Hyaluronic acid-collagen matrices for dermal filling and volumizing applications

Information

  • Patent Grant
  • 11833269
  • Patent Number
    11,833,269
  • Date Filed
    Tuesday, October 8, 2019
    4 years ago
  • Date Issued
    Tuesday, December 5, 2023
    4 months ago
Abstract
Hydrogels comprising a macromolecular matrix and water may be used for aesthetic fillers, for example, dermal fillers. The macromolecular matrix may include a crosslinked combination of hyaluronic acid and collagen.
Description
SUMMARY

The present invention generally relates to a soft tissue aesthetic product. In one aspect, the product comprises a filler comprising a hydrogel having a form suitable for injecting into human tissue; and a label comprising instructions to inject the filler into the human tissue; wherein the hydrogel comprises water, and a crosslinked macromolecular matrix described herein.


Some embodiments include a method of improving an aesthetic quality of soft tissue of a human being comprising: injecting a hydrogel composition into a soft tissue of the human being to thereby improve the aesthetic quality of the soft tissue; wherein the hydrogel composition comprises water, and a crosslinked macromolecular matrix described herein.


Some embodiments include a method of generating tissue comprising contacting a tissue with a hydrogel composition to generate an additional amount of the tissue, wherein the hydrogel composition comprises water and a crosslinked macromolecular matrix described herein.


Some crosslinked molecular matrices may comprise a hyaluronic acid component; and a collagen component; wherein the hyaluronic acid component is crosslinked to the collagen component by a crosslinking component; and wherein the crosslinking component comprises a plurality of crosslink units, wherein at least a portion of the crosslink units comprise an ester bond or an amide bond.





BRIEF DESCRIPTION OF THE DRAWINGS

Some aspects of the present disclosure may be more clearly understood with reference to the appended drawings of which:



FIG. 1A is a plot of frequency sweep and FIG. 1B is a plot of strain sweep for a hydrogel in accordance with this disclosure.



FIG. 2 is an extrusion profile through a 30G needle for a hydrogel from Example 4.



FIGS. 3A-3C shows respectively, micrographs (at 5× magnification) of (A) tissue adjacent to an implanted control composition of commercial crosslinked hyaluronic acid gel, (B) tissue adjacent to an implanted composition of Example 3, and (C) tissue adjacent to an implanted composition from Example 4.





DETAILED DESCRIPTION

Some embodiments include a method of improving an aesthetic quality of soft tissue of a human. Such a method may comprise injecting a hydrogel composition, or a composition comprising a hydrogel, into a soft tissue of the human being to thereby improve the aesthetic quality of the soft tissue.


Some embodiments may include a soft tissue aesthetic product comprising: a filler comprising a hydrogel having a form suitable for injecting into human tissue and a label comprising instructions to inject the filler into the human tissue.


A filler comprising a hydrogel or a hydrogel composition may be any kind of filler that is suitable for injecting into human tissue to improve an aesthetic quality of a soft tissue, such as a dermal filler, a breast augmentation or reconstruction filler, a lip filler, hand rejuvenation, or the like. When injected, a hydrogel may stimulate tissue in-growth and generation after being injected into the soft tissue. In some embodiments, a hydrogel may stimulate collagenesis after being injected into the soft tissue.


Injecting a hydrogel comprising a crosslinked macromolecular matrix comprising a hyaluronic acid component that is crosslinked to a collagen component may provide improved aesthetic quality for an extended duration, as compared to injecting an identical hydrogel except that hyaluronic acid component and the collagen component are not crosslinked.


Some embodiments include a method of generating tissue comprising contacting a tissue with a hydrogel composition to generate an additional amount of the tissue. This method may be used to generate tissue both ex vivo and in vivo. In some embodiments, contact between a tissue and a hydrogel may be ex vivo. In some embodiments, contact between a tissue and a hydrogel may be in vivo. Tissue types that may be generated include, but are not limited to, adipose tissue, muscle tissue, tendon tissue, cardiovascular tissue, neural tissue, bone tissue, and the like.


Some embodiments include a packaged product comprising a syringe loaded with a hydrogel and a needle. A syringe may be fitted with a needle of any size that is appropriate for injecting the hydrogel into the soft tissue of interest, such as a needle with about a #25, about a #30, or a larger gauge.


A filler comprising a hydrogel may be suitable for injection if it can be injected into the soft tissue of interest without unreasonable difficulty, and includes fillers that can be dispensed from cannulas having gauge as low as about #30 or about #25 under normal manual pressure with a smooth extrusion plateau.


Injection of a hydrogel may provide a soft tissue augmentation that mimics the natural components of the skin. A hydrogel may be injected intradermally or subcutaneously to augment soft tissue and to repair or correct congenital anomalies, acquired defects, or cosmetic defects. Examples of such conditions include congenital anomalies such as hemifacial microsomia, malar and zygomatic hypoplasia, unilateral mammary hypoplasia, pectus excavatum, pectoralis agenesis (Poland's anomaly), and velopharyngeal incompetence secondary to cleft palate repair or submucous cleft palate (as a retropharyngeal implant); acquired defects (post traumatic, post surgical, or post infectious) such as depressed scars, subcutaneous atrophy (e.g., secondary to discoid lupus erythematosus), keratotic lesions, enophthalmos in the enucleated eye (also superior sulcus syndrome), acne pitting of the face, linear scleroderma with subcutaneous atrophy, saddle-nose deformity, Romberg's disease, and unilateral vocal cord paralysis; and cosmetic defects such as glabellar frown lines, deep nasolabial creases, circum-oral geographical wrinkles, sunken cheeks, and mammary hypoplasia.


Crosslinked hyaluronic acid, collagen, and crosslinked collagen, such as those used in dermal fillers, do not promote cellular infiltration and tissue in-growth. Similarly, collagen simply blended into hyaluronic acid hydrogels does not promote tissue integration or de novo tissue generation. However, some hydrogels described herein do promote cellular migration into the hydrogels and tissue formation within the gels when implanted in vivo.


A hydrogel may comprise water and a crosslinked macromolecular matrix. Typically, a crosslinked molecular matrix may comprise a hyaluronic acid component and a collagen component, wherein the hyaluronic acid component is crosslinked to the collagen component by a crosslinking component. A crosslinking component may comprise a plurality of crosslink units, wherein at least a portion of the crosslink units comprise an ester bond or an amide bond.


A crosslinked macromolecular matrix for a hydrogel may be synthesized by coupling a hyaluronic acid with a collagen using a coupling agent, such as a carbodiimide. In these hydrogels, hyaluronic acid may serve as a biocompatible water-binding component, providing bulk and isovolumetric degradation. Additionally, collagen may impart cell adhesion and signaling domains to promote cell attachment, migration, and other cell functions such as extra-cellular matrix deposition. The biopolymers form homogeneous hydrogels with tunable composition, swelling, and mechanical properties. Compositions can be made to be injectable for minimally invasive implantation through syringe and needle.


Hyaluronic acid is a non-sulfated glycosaminoglycan that enhances water retention and resists hydrostatic stresses. It is non-immunogenic and can be chemically modified in numerous fashions. Hyaluronic acid may be anionic at pH ranges around or above the pKa of its carboxylic acid groups.




embedded image


Collagen is a protein that forms fibrils and sheets that bear tensile loads. Collagen also has specific integrin-binding sites for cell adhesion and is known to promote cell attachment, migration, and proliferation. Collagen may be positively charged because of its high content of basic amino acid residues such as arginine, lysine, and hydroxylysine.


Because hyaluronic acid may be anionic and collagen may be cationic, the two macromolecules may form polyionic complexes in aqueous solution. A polyionic complex may be significantly less soluble in water than either hyaluronic acid or collagen, and thus may precipitate out of aqueous solution when the two macromolecules are together in a mixture.


Under certain conditions, a hyaluronic acid and a collagen may be combined in an aqueous liquid in which both components are soluble. A hyaluronic acid and a collagen may then be crosslinked while both are dissolved in an aqueous solution to form a hydrogel. Reaction conditions such as the concentration of hyaluronic acid, the concentration of collagen, the pH of the solution, and salt concentration may be adjusted to help to prevent polyionic complex formation between anionic hyaluronic acid and cationic collagen. They may also help to prevent collagen microfibril formation.


Some embodiments include a method of crosslinking hyaluronic acid and collagen. This method generally comprises a dissolution step which results in an aqueous pre-reaction solution. In a dissolution step, hyaluronic acid and collagen are dissolved in an aqueous solution that has a low pH and/or a salt to form an aqueous pre-reaction solution.


A hyaluronic acid-collagen crosslinking method further comprises an activation step. In an activation step, an aqueous pre-reaction solution is modified at least by adding a water soluble coupling agent and/or by increasing the pH of the solution. If needed, a salt may also be added to keep the hyaluronic acid and collagen in solution at the higher pH. Thus, a crosslinking reaction mixture comprises hyaluronic acid and collagen dissolved or dispersed in an aqueous medium, a water soluble coupling agent, and a salt, and has a higher pH than the aqueous pre-reaction solution from which it was derived. The crosslinking reaction mixture is allowed to react to thereby crosslink the hyaluronic acid and the collagen.


In some embodiments, the pH of the aqueous pre-reaction solution may be increased and a substantial amount of fiber formation may be allowed to occur in the solution before adding the water soluble coupling agent. In some embodiments, the water soluble coupling agent may be added to the aqueous pre-reaction solution before substantially any fiber formation occurs.


A crosslinking reaction mixture can react to form a crosslinked macromolecular matrix. Since reaction occurs in an aqueous solution, a crosslinked macromolecular matrix may be dispersed in an aqueous liquid in hydrogel form as it is formed by a crosslinking reaction. A crosslinked macromolecular matrix may be kept in hydrogel form because, in many instances, a crosslinked macromolecular matrix may be used in hydrogel form.


In some embodiments, an aqueous pre-reaction solution or a crosslinking reaction mixture may further comprise about 10% to about 90% A of an organic solvent in which hyaluronic acid has poor solubility, such as ethanol, methanol, isopropanol, or the like.


After a crosslinking reaction has occurred, the crosslinked macromolecular matrix may be particulated or homogenized through a mesh. This may help to form an injectable slurry or hydrogel. A mesh used for particulating a crosslinked macromolecular matrix may have any suitable pore size depending upon the size of particles desired. In some embodiments, the mesh may have a pore size of about 10 microns to about 100 microns, about 50 microns to about 70 microns, or about 60 microns.


A hydrogel comprising a crosslinked molecular matrix may be treated by dialysis for sterilization or other purposes. Dialysis may be carried out by placing a semipermeable membrane between the hydrogel and another liquid so as to allow the hydrogel and the liquid to exchange molecules or salts that can pass between the membrane.


A dialysis membrane may have a molecular weight cutoff that may vary. For example, the cutoff may be about 5,000 daltons to about 100,0000 daltons, about 10,000 daltons to about 30,000 daltons, or about 20,000 daltons.


The dialysis may be carried out against a buffer solution, or the liquid on the other side of the membrane from the hydrogel may be a buffer solution. In some embodiments, the buffer solution may be a sterile phosphate buffer solution that may comprise phosphate buffer, potassium chloride, and/or sodium chloride. A sterile phosphate buffer solution may be substantially isosmotic with respect to human physiological fluid. Thus, when dialysis is complete, the liquid component of a hydrogel may be substantially isosmotic with respect to human physiological fluid.


In some embodiments, a crosslinked macromolecular complex may further comprise an aqueous liquid. For example, the crosslinked macromolecular complex may absorb the aqueous liquid so that a hydrogel is formed. An aqueous liquid may comprise water with a salt dissolved in it, such as a phosphate buffer, sodium chloride, potassium chloride, etc. In some embodiments, an aqueous liquid may comprise water, sodium chloride at a concentration of about 100 mM to about 200 mM, potassium chloride at a concentration of about 2 mM to about 3 mM, and phosphate buffer at a concentration of about 5 mM to about 15 mM, wherein the pH of the liquid is about 7 to about 8.


A hydrogel may be used in a soft tissue aesthetic product. A soft tissue aesthetic product may comprise: an aesthetic device having a form suitable for injecting or implanting into human tissue; and a label comprising instructions to inject or implant the aesthetic component into human tissue; wherein the aesthetic device comprises a crosslinked macromolecular matrix described herein. Some products may comprise the crosslinked macromolecular matrix in hydrogel form.


Some embodiments include a method of improving an aesthetic quality of an anatomic feature of a human being comprising: injecting or implanting an aesthetic device into a tissue of the human being to thereby improve the aesthetic quality of the anatomic feature; wherein the aesthetic device comprises a crosslinked macromolecular matrix comprising described herein. In some embodiments, the crosslinked macromolecular matrix used in the product may be in hydrogel form.


In some embodiments, a hydrogel of a crosslinked macromolecular complex may have a storage modulus of about 1 Pa to about 10,000 Pa, about 50 Pa to 10,000 Pa, about 500 Pa to about 1000 Pa, about 556 Pa, about 560 Pa, about 850 Pa, about 852 Pa, or any value in a range bounded by, or between, any of these values.


In some embodiments, a hydrogel of a crosslinked macromolecular complex may have a loss modulus of about 1 Pa to about 500 Pa, about 10 Pa to 200 Pa, about 100 Pa to about 200 Pa, about 20 Pa, about 131 Pa, about 152 Pa, or any value in a range bounded by, or between, any of these values.


In some embodiments, a hydrogel of a crosslinked macromolecular complex may have an average extrusion force of about 20 N to 30 N, or about 25 N, when the hydrogel is forced through a 30G needle syringe by moving the plunger of a 1 mL syringe containing the hydrogel at a rate of 100 mm/min for about 11 mm, and measuring the average force from about 4 mm to about 10 mm.


A crosslinked macromolecular complex may have tunable swelling properties based on reaction conditions and hydrogel dilution. In some embodiments, a crosslinked macromolecular complex may have a swelling ratio of about 1 to about 7. A swelling ratio is the ratio of the weight of the crosslinked macromolecular complex when saturated with water to the weight of the crosslinked macromolecular complex without any water. More specifically, the swelling ratio is the ratio of the mass of the gel which has been allowed to fully swell to the mass of the gel at its initial concentration.


In a crosslinking reaction, the molecular weight of a hyaluronic acid may vary. In some embodiments, a hyaluronic acid may have a molecular weight of about 500,000 daltons to about 10,000,000 daltons, about 1,000,000 daltons to about 5,000,000 daltons, or about 1,000,000 daltons to about 3,000,000 daltons. When the crosslinking reaction occurs, the resulting crosslinked macromolecular product may have a hyaluronic acid component derived from the hyaluronic acid in the crosslinking reaction. Thus, the ranges recited above may also apply to the molecular weight of a hyaluronic acid component, e.g. about 500,000 daltons to about 10,000,000 daltons, about 1,000,000 daltons to about 5,000,000 daltons, or about 1,000,000 daltons to about 3,000,000 daltons. The term “molecular weight” is applied in this situation to a portion of the matrix even though the hyaluronic acid component may not actually be a separate molecule due to the crosslinking.


The concentration of hyaluronic acid in an aqueous pre-reaction solution or a crosslinking reaction mixture may vary. In some embodiments, hyaluronic acid is present at about 3 mg/mL to about 100 mg/mL, about 6 mg/mL to about 24 mg/mL, about 1 mg/mL to about 30 mg/mL, about 1.7 mg/mL, about 3 mg/m L, about 6 mg/mL, about 12 mg/mL, about 16 mg/mL, or about 24 mg/mL.


Any type of collagen may be used in the methods and compositions described herein. In some embodiments, collagen type I, collagen type III, collagen type IV, collagen type VI, or a combination thereof, may be used. In some embodiments, a collagen or a collagen component comprises collagen type I or collagen type III. In some embodiments, the collagen component comprises collagen type V.


A collagen may be derived from cell culture, animal tissue, or recombinant means, and may be derived from human, porcine, or bovine sources. Some embodiments comprise collagen derived from human fibroblast culture. Some embodiments comprise collagen that has been denatured to gelatin. The source and/or collagen extraction/processing conditions can alter the way in which collagen macromolecules bundle together to form supramolecular structures. These higher order structures can have effects on the gel physical properties (stiffness, viscosity) and may also have an effect on the reactivity of the collagen to crosslinking reagents.


Collagen concentration in an aqueous pre-reaction solution or a crosslinking reaction mixture may vary. In some embodiments, collagen may be present at a concentration of about 1 mg/mL to about 40 mg/mL, about 1 mg/mL to about 15 mg/mL, about 3 mg/mL to about 12 mg/mL, about 1.7 mg/mL, about 3 mg/mL, about 6 mg/mL, about 8 mg/mL, or about 12 mg/m L. The collagen concentration has an effect on the physical properties of the gel (stiffness, viscosity). In general, higher collagen concentrations lead to a higher elastic modulus.


In some embodiments, the weight ratio of hyaluronic acid to collagen in a aqueous pre-reaction solution or a aqueous pre-reaction solution or a crosslinking reaction mixture (e.g. [wt hyaluronic acid]/[wt collagen]) may be about 0.5 to about 3, about 1 to about 3, about 1 to about 2, about 1, or about 2. When the crosslinking reaction occurs, the resulting crosslinked macromolecular product may have a collagen component derived from the collagen in the crosslinking reaction. Thus, the resulting crosslinked macromolecular matrix may have a weight ratio of hyaluronic acid component to collagen component that corresponds to the weight ratio in the crosslinking reaction, e.g. about 0.5 to about 3, about 1 to about 3, about 1 to about 2, about 1, or about 2.


In other embodiments of the invention, the compositions have an HA to collagen ratio of between about 0.5 to 1 and about 7 to 1.


A salt may help to screen the negative charges of hyaluronic acid from positive charges of collagen, and may thus prevent precipitation of a polyionic ion complex from solution. However, high concentrations of salt may reduce the solubility of some components in solution. Thus, in some embodiments, the salt concentration of an aqueous pre-reaction solution or a crosslinking reaction mixture may be high enough to screen the charges so that the polyionic ion complex is not formed, but also low enough so that the components of the mixture remain in solution. For example, the total salt concentration of some aqueous pre-reaction solutions or crosslinking reaction mixtures may be about 10 mM to about 1 M, for example, between about 5 mM to about 0.5 M, for example, between about 2 mM to about 0.2 M.


Some salts in an aqueous pre-reaction solution or a crosslinking reaction mixture may be non-coordinating buffers. Any non-coordinating buffer may be used that is capable of buffering the mixture and does not coordinate with metal atoms or ions in the collagen. In some embodiments, the buffer does not react with the crosslinking reagents (carbodiimide and additive). For example, acetate or phosphate buffers may not be used in these embodiments. Examples of suitable non-coordinating buffers may include, but are not limited to, 2-(N-morpholino)ethanesulfonic acid (MES), 3-(N-morpholino)propanesulfonic acid (MOPS), 4-(2-hydroxyethyl)-1-piperazinyl)ethanesulfonic acid (HEPES), 3-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid (HEPPS), N-cyclohexyl-2-am inoethanesulfonic acid (CHES), N-cyclohexyl-3-am inopropanesulfonic acid (CAPS), etc.




embedded image


The concentration of a non-coordinating buffer may vary. For example, some aqueous pre-reaction solutions or crosslinking reaction mixtures may have a buffer concentration in a range of about 10 mM to about 1 M, about 10 mM to about 500 mM, about 20 mM to about 100 mM, or about 25 mM to about 250 mM. Some aqueous pre-reaction solutions or crosslinking reaction mixtures comprise MES at a concentration of about 20 mM to about 200 mM, about 20 mM to about 100 mM, about 100 mM, or about 180 mM.


Non-buffering salts may also be included in an aqueous pre-reaction solution or a crosslinking reaction mixture as an alternative to, or in addition, to buffering salts. Some examples may include sodium chloride, potassium chloride, potassium bromide, sodium bromide, lithium chloride, lithium bromide, sodium iodide, and potassium iodide. The concentration of a non-buffering salt may vary. For example, some mixtures may have a non-buffering salt concentration in a range of about 10 mM to about 1 mM, about 30 mM to about 500 mM, or about 50 mM to about 300 mM. In some embodiments, sodium chloride may be present at a concentration in a range of about 0.5% w/v to about 2% about 0.9% w/v, about 1.6% w/v, about 20 mM to about 1 mM, about 40 mM to about 500 mM, about 50 to 300 mM, about 80 mM to about 330 mM, about 150 mM, or about 270 mM.


The pH of an aqueous pre-reaction solution may be lower than the pH of a crosslinking reaction mixture. If the salt content of the aqueous pre-reaction solution is low, the pH may be lower to enhance solubility of the hyaluronic acid and the collagen. If the salt content is higher, the pH may be higher in the aqueous pre-reaction solution. In some embodiments, the pH of the aqueous pre-reaction mixture is about 1 to about 8, about 3 to about 8, about 4 to about 6, about 4.7 to about 7.4, or about 5.4. For low salt concentrations, the pH may be about 1 to about 4 or about 1 to about 3.


In some embodiments, pH may be adjusted to neutral to allow collagen gelation or fiber formation before adding a coupling agent.


In some embodiments, the pH may be adjusted to neutral immediately prior to, around the time of, or after adding a coupling agent, such that collagen gelation is reduced or does not substantially occur.


Any water-soluble coupling agent may be used that can crosslink hyaluronic acid to collagen. Some non-limiting examples of a coupling agent include carbodiimides such as N, N′-dicyclohexylcarbodiimide (DCC), N,N′-diisopropylcarbodiimide (DIC), or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). Carbodiimide coupling agents may facilitate ester or amide bond formation without becoming part of the linkage. However, other coupling agents that become part of the crosslinking group may be used. The concentration of a coupling agent may vary. In some embodiments, a coupling agent may be present at about 2 mM to about 150 mM, about 2 mM to about 50 mM, about 20 mM to about 100 mM, or about 50 mM. In some embodiments, the coupling agent is EDC that is present at a concentration of about 20 mM to about 100 mM, about 2 mM to about 50 mM, or about 50 mM.




embedded image


As a result of a crosslinking reaction, a crosslinked macromolecular matrix may comprise a crosslinking component that crosslinks or covalently connects the hyaluronic acid component to the collagen component. A crosslink component comprises a plurality of crosslink units, or individual covalent bonding links, between the hyaluronic acid component and the collagen component. At least a portion of the crosslink units comprise an ester bond or an amide bond. In some embodiments, at least a portion of the crosslink units may be —CON— or —CO2—, where the N is a nitrogen from an amino acid residue.


An activating agent may be used to increase the ratio of amide bonds compared to ester bonds formed in the crosslinked product. In some embodiments, an activating agent may be a triazole such as hydroxybenzotriazole (HOBT) or 1-hydroxy-7-azabenzotriazole (HOAT); a fluorinated phenol such as pentafluorophenol; a succinimide such as N-hydroxysuccinimide (NHS) or N-hydroxysulfosuccinimide (sulfoNHS), and the like.




embedded image


The concentration of an activating agent may vary. In some embodiments, the activating agent may have a concentration of about 2 mM to about 200 mM, about 2 mM to about 50 mM, about 20 mM to about 100 mM, or about 50 mM. In some embodiments, the activating agent may be NHS or sulfoNHS is at a concentration of about 2 mM to about 50 mM. In some embodiments, the activating agent may be N-hydroxysulfosuccinimide, sodium salt, at a concentration of about 20 mM to about 100 mM, or about 50 Mm.


In some embodiments, a crosslinking reaction mixture may comprise a carbodiimide coupling agent and an activating agent. In some embodiments, the coupling agent is EDC and the activating agent is NHS or sulfoNHS. In some embodiments EDC is present at a concentration of about 2 mM to about 50 mM and NHS or sulfoNHS is present at about 2 mM to about 50 mM.


In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 1.7 mg/mL, collagen at a concentration of about 1.7 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 Mm, wherein the solution has a pH of about 5.4.


In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 6 mg/mL, collagen at a concentration of about 6 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 180 mM, sodium chloride at a concentration of about 1.6 wt % or about 270 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.


In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 16 mg/mL of, collagen at a concentration of about 8 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of between about 4.5 and 5.5, for example, about 5.2.


In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 12 mg/mL, collagen at a concentration of about 12 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM.


In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 3 mg/mL, collagen at a concentration of about 3 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.


In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 12 mg/mL, collagen at a concentration of about 6 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.


In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 24 mg/mL, collagen at a concentration of about 12 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 100 mM, sodium chloride at a concentration of about 0.9 wt % or about 150 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 50 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 50 mM, wherein the solution has a pH of about 5.4.


In some embodiments, a crosslinking reaction mixture may comprise hyaluronic acid at a concentration of about 1 mg/mL to about 20 mg/mL, collagen at a concentration of about 1 mg/mL to about 15 mg/mL, 2-(N-morpholino)ethanesulfonic acid at a concentration of about 20 mM to about 200 mM, sodium chloride at a concentration of about 0.5 wt % to about 2 wt % or about 80 mM to about 330 mM, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a concentration of about 20 mM to about 100 mM, and N-hydroxysulfosuccinimide sodium salt at a concentration of about 20 mM to about 100 mM, wherein the solution has a pH of about 4 to about 6.


Example 1
Method of Making an Injectable Composition

Solutions of hyaluronic acid (HA) and collagen were produced by dissolving 15 mg of 2.0 MDa hyaluronic acid in 5 mL of human collagen(III) solution at 3 mg/mL in 0.01 N hydrochloric acid (Fibrogen). The hyaluronic acid/collagen solution was then lyophilized at −50° C. and 0.02 Torr. The resulting sponges were soaked in 20 mL of ethanol:water mixture at ratios varying from 1:2 to 5:1 with 50 mM of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and 50 mM of N-hydroxysulfosuccinimide sodium salt for 24 hrs. The crosslinked gels were then washed in 70% isopropanol/30% water for sterilization followed by five washes in sterile phosphate buffer for purification.


Example 2
Method of Making an Injectable Composition

A solution of HA at 3.4 mg/mL was created by dissolving 34 mg of 2 MDa HA in 10 mL of 100 mM MES buffer with 0.9 wt % NaCl, pH 4.7. Upon full hydration and dissolution of the HA, this solution was mixed with 10 mL of 3.4 mg/mL human collagen(III) solution in 100 mM HCl. The pH of the resulting HA/collagen(III) solution was adjusted to 5.4 with 10 mM NaOH solution. EDC (192 mg) and 217 mg of sulfoNHS (50 mM each) were added to the HA/collagen(III) solution and mixed thoroughly. The crosslinking reaction proceeded for 18 hrs before the gel was particulated through a 100 micron pore-sized mesh.


Example 3
Method of Making an Injectable Composition

Rat tail collagen(I) in 0.01 N hydrochloric acid (Invitrogen) was concentrated from 5 mg/mL to 8 mg/mL using a centrifugal filtration device with 20 kDa molecular weight cutoff. HA (160 mg, 2 MDa) was added to 10 mL of the collagen solution and allowed to hydrate for 60 minutes. The solution was then homogenized by passing from syringe to syringe through a luer-luer connector. NaCl (93 mg) and 201 mg of MES were added to the solution and mixed. EDC (98 mg) and 111 mg of sulfoNHS were added to the solution and quickly mixed. Finally, 200 μL of 1 N NaOH was added to the solution which was mixed by syringe-to-syringe passing. The reaction solution was transferred to a glass vial and centrifuged for 5 min at 4000 RPM to remove air bubbles. The gel was then particulated through a 60 micron pore-sized mesh. Following sizing, the gel was sterilized by dialysis through a 20 kDa molecular-weight cut-off cellulose ester membrane against 70% isopropanol/30% water for 3 hrs at 4° C. Dialysis was then continued against sterile phosphate buffer for 48 hrs at 4° C. with three changes of buffer. The gel was then dispensed into syringes under aseptic conditions.


Example 4
Method of Making an Injectable Composition

Rat tail collagen(I) in 0.01 N hydrochloric acid (Invitrogen) was concentrated from 5 mg/mL to 12 mg/mL using a centrifugal filtration device with 20 kDa molecular weight cutoff. HA (120 mg, 2 MDa) was added to 10 mL of the collagen solution and allowed to hydrate for 60 minutes. The solution was then homogenized by passing from syringe to syringe through a luer-luer connector. NaCl (93 mg) and 201 mg of MES were added to the solution and mixed. EDC (98 mg) and 111 mg of sulfoNHS were added to the solution and quickly mixed. Finally, 200 μL of 1 N NaOH was added to the solution which was mixed by syringe-to-syringe passing. The reaction solution was transferred to a glass vial and centrifuged for 5 min at 4000 RPM to remove air bubbles. The gel was then particulated through a 60 micron pore-sized mesh. Following sizing, the gel was sterilized by dialysis through a 20 kDa molecular-weight cut-off cellulose ester membrane against 70% isopropanol/30% water for 3 hrs at 4° C. Dialysis was then continued against sterile phosphate buffer for 48 hrs at 4° C. with three changes of buffer. The gel was then dispensed into syringes under aseptic conditions.


Example 5
Method of Making an Injectable Composition

Rat tail collagen(I) in 0.01 N hydrochloric acid (Invitrogen) was concentrated from 5 mg/mL to 12 mg/mL using a centrifugal filtration device with 20 kDa molecular weight cutoff. HA (120 mg, 2 MDa) was added to 10 mL of the collagen solution and allowed to hydrate for 60 minutes. The solution was then homogenized by passing from syringe to syringe through a luer-luer connector. NaCl (93 mg), 201 mg of MES, and 200 μL of 1 N NaOH were added to the solution, mixed, and given 45 minutes for collagen polymerization. EDC (98 mg) and 111 mg of sulfoNHS were then added and the final solution was mixed by syringe-to-syringe passing. The reaction solution was transferred to a glass vial and centrifuged for 5 min at 4000 RPM to remove air bubbles. The gel was then particulated through a 60 micron pore-sized mesh. Following sizing, the gel was sterilized by dialysis through a 20 kDa molecular-weight cut-off cellulose ester membrane against 70% isopropanol/30% water for 3 hrs at 4° C. Dialysis was then continued against sterile phosphate buffer for 48 hrs at 4° C. with three changes of buffer. The gel was then dispensed into syringes under aseptic conditions.


Example 6
Rheology Characterization of the Compositions

Oscillatory parallel plate rheology was used to characterize the mechanical properties of gels using an Anton Paar MCR 301. A plate diameter of 25 mm was used at a gap height of 1 mm. A frequency sweep from 0.1 to 10 Hz at a fixed strain of 2% with logarithmic increase in frequency was applied followed by a strain sweep between 0.1% A and 300% at a fixed frequency of 5 Hz with logarithmic increase in strain. The storage modulus (G′) and loss modulus (G″) were determined from frequency sweep measurements at 5 Hz.


The gel from Example 4 had a storage modulus (G′) of 556 Pa and loss modulus (G″) of 131 Pa. The frequency sweep (A) and strain sweep (B) are shown in FIG. 1.


Example 7
Extrusion Test

In order to determine the force required to extrude the gels, they were ejected from 1 mL BD syringes through 30G needles using an Instron 5564 with Bluehill 2 software. The plunger was pushed at a rate of 100 mm/min for 11.35 mm and the extrusion profile was recorded.


The extrusion profile through a 30G needle for gel from Example 4 is shown in FIG. 2. The gel had an average extrusion force of 25 N from 4 through 10 mm.


Example 8
Method of Making Dermal Fillers

Hyaluronic acid, 2 MDa molecular weight, was dissolved in human collagen(I) solution in 0.01 N hydrochloric acid (Advanced BioMatrix). Sodium chloride was added at 0.9 wt % and 2-(N-morpholino)ethanesulfonic acid was added at 100 mM to the solution and mixed. The hyaluronic acid was allowed to hydrate for 1 hr and the solution was homogenized by syringe-to-syringe mixing. The pH of the solution was adjusted to 5.4 by addition of 1 N sodium hydroxide. 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (50 mM) and N-hydroxysulfosuccinimide sodium salt (50 mM) were added to the hyaluronic acid/collagen solution and quickly mixed by syringe-to-syringe transfer. The solution was transferred to a glass vial and centrifuged for 5 min at 4000 RPM to remove air bubbles. The resulting gel was allowed to react for 16 hrs at 4° C. The gel was then particulated through a 100 micron pore-sized mesh. Following sizing, the gel was sterilized by dialysis through a 20 kDa molecular-weight cut-off cellulose ester membrane against 70% isopropanol/30% water for 3 hrs at 4° C. Dialysis was then continued against sterile phosphate buffer, pH 7.4, for 48 hrs at 4° C. with four changes of buffer. The gel was then dispensed into syringes under aseptic conditions.


This procedure was used to produce hydrogels with varying concentrations of hyaluronic acid and collagen. When required, human collagen(I) in 0.01 N hydrochloric acid was concentrated from 3 mg/mL to the desired reaction concentration in 20 kDa molecular-weight cut-off centrifugal filtration devices. A 50 mL sample of each gel was synthesized, sterilized by exposure to 70% isopropanol, and purified by dialysis against phosphate buffer, pH 7.4. The gels synthesized are described in Table 2 along with their rheological properties.









TABLE 2







Hyaluronic acid-human collagen(I) hydrogel synthesis


concentrations and rheological properties











Sample
[HA]
[Col(I)]
G′
G″


ID
(mg/mL)
(mg/mL)
(Pa)
(Pa)














A
3
3
199
24.6


B
12
6
1260
154


C
16
8
2450
288


D
12
12
3160
420


E
24
12
5440
433


F
12
3
1110
52.2


G
16
3
1490
60.6


H
20
3
1770
49.5









Example 9
Biopolymer Concentration of the Dermal Fillers

In order to determine the biopolymer concentration in gels, the weight of the hydrated gel was compared to that of dried gel. A 2 mL sample of gel was weighed and dried by flash-freezing in liquid nitrogen followed by lyophilization at −50° C. and 0.02 Torr. A solution of the appropriate buffer was also weighed and dried in the same fashion to account for salt content of the gel. The total solids content of the gel was calculated by dividing the dry weight by the wet volume, assuming 1 g/mL density for the wet gel, to give a value in mg/mL. The salt solids content was then subtracted from this value to determine the biopolymer concentration in the gel.









TABLE 3







Final concentrations of hyaluronic


acid-human collagen(I) hydrogels















Final



Sample
[HA]
[Col(I)]
concentration



ID
(mg/mL)
(mg/mL)
(mg/mL)
















A
3
3
5.3



B
12
6
16.3



C
16
8
19.4



D
12
12
22.6



E
24
12
31.6










Example 10
Swelling Ratios

Swelling ratios relative to initial water content were determined for gels by increase in weight when equilibrated with phosphate buffer. For each gel, approximately 1 mL was injected into a 15 mL Falcon tube and weighed, followed by addition of 10 mL of phosphate buffered saline, pH 7.4. The gels were thoroughly mixed with the buffer and vortexed for 30 seconds. The gels were then allowed to equilibrate in the buffer for 48 hrs at 4° C. After this time, the suspensions were centrifuged at 4000 RPM in a swinging bucket rotor for 5 minutes. The supernatant buffer was then decanted and the weight of the swollen gel was measured. The swelling ratio was determined by dividing the final weight of the swollen gel by the weight of the initial gel.









TABLE 4







Swelling ratios of hyaluronic acid-human collagen(I) hydrogels












Sample
[HA]
[Col(I)]
Swelling



ID
(mg/mL)
(mg/mL)
ratio
















A
3
3
0.96



B
12
6
1.67



C
16
8
1.69



D
12
12
1.49



E
24
12
1.65










Example 11
HA/Collagen for Facial Defects of Check

This example illustrates the use of compositions and methods disclosed herein for a facial disorder.


A 58-year-old woman presented with a lean face. She felt her face looked old, sad and bitter because of the less fullness of her cheek contour. Pre-operative evaluation of the person includes routine history and physical examination in addition to thorough informed consent disclosing all relevant risks and benefits of the procedure. The physician evaluating the individual determines that she is a candidate for administration of the dermal filler compositions and methods disclosed herein.


A composition of the invention, such as described in EXAMPLE 4, is provided in a 20 mL syringe. One-holed blunt infiltration cannulas (3 mm inner diameter) are used to place about 15 mL of the composition in the syringe subcutaneously and under superficial musculoaponeurotic system into the left and right cheeks.


The individual is monitored for approximately 7 days. The physician evaluates the treatment area and determines that the treatment was successful. The woman's cheeks are fuller than prior to treatment. Both the woman and her physician are satisfied with the results of the procedure because she looks younger than she did when she came in for treatment.


Example 12
Treatment of Facial Defects of Eyelids

This example illustrates the use of compositions and methods disclosed herein for a treatment of eyelid defects.


A 37-year-old woman presented with fine wrinkles around her eyes and she reports that her eyes made her look old and angry. Pre-operative evaluation of the person includes routine history and physical examination in addition to thorough informed consent disclosing all relevant risks and benefits of the procedure. The physician evaluating the individual determines that she is a candidate for administration of the dermal filler compositions and methods disclosed herein.


A composition, such as made as described in Example 5, is provided in a 20 mL syringe. About 2.5 mL of the composition is injected with a fine needle subcutaneously in the skin beneath the wrinkles into the regions adjacent the eyes.


The individual is monitored for approximately 7 days. The physician evaluates the eye of the patient and determines that the treatment was successful. Both the woman and her physician are satisfied with the results of the procedure because her eyes appear refreshed and the skin appears rejuvenated. Approximately one year after the procedure, the woman indicates that her quality of life has improved.


Example 13
Treatment of Acne Scars

This example illustrates the use of compositions and methods disclosed herein for treatment of acne scars.


A 25-year-old man presents with moderate acne scarring on his jaw line including depressions and pitting. He reports that he is dissatisfied with his appearance and feels he is socially inhibited due to his perception of his appearance. Pre-operative evaluation of the person includes routine history and physical examination in addition to thorough informed consent disclosing all relevant risks and benefits of the procedure. The physician evaluating the individual determines that he is a candidate for administration of the dermal filler compositions and methods disclosed herein.


A composition, such as that made as described in Example 12, is provided in 10 mL syringes. The physician injects a small amount of the composition below the skin in each depressed or pitted area of the patient's jawline to raise the area to match the surrounding skin.


The individual returns for a follow up visit with the physician in 14 days. The physician evaluates the patient and determines that the treatment was successful. The man reports he is satisfied with the results of the procedure because his skin is more smooth in appearance and the acne scarring is substantially less visible. Approximately six months after the procedure, the man returns for a follow up treatment. He reports to the physician that his quality of life has greatly improved since the procedure and he is no longer shy about his appearance.


Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.


The terms “a,” “an,” “the,” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of any claim. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.


Groupings of alternative elements or embodiments disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.


Certain embodiments are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, the claims include all modifications and equivalents of the subject matter recited in the claims as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is contemplated unless otherwise indicated herein or otherwise clearly contradicted by context.


In closing, it is to be understood that the embodiments disclosed herein are illustrative of the principles of the claims. Other modifications that may be employed are within the scope of the claims. Thus, by way of example, but not of limitation, alternative embodiments may be utilized in accordance with the teachings herein. Accordingly, the claims are not limited to embodiments precisely as shown and described.

Claims
  • 1. A hydrogel composition comprising: (i) about 16 mg/ml to about 24 mg/ml of a hyaluronic acid, and(ii) about 3 mg/ml to about 6 mg/ml of a collagen,wherein the weight ratio of the hyaluronic acid to the collagen is from 3:1 to 7:1;wherein the hyaluronic acid is crosslinked with the collagen via a plurality of crosslink units, wherein the hyaluronic acid is crosslinked with the collagen via a water-soluble carbodiimide, wherein at least a portion of the crosslink units comprise an amide bond, and wherein the composition has a storage modulus value of between about 850 Pa and about 5,000 Pa.
  • 2. The composition of claim 1, wherein the hydrogel has a storage modulus value of between about 1,000 Pa and about 5,000 Pa.
  • 3. The composition of claim 1, wherein the collagen is collagen type I, collagen type III, or a combination thereof.
  • 4. The composition of claim 3, wherein the collagen is collagen type I.
  • 5. The composition of claim 3, wherein the collagen is derived from a human or porcine source.
  • 6. The composition of claim 1, wherein the hyaluronic acid has a molecular weight of about 1,000,000 Da to about 5,000,000 Da.
  • 7. The composition of claim 1, wherein the hydrogel has a hyaluronic acid concentration of about 18 mg/ml or about 20 mg/ml.
  • 8. The composition of claim 1, wherein the hydrogel has a collagen concentration of about 3 mg/ml, about 4 mg/ml or about 5 mg/ml.
  • 9. The composition of claim 1, wherein the composition is injectable.
  • 10. An injectable hydrogel product comprising the composition of claim 1.
  • 11. A method of augmenting a soft tissue in a subject in need thereof, the method comprising administering to the subject the composition of claim 1.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 15/727,916, filed on Oct. 9, 2017, now U.S. Pat. No. 10,434,214, issued on Oct. 8, 20119, which is a continuation of U.S. patent application Ser. No. 15/609,967, filed May 31, 2017, now U.S. Pat. No. 9,795,711, issued on Oct. 24, 2017, which is a continuation of U.S. patent application Ser. No. 14/962,897, filed on Dec. 8, 2015, now U.S. Pat. No. 9,821,086, issued on Nov. 21, 2017, which is a divisional of U.S. patent application Ser. No. 13/667,581, filed on Nov. 2, 2012, now abandoned, which claims priority to U.S. Provisional Patent Application No. 61/555,970, filed Nov. 4, 2011, and also, which is a continuation-in-part of U.S. patent application Ser. No. 13/605,565, filed on Sep. 6, 2012, now abandoned, which claims priority to U.S. Provisional Patent Application No. 61/531,533, filed on Sep. 6, 2011, and which is a continuation-in-part of U.S. patent application Ser. No. 13/603,213, filed Sep. 4, 2012, now abandoned, which claims priority to U.S. Provisional Patent Application No. 61/531,533, filed Sep. 6, 2011, the entire disclosure of each of these applications being incorporated herein by this specific reference. This application generally relates to biocompatible, implantable compositions and more specifically relates to hyaluronic acid-collagen based compositions useful as dermal fillers.

US Referenced Citations (308)
Number Name Date Kind
2128827 Killian Aug 1938 A
3548056 Eigen et al. Dec 1970 A
3763009 Suzuki et al. Oct 1973 A
3949073 Daniels et al. Apr 1976 A
4060081 Yannas et al. Nov 1977 A
4140537 Luck et al. Feb 1979 A
4233360 Luck et al. Nov 1980 A
4273705 Kato Jun 1981 A
4279812 Cioca Jul 1981 A
4424208 Wallace et al. Jan 1984 A
4501306 Chu et al. Feb 1985 A
4582640 Smestad et al. Apr 1986 A
4582865 Balazs et al. Apr 1986 A
4605691 Balazs et al. Aug 1986 A
4636524 Balazs et al. Jan 1987 A
4642117 Nguyen et al. Feb 1987 A
4657553 Taylor Apr 1987 A
4713448 Balazs et al. Dec 1987 A
4716154 Malson et al. Dec 1987 A
4772419 Malson et al. Sep 1988 A
4803075 Wallace et al. Feb 1989 A
4886787 De Belder et al. Dec 1989 A
4896787 Delamour et al. Jan 1990 A
5009013 Wiklund Apr 1991 A
5087446 Suzuki et al. Feb 1992 A
5091171 Yu et al. Feb 1992 A
5143724 Leshchiner Sep 1992 A
5246698 Leshchiner et al. Sep 1993 A
5314874 Miyata et al. May 1994 A
5328955 Rhee et al. Jul 1994 A
5356883 Kuo et al. Oct 1994 A
5399351 Leshchiner et al. Mar 1995 A
5428024 Chu et al. Jun 1995 A
5531716 Luzio et al. Jul 1996 A
5565519 Rhee et al. Oct 1996 A
5571503 Mausner Nov 1996 A
5614587 Rhee et al. Mar 1997 A
5616568 Pouyani et al. Apr 1997 A
5616611 Yamamoto et al. Apr 1997 A
5616689 Shenoy et al. Apr 1997 A
5633001 Agerup May 1997 A
5643464 Rhee et al. Jul 1997 A
5676964 Della Valle et al. Oct 1997 A
5823671 Mitchell et al. Oct 1998 A
5824333 Scopelianos et al. Oct 1998 A
5827529 Ono et al. Oct 1998 A
5843907 Sakai et al. Dec 1998 A
5880107 Buenter Mar 1999 A
5886042 Yu et al. Mar 1999 A
5935164 Iversen Aug 1999 A
5972326 Galin et al. Oct 1999 A
5972385 Liu et al. Oct 1999 A
5980930 Fenton et al. Nov 1999 A
6013679 Kuo et al. Jan 2000 A
6066325 Wallace et al. May 2000 A
6129761 Hubbell Oct 2000 A
6224857 Romeo et al. May 2001 B1
6335035 Drizen et al. Jan 2002 B1
6372494 Naughton et al. Apr 2002 B1
6383218 Sourdille et al. May 2002 B1
6383219 Telandro et al. May 2002 B1
6418934 Chin Jul 2002 B1
6495148 Abbiati Dec 2002 B1
6521223 Calias et al. Feb 2003 B1
6544503 Vanderhoff et al. Apr 2003 B1
6627620 Nielsen Sep 2003 B1
6630486 Royer Oct 2003 B1
6685963 Taupin et al. Feb 2004 B1
6716251 Asius et al. Apr 2004 B1
6734298 Barbucci et al. May 2004 B1
6767924 Yu et al. Jul 2004 B2
6767928 Murphy et al. Jul 2004 B1
6852255 Yang et al. Feb 2005 B2
6893466 Trieu May 2005 B2
6903199 Moon et al. Jun 2005 B2
6921819 Piron et al. Jul 2005 B2
6924273 Pierce Aug 2005 B2
6939562 Spiro et al. Sep 2005 B2
6979440 Shefer et al. Dec 2005 B2
6991652 Burg Jan 2006 B2
7015198 Orentreich Mar 2006 B1
7119062 Alvis et al. Oct 2006 B1
7129209 Rhee Oct 2006 B2
7166570 Hunter et al. Jan 2007 B2
7192984 Berg et al. Mar 2007 B2
7196180 Aeschlimann et al. Mar 2007 B2
7314636 Caseres et al. Jan 2008 B2
7316822 Binette et al. Jan 2008 B2
7491709 Carey Feb 2009 B2
7741476 Lebreton Jun 2010 B2
7767452 Kleinsek Aug 2010 B2
7799767 Lamberti et al. Sep 2010 B2
7875296 Binette Jan 2011 B2
7902171 Reinmuller et al. Mar 2011 B2
8052990 Hermitte et al. Nov 2011 B2
8053423 Lamberti et al. Nov 2011 B2
8124120 Sadozai et al. Feb 2012 B2
8137702 Binette et al. Mar 2012 B2
8153591 Masters et al. Apr 2012 B2
8246947 Hedrick et al. Aug 2012 B2
8288347 Collette et al. Oct 2012 B2
8318695 Stroumpoulis et al. Nov 2012 B2
8338375 Schroeder et al. Dec 2012 B2
8338388 Lebreton Dec 2012 B2
8357795 Lebreton Jan 2013 B2
8394782 Stroumpoulis Mar 2013 B2
8394783 Stroumpoulis Mar 2013 B2
8394784 Stroumpoulis et al. Mar 2013 B2
8455465 Molliard Jun 2013 B2
8512752 Crescenzi Aug 2013 B2
8513216 Stroumpoulis Aug 2013 B2
8524213 Leshchiner et al. Sep 2013 B2
8563532 Lebreton Oct 2013 B2
8575129 Bellini Nov 2013 B2
8586562 Lebreton Nov 2013 B2
8691279 Guillen Apr 2014 B2
8853184 Stroumpoulis Oct 2014 B2
9662422 Pollock et al. May 2017 B2
20010039336 Miller et al. Nov 2001 A1
20020102311 Gustavsson et al. Aug 2002 A1
20020160109 Yeo et al. Oct 2002 A1
20030031638 Joshi et al. Feb 2003 A1
20030093157 Casares et al. May 2003 A1
20030119985 Sehl et al. Jun 2003 A1
20030148995 Piron et al. Aug 2003 A1
20040032056 Vang et al. Feb 2004 A1
20040101959 Marko et al. May 2004 A1
20040127698 Tsai et al. Jul 2004 A1
20040127699 Zhao et al. Jul 2004 A1
20040199241 Gravett et al. Oct 2004 A1
20040265389 Yui et al. Dec 2004 A1
20050013729 Brown-Skrobot Jan 2005 A1
20050025755 Hedrick et al. Feb 2005 A1
20050101582 Lyons et al. May 2005 A1
20050136122 Sadozai et al. Jun 2005 A1
20050142152 Leshchiner et al. Jun 2005 A1
20050181007 Hunter et al. Aug 2005 A1
20050186261 Avelar et al. Aug 2005 A1
20050186673 Geistlich et al. Aug 2005 A1
20050226936 Agerup Oct 2005 A1
20050271729 Wang Dec 2005 A1
20050281880 Wang Dec 2005 A1
20050287180 Chen Dec 2005 A1
20060029578 Hoemann et al. Feb 2006 A1
20060040894 Hunter et al. Feb 2006 A1
20060095137 Chung et al. May 2006 A1
20060105022 Yokokawa et al. May 2006 A1
20060122147 Wohlrab et al. Jun 2006 A1
20060141049 Lyons Jun 2006 A1
20060147483 Chaouk et al. Jul 2006 A1
20060189516 Yang et al. Aug 2006 A1
20060194758 Lebreton et al. Aug 2006 A1
20060246137 Hermitte et al. Nov 2006 A1
20060257488 Hubbard Nov 2006 A1
20060286769 Tsuchiya et al. Dec 2006 A1
20070003525 Moehlenbruck Jan 2007 A1
20070026070 Vonwiller et al. Feb 2007 A1
20070036745 Leshchiner et al. Feb 2007 A1
20070066816 Tsai et al. Mar 2007 A1
20070077292 Pinsky Apr 2007 A1
20070104692 Quijano et al. May 2007 A1
20070104693 Quijano et al. May 2007 A1
20070203095 Sadozai et al. Aug 2007 A1
20070212385 David Sep 2007 A1
20070224247 Chudzik et al. Sep 2007 A1
20070224278 Lyons et al. Sep 2007 A1
20070298005 Thibault Dec 2007 A1
20080044476 Lyons et al. Feb 2008 A1
20080057091 Abdellaoui et al. Mar 2008 A1
20080089918 Lebreton Apr 2008 A1
20080188416 Bernstein Aug 2008 A1
20080193538 Kitazono et al. Aug 2008 A1
20080200430 Bitterman et al. Aug 2008 A1
20080207794 Wright et al. Aug 2008 A1
20080241252 Lyons et al. Oct 2008 A1
20080268051 Hughes et al. Oct 2008 A1
20080274946 Giampapa Nov 2008 A1
20080279806 Cho Nov 2008 A1
20080293637 Schroeder et al. Nov 2008 A1
20080300681 Rigotti et al. Dec 2008 A1
20090017091 Daniloff et al. Jan 2009 A1
20090018102 Moutet et al. Jan 2009 A1
20090022808 Champion et al. Jan 2009 A1
20090028817 Niklason et al. Jan 2009 A1
20090036403 Stroumpoulis et al. Feb 2009 A1
20090042834 Karageozian et al. Feb 2009 A1
20090093755 Schroeder et al. Apr 2009 A1
20090098177 Werkmeister et al. Apr 2009 A1
20090110671 Miyata et al. Apr 2009 A1
20090110736 Boutros Apr 2009 A1
20090123547 Hill et al. May 2009 A1
20090124552 Hill et al. May 2009 A1
20090143331 Stroumpoulis et al. Jun 2009 A1
20090143348 Tezel et al. Jun 2009 A1
20090148527 Robinson et al. Jun 2009 A1
20090155314 Tezel et al. Jun 2009 A1
20090155362 Longin et al. Jun 2009 A1
20090162415 Huang et al. Jun 2009 A1
20090169615 Pinsky Jul 2009 A1
20090181104 Rigotti et al. Jul 2009 A1
20090263447 Asius et al. Oct 2009 A1
20090291986 Pappas et al. Nov 2009 A1
20090297632 Waugh Dec 2009 A1
20090317376 Zukowska et al. Dec 2009 A1
20100004198 Stroumpoulis et al. Jan 2010 A1
20100028437 Lebreton Feb 2010 A1
20100035838 Heber et al. Feb 2010 A1
20100041788 Voigts et al. Feb 2010 A1
20100098764 Stroumpoulis et al. Apr 2010 A1
20100098794 Armand Apr 2010 A1
20100099623 Schroeder et al. Apr 2010 A1
20100111919 Abuzaina et al. May 2010 A1
20100136070 Dobak et al. Jun 2010 A1
20100160948 Rigotti et al. Jun 2010 A1
20100161052 Rigotti et al. Jun 2010 A1
20100168780 Rigotti et al. Jul 2010 A1
20100226988 Lebreton Sep 2010 A1
20100247651 Kestler Sep 2010 A1
20100249924 Powell et al. Sep 2010 A1
20100255068 Stroumpoulis et al. Oct 2010 A1
20100316683 Piron et al. Dec 2010 A1
20110008406 Altman et al. Jan 2011 A1
20110008436 Altman et al. Jan 2011 A1
20110008437 Altman et al. Jan 2011 A1
20110014263 Altman et al. Jan 2011 A1
20110014287 Altman et al. Jan 2011 A1
20110020409 Altman et al. Jan 2011 A1
20110034684 Yokokawa et al. Feb 2011 A1
20110052695 Jiang et al. Mar 2011 A1
20110070281 Altman Mar 2011 A1
20110077737 Stroumpoulis et al. Mar 2011 A1
20110097381 Altman Apr 2011 A1
20110104800 Kensy et al. May 2011 A1
20110111031 Jiang et al. May 2011 A1
20110118206 Lebreton May 2011 A1
20110150823 Huang Jun 2011 A1
20110150846 Van Epps Jun 2011 A1
20110171286 Cecile et al. Jul 2011 A1
20110171310 Gousse Jul 2011 A1
20110171311 Gousse et al. Jul 2011 A1
20110172180 Gousse et al. Jul 2011 A1
20110183001 Rosson Jul 2011 A1
20110183406 Kensy Jul 2011 A1
20110189292 Lebreton Aug 2011 A1
20110194945 Kensy et al. Aug 2011 A1
20110224164 Lebreton Sep 2011 A1
20110229574 Guillen et al. Sep 2011 A1
20110295238 Kensy et al. Dec 2011 A1
20120010146 Han et al. Jan 2012 A1
20120034462 Stroumpoulis et al. Feb 2012 A1
20120045420 Van Epps et al. Feb 2012 A1
20120071437 Stroumpoulis et al. Mar 2012 A1
20120076868 Lamberti et al. Mar 2012 A1
20120095206 Chen Apr 2012 A1
20120100217 Green Apr 2012 A1
20120100611 Kensy et al. Apr 2012 A1
20120156265 Binette et al. Jun 2012 A1
20120164098 Schroeder et al. Jun 2012 A1
20120164116 Van Epps Jun 2012 A1
20120165935 Van Epps Jun 2012 A1
20120172328 Lebreton Jun 2012 A1
20120171265 Altman et al. Jul 2012 A1
20120172317 Altman et al. Jul 2012 A1
20120172985 Altman et al. Jul 2012 A1
20120189589 Van Epps et al. Jul 2012 A1
20120189590 Van Epps et al. Jul 2012 A1
20120189699 Strompoulis et al. Jul 2012 A1
20120189708 Van Epps et al. Jul 2012 A1
20120190644 D'este Jul 2012 A1
20120207837 Powell et al. Aug 2012 A1
20120208890 Gousse et al. Aug 2012 A1
20120209381 Powell et al. Aug 2012 A1
20120213852 Van Epps et al. Aug 2012 A1
20120213853 Van Epps et al. Aug 2012 A1
20120219627 Van Epps et al. Aug 2012 A1
20120225842 Gousse et al. Sep 2012 A1
20120232030 Gousse et al. Sep 2012 A1
20120263686 Van Epps et al. Oct 2012 A1
20120265297 Altman et al. Oct 2012 A1
20120269777 Van Epps et al. Oct 2012 A1
20120295870 Lebreton Nov 2012 A1
20130023658 Stroumpoulis et al. Jan 2013 A1
20130041038 Lebreton Feb 2013 A1
20130041039 Lebreton Feb 2013 A1
20130072453 Gousse et al. Mar 2013 A1
20130096081 Njikang Apr 2013 A1
20130116188 Pollock et al. May 2013 A1
20130116190 Pollock et al. May 2013 A1
20130116411 Pollock et al. May 2013 A1
20130123210 Liu May 2013 A1
20130129835 Pollock et al. May 2013 A1
20130131011 Lebreton May 2013 A1
20130131655 Rigotti et al. May 2013 A1
20130136780 Tezel et al. May 2013 A1
20130203696 Liu Aug 2013 A1
20130203856 Cho, II Aug 2013 A1
20130209532 Stroumpoulis et al. Aug 2013 A1
20130210760 Liu Aug 2013 A1
20130237615 Meunier Sep 2013 A1
20130244943 Yu et al. Sep 2013 A1
20130244970 Lebreton Sep 2013 A1
20130274222 Horne Oct 2013 A1
20130287758 Tozzi Oct 2013 A1
20140011990 Lebreton Jan 2014 A1
20140227235 Kim et al. Aug 2014 A1
20160113855 Njikang Apr 2016 A1
20160361247 Pavlovic et al. Dec 2016 A1
20170273886 Gousse Sep 2017 A1
Foreign Referenced Citations (121)
Number Date Country
2019216643 Sep 2019 AU
2019216643 May 2021 AU
949965 Jun 1974 CA
2805008 Jan 2012 CA
2854570 May 2013 CA
102188746 Sep 2011 CN
102188746 Sep 2011 CN
102548590 Jul 2012 CN
0273823 Jul 1988 EP
0416250 Mar 1991 EP
0416846 Mar 1991 EP
0656215 Jun 1995 EP
0656215 Jun 1995 EP
0671165 Sep 1995 EP
1247522 Oct 2002 EP
1398131 Mar 2004 EP
1419792 May 2004 EP
1115433 Dec 2004 EP
1532991 May 2005 EP
1726299 Nov 2006 EP
1932530 Jun 2008 EP
2236523 Jun 2010 EP
2733427 Oct 1996 FR
2752843 Mar 1998 FR
2920000 Feb 2009 FR
2924615 Jun 2009 FR
S 55-0153711 Nov 1980 JP
2002-080501 Mar 2002 JP
2007-063177 Mar 2007 JP
100828494 May 2008 KR
100828494 May 2008 KR
20110138765 Dec 2011 KR
20130018518 Feb 2013 KR
WO 86000079 Jan 1986 WO
WO 86000912 Feb 1986 WO
WO 92000105 Jan 1992 WO
WO 92020349 Nov 1992 WO
WO 96033751 Oct 1993 WO
WO 94001468 Jan 1994 WO
WO 94002517 Mar 1994 WO
WO 97004012 Jun 1997 WO
WO 98035639 Aug 1998 WO
WO 98035640 Aug 1998 WO
WO 00001428 Jan 2000 WO
WO 0008061 Feb 2000 WO
WO 0046252 Aug 2000 WO
WO 01079342 Oct 2001 WO
WO 02005753 Jan 2002 WO
WO 02006350 Jan 2002 WO
WO 02009792 Feb 2002 WO
WO 03007782 Jan 2003 WO
WO 02017713 Mar 2003 WO
WO 2004020473 Mar 2004 WO
WO 2004022603 Mar 2004 WO
WO 2004067575 Aug 2004 WO
WO 2004073759 Sep 2004 WO
WO 2004092223 Oct 2004 WO
WO 2005040224 Jun 2005 WO
WO 2005052035 Jun 2005 WO
WO 2005067944 Jul 2005 WO
WO 2005074913 Aug 2005 WO
WO 2005112888 Dec 2005 WO
WO 2006015490 Feb 2006 WO
WO 2006021644 Mar 2006 WO
WO 2006023645 Mar 2006 WO
WO 2006048671 May 2006 WO
WO 2006056204 Jun 2006 WO
WO 2006067608 Jun 2006 WO
WO 2007018124 Feb 2007 WO
WO 2007070617 Jun 2007 WO
WO 2007077399 Jul 2007 WO
WO 2007128923 Nov 2007 WO
WO 2007136738 Nov 2007 WO
WO 2008015249 Feb 2008 WO
WO 2008034176 Mar 2008 WO
WO 2008063569 May 2008 WO
WO 2008068297 Jun 2008 WO
WO 2008072230 Jun 2008 WO
WO 2008077172 Jul 2008 WO
WO 2008098019 Aug 2008 WO
WO 2008139122 Nov 2008 WO
WO 2008148071 Dec 2008 WO
WO 2008148967 Dec 2008 WO
WO 2008157608 Dec 2008 WO
WO 2009003135 Dec 2008 WO
WO 2009024350 Feb 2009 WO
WO 2009024719 Feb 2009 WO
WO 2009026158 Feb 2009 WO
WO 2009028764 Mar 2009 WO
WO 2009034559 Mar 2009 WO
WO 2009048930 Apr 2009 WO
WO-2009048930 Apr 2009 WO
WO 2009073437 Jun 2009 WO
WO 2010003104 Jan 2010 WO
WO 2010003797 Jan 2010 WO
WO 2010015900 Feb 2010 WO
WO 2010026299 Mar 2010 WO
WO 2010027471 Mar 2010 WO
WO 2010028025 Mar 2010 WO
WO 2010029344 Mar 2010 WO
WO 2010038771 Apr 2010 WO
WO 2010051641 May 2010 WO
WO 2010052430 May 2010 WO
WO 2010053918 May 2010 WO
WO 2010061005 Jun 2010 WO
WO 2011023355 Mar 2011 WO
WO 2011072399 Jun 2011 WO
WO 2011119468 Sep 2011 WO
WO 2011135150 Nov 2011 WO
WO 2012008722 Jan 2012 WO
WO 2012077055 Jun 2012 WO
WO 2013015579 Jan 2013 WO
WO 2013036568 Mar 2013 WO
WO-2013067293 May 2013 WO
WO-2013086024 Jun 2013 WO
WO 2013101939 Jul 2013 WO
WO-2013101939 Jul 2013 WO
WO 2014039607 Mar 2014 WO
WO-2014039607 Mar 2014 WO
WO 2019211854 Nov 2019 WO
WO-2019211854 Nov 2019 WO
Non-Patent Literature Citations (123)
Entry
Butcher et al, A tense situation: forcing tumour progression, from www.nature.com/reviews/cancer, 2009, 9, pp. 108-122.
Cox et al, Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer, Disease Models & Mechanisms, 2011, 4, pp. 165-178.
Definition of Hydrogel by Merriam-Webster, from https://www.merriam-webster.com/dictionary/hydrogel, pp. 1-3, accessed Nov. 8, 2021.
Adams, “An Analysis of Clinical Studies of the Uses of Crosslinked Hyaluronan, Hylan, in the Treatment of Osteoarthritis,” J Rheumatol Suppl, Aug. 1993, 39:16-8.
Aesthetic Buyers Guide, “Juvederm Raises Standards,” Jan./Feb. 2007, 5 pages, www.miinews.com.
Albano et al., “Hyroxyethyl Radicals in Ethanol Hepatotoxicity,” Frontiers in Bioscience, 1999, vol. 4, pp. 533-540.
Allemann et al., “Hyaluronic Acid Gel (Juvederm) Preparations in the Treatment of Facial Wrinkles and Folds,” Clinical Interventions in Aging, 2008, 629-634, 3 (4).
Altman et al., “Adhesion, migration and mechanics of human adipose-tissue-derived stem cells on silk fibroin-chitosan matrix,” ACTA Biomaterialia, 2010, vol. 6, pp. 1388-1397.
Antunes et al., “Efficacy of Intrarectal Lidocaine Hydrochloride Gel for Pain Control in Patients Undergoing Transrectal Prostate Biopsy,” Clinical Urology, 2004, 380-383, 30.
Atanassoff et al., “The Effect of Intradermal Administration of Lidocaine and Morphine on the Response to Thermal Stimulation,” Anesth Analg, 1997, pp. 1340-1343.
Baumann et al., “Comparison of Smooth-Gel Hyaluronic Acid Dermal Fillers with Cross-linked Bovine Collagen: A Multicenter, Double-Masked, Randomized, Within-Subject Study,” Dermatologic Surgery, 2007, vol. 33, No. 2, pp. S128-S135.
Beasley et al., “Hyaluronic Acid Fillers: A Comprehensive Review,” Facial Plastic Surgery, 2009, vol. 25, No. 2, pp. 86-94.
Beer, “Dermal Fillers and Combinations of Fillers for Facial Rejuvenation,” Dermatologic Clin, 2009, vol. 27, No. 4, pp. 427-432.
Belda et al., “Hyaluronic Acid Combined With Mannitol to Improve Protection Against Free-Radical Endothelial Damage: Experimental Model,” J Cataract Refract Surg, 2005, vol. 31, pp. 1213-1218.
Bircher et al., “Delayed-type Hypersensitivity to Subcutaneous Lidocaine With Tolerance to Articaine: Confirmation by In Vivo and In Vitro Tests,” Contact Dermatitis, 1996, vol. 34, pp. 387-389.
Bluel et al., “Evaluation of Reconstituted Collagen Tape as a Model for Chemically Modified Soft Tissues,” Biomat. Med. Dev. Art. Org., 1981, vol. 9, No. 1, pp. 37-46.
Boulle et al., “Lip Augmentation and Contour Correction with a Ribose Cross-linked Collagen Dermal Filler,” Journal of Drugs in Dermatology, Mar. 2009, vol. 8, Issue 3, 8 pages.
Buck, “Injectable Fillers for Facial Rejuvenation: A Review,” Journal of Plastic, Reconstructive & Aesthetic Surgery, 2009, vol. 62, pp. 11-18.
Calderon et al., “Type II Collagen-Hyaluronan Hydrogel—A Step Towards a Scaffold for Intervertebral Disc Tissue Engineering,” European Cells and Materials, 2010, vol. 20, pp. 134-148.
Cappozi et al., “Distant Migration of Silicone Gel From a Ruptured Breast Implant,” Silicone Gel Migration, 1978, vol. 62, No. 2, pp. 302-303.
Carlin et al., “Effect of Anti-Inflammatory Drugs on Xanthine Oxidase and Xanthine Oxidase Induced Depolymerization of Hyaluronic Acid,” Agents and Actions, 1985, vol. 16, No. 5, pp. 377-384.
Carruthers Jean et al., “The Science and Art of Dermal Fillers for Soft-Tissue Augmentation,” Journal of Drugs in Dermatology, 2009, vol. 8, No. 4, pp. 335-350.
Champion et al., “Role of Target Geometry in Phagocytosis,” Proc. Nat. Acad. Sci., 2006, vol. 103, No. 13, pp. 4930-4934.
Chin et al., “Allergic Hypersensitivity to Lidocaine Hydrochloride,” International Society of Tropical Dermatology, 1980, pp. 147-148.
Chvapil, “Collagen Sponge: Theory and Practice of Medical Applications,” J. Biomed. Mater. Res., 1977, vol. 11, pp. 721-741.
Clark et al., “The Influence of Triamcinolone Acetonide on Joint Stiffness in the Rat,” The Journal of Bone and Joint Surgery, 1971, vol. 53A, No. 7, pp. 1409-1414.
Cohen et al., “Organization and Adhesive Properties of the Hyaluronan Pericellular Coat of Chondrocytes and Epithelial Cells,” Biophysical Journal, 2003, vol. 85, pp. 1996-2005.
Crosslinking Technical Handbook, Termo Scientific, Apr. 2009, pp. 1-48.
Cui et al., “The Comparison of Physicochemical Properties of Four Cross-linked Sodium Hyaluronate Gels With Different Cross-linking Agents,” Advanced Materials Research, 2012, vols. 396-398, pp. 1506-1512.
Davidenko et al., “Collagen-hyaluronic acid scaffolds for adipose tissue engineering,” Acta Biomaterialia, 2010, vol. 8, pp. 3957-3968.
Deland, “Intrathecal Toxicity Studies with Benzyl Alcohol,” Toxicology and Applied Pharmacology, 1973, vol. 25, pp. 153-156.
Desai et al., “Molecular weight of Heparin Using 13C Nuclear Magnetic Resonance Spectroscopy,” J Pharm. Sci., 1995, vol. 84, No. 2, pp. 212-215.
Doillon et al., “Fibroblast growth on a porous collagen sponge containing hyaluronic acid and fibronectin,” Biomaterials, 1987, vol. 8, No. 3, pp. 195-200.
Eyre et al., “Collagen Cross-Links,”Top Curr Chem, 2005, vol. 247, pp. 207-229.
Falcone et al., “Crosslinked Hyaluronic Acid Dermal Fillers: A Comparison of Rheological Properties,” Journal of Biomedical Materials Research, 2008, vol. 87, No. 1, pp. 264-271.
Falcone et al., “Temporary Polysaccharide Dermal Fillers: A Model for Persistence Based on Physical Properties,” Dermatologic Surgery, 2009, vol. 35, No. 8, pp. 1238-1243.
Farley et al., “Diluting Lidocaine and Mepivacaine in Balanced Salt Solution Reduces the Pain of Intradermal Injection,” Regional Anesthesia, 1994, vol. 19, No. 1, pp. 48-51.
Frati et al., “Degradation of Hyaluronic Acid by Photosensitized Riboflavin In Vitro. Modulation of the Effect by Transition Metals, Radical Quenchers, and Metal Chelators,” Free Radical Biolo Medicine, 1996, vol. 22, No. 7, pp. 1139-1144.
Fujinaga et al., “Reproductive and Teratogenic Effects of Lidocaine in Sprague-Dawley Rats,” Anesthesiology, 1986, vol. 65, pp. 626-632.
Gammaitoni et al., “Pharmacokinetics and Safety of Continuously Applied Lidocaine Patches 5%,” Am J Health Syst Pharm, 2002, vol. 59, pp. 2215-2220.
Ginshicel Mh, Hydroxy Propyl Methyl Cellulose, Retrieved on Nov. 12, 2008 http://www.ginshicel.cn/MHPC.html, 2007, p. 1-3, 2 (3).
Gold, “Use of Hyaluronic Acid Fillers for the Treatment of the Aging Face,” Clin. Interventions Aging, 2007, vol. 2, No. 3, pp. 369-376.
Goldberg, “Breakthroughs in US dermal fillers for facial soft-tissue augmentation,” Journal of Cosmetic and Laser Therapy, 2009, vol. 11, pp. 240-247.
Graefe et al., “Sensitive and Specific Photometric Determination of Mannitol,” Clin Chem Lab Med, 2003, vol. 41, No. 8, pp. 1049-1055.
Greco et al., “Hyaluronic Acid Stimlates Human Fibroblast Proliferation Within a Fcollagen Matrix,” J. Cell. Physiol., 1998, vol. 177, No. 3, pp. 465-473.
Grecomoro et al., “Intra-articular treatment with sodium hyaluronate in gonarthrosis: a controlled clinical trial versus placebo,” Pharmatherapeutica, 1987, vol. 5, No. 2, pp. 137-141.
Grillo et al., “Thermal Reconstitution of Collagen From Solution and the Response to Its Heterologous Implantation,” JSR, 1962, vol. 2, No. 1, pp. 69-82.
Hassan et al., “Effects of Adjuvants to Local Anaesthetics on Their Duration. III. Experimental Studies of Hyaluronic Acid,” Acta Anaesthesiol Scand., 1985, 1 page Abstract.
Hayashibara, AA2G, Sep. 23, 2007, Retrieved on Jan. 17, 2012, http://web.archive.org/web/20070923072010/http://www.hayashibara-intl.com-/cosmetics/aa2g.html, 3 pages.
Helary et al., “Concentrated collagen hydrogels as dermal substitutes,” Biomaterials, 2010, vol. 31, pp. 481-490.
Helliwell, “Use of an objective measure of articular stiffness to record changes in finger joints after intra-articular injection of corticosteroid,” Annals of Rheumatic Diseases, 1997, vol. 56, pp. 71-73.
Hertzberger-Ten et al., “Intra-articular steroids in pauciarticular juvenile chronic arthritis, type 1,” European Journal of Pediatrics, 1991, vol. 150, pp. 170-172.
Hetherington et al., “Potential for Patient Harm from Intrathecal Administration of Preserved Solutions,” Med J Aust., 2000, 1 page abstract.
Hurst, “Adhesive Arachnoiditis and Vascular Blockage Caused by Detergents and Other Chemical Irritants: An Experimental Study,” J Path. Bact., 1955, 17 pages.
Intramed (Pty) Ltd, Intramed Mannitol 20% m/v Infusion, Package Insert, Jan. 1979, 2 pages.
Jones et al., “Intra-articular hyaluronic acid compared to intra-articular triamcinolone hexacetonide in inflammatory knee osteoarthritis,” Osteoarthritis and Cartilage, 1995, vol. 3, pp. 269-273.
Kablik et al., “Comparative Physical Properties of Hyaluronic Acid Dermal Fillers,” Dermatology Surgery, 2009, vol. 35, pp. 302-312.
Kim et al., “A Composite Dermal Filler Comprising Cross-Linked Hyaluronic Acid and Human Collagen for Tissue Reconstruction,” J. Microbiol. Biotechnol., 2015, vol. 25, No. 3, pp. 399-406.
Klein, “Skin Filling Collagen and Other Injectables of the Skin,” Fundamentals of Cosmetic Surgery, 2001, vol. 3, No. 19, pp. 491-508.
Kopp et al., “The Short-term Effect of Intra-articular Injections of Sodium Hyaluronate and Corticosteroid on Temporomandibular Joint Pain and Dysfunction,” Journal of Oral and Maxillofacial Surgery, 1985, vol. 43, pp. 429-435.
Kreisel et al., “Cell-delivery therapeutics for adipose tissue regeneration,” Advanced Drug Delivery Reviews, Jun. 2010, vol. 62, pp. 798-813.
Kulicke et al., “Visco-Elastic Properties of Sodium Hyaluronate Solutions,” Institute for Technical and Macromolecular Chemistry, 2008, pp. 585-587.
Laeschke, “Biocompatibility of Microparticles Into Soft Tissue Fillers,” Semin Cutan Med Surg, 2004, vol. 23, pp. 214-217.
Lamar et al., “Antifibrosis Effect of Novel Gels in Anterior Ciliary Sclerotomy (ACS),” The Association for Research in Vision and Ophthalmology, Inc., 2002, 1 page.
Levy et al., “Lidocaine Hypersensitivity After Subconjunctival Injection,” Can J Ophthalmol, 2006, vol. 41, 204-206.
Lindvall et al., “Influence of Various Compounds on the Degradation of Hyaluronic Acid by a Myeloperoxidase System,” Chemico-Biological Interactions, 1994, vol. 90, pp. 1-12.
Lupo, “Hyaluronic Acid Fillers in Facial Rejuvenation,” Seminars in Cutaneous Medicine and Surgery, 2006, vol. 25, pp. 122-126.
Mackley et al., “Delayed-Type Hypersensitivity to Lidocaine,” Arch Dermatol, 2003, vol. 139, pp. 343-346.
Etienne et al, Soft Tissue Augmentation Using Silk Gels: An In Vitro and In Vivo Study, J. Periodontol, 2009, 80, pp. 1852-1858.
Mancinelli et al., “Intramuscular High-dose Triamcinolone Acetonide in the Treatment of Severe Chronic Asthma,” West J Med, 1997, col. 167, No. 5, pp. 322-329.
Mast et al, Hyaluronic acid degradation products induce neovascularization and fibroplasia in fetal rabbit wounds, Wound Repair and Regeneration, 1995, 3, pp. 66-72.
Matsumoto et al., “Reducing the Discomfort of Lidocaine Administration Through pH Buffering,” Journal of Vascular and Interventional Radiology, 1994, vol. 5, No. 1, pp. 171-175.
Mccarty et al., “Inflammatory Reaction after Intrasynovial Injection of Microcrystalline Adrenocorticosteroid Esters,” Arthritis and Rheumatism, 1964, vol. 7, No. 4, pp. 359-367.
Mccleland et al., “Evaluation of Artecoll Polymethylmethacrylate Implant for Soft-Tissue Augmentation: Biocompatibility and Chemical Characterization,” Plastic & Reconstructive Surgery, 1997, vol. 100, No. 6, pp. 1466-1474.
Mcpherson et al., “Development and Biochemical Characterization of Injectable Collagen,” Journal of Dermatol Surg Oncol, 1988, vol. 14, Suppl 1, pp. 13-20.
Millay et al., “Vasoconstrictors in Facial Plastic Surgery,” Arch Otolaryngol Head Neck Surg., 1991, vol. 117, pp. 160-163.
Orvisky et al., “High-molecular-weight Hyaluronan—a Valuable Tool in Testing the Antioxidative Activity of Amphiphilic Drugs Stobadine and Vinpocetine,” Journal of Pharm. Biomed. Anal., 1997, vol. 16, pp. 419-424.
Osmitrol (generic name Mannitol), Official FDA Information, side effects and uses, http://www.drugs.com/pro/osmitrol.html, 2010, 10 Pages.
Park et al., “In vitro evaluation of conjugated Hyaluronic acid with Ascorbic Acid,” Journal of Bone and Joint Surgery, British vol. 92-B, 2010, 1 page abstract.
Park et al., “Biological Characterization of EDC-Crosslinked Collagen-Hyaluronic Acid Matrix in Dermal Tissue Restoration,” Biomaterials, 2003, vol. 24, pp. 1631-1641.
Park et al., “Characterization of Porous Collagen/Hyaluronic Acid Scaffold Modified by 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide Cross-Linking,” Biomaterials, 2002, vol. 23, pp. 1205-1212.
Powell, “Stability of Lidocaine in Aqueous Solution: Effect of Temperature, pH, Buffer, and Metal Ions on Amide Hydrolysis,” Pharmaceutical Research, 1987, vol. 4, No. 1, pp. 42-45.
Prestwich, “Evaluating Drug Efficacy and Toxicology in Three Dimensions: Using Synthetic Extracellular Matrices in Drug Discovery,” Accounts of Chemical Research, Jan. 2008, vol. 41, No. 1, pp. 139-148.
Rehakova et al., “Properties of Collagen and Hyaluronic Acid Composite Materials and Their Modification by Chemical Crosslinking,” Journal of Biomedical Materials Research, 1996, vol. 30, pp. 369-372.
Remington's Pharmaceutical Sciences, 1980, 16th Edition, Mack Publishing Company, Easton, Pennsylvania, 10 pages.
Rosenblatt et al., “Chain Rigidity and Diffusional Release in Biopolymer Gels,” Controlled Release Society, 1993, vol. 20, pp. 264-265.
Rosenblatt et al., “The Effect of Collagen Fiber Size Distribution on the Release Rate of Proteins From Collagen Matrices by Diffusion,” J Controlled Release, 1989, vol. 9, pp. 195-203.
Sannino et al., “Crosslinking of Cellulose Derivatives and Hyaluronic Acid With Water-Soluble Carbodiimide,” Polymer, 2005, vol. 46, pp. 11206-11212.
Sculptra Product Information, Dermik Laboratories, Jun. 2004, 12 pages.
Segura et al., “Crosslinked Hyaluronic Acid Hydrogels: A Strategy to Functionalize and Pattern,” Biomaterials, 2005, vol. 26, No. 4, pp. 359-371.
Selvi et al., “Arthritis Induced by Corticosteroid Crystals,” The Journal of Rheumatology, 2004, vol. 31, No. 3, pp. 622.
Serban et al., “Modular Extracellular Matrices: Solutions for the Puzzle,” Methods, 2008, vol. 45, No. 1, pp. 93-98.
Shu et al, “Synthesis and evaluation of injectable, in situ crosslinkable synthetic extracellular matrices for tissue engineering,” Journal of Biomedical Materials Research, 2006, vol. 79A, pp. 902-912.
Silver et al., “Physical Properties of Hyaluronic Acid and Hydroxypropylmethylcellulose in Solution: Evaluation of Coating Ability,” Journal of Applied Biomaterials, 1994, vol. 5, pp. 89-98.
Skardal et al., “Bioprinting Vessel-Like Constructs Using Hyaluronan Hydrogels Crosslinked With Tetrahedral Polyethylene Glycol Tetracrylates,” Biomaterials, 2010, vol. 31, pp. 6173-6181.
Smith et al., “Five Percent Lidocaine Cream Applied Simultaneously to the Skin and Mucosa of the Lips Creates Excellent Anesthesia for Filler Injections,” Dermatol Surg, 2005, vol. 31, pp. 1635-1637.
Sterilization-microbiology, http://www.ask.com/wiki/Sterilization_(microbiology), Sep. 25, 2013, 9 pages.
Taguchi et al., “An improved method to prepare hyaluronic acid and type II collagen composite matrices,” Journal of Biomedical Materials Research, 2002, vol. 61, No. 2, pp. 330-336.
Tezel et al., “The science of hyaluronic acid dermal fillers,” Journal of Cosmetic and Laser Therapy, 2008, vol. 10, pp. 35-42.
Tomihata et al., “Crosslinking of Hyaluronic Acid with Water-Soluable Carbodiimide,” J Biomed Mater Res, Feb. 1997, vol. 37, No. 2, pp. 243-251.
Van Der Rest et al., “Collagen family of proteins,” FASEB J, Oct. 1991, vol. 5, No. 13, pp. 2814-2823.
Vialle-Presles et al, Immunohistochemical study of the biological fate of a subcutaneous bovine collagen implant in rat, Histochemistry, 1989, 91, pp. 177-184.
Visiol, TRB Chemedica Ophthalmic Line, Product Info, May 2014, p. 1-2, Geneva, CH.
Visiol, Viscoelstic Gel for Use in Ocular Surgery, http://www.trbchemedica.com/index.php/option=com_content&tas, 2010, 1 Page.
Wahl, “European Evaluation of a New Hyaluronic Acid Filler Incorporating Lidocaine,” Journal of Cosmetic Dermatology, 2008, vol. 7, pp. 298-303.
Wang et al., “Development of hyaluronic acid-based scaffolds for brain tissue engineering,” Acta Biomaterialia, 2009, pp. 2371-2384.
Waraszkiewicz et al., “Stability-Indicating High-Performance Liquid Chromatographic Analysis of Lidocaine Hydrochloride and Lidocaine Hydrochloride with Epinephrine Injectable Solutions,” Journal of Pharmaceutical Sciences, 1981, vol. 70, No. 11, pp. 1215-1218.
Weidmann, “New Hyaluronic Acid Filler for Subdermal and Long-lasting Volume Restoration of the Face,” European Dermatology, 2009, pp. 65-68.
Xia et al., “Comparison of Effects of Lidocaine Hydrochloride, Buffered Lidocaine, Diphenhydramine, and Normal Saline After Intradermal Injection,” Journal of Clinical Anesthesia, 2002, vol. 14, pp. 339-343.
Yeom et al., “Effect of Cross-Linking Reagents for Hyaluronic Acid Hydrogel Dermal Fillers on Tissue Augmentation and Regeneration,” Bioconjugate Chemistry, 2010, vol. 21, pp. 240-247.
Yui et al., “Inflammation Responsive Degradation of Crosslinked Hyaluronic Acid Gels,” Journal of Controlled Release, 1992, vol. 26, pp. 105-116.
Yui et al., “Photo-Responsive Degradation of Heterogeneous Hydrogels Comprising Crosslinked Hyaluronic Acid and Lipid Microspheres for Temporal Drug Delivery,” Journal of Controlled Release, 1993, vol. 26, pp. 141-145.
Yun et al., “Hyaluronan Microspheres for Sustained Gene Delivery and Site-Specific Targeting,” Biomaterials, 2004, vol. 25, pp. 147-157.
Zheng et al., “In situ crosslinkable hyaluronan hydrogels for tissue engineering,” Biomaterials, 2004, vol. 25, pp. 1339-1348.
Zulian et al., “Triamcinolone acetonide and hexacetonide intra-articular treatment of symmetrical joints in juvenile idiopathic arthritis: a double-blind trial,” Rheumatology, Oct. 2004, vol. 43, No. 10, pp. 1288-1291.
Chen et al., “Injectable self-crosslinking HA-SH/Col I blend hydrogels for in vitro construction of engineered cartilage”, Carbohydrate Polymers, vol. 190, Jun. 1, 2018, pp. 57-66, XP055796993, GB.
Caffeic Acid, National Center for Biotechnology Information, PubChem Compound Database, CID=689043, 2018, 1 page, https://pubchem.ncbi.nim.nih.gov/compound/689043.
Gallic Acid, National Center for Biotechnology Information, PubChem Compound Database, CID=370, 2018, 1 page, https://pubchem.ncbi.nim.nih.gov/compound/370.
Gomis et al., “Effects of Different Molecular Weight Elastoviscous Hyaluronan Solutions on Articular Nociceptive Afferents,” Arthritis and Rheumatism, Jan. 2004, vol. 50, No. 1, pp. 314-326.
Juvederm Volux, Product Insert, Jul. 26, 2018, 65 pages.
Kim et al., “Gallotannin Isolated from Euphorbia Species, 1, 2, 6-Tri-O-galloyl-b-D-allose, Decreases Nitric Oxide Production through Inhibition of Nuclear Factor-K>B and Downstream Inducible Nitric Oxide Synthase Expression in Macrophages,” Jun. 2009, Biological and Pharmaceutical Bulletin, vol. 32, No. 6, pp. 1053-1056.
Nadim et al., “Improvement of polyphenol properties upon glucosylation in a UV-induced skin cell ageing model,” International Journal of Cosmetic Science, Sep. 2014, vol. 36, No. 6, pp. 579-587.
Pierre, et al., “Basics of Dermal Filler Rheology,” Dermatol Surg, 2015, vol. 41, pp. S120-S126.
Related Publications (1)
Number Date Country
20200030490 A1 Jan 2020 US
Provisional Applications (2)
Number Date Country
61555970 Nov 2011 US
61531533 Sep 2011 US
Divisions (1)
Number Date Country
Parent 13667581 Nov 2012 US
Child 14962897 US
Continuations (3)
Number Date Country
Parent 15727916 Oct 2017 US
Child 16595481 US
Parent 15609967 May 2017 US
Child 15727916 US
Parent 14962897 Dec 2015 US
Child 15609967 US
Continuation in Parts (2)
Number Date Country
Parent 13605565 Sep 2012 US
Child 13667581 US
Parent 13603213 Sep 2012 US
Child 13605565 US