown in
In
In order to further improve the reliability of a sectionalised HVDC breaker 300, the sectionalised HVDC breaker 300 may be combined with a redundant control system. In
The combination of a sectionalised HVDC breaker 300 and a duplicated control system results in a very high degree of reliability. No single contingency failure will cause unsuccessful operation of the HVDC breaker 300. For example, if a status signal 420A fails, a corresponding status signal 420B will still be received by control apparatus 400B; if the control apparatus 400A fails, control apparatus 400B will still order the required operation of the HVDC breaker 300; if one HVDC breaker section 305 fails, a section status indicating device 440 could initiate the operation of a further HVDC breaker section 305. Furthermore, in most cases when several HVDC breaker sections 305 are ordered to interrupt the DC current, the correctly operating HVDC breaker sections 305 will interrupt the DC current even if one HVDC section 305 fails.
The monopolar HVDC system 200 of
Sectionalized HVDC breakers 300 are located at several locations in system 200 of
By providing the possibility of efficiently breaking an HVDC line 210 in a manner so that the trade-off between a short breaking time and low transients in the system 200 can be customized for different operational events, the use of sectionalized HVDC breakers 300 can considerably reduce the risk of a properly operating HVDC converter 205 or HCDC line 210 having to be taken out of operation when another part of the system 200 is exhibiting a fault or is due for service or maintenance. For example, if HVDC line 210:1 of
An HVDC breaker section 305 could for example be designed in accordance with the HVDC breaker 100 of
In the appended drawings, the HVDC breakers 300 have been illustrated such that the section actuating signals 435 are received directly by the interrupter 105 of an HVDC breaker section 305. However, the invention is equally applicable to HVDC breaker designs where section actuating signals 435 are initially received by another part of the HVDC breaker 300, such as for example a processor controlling the operation of an interrupter 105.
The size of a capacitance 130 of an HVDC breaker section 305 is typically selected so that the maximum current expected to occur in the breaker 300, for example in the order of ten times the rated line current, can efficiently be commutated to the capacitance 130. The inductance 125 of the resonant circuit 115 could often be formed by the stray inductance of the circuit 115, so that no separate inductance 125 is required, or, alternatively, an inductor may be introduced in resonant circuit 115.
The different HVDC breaker sections 305 of an HVDC breaker 300 could be identical, or could be designed to have different properties. For example, a non-linear resistor 120 of a first HVDC breaker section 305 could have a different value than the non-linear resistor 120 of another HVDC breaker section 305. This would result in different requirements also on the capacitances 130. Furthermore, some but not all of the HVDC breaker sections 305 could include a pre-insertion resistor; some but not all could include an electronic support circuit, some but not all could include a section status indicating device 440, etc.
The value of the total SIPL-value of an HVDC breaker 300, i.e. the sum of the SIPL value of the non-linear resistors 120 of the different HVDC breaker sections 305, not including the SIPL value of any redundant HVDC breaker sections 305, should preferably exceed the rated line voltage of the HVDC line 210. The value of the ratio between the total SIPL value and the rated line voltage could preferably be set so that the non-linear resistors 120 would not be harmed even if the open HVDC breaker 300 is exposed to the full line voltage during a longer period of time, and so that the energized HVDC converter 205 from the HVDC line 210 is efficiently isolated from the HVDC line 210 in case of earth faults. A suitable value of the total SIPL depends inter alia on properties of the material from which the non-linear resistors 120 are formed. When the non-linear resistors 120 are formed from zinc oxide, this value could for example be 1.5-1.8 times the rated line voltage. If one or more redundant HVDC breaker sections 305 are included in the HVDC breaker 300, the sum of all the SIPL-values of the non-linear resistors of the HVDC breaker 300, including the redundant section or sections, typically exceeds the desired total SIPL-value at least by the SIPL value of the redundant HVDC breaker sections 305.
As mentioned above, the non-linear resistors 120 could for example be zinc oxide resistors arranged in a configuration which provides a desired SIPL. A non-linear resistor 120 could alternatively be formed from other materials, such as for example silicon carbide.
Although various aspects of the invention are set out in the accompanying independent claims, other aspects of the invention include the combination of any features presented in the above description and/or in the accompanying claims, and not solely the combinations explicitly set out in the accompanying claims.
One skilled in the art will appreciate that the technology presented herein is not limited to the embodiments disclosed in the accompanying drawings and the foregoing detailed description, which are presented for purposes of illustration only, but it can be implemented in a number of different ways, and it is defined by the following claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/064113 | 10/27/2009 | WO | 00 | 5/22/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/050832 | 5/5/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2938387 | Hamilton | May 1960 | A |
3275892 | Schweitzer, Jr. | Sep 1966 | A |
3351814 | Riebs | Nov 1967 | A |
4614843 | Coulmance | Sep 1986 | A |
20030193770 | Chung | Oct 2003 | A1 |
20120032762 | Lescale | Feb 2012 | A1 |
20130293985 | Lescale | Nov 2013 | A1 |
20140055903 | Juhlin | Feb 2014 | A1 |
Number | Date | Country |
---|---|---|
0 749 140 | Dec 1996 | EA |
0 108 279 | May 1984 | EP |
Number | Date | Country | |
---|---|---|---|
20120234796 A1 | Sep 2012 | US |