Hybrid adaptive noise cancellation system with filtered error microphone signal

Information

  • Patent Grant
  • 9578415
  • Patent Number
    9,578,415
  • Date Filed
    Friday, August 21, 2015
    9 years ago
  • Date Issued
    Tuesday, February 21, 2017
    8 years ago
Abstract
In accordance with systems and methods of the present disclosure, an adaptive noise cancellation system may include an alignment filter configured to correct misalignment of a reference microphone signal and an error microphone signal by generating a misalignment correction signal.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to adaptive noise cancellation in connection with an acoustic transducer, and more particularly, to a hybrid adaptive noise cancellation system with a filtered error microphone signal to correct for misalignment between a reference microphone signal and an error microphone signal caused by a feedback filter of the hybrid adaptive noise cancellation system.


BACKGROUND

Wireless telephones, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as mp3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise canceling using a microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.


In many noise cancellation systems, it is desirable to include both feedforward noise cancellation by using a feedforward adaptive filter for generating a feedforward anti-noise signal from a reference microphone signal configured to measure ambient sounds and feedback noise cancellation by using a fixed-response feedback filter for generating a feedback noise cancellation signal to be combined with the feedforward anti-noise signal. However, using traditional approaches, when a gain of the feedback path is strong, the response of the feedforward adaptive filter may diverge, thus rendering the adaptive system unstable.


SUMMARY

In accordance with the teachings of the present disclosure, the disadvantages and problems associated with instability of existing approaches for implementing hybrid adaptive noise cancellation may be reduced or eliminated.


In accordance with embodiments of the present disclosure, a integrated circuit for implementing at least a portion of a personal audio device may include an output for providing a signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering the effect of ambient audio sounds in an acoustic output of the transducer, a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds, an error microphone input for receiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer; and a processing circuit. The processing circuit may implement a feedforward filter having a response that generates at least a portion of the anti-noise signal from the reference microphone signal, a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal and have a response that generates a secondary path estimate from the source audio signal, a feedback filter having a response that generates at least a portion of the anti-noise signal based on the error microphone signal, an alignment filter configured to correct misalignment of the reference microphone signal and error microphone signal by generating a misalignment correction signal; a feedforward coefficient control block that shapes the response of the feedforward filter by adapting the response of the feedforward filter to minimize the ambient audio sounds in the error microphone signal; and a secondary path coefficient control block that shapes the response of the secondary path estimate filter in conformity with the source audio signal and the misalignment correction signal in order to minimize the misalignment correction signal.


In accordance with these and other embodiments of the present disclosure, a method for canceling ambient audio sounds in the proximity of a transducer of a personal audio device may include receiving a reference microphone signal indicative of the ambient audio sounds, receiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer, generating a source audio signal for playback to a listener, generating a feedforward anti-noise signal component from the reference microphone signal by adapting a response of an adaptive filter that filters the reference microphone signal to minimize the ambient audio sounds in the error microphone signal, generating a feedback anti-noise signal component based on the error microphone signal for countering the effects of ambient audio sounds at an acoustic output of the transducer, generating a misalignment correction signal to correct misalignment of the reference microphone signal and error microphone signal, generating the secondary path estimate from the source audio signal by adapting a response of a secondary path estimate filter that models an electro-acoustic path of the source audio signal and filters the source audio signal to minimize the filtered playback corrected error, and combining the feedforward anti-noise signal component and the feedback anti-noise signal component with a source audio signal to generate an audio signal provided to the transducer.


In accordance with these and other embodiments of the present disclosure, an integrated circuit for implementing at least a portion of a personal audio device may include an output for providing a signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering the effect of ambient audio sounds in an acoustic output of the transducer, a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds, an error microphone input for receiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer, a noise input for receiving an injected, substantially inaudible noise signal, and a processing circuit. The processing circuit may implement a feedforward filter having a response that generates at least a portion of the anti-noise signal from the reference microphone signal, a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal and have a response that generates a secondary path estimate from the source audio signal, a feedback filter having a response that generates at least a portion of the anti-noise signal based on the error microphone signal, an effective secondary estimate filter configured to model an electro-acoustic path of the anti-noise signal and have a response that generates the filtered noise signal from the noise signal, a feedforward coefficient control block that shapes the response of the feedforward filter in conformity with the error microphone signal and the reference microphone signal by adapting the response of the feedforward filter to minimize the ambient audio sounds in the error microphone signal, a secondary path coefficient control block that shapes the response of the effective secondary path estimate filter in conformity with the noise signal and the error microphone signal in order to minimize the playback corrected error, and a secondary estimate construction block that generates the response of the secondary estimate filter from the response of the effective secondary estimate filter.


In accordance with these and other embodiments of the present disclosure, a method for canceling ambient audio sounds in the proximity of a transducer of a personal audio device may include receiving a reference microphone signal indicative of the ambient audio sounds, receiving an error microphone signal indicative of an output of the transducer and the ambient audio sounds at the transducer, generating a source audio signal for playback to a listener, generating a feedforward anti-noise signal component from the reference microphone signal by adapting a response of an adaptive filter that filters the reference microphone signal to minimize the ambient audio sounds in the error microphone signal, generating a feedback anti-noise signal component based on the error microphone signal, generating the filtered noise signal from a noise signal by adapting a response of an effective secondary path estimate filter that models an electro-acoustic path of the anti-noise signal and filters the noise signal to minimize the error microphone signal, generating the secondary path estimate from the source audio signal by applying a response of a secondary path estimate filter wherein the response of the secondary estimate filter is generated from the response of the effective secondary estimate filter, and combining the feedforward anti-noise signal component and the feedback anti-noise signal component with a source audio signal to generate an audio signal provided to the transducer.


Technical advantages of the present disclosure may be readily apparent to one of ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1A is an illustration of an example wireless mobile telephone, in accordance with embodiments of the present disclosure;



FIG. 1B is an illustration of an example wireless mobile telephone with a headphone assembly coupled thereto, in accordance with embodiments of the present disclosure;



FIG. 2 is a block diagram of selected circuits within the wireless telephone depicted in FIG. 1A, in accordance with embodiments of the present disclosure;



FIGS. 3A-3D are each a block diagram depicting selected signal processing circuits and functional blocks within an example active noise canceling (ANC) circuit of a coder-decoder (CODEC) integrated circuit of FIG. 2, in accordance with embodiments of the present disclosure; and



FIG. 4 is a block diagram depicting selected signal processing circuits and functional blocks within an example active noise canceling (ANC) circuit of a coder-decoder (CODEC) integrated circuit of FIG. 2, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

The present disclosure encompasses noise canceling techniques and circuits that can be implemented in a personal audio device, such as a wireless telephone. The personal audio device includes an ANC circuit that may measure the ambient acoustic environment and generate a signal that is injected in the speaker (or other transducer) output to cancel ambient acoustic events. A reference microphone may be provided to measure the ambient acoustic environment, and an error microphone may be included for controlling the adaptation of the anti-noise signal to cancel the ambient audio sounds and for correcting for the electro-acoustic path from the output of the processing circuit through the transducer.


Referring now to FIG. 1A, a wireless telephone 10 as illustrated in accordance with embodiments of the present disclosure is shown in proximity to a human ear 5. Wireless telephone 10 is an example of a device in which techniques in accordance with embodiments of the invention may be employed, but it is understood that not all of the elements or configurations embodied in illustrated wireless telephone 10, or in the circuits depicted in subsequent illustrations, are required in order to practice the invention recited in the claims. Wireless telephone 10 may include a transducer, such as speaker SPKR, that reproduces distant speech received by wireless telephone 10, along with other local audio events such as ringtones, stored audio program material, injection of near-end speech (i.e., the speech of the user of wireless telephone 10) to provide a balanced conversational perception, and other audio that requires reproduction by wireless telephone 10, such as sources from webpages or other network communications received by wireless telephone 10 and audio indications such as a low battery indication and other system event notifications. A near-speech microphone NS may be provided to capture near-end speech, which is transmitted from wireless telephone 10 to the other conversation participant(s).


Wireless telephone 10 may include ANC circuits and features that inject an anti-noise signal into speaker SPKR to improve intelligibility of the distant speech and other audio reproduced by speaker SPKR. A reference microphone R may be provided for measuring the ambient acoustic environment, and may be positioned away from the typical position of a user's mouth, so that the near-end speech may be minimized in the signal produced by reference microphone R. Another microphone, error microphone E, may be provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by speaker SPKR close to ear 5, when wireless telephone 10 is in close proximity to ear 5. In different embodiments, additional reference and/or error microphones may be employed. Circuit 14 within wireless telephone 10 may include an audio CODEC integrated circuit (IC) 20 that receives the signals from reference microphone R, near-speech microphone NS, and error microphone E and interfaces with other integrated circuits such as a radio-frequency (RF) integrated circuit 12 having a wireless telephone transceiver. In some embodiments of the disclosure, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that includes control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. In these and other embodiments, the circuits and techniques disclosed herein may be implemented partially or fully in software and/or firmware embodied in computer-readable media and executable by a controller or other processing device.


In general, ANC techniques of the present disclosure measure ambient acoustic events (as opposed to the output of speaker SPKR and/or the near-end speech) impinging on reference microphone R, and by also measuring the same ambient acoustic events impinging on error microphone E, ANC processing circuits of wireless telephone 10 adapt an anti-noise signal generated from the output of reference microphone R to have a characteristic that minimizes the amplitude of the ambient acoustic events at error microphone E. Because acoustic path P(z) extends from reference microphone R to error microphone E, ANC circuits are effectively estimating acoustic path P(z) while removing effects of an electro-acoustic path S(z) that represents the response of the audio output circuits of CODEC IC 20 and the acoustic/electric transfer function of speaker SPKR including the coupling between speaker SPKR and error microphone E in the particular acoustic environment, which may be affected by the proximity and structure of ear 5 and other physical objects and human head structures that may be in proximity to wireless telephone 10, when wireless telephone 10 is not firmly pressed to ear 5. While the illustrated wireless telephone 10 includes a two-microphone ANC system with a third near-speech microphone NS, some aspects of the present invention may be practiced in a system that does not include separate error and reference microphones, or a wireless telephone that uses near-speech microphone NS to perform the function of the reference microphone R. Also, in personal audio devices designed only for audio playback, near-speech microphone NS will generally not be included, and the near-speech signal paths in the circuits described in further detail below may be omitted, without changing the scope of the disclosure, other than to limit the options provided for input to the microphone covering detection schemes.


Referring now to FIG. 1B, wireless telephone 10 is depicted having a headphone assembly 13 coupled to it via audio port 15. Audio port 15 may be communicatively coupled to RF integrated circuit 12 and/or CODEC IC 20, thus permitting communication between components of headphone assembly 13 and one or more of RF integrated circuit 12 and/or CODEC IC 20. As shown in FIG. 1B, headphone assembly 13 may include a combox 16, a left headphone 18A, and a right headphone 18B. As used in this disclosure, the term “headphone” broadly includes any loudspeaker and structure associated therewith that is intended to be mechanically held in place proximate to a listener's ear canal, and includes without limitation earphones, earbuds, and other similar devices. As more specific examples, “headphone,” may refer to intra-concha earphones, supra-concha earphones, and supra-aural earphones.


Combox 16 or another portion of headphone assembly 13 may have a near-speech microphone NS that may capture near-end speech in addition to or in lieu of near-speech microphone NS of wireless telephone 10. In addition, each headphone 18A, 18B may include a transducer, such as speaker SPKR, that reproduces distant speech received by wireless telephone 10, along with other local audio events such as ringtones, stored audio program material, injection of near-end speech (i.e., the speech of the user of wireless telephone 10) to provide a balanced conversational perception, and other audio that requires reproduction by wireless telephone 10, such as sources from webpages or other network communications received by wireless telephone 10 and audio indications, such as a low battery indication and other system event notifications. Each headphone 18A, 18B may include a reference microphone R for measuring the ambient acoustic environment and an error microphone E for measuring of the ambient audio combined with the audio reproduced by speaker SPKR close a listener's ear when such headphone 18A, 18B is engaged with the listener's ear. In some embodiments, CODEC IC 20 may receive the signals from reference microphone R, near-speech microphone NS, and error microphone E of each headphone and perform adaptive noise cancellation for each headphone as described herein. In other embodiments, a CODEC IC or another circuit may be present within headphone assembly 13, communicatively coupled to reference microphone R, near-speech microphone NS, and error microphone E, and configured to perform adaptive noise cancellation as described herein.


Referring now to FIG. 2, selected circuits within wireless telephone 10 are shown in a block diagram. CODEC IC 20 may include an analog-to-digital converter (ADC) 21A for receiving the reference microphone signal and generating a digital representation ref of the reference microphone signal, an ADC 21B for receiving the error microphone signal and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near speech microphone signal and generating a digital representation ns of the near speech microphone signal. CODEC IC 20 may generate an output for driving speaker SPKR from an amplifier A1, which may amplify the output of a digital-to-analog converter (DAC) 23 that receives the output of a combiner 26. Combiner 26 may combine audio signals is from internal audio sources 24, the anti-noise signal generated by ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and is therefore subtracted by combiner 26, and a portion of near speech microphone signal ns so that the user of wireless telephone 10 may hear his or her own voice in proper relation to downlink speech ds, which may be received from radio frequency (RF) integrated circuit 22 and may also be combined by combiner 26. Near speech microphone signal ns may also be provided to RF integrated circuit 22 and may be transmitted as uplink speech to the service provider via antenna ANT. In some embodiments, combiner 26 may also combine a substantially inaudible noise signal nsp (e.g., a noise signal with low magnitude and/or in frequency ranges outside the audible band) generated from a noise source 28.


Referring now to FIG. 3A, details of ANC circuit 30A are shown in accordance with embodiments of the present disclosure. ANC circuit 30A may be used in some embodiments to implement ANC circuit 30 depicted in FIG. 2. As shown in FIG. 3A, adaptive filter 32 may receive reference microphone signal ref and under ideal circumstances, may adapt its transfer function W(z) to be P(z)/S(z) to generate a feedforward anti-noise component of the anti-noise signal, which may be combined by combiner 38 with a feedback anti-noise component of the anti-noise signal (described in greater detail below) to generate an anti-noise signal which in turn may be provided to an output combiner that combines the anti-noise signal with the source audio signal to be reproduced by the transducer, as exemplified by combiner 26 of FIG. 2. The coefficients of adaptive filter 32 may be controlled by a W coefficient control block 31 that uses a correlation of signals to determine the response of adaptive filter 32, which generally minimizes the error, in a least-mean squares sense, between those components of reference microphone signal ref present in error microphone signal err. The signals compared by W coefficient control block 31 may be the reference microphone signal ref as shaped by a copy of an estimate of the response of path S(z) provided by filter 34B and another signal that includes error microphone signal err as shaped by an alignment filter 42, as described in greater detail below. By transforming reference microphone signal ref with a copy of the estimate of the response of path S(z), response SECOPY(z), and minimizing the ambient audio sounds in the error microphone signal, adaptive filter 32 may adapt to the desired response of P(z)/S(z). In addition to error microphone signal err, the signal compared to the output of filter 34B by W coefficient control block 31 may include an inverted amount of downlink audio signal ds and/or internal audio signal ia that has been processed by filter response SE(z), of which response SECOPY(z) is a copy. By injecting an inverted amount of downlink audio signal ds and/or internal audio signal ia, adaptive filter 32 may be prevented from adapting to the relatively large amount of downlink audio and/or internal audio signal present in error microphone signal err. However, by transforming that inverted copy of downlink audio signal ds and/or internal audio signal ia with the estimate of the response of path S(z), the downlink audio and/or internal audio that is removed from error microphone signal err should match the expected version of downlink audio signal ds and/or internal audio signal ia reproduced at error microphone signal err, because the electrical and acoustical path of S(z) is the path taken by downlink audio signal ds and/or internal audio signal ia to arrive at error microphone E. Filter 34B may not be an adaptive filter, per se, but may have an adjustable response that is tuned to match the response of adaptive filter 34A, so that the response of filter 34B tracks the adapting of adaptive filter 34A.


To implement the above, adaptive filter 34A may have coefficients controlled by SE coefficient control block 33, which may compare downlink audio signal ds and/or internal audio signal ia and error microphone signal err after removal of the above-described filtered downlink audio signal ds and/or internal audio signal ia, that has been filtered by adaptive filter 34A to represent the expected downlink audio delivered to error microphone E, and which is removed from the output of adaptive filter 34A by a combiner 36 to generate a playback-corrected error (shown as PBCE in FIG. 3A) which may be filtered by alignment filter 42 to generate a misalignment correction signal, which may comprise a filtered playback-corrected error, as described in greater detail below. SE coefficient control block 33 may correlate the actual downlink speech signal ds and/or internal audio signal ia with the components of downlink audio signal ds and/or internal audio signal ia that are present in error microphone signal err. Adaptive filter 34A may thereby be adapted to generate a signal from downlink audio signal ds and/or internal audio signal ia, that when subtracted from error microphone signal err, contains the content of error microphone signal err that is not due to downlink audio signal ds and/or internal audio signal ia.


As depicted in FIG. 3A, ANC circuit 30 may also comprise feedback filter 44. Feedback filter 44 may receive the playback corrected error signal PBCE and may apply a response H(z) to generate a feedback anti-noise component of the anti-noise signal based on the playback corrected error which may be combined by combiner 38 with the feedforward anti-noise component of the anti-noise signal to generate the anti-noise signal which in turn may be provided to an output combiner that combines the anti-noise signal with the source audio signal to be reproduced by the transducer, as exemplified by combiner 26 of FIG. 2.


As mentioned above, ANC circuit 30A may also include an alignment filter 42. In the presence of feedback filter 44, an effective secondary path Seff(z) for adaptive filter 32 may be given by Seff(z)=S(z)/[1+H(z)S(z)], and a playback-corrected error PBCEFB(z) with feedback filter 44 present (e.g., H(z)≠0) may be different than a playback-corrected error signal PBCE(z) without feedback filter 44 present (e.g., H(z)=0), as may be given by ErrFB=Err(z)/[1+H(z)S(z)]. Accordingly, in the absence of alignment filter 42 (e.g., if playback corrected error PBCE was not filtered by alignment filter 42 and was fed directly into W coefficient control 31 and SE coefficient control 33), the reference microphone signal ref and the playback corrected error PBCE may not be aligned, but may differ by a phase angle of 1/[1+H(z)S(z)]. Thus, alignment filter 42 may be configured to correct such misalignment of reference microphone signal ref, error microphone signal err, the source audio signal, and the playback-corrected error by generating a filtered playback-corrected error (shown as “filtered PB CE” in FIG. 3A) from playback-corrected error PBCE. As shown in FIG. 3A, alignment filter 42 may have a response given by 1+SE(z)H(z).


Referring now to FIG. 3B, details of ANC circuit 30B are shown in accordance with embodiments of the present disclosure. ANC circuit 30B may be used in some embodiments to implement ANC circuit 30 depicted in FIG. 2. ANC circuit 30B may be similar in many respects to ANC circuit 30A, thus only the differences between ANC circuit 30B and ANC circuit 30A are discussed.


As depicted in FIG. 3B, a path of the feedback anti-noise component may have a programmable gain element 46 with a programmable gain G, such that an increased gain G will cause increased noise cancellation of the feedback anti-noise component, and decreasing the gain G will cause reduced noise cancellation of the feedback anti-noise component. Although feedback filter 44 and gain element 46 are shown as separate components of ANC circuit 30B, in some embodiments some structure and/or function of feedback filter 44 and gain element 46 may be combined. For example, in some of such embodiments, an effective gain of feedback filter 44 may be varied via control of one or more filter coefficients of feedback filter 44.


In addition, in ANC circuit 30B, an alignment filter 42B may be implemented in place of alignment filter 42 of ANC circuit 30A, such that alignment filter 42B may have a response 1+SE(z)H(z)G that accounts for any misalignment between reference microphone signal ref and error microphone signal err caused by feedback filter 44 and programmable gain element 46 that would be introduced into ANC circuit 30B if alignment filter 42B were not present (e.g., if playback corrected error PBCE was not filtered by alignment error 42 and was fed directly into W coefficient control 31 and SE coefficient control 33).


As shown in FIG. 3B, ANC circuit 30 may also comprise secondary path estimate performance monitor 48. Secondary path estimate performance monitor 48 may comprise any system, device, or apparatus configured to give an indication of how efficiently secondary path estimate adaptive filter 34A is modeling the electro-acoustic path of the source audio signal over various frequencies, as determined by the efficiency by which secondary path estimate adaptive filter 34A causes combiner 36 to remove the source audio signal from the error microphone signal in generating the playback-corrected error over various frequencies.


Responsive to a determination by a secondary path estimate performance monitor 48 that secondary path estimate adaptive filter 34A is not sufficiently modeling the electro-acoustic path of the source audio signal, secondary path estimate performance monitor 48 may control gain element 46 and alignment filter 42B to reduce gain G, and then increase gain G when secondary path estimate adaptive filter 34A is sufficiently modeling the electro-acoustic path. Thus, when secondary path estimate adaptive filter 34A is not well-trained, secondary path estimate performance monitor 48 may reduce gain G and train secondary path estimate adaptive filter 34A. Once secondary path estimate adaptive filter 34A is well-trained, secondary path estimate performance monitor 48 may increase gain G and then update secondary path estimate adaptive filter 34A and/or adaptive filter 32.


To determine whether or not secondary path estimate adaptive filter 34A is not sufficiently modeling the electro-acoustic path of the source audio signal, secondary path estimate performance monitor 48 may calculate a secondary index performance index (SEPI) defined as:











SEPI
=




i
=
k

n





SE


(
i
)











where k represents a first coefficient tap of secondary path estimate adaptive filter 34A and n represents a second coefficient tap of secondary path estimate adaptive filter 34A. In some embodiments, the coefficient taps will comprise the coefficient taps representing the longest delay elements of a finite impulse response filter that implements secondary path estimate adaptive filter 34A. For example, in a 256-coefficient filter, k may equal 128 and n may equal 256. Once calculated, the value of SEPI may be compared to one or more threshold values to determine if secondary path estimate adaptive filter 34A is sufficiently modeling the electro-acoustic path of the source audio signal. If the SEPI value is below such a threshold, secondary path estimate adaptive filter 34A may be determined to be sufficiently modeling the electro-acoustic path of the source audio signal


Referring now to FIG. 3C, details of ANC circuit 30C are shown in accordance with embodiments of the present disclosure. ANC circuit 30C may be used in some embodiments to implement ANC circuit 30 depicted in FIG. 2. ANC circuit 30C may be similar in many respects to ANC circuit 30B, thus only the differences between ANC circuit 30C and ANC circuit 30B are discussed.


As shown in FIG. 3C, alignment filter 42C may be used in lieu of alignment filter 42B shown in FIG. 3B, wherein the difference is that alignment filter 42C may apply a response 1+SEG(z)H(z)G, which represents a previously-stored known-good response of secondary path estimate adaptive filter 34A existing at a time when, as determined by secondary path estimate performance monitor 48, secondary path estimate filter 34A was sufficiently modeling the electro-acoustic path of the source audio signal. In addition, filter 34B may be replaced by a filter 52 having a response SEG(z).


In operation, when secondary path estimate performance monitor 48 determines that secondary path estimate filter 34A is sufficiently modeling the electro-acoustic path of the source audio signal, secondary path estimate performance monitor 48 may cause the response SEG(z) to be updated with the response SE(z) on a periodic basis. On the other hand, when secondary path estimate performance monitor 48 determines that secondary path estimate filter 34A is not sufficiently modeling the electro-acoustic path of the source audio signal, secondary path estimate performance monitor 48 may freeze the update of SEG(z). In some embodiments, whenever the response SEG(z) is to be updated, smoothing or cross-fading may be applied to transition the response SEG(z) from its current response to its updated response.


In addition, in some embodiments, secondary path estimate performance monitor 48 may update response SEG(z) at an update frequency dependent upon a value of SEPI. For example, if SEPI is below a first threshold value, secondary path estimate performance monitor 48 may cause response SEG(z) to update at a first update frequency. If SEPI is above the first threshold value but below a second threshold value, secondary path estimate performance monitor 48 may cause response SEG(z) to update at a second update frequency which is lesser than the first update frequency. If SEPI is above the second threshold value, secondary path estimate performance monitor 48 may cause response SEG(z) to cease updating.


Referring now to FIG. 3D, details of ANC circuit 30D are shown in accordance with embodiments of the present disclosure. ANC circuit 30D may be used in some embodiments to implement ANC circuit 30 depicted in FIG. 2. ANC circuit 30D may be similar in many respects to ANC circuit 30A, thus only the differences between ANC circuit 30D and ANC circuit 30A are discussed.


As depicted in FIG. 3D, instead of SE coefficient control block 33 adaptively updating response SE(z) based on a correlation between a source audio signal (e.g., downlink audio signal ds and/or internal audio signal ia) and the filtered playback corrected error as shown in FIG. 3A, a combiner 39 may combine the source audio signal ds/ia with the feedback anti-noise to generate a modified source audio signal that is communicated to SE coefficient control block 33 such that SE coefficient control block 33 adaptively updates response SE(z) based on a correlation between the modified source audio signal and the filtered playback corrected error. The modified source audio signal (ds/ia)mod may be given by the equation:








(

ds
/
ia

)

mod

=


(

ds
/
ia

)




1
+


H


(
z
)




SE


(
z
)





1
+


H


(
z
)




S


(
z
)











Thus, if secondary response SE(z) closely tracks the actual secondary response S(z), then the modified source audio signal will approximately equal the unmodified source audio signal.


The approach set forth in FIG. 3D may be used in lieu of adjusting gain G as shown in FIGS. 3B and 3C. The approach set forth in FIG. 3D may guarantee phase alignment between reference microphone signal ref and error microphone signal err for the secondary estimate filter 34A, which may in turn assure convergence of the response SE(z) for small step sizes. However, the response SE(z) may be a biased estimation of response S(z) when the signal-to-noise ratio of ANC circuit 30D is low. Accordingly, the approach set forth in FIG. 3D may be best suited for when signal-to-noise ratio is high.


Referring now to FIG. 4, details of ANC circuit 30E are shown in accordance with embodiments of the present disclosure. ANC circuit 30E may be used in some embodiments to implement ANC circuit 30 depicted in FIG. 2. As shown in FIG. 4, adaptive filter 32 may receive reference microphone signal ref and under ideal circumstances, may adapt its transfer function W(z) to be P(z)/S(z) to generate a feedforward anti-noise component of the anti-noise signal, which may be combined by combiner 38 with a feedback anti-noise component of the anti-noise signal (described in greater detail below) to generate an anti-noise signal which in turn may be provided to an output combiner that combines the anti-noise signal with the source audio signal to be reproduced by the transducer, as exemplified by combiner 26 of FIG. 2. Therefore, response W(z) may be adapted to P(z)/Seff(z) due to the existence of feedback filter 44. The coefficients of adaptive filter 32 may be controlled by a W coefficient control block 31 that uses a correlation of signals to determine the response of adaptive filter 32, which generally minimizes the error, in a least-mean squares sense, between those components of reference microphone signal ref present in error microphone signal err. The signals compared by W coefficient control block 31 may be the reference microphone signal ref as shaped by a copy of an estimate of the response of path S(z) provided by filter 54B and another signal that includes a playback corrected error signal PBCE which is generated from error microphone signal err. As described previously, an effective secondary path Seff(z) for adaptive filter 32 may be given by Seff(z)=S(z)/[1+H(z)S(z)], and the response of filter 54B may be SEeff_copy(z), which is a copy of a response Seff(z) of an adaptive effective secondary estimate filter 54A, which is described in greater detail below.


By transforming reference microphone signal ref with a copy of the estimate of the effective response of path S(z), response SEeff_COPY(z), and minimizing the ambient audio sounds in the error microphone signal, adaptive filter 32 may adapt to the desired response of P(z)/Seff(z). In addition to error microphone signal err, the signal compared to the output of filter 34B by W coefficient control block 31 may include an inverted amount of downlink audio signal ds and/or internal audio signal is that has been processed by a filter response SE(z). Filter 54B may not be an adaptive filter, per se, but may have an adjustable response that is tuned to match the response of adaptive filter 54A, so that the response of filter 54B tracks the adapting of adaptive filter 54A.


To implement the above, adaptive filter 54A may have coefficients controlled by SE coefficient control block 33B, which may compare an injected, substantially inaudible noise signal nsp and error microphone signal err after removal by combiner 37 of noise signal nsp that has been filtered by adaptive filter 54A having response SE(z) to represent the expected noise signal nsp delivered to error microphone E. Thus, SE coefficient control block 33B may correlate the noise signal nsp with the components of noise signal nsp that are present in error microphone signal err in order to generate response SEeff(z) of adaptive filter 54A to minimize the error microphone signal.


Downlink audio signal ds and/or internal audio signal may be filtered by secondary estimate filter 34A having response SE(z). The filtered downlink audio signal ds and/or internal audio signal may be subtracted from error signal err by a combiner 36 to generate a playback-corrected error (shown as PBCE in FIG. 4).


Furthermore, in order to generate response SE(z) of adaptive filter 34A, an SE construction block 58 may determine response SE(z) from response SEeff(z). For example, SE construction block 58 may calculate response SE(z) in accordance with the following equation:







SE


(
z
)


=



SE
eff



(
z
)



1
-


H


(
z
)





SE
eff



(
z
)










For example, in order to implement a filter that has a response as in the foregoing equation, one may construct a finite impulse response filter directly using the frequency response of terms on the right side of the equation. As another example, one may construct a filter with such a response using several finite impulse response and/or infinite impulse response blocks.


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present inventions have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.

Claims
  • 1. An integrated circuit for implementing at least a portion of a personal audio device, comprising: an output for providing a signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering an effect of ambient audio sounds in an acoustic output of the transducer;a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds;an error microphone input for receiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer; anda processing circuit that implements: a feedforward filter having a response that generates at least a portion of the anti-noise signal from the reference microphone signal;a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal and have a response that generates a secondary path estimate from the source audio signal;a feedback filter having a response that generates at least a portion of the anti-noise signal based on the error microphone signal;an alignment filter configured to correct misalignment of the reference microphone signal and error microphone signal by generating a misalignment correction signal;a feedforward coefficient control block that shapes the response of the feedforward filter by adapting the response of the feedforward filter to minimize the ambient audio sounds in the error microphone signal; anda secondary path coefficient control block that shapes the response of the secondary path estimate filter in conformity with the source audio signal and the misalignment correction signal in order to minimize the misalignment correction signal.
  • 2. The integrated circuit of claim 1, wherein the response of the feedback filter generates at least the portion of the anti-noise signal from a playback corrected error, the playback corrected error based on a difference between the error microphone signal and the secondary path estimate.
  • 3. The integrated circuit of claim 2, wherein the misalignment correction signal comprises a filtered playback corrected error generated from the playback corrected error.
  • 4. The integrated circuit of claim 3, wherein the feedforward control block shapes the response of the feedforward filter in conformity with the filtered playback corrected error and the reference microphone signal.
  • 5. The integrated circuit of claim 1, wherein the alignment filter has a response given by 1+SE(z)H(z), where SE(z) is the response of the secondary path estimate filter and H(z) is the response of the feedback filter.
  • 6. The integrated circuit of claim 1, wherein the processing circuit further implements a gain associated with the feedback filter.
  • 7. The integrated circuit of claim 6, wherein the processing circuit further implements a secondary path estimate performance monitor for monitoring performance of the secondary path estimate filter in modeling the electro-acoustic path.
  • 8. The integrated circuit of claim 7, wherein the processing circuit controls the gain responsive to the secondary path estimate performance monitor.
  • 9. The integrated circuit of claim 8, wherein the alignment filter has a response given by 1+SE(z)H(z)G, where SE(z) is the response of the secondary path estimate filter, H(z) is the response of the feedback filter, and G is the gain.
  • 10. The integrated circuit of claim 8, wherein the alignment filter has a response given by 1+SEG(z)H(z)G, where SEG(z) is a previously-stored response of the secondary path estimate filter existing at a time when, as determined by the secondary path estimate performance monitor, the secondary path estimate filter was sufficiently modeling the electro-acoustic path of the source audio signal, H(z) is the response of the feedback filter, and G is the gain.
  • 11. The integrated circuit of claim 10, wherein the secondary path estimate performance monitor updates the stored response SEG(z) at an update frequency dependent upon a degree of which the secondary path estimate filter is sufficiently modeling the electro-acoustic path of the source audio signal.
  • 12. The integrated circuit of claim 10, wherein a filter having a response substantially equivalent to SEG(z) is applied to the reference microphone signal to generate a filtered reference microphone signal communicated to the feedforward coefficient control block.
  • 13. The integrated circuit of claim 1, wherein the secondary path coefficient control block shapes the response of the secondary path estimate filter by correlating the misalignment correction signal and a modified source audio signal in order to minimize the misalignment correction signal, wherein the modified source audio signal comprises the sum of the source audio signal and a portion of the anti-noise signal generated by the feedback filter.
  • 14. A method for canceling ambient audio sounds in a proximity of a transducer of a personal audio device, the method comprising: receiving a reference microphone signal indicative of the ambient audio sounds;receiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer;generating a source audio signal for playback to a listener;generating a feedforward anti-noise signal component from the reference microphone signal by adapting a response of an adaptive filter that filters the reference microphone signal to minimize the ambient audio sounds in the error microphone signal;generating a feedback anti-noise signal component based on the error microphone signal, for countering the effects of ambient audio sounds at an acoustic output of the transducer;generating a misalignment correction signal to correct misalignment of the reference microphone signal and error microphone signal;generating the secondary path estimate from the source audio signal by adapting a response of a secondary path estimate filter that models an electro-acoustic path of the source audio signal and filters the source audio signal to minimize the filtered playback corrected error; andcombining the feedforward anti-noise signal component and the feedback anti-noise signal component with a source audio signal to generate an audio signal provided to the transducer.
  • 15. The method of claim 14, wherein generating the feedback anti-noise signal component comprises filtering a playback corrected error with a feedback filter, the playback corrected error based on a difference between the error microphone signal and a secondary path estimate.
  • 16. The method of claim 15, wherein generating the misalignment correction signal comprises generating a filtered playback corrected error from the playback corrected error.
  • 17. The method of claim 16, wherein adapting the response of an adaptive filter that filters the reference microphone signal comprises shaping the response of the adaptive filter in conformity with the filtered playback corrected error and the reference microphone signal.
  • 18. The method of claim 14, wherein the alignment filter has a response given by 1+SE(z)H(z), where SE(z) is the response of the secondary path estimate filter and H(z) is the response of the feedback filter.
  • 19. The method of claim 14, further comprising applying a gain associated with the feedback filter.
  • 20. The method of claim 19, further comprising monitoring with a secondary path estimate performance to monitor performance of the secondary path estimate filter in modeling the electro-acoustic path.
  • 21. The method of claim 20, further comprising controlling a gain of the gain element responsive to the secondary path estimate performance monitor.
  • 22. The method of claim 20, wherein the alignment filter has a response given by 1+SE(z)H(z)G, where SE(z) is the response of the secondary path estimate filter, H(z) is the response of the feedback filter, and G is the gain.
  • 23. The method of claim 20, wherein the alignment filter has a response given by 1+SEG(z)H(z)G, where SEG(z) is a previously-stored response of the secondary path estimate filter existing at a time when, as determined by the secondary path estimate performance monitor, the secondary path estimate filter was sufficiently modeling the electro-acoustic path of the source audio signal, H(z) is the response of the feedback filter, and G is the gain.
  • 24. The method of claim 23, further comprising updating the stored response SEG(z) at an update frequency dependent upon a degree of which the secondary path estimate filter is sufficiently modeling the electro-acoustic path of the source audio signal.
  • 25. The method of claim 23, further comprising applying a filter having a response substantially equivalent to SEG(z) to the reference microphone signal to generate a filtered reference microphone signal communicated to the feedforward coefficient control block.
  • 26. The method of claim 14, wherein the secondary path coefficient control block shapes the response of the secondary path estimate filter by correlating the misalignment correction signal and a modified source audio signal in order to minimize the misalignment correction signal, wherein the modified source audio signal comprises the sum of the source audio signal and a portion of the anti-noise signal generated by the feedback filter.
  • 27. An integrated circuit for implementing at least a portion of a personal audio device, comprising: an output for providing a signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering an effect of ambient audio sounds in an acoustic output of the transducer;a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds;an error microphone input for receiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer;a noise input for receiving an injected, substantially inaudible noise signal; anda processing circuit that implements: a feedforward filter having a response that generates at least a portion of the anti-noise signal from the reference microphone signal;a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal and have a response that generates a secondary path estimate from the source audio signal;a feedback filter having a response that generates at least a portion of the anti-noise signal based on the error microphone signal;an effective secondary estimate filter configured to model an electro-acoustic path of the anti-noise signal and have a response that generates a filtered noise signal from the noise signal;a feedforward coefficient control block that shapes the response of the feedforward filter in conformity with the error microphone signal and the reference microphone signal by adapting the response of the feedforward filter to minimize the ambient audio sounds in the error microphone signal;a secondary path coefficient control block that shapes the response of the effective secondary path estimate filter in conformity with the noise signal and the error microphone signal in order to minimize the error signal; anda secondary estimate construction block that generates the response of the secondary estimate filter from the response of the effective secondary estimate filter.
  • 28. The integrated circuit of claim 27, wherein the secondary estimate construction block generates the response of the secondary estimate filter from the response of the effective secondary estimate filter in accordance with the equation:
  • 29. The integrated circuit of claim 27, wherein the response of the feedback filter generates at least the portion of the anti-noise signal from a playback corrected error, the playback corrected error based on a difference between the error microphone signal and a sum of the secondary path estimate and a filtered noise signal.
  • 30. A method for canceling ambient audio sounds in the proximity of a transducer of a personal audio device, the method comprising: receiving a reference microphone signal indicative of the ambient audio sounds;receiving an error microphone signal indicative of an output of the transducer and the ambient audio sounds at the transducer;generating a source audio signal for playback to a listener;generating a feedforward anti-noise signal component from the reference microphone signal by adapting a response of an adaptive filter that filters the reference microphone signal to minimize the ambient audio sounds in the error microphone signal;generating a feedback anti-noise signal component based on the error microphone signal;generating the filtered noise signal from a noise signal by adapting a response of an effective secondary path estimate filter that models an electro-acoustic path of the anti-noise signal and filters the noise signal to minimize the error microphone signal;generating the secondary path estimate from the source audio signal by applying a response of a secondary path estimate filter wherein the response of the secondary estimate filter is generated from the response of the effective secondary estimate filter; andcombining the feedforward anti-noise signal component and the feedback anti-noise signal component with a source audio signal to generate an audio signal provided to the transducer.
  • 31. The method of claim 30, wherein a secondary estimate construction block generates the response of the secondary estimate filter from the response of the effective secondary estimate filter in accordance with the equation:
  • 32. The method of claim 30, wherein generating the feedback anti-noise signal component comprises filtering a playback corrected error with a feedback filter, the playback corrected error based on a difference between the error microphone signal and a sum of a secondary path estimate and a filtered noise signal.
US Referenced Citations (294)
Number Name Date Kind
5117401 Feintuch May 1992 A
5251263 Andrea et al. Oct 1993 A
5278913 Delfosse et al. Jan 1994 A
5321759 Yuan Jun 1994 A
5337365 Hamabe et al. Aug 1994 A
5359662 Yuan et al. Oct 1994 A
5377276 Terai et al. Dec 1994 A
5410605 Sawada et al. Apr 1995 A
5425105 Lo et al. Jun 1995 A
5445517 Kondou et al. Aug 1995 A
5465413 Enge et al. Nov 1995 A
5481615 Eatwell et al. Jan 1996 A
5548681 Gleaves et al. Aug 1996 A
5559893 Krokstad Sep 1996 A
5586190 Trantow et al. Dec 1996 A
5633795 Popovich May 1997 A
5640450 Watanabe Jun 1997 A
5668747 Ohashi Sep 1997 A
5696831 Inanaga Dec 1997 A
5699437 Finn Dec 1997 A
5706344 Finn Jan 1998 A
5740256 Castello Da Costa et al. Apr 1998 A
5768124 Stothers et al. Jun 1998 A
5809152 Nakamura et al. Sep 1998 A
5815582 Claybaugh et al. Sep 1998 A
5832095 Daniels Nov 1998 A
5909498 Smith Jun 1999 A
5940519 Kuo Aug 1999 A
5946391 Dragwidge et al. Aug 1999 A
5991418 Kuo Nov 1999 A
6041126 Terai et al. Mar 2000 A
6118878 Jones Sep 2000 A
6185300 Romesburg Feb 2001 B1
6219427 Kates et al. Apr 2001 B1
6278786 McIntosh Aug 2001 B1
6282176 Hemkumar Aug 2001 B1
6317501 Matsuo Nov 2001 B1
6418228 Terai et al. Jul 2002 B1
6434246 Kates et al. Aug 2002 B1
6434247 Kates et al. Aug 2002 B1
6522746 Marchok et al. Feb 2003 B1
6683960 Fujii et al. Jan 2004 B1
6766292 Chandran et al. Jul 2004 B1
6768795 Feltstrom et al. Jul 2004 B2
6850617 Weigand Feb 2005 B1
6940982 Watkins Sep 2005 B1
7058463 Ruha et al. Jun 2006 B1
7103188 Jones Sep 2006 B1
7110864 Restrepo et al. Sep 2006 B2
7181030 Rasmussen et al. Feb 2007 B2
7330739 Somayajula Feb 2008 B2
7365669 Melanson Apr 2008 B1
7368918 Henson et al. May 2008 B2
7406179 Ryan Jul 2008 B2
7441173 Restrepo et al. Oct 2008 B2
7466838 Moseley Dec 2008 B1
7555081 Keele, Jr. Jun 2009 B2
7680456 Muhammad et al. Mar 2010 B2
7742790 Konchitsky et al. Jun 2010 B2
7817808 Konchitsky et al. Oct 2010 B2
7885417 Christoph Feb 2011 B2
8019050 Mactavish et al. Sep 2011 B2
8155334 Joho et al. Apr 2012 B2
8249262 Chua et al. Aug 2012 B2
8254589 Mitsuhata Aug 2012 B2
8290537 Lee et al. Oct 2012 B2
8325934 Kuo Dec 2012 B2
8363856 Lesso Jan 2013 B2
8374358 Buck et al. Feb 2013 B2
8379884 Horibe et al. Feb 2013 B2
8401200 Tiscareno et al. Mar 2013 B2
8411872 Stothers Apr 2013 B2
8442251 Jensen et al. May 2013 B2
8526627 Asao et al. Sep 2013 B2
8532310 Gauger, Jr. et al. Sep 2013 B2
8539012 Clark Sep 2013 B2
8804974 Melanson Aug 2014 B1
8848936 Kwatra et al. Sep 2014 B2
8907829 Naderi Dec 2014 B1
8908877 Abdollahzadeh Milani et al. Dec 2014 B2
8909524 Stoltz et al. Dec 2014 B2
8942976 Li et al. Jan 2015 B2
8948407 Alderson et al. Feb 2015 B2
8948410 Van Leest Feb 2015 B2
8958571 Kwatra et al. Feb 2015 B2
8977545 Zeng et al. Mar 2015 B2
9020160 Gauger, Jr. Apr 2015 B2
9066176 Hendrix et al. Jun 2015 B2
9082391 Yermeche et al. Jul 2015 B2
9094744 Lu et al. Jul 2015 B1
9106989 Li et al. Aug 2015 B2
9107010 Abdollahzadeh Milani et al. Aug 2015 B2
9203366 Eastty Dec 2015 B2
9264808 Zhou et al. Feb 2016 B2
9294836 Zhou et al. Mar 2016 B2
9392364 Milani Jul 2016 B1
20010053228 Jones Dec 2001 A1
20020003887 Zhang et al. Jan 2002 A1
20030063759 Brennan et al. Apr 2003 A1
20030072439 Gupta Apr 2003 A1
20030185403 Sibbald Oct 2003 A1
20040001450 He et al. Jan 2004 A1
20040047464 Yu et al. Mar 2004 A1
20040120535 Woods Jun 2004 A1
20040165736 Hetherington et al. Aug 2004 A1
20040167777 Hetherington et al. Aug 2004 A1
20040176955 Farinelli, Jr. Sep 2004 A1
20040196992 Ryan Oct 2004 A1
20040202333 Csermak et al. Oct 2004 A1
20040240677 Onishi et al. Dec 2004 A1
20040242160 Ichikawa et al. Dec 2004 A1
20040264706 Ray et al. Dec 2004 A1
20050004796 Trump et al. Jan 2005 A1
20050018862 Fisher Jan 2005 A1
20050117754 Sakawaki Jun 2005 A1
20050175187 Wright Aug 2005 A1
20050207585 Christoph Sep 2005 A1
20050240401 Ebenezer Oct 2005 A1
20060013408 Lee Jan 2006 A1
20060018460 McCree Jan 2006 A1
20060035593 Leeds Feb 2006 A1
20060055910 Lee Mar 2006 A1
20060069556 Nadjar et al. Mar 2006 A1
20060153400 Fujita et al. Jul 2006 A1
20070030989 Kates Feb 2007 A1
20070033029 Sakawaki Feb 2007 A1
20070038441 Inoue et al. Feb 2007 A1
20070047742 Taenzer et al. Mar 2007 A1
20070053524 Haulick et al. Mar 2007 A1
20070076896 Hosaka et al. Apr 2007 A1
20070154031 Avendano et al. Jul 2007 A1
20070208520 Zhang et al. Sep 2007 A1
20070258597 Rasmussen et al. Nov 2007 A1
20070297620 Choy Dec 2007 A1
20080019548 Avendano Jan 2008 A1
20080101589 Horowitz et al. May 2008 A1
20080107281 Togami et al. May 2008 A1
20080144853 Sommerfeldt et al. Jun 2008 A1
20080177532 Greiss et al. Jul 2008 A1
20080181422 Christoph Jul 2008 A1
20080226098 Haulick et al. Sep 2008 A1
20080240413 Mohammed et al. Oct 2008 A1
20080240455 Inoue et al. Oct 2008 A1
20080240457 Inoue et al. Oct 2008 A1
20090012783 Klein Jan 2009 A1
20090034748 Sibbald Feb 2009 A1
20090041260 Jorgensen et al. Feb 2009 A1
20090046867 Clemow Feb 2009 A1
20090060222 Jeong et al. Mar 2009 A1
20090080670 Solbeck et al. Mar 2009 A1
20090086990 Christoph Apr 2009 A1
20090136057 Taenzer May 2009 A1
20090175461 Nakamura et al. Jul 2009 A1
20090175466 Elko et al. Jul 2009 A1
20090196429 Ramakrishnan et al. Aug 2009 A1
20090220107 Every et al. Sep 2009 A1
20090238369 Ramakrishnan et al. Sep 2009 A1
20090245529 Asada et al. Oct 2009 A1
20090254340 Sun et al. Oct 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090296965 Kojima Dec 2009 A1
20090304200 Kim et al. Dec 2009 A1
20090311979 Husted et al. Dec 2009 A1
20100014683 Maeda et al. Jan 2010 A1
20100014685 Wurm Jan 2010 A1
20100061564 Clemow et al. Mar 2010 A1
20100069114 Lee et al. Mar 2010 A1
20100082339 Konchitsky et al. Apr 2010 A1
20100098263 Pan et al. Apr 2010 A1
20100098265 Pan et al. Apr 2010 A1
20100124336 Shridhar et al. May 2010 A1
20100124337 Wertz et al. May 2010 A1
20100131269 Park et al. May 2010 A1
20100142715 Goldstein et al. Jun 2010 A1
20100150367 Mizuno Jun 2010 A1
20100158330 Guissin et al. Jun 2010 A1
20100166203 Peissig et al. Jul 2010 A1
20100195838 Bright Aug 2010 A1
20100195844 Christoph et al. Aug 2010 A1
20100207317 Iwami et al. Aug 2010 A1
20100226210 Kordis et al. Sep 2010 A1
20100246855 Chen Sep 2010 A1
20100266137 Sibbald et al. Oct 2010 A1
20100272276 Carreras et al. Oct 2010 A1
20100272283 Carreras et al. Oct 2010 A1
20100272284 Joho et al. Oct 2010 A1
20100274564 Bakalos et al. Oct 2010 A1
20100284546 DeBrunner et al. Nov 2010 A1
20100291891 Ridgers et al. Nov 2010 A1
20100296666 Lin Nov 2010 A1
20100296668 Lee et al. Nov 2010 A1
20100310086 Magrath et al. Dec 2010 A1
20100316225 Saito et al. Dec 2010 A1
20100322430 Isberg Dec 2010 A1
20110007907 Park et al. Jan 2011 A1
20110026724 Doclo Feb 2011 A1
20110091047 Konchitsky et al. Apr 2011 A1
20110096933 Eastty Apr 2011 A1
20110099010 Zhang Apr 2011 A1
20110106533 Yu May 2011 A1
20110116643 Tiscareno May 2011 A1
20110129098 Delano et al. Jun 2011 A1
20110130176 Magrath et al. Jun 2011 A1
20110142247 Fellers et al. Jun 2011 A1
20110144984 Konchitsky Jun 2011 A1
20110150257 Jensen Jun 2011 A1
20110158419 Theverapperuma et al. Jun 2011 A1
20110206214 Christoph et al. Aug 2011 A1
20110222698 Asao et al. Sep 2011 A1
20110222701 Donaldson Sep 2011 A1
20110249826 Van Leest Oct 2011 A1
20110288860 Schevciw et al. Nov 2011 A1
20110293103 Park et al. Dec 2011 A1
20110299695 Nicholson Dec 2011 A1
20110305347 Wurm Dec 2011 A1
20110317848 Ivanov et al. Dec 2011 A1
20120057720 Van Leest Mar 2012 A1
20120084080 Konchitsky et al. Apr 2012 A1
20120135787 Kusunoki et al. May 2012 A1
20120140917 Nicholson et al. Jun 2012 A1
20120140942 Loeda Jun 2012 A1
20120140943 Hendrix et al. Jun 2012 A1
20120148062 Scarlett et al. Jun 2012 A1
20120155666 Nair Jun 2012 A1
20120170766 Alves et al. Jul 2012 A1
20120179458 Oh et al. Jul 2012 A1
20120207317 Abdollahzadeh Milani et al. Aug 2012 A1
20120215519 Park et al. Aug 2012 A1
20120250873 Bakalos et al. Oct 2012 A1
20120259626 Li et al. Oct 2012 A1
20120263317 Shin et al. Oct 2012 A1
20120300958 Klemmensen Nov 2012 A1
20120300960 Mackay et al. Nov 2012 A1
20120308021 Kwatra et al. Dec 2012 A1
20120308024 Alderson et al. Dec 2012 A1
20120308025 Hendrix et al. Dec 2012 A1
20120308026 Karnath et al. Dec 2012 A1
20120308027 Kwatra Dec 2012 A1
20120308028 Kwatra et al. Dec 2012 A1
20120310640 Kwatra et al. Dec 2012 A1
20120316872 Stoltz et al. Dec 2012 A1
20130010982 Elko et al. Jan 2013 A1
20130083939 Fellers et al. Apr 2013 A1
20130156238 Birch et al. Jun 2013 A1
20130243198 Van Rumpt Sep 2013 A1
20130243225 Yokota Sep 2013 A1
20130259251 Bakalos Oct 2013 A1
20130272539 Kim et al. Oct 2013 A1
20130287218 Alderson et al. Oct 2013 A1
20130287219 Hendrix et al. Oct 2013 A1
20130301842 Hendrix et al. Nov 2013 A1
20130301846 Alderson et al. Nov 2013 A1
20130301847 Alderson et al. Nov 2013 A1
20130301848 Zhou et al. Nov 2013 A1
20130301849 Alderson Nov 2013 A1
20130315403 Samuelsson Nov 2013 A1
20130343556 Bright Dec 2013 A1
20130343571 Rayala et al. Dec 2013 A1
20140044275 Goldstein et al. Feb 2014 A1
20140050332 Nielsen et al. Feb 2014 A1
20140051483 Schoerkmaier Feb 2014 A1
20140072134 Po et al. Mar 2014 A1
20140072135 Bajic et al. Mar 2014 A1
20140086425 Jensen et al. Mar 2014 A1
20140126735 Gauger, Jr. May 2014 A1
20140169579 Azmi Jun 2014 A1
20140177851 Kitazawa et al. Jun 2014 A1
20140177890 Hojlund et al. Jun 2014 A1
20140211953 Alderson et al. Jul 2014 A1
20140226827 Abdollahzadeh Milani et al. Aug 2014 A1
20140270222 Hendrix et al. Sep 2014 A1
20140270223 Li et al. Sep 2014 A1
20140270224 Zhou et al. Sep 2014 A1
20140294182 Axelsson Oct 2014 A1
20140307887 Alderson Oct 2014 A1
20140307888 Alderson et al. Oct 2014 A1
20140307890 Zhou et al. Oct 2014 A1
20140307899 Hendrix et al. Oct 2014 A1
20140314244 Yong et al. Oct 2014 A1
20140314246 Hellman Oct 2014 A1
20140314247 Zhang Oct 2014 A1
20140341388 Goldstein Nov 2014 A1
20140369517 Zhou et al. Dec 2014 A1
20150078572 Milani et al. Mar 2015 A1
20150092953 Abdollahzadeh Milani et al. Apr 2015 A1
20150104032 Kwatra et al. Apr 2015 A1
20150161980 Alderson et al. Jun 2015 A1
20150161981 Kwatra Jun 2015 A1
20150163592 Alderson Jun 2015 A1
20150256660 Kaller et al. Sep 2015 A1
20150256953 Kwatra et al. Sep 2015 A1
20150269926 Alderson et al. Sep 2015 A1
20150365761 Alderson et al. Dec 2015 A1
20160180830 Lu et al. Jun 2016 A1
Foreign Referenced Citations (73)
Number Date Country
101552939 Oct 2009 CN
102011013343 Sep 2012 DE
0412902 Feb 1991 EP
0756407 Jan 1997 EP
0898266 Feb 1999 EP
1691577 Aug 2006 EP
1880699 Jan 2008 EP
1947642 Jul 2008 EP
2133866 Dec 2009 EP
2237573 Oct 2010 EP
2216774 Aug 2011 EP
2395500 Dec 2011 EP
2395501 Dec 2011 EP
2551845 Jan 2013 EP
2583074 Apr 2013 EP
2401744 Nov 2004 GB
246657 Oct 2007 GB
2455821 Jun 2009 GB
2455824 Jun 2009 GB
2455828 Jun 2009 GB
2484722 Apr 2012 GB
06006246 Jan 1994 JP
H06186985 Jul 1994 JP
H06232755 Aug 1994 JP
07098592 Apr 1995 JP
H0732558 Dec 1995 JP
H11305783 Nov 1999 JP
2000089770 Mar 2000 JP
2002010355 Jan 2002 JP
2004007107 Jan 2004 JP
2006217542 Aug 2006 JP
2007060644 Mar 2007 JP
2008015046 Jan 2008 JP
2010277025 Dec 2010 JP
2011061449 Mar 2011 JP
9911045 Mar 1999 WO
03015074 Feb 2003 WO
03015275 Feb 2003 WO
2004009007 Jan 2004 WO
2004017303 Feb 2004 WO
2006125061 Nov 2006 WO
2006128768 Dec 2006 WO
2007007916 Jan 2007 WO
2007011337 Jan 2007 WO
2007110807 Oct 2007 WO
2007113487 Nov 2007 WO
2009041012 Apr 2009 WO
2009110087 Sep 2009 WO
2010117714 Oct 2010 WO
2011035061 Mar 2011 WO
2012107561 Aug 2012 WO
2012119808 Sep 2012 WO
2012134874 Oct 2012 WO
2012166273 Dec 2012 WO
2012166388 Dec 2012 WO
2013106370 Jul 2013 WO
2014158475 Oct 2014 WO
2014168685 Oct 2014 WO
2014172005 Oct 2014 WO
2014172006 Oct 2014 WO
2014172010 Oct 2014 WO
2014172019 Oct 2014 WO
2014172021 Oct 2014 WO
2014200787 Dec 2014 WO
2015038255 Mar 2015 WO
2015088639 Jun 2015 WO
2015088639 Jun 2015 WO
2015088651 Jun 2015 WO
2015088651 Jun 2015 WO
2015088653 Jun 2015 WO
2015134225 Sep 2015 WO
2015191691 Dec 2015 WO
2016100602 Jun 2016 WO
Non-Patent Literature Citations (62)
Entry
Kou, Sen and Tsai, Jianming, Residual noise shaping technique for active noise control systems, J. Acoust. Soc. Am. 95 (3), Mar. 1994, pp. 1665-1668.
Pfann, et al., “LMS Adaptive Filtering with Delta-Sigma Modulated Input Signals,” IEEE Signal Processing Letters, Apr. 1998, pp. 95-97, vol. 5, No. 4, IEEE Press, Piscataway, NJ.
Toochinda, et al., “A Single-Input Two-Output Feedback Formulation for ANC Problems,” Proceedings of the 2001 American Control Conference, Jun. 2001, pp. 923-928, vol. 2, Arlington, VA.
Kuo, et al., “Active Noise Control: A Tutorial Review,” Proceedings of the IEEE, Jun. 1999, pp. 943-973, vol. 87, No. 6, IEEE Press, Piscataway, NJ.
Johns, et al., “Continuous-Time LMS Adaptive Recursive Filters,” IEEE Transactions on Circuits and Systems, Jul. 1991, pp. 769-778, vol. 38, No. 7, IEEE Press, Piscataway, NJ.
Shoval, et al., “Comparison of DC Offset Effects in Four LMS Adaptive Algorithms,” IEEE Transactions on Circuits and Systems II: Analog and Digital Processing, Mar. 1995, pp. 176-185, vol. 42, Issue 3, IEEE Press, Piscataway, NJ.
Mali, Dilip, “Comparison of DC Offset Effects on LMB Algorithm and its Derivatives,” International Journal of Recent Trends in Engineering, May 2009, pp. 323-328, vol. 1, No. 1, Academy Publisher.
Kates, James M., “Principles of Digital Dynamic Range Compression,” Trends in Amplification, Spring 2005, pp. 45-76, vol. 9, No. 2, Sage Publications.
Gao, et al., “Adaptive Linearization of a Loudspeaker,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 14-17, 1991, pp. 3589-3592, Toronto, Ontario, CA.
Silva, et al., “Convex Combination of Adaptive Filters With Different Tracking Capabilities,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 15-20, 2007, pp. III 925-928, vol. 3, Honolulu, HI, USA.
Akhtar, et al., “A Method for Online Secondary Path Modeling in Active Noise Control Systems,” IEEE International Symposium on Circuits and Systems, May 23-26, 2005, pp. 264-267, vol. 1, Kobe, Japan.
Davari, et al., “A New Online Secondary Path Modeling Method for Feedforward Active Noise Control Systems,” IEEE International Conference on Industrial Technology, Apr. 21-24, 2008, pp. 1-6, Chengdu, China.
Lan, et al., “An Active Noise Control System Using Online Secondary Path Modeling With Reduced Auxiliary Noise,” IEEE Signal Processing Letters, Jan. 2002, pp. 16-18, vol. 9, Issue 1, IEEE Press, Piscataway, NJ.
Liu, et al., “Analysis of Online Secondary Path Modeling With Auxiliary Noise Scaled by Residual Noise Signal,” IEEE Transactions on Audio, Speech and Language Processing, Nov. 2010, pp. 1978-1993, vol. 18, Issue 8, IEEE Press, Piscataway, NJ.
Booji, P.S., Berkhoff, A.P., Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones, Proceedings of ISMA2010 including USD2010, pp. 151-166, Aug. 26-31, 2010.
Lopez-Caudana, Edgar Omar, Active Noise Cancellation: The Unwanted Signal and the Hybrid Solution, Adaptive Filtering Applications, Dr. Lino Garcia, ISBN: 978-953-307-306-4, InTech, Jun. 2011.
D. Senderowicz et al., “Low-Voltage Double-Sampled Delta-Sigma Converters,” IEEE J. Solid-State Circuits, vol. 32,, No. 12, pp. 1907-1919, Dec. 1997, 13 pages.
Hurst, P.J. and Dyer, K.C., “An improved double sampling scheme for switched-capacitor delta-sigma modulators,” IEEE Int. Symp. Circuits Systems, May 1992, vol. 3, pp. 1179-1182, 4 pages.
Milani, et al., “On Maximum Achievable Noise Reduction in ANC Systems”, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, Mar. 14-19, 2010 pp. 349-352.
Ryan, et al., “Optimum near-field performance of microphone arrays subject to a far-field beampattern constraint”, 2248 J. Acoust. Soc. Am. 108, Nov. 2000.
Cohen, et al., “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement”, IEEE Signal Processing Letters, vol. 9, No. 1, Jan. 2002.
Martin, “Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics”, IEEE Trans. on Speech and Audio Processing, col. 9, No. 5, Jul. 2001.
Martin, “Spectral Subtraction Based on Minimum Statistics”, Proc. 7th EUSIPCO '94, Edinburgh, U.K., Sep. 13-16, 1994, pp. 1182-1195.
Cohen, “Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging”, IEEE Trans. on Speech & Audio Proc., vol. 11, Issue 5, Sep. 2003.
Black, John W., “An Application of Side-Tone in Subjective Tests of Microphones and Headsets”, Project Report No. NM 001 064.01.20, Research Report of the U.S. Naval School of Aviation Medicine, Feb. 1, 1954, 12 pages (pp. 1-12 in pdf), Pensacola, FL, US.
Lane, et al., “Voice Level: Autophonic Scale, Perceived Loudness, and the Effects of Sidetone”, The Journal of the Acoustical Society of America, Feb. 1961, pp. 160-167, vol. 33, No. 2., Cambridge, MA,US.
Liu, et al., “Compensatory Responses to Loudness-shifted Voice Feedback During Production of Mandarin Speech”, Journal of the Acoustical Society of America, Oct. 2007, pp. 2405-2412, vol. 122, No. 4.
Paepcke, et al., “Yelling in the Hall: Using Sidetone to Address a Problem with Mobile Remote Presence Systems”, Symposium on User Interface Software and Technology, Oct. 16-19, 2011, 10 pages. (pp. 1-10 in pdf), Santa Barbara, CA, US.
Peters, Robert W., “The Effect of High-Pass and Low-Pass Filtering of Side-Tone Upon Speaker Intelligibility”, Project Report No. NM 001 064.01.25, Research Report of the U.S. Naval School of Aviation Medicine, Aug. 16, 1954, 13 pages (pp. 1-13 in pdf), Pensacola, FL, US.
Therrien, et al., “Sensory Attenuation of Self-Produced Feedback: The Lombard Effect Revisited”, PLOS ONE, Nov. 2012, pp. 1-7, vol. 7, Issue 11, e49370, Ontario, Canada.
Campbell, Mikey, “Apple looking into self-adjusting earbud headphones with noise cancellation tech”, Apple Insider, Jul. 4, 2013, pp. 1-10 (10 pages in pdf), downloaded on May 14, 2014 from http://appleinsider.com/articles/13/07/04/apple-looking-into-self-adjusting-earbud-headphhones-with-noise-cancellation-tech.
International Patent Application No. PCT/US2014/017096, International Search Report and Written Opinion, May 27, 2014, 11 pages.
Jin, et al., “A simultaneous equation method-based online secondary path modeling algorithm for active noise control”, Journal of Sound and Vibration, Apr. 25, 2007, pp. 455-474, vol. 303, No. 3-5, London, GB.
Erkelens et al., “Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation”, IEEE Transactions on Audio Speech, and Language Processing, vol. 16, No. 6, Aug. 2008.
Rao et al., “A Novel Two Stage Single Channle Speech Enhancement Technique”, India Conference (INDICON) 2011 Annual IEEE, IEEE, Dec. 15, 2011.
Rangachari et al., “A noise-estimation algorithm for highly non-stationary environments” Speech Communication, Elsevier Science Publishers, vol. 48, No. 2, Feb. 1, 2006.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017343, mailed Aug. 8, 2014, 22 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/018027, mailed Sep. 4, 2014, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017374, mailed Sep. 8, 2014, 13 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019395, mailed Sep. 9, 2014, 12 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019469, mailed Sep. 12, 2014, 13 pages.
Feng, Jinwei et al., “A broadband self-tuning active noise equaliser”, Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 62, No. 2, Oct. 1, 1997, pp. 251-256.
Zhang, Ming et al., “A Robust Online Secondary Path Modeling Method with Auxiliary Noise Power Scheduling Strategy and Norm Constraint Manipulation”, IEEE Transactions on Speech and Audio Processing, IEEE Service Center, New York, NY, vol. 11, No. 1, Jan. 1, 2003.
Lopez-Gaudana, Edgar et al., “A hybrid active noise cancelling with secondary path modeling”, 51st Midwest Symposium on Circuits and Systems, 2008, MWSCAS 2008, Aug. 10, 2008, pp. 277-280.
Widrow, B. et al., Adaptive Noise Cancelling: Principles and Applications, Proceedings of the IEEE, IEEE, New York, NY, U.S., vol. 63, No. 13, Dec. 1975, pp. 1692-1716.
Morgan, Dennis R. et al., A Delayless Subband Adaptive Filter Architecture, IEEE Transactions on Signal Processing, IEEE Service Center, New York, NY, U.S., vol. 43, No. 8, Aug. 1995, pp. 1819-1829.
International Patent Application No. PCT/US2014/040999, International Search Report and Written Opinion, Oct. 18, 2014, 12 pages.
International Patent Application No. PCT/US2013/049407, International Search Report and Written Opinion, Jun. 18, 2014, 13 pages.
International Patent Application No. PCT/US2014/049600, International Search Report and Written Opinion, Jan. 14, 2015, 12 pages.
International Patent Application No. PCT/US2014/061753, International Search Report and Written Opinion, Feb. 9, 2015, 8 pages.
Combined Search and Examination Report, Application No. GB1512832.5, mailed Jan. 28, 2016, 7 pages.
International Patent Application No. PCT/US2015/066260, International Search Report and Written Opinion, Apr. 21, 2016, 13 pages.
English machine translation of JP 2006-217542 A (Okumura, Hiroshi; Howling Suppression Device and Loudspeaker, published Aug. 2006).
Combined Search and Examination Report, Application No. GB1519000.2, mailed Apr. 21, 2016, 5 pages.
Parkins, et al., Narrowband and broadband active control in an enclosure using the acoustic energy density, J. Acoust. Soc. Am. Jul. 2000, pp. 192-203, vol. 108, issue 1, U.S.
International Patent Application No. PCT/US2015/022113, International Search Report and Written Opinion, Jul. 23, 2015, 13 pages.
International Patent Application No. PCT/US2014/061548, International Search Report and Written Opinion, Feb. 12, 2015, 13 pages.
International Patent Application No. PCT/US2014/060277, International Search Report and Written Opinion, Mar. 9, 2015, 11 pages.
Ray, Laura et al., Hybrid Feedforward-Feedback Active Noise Reduction for Hearing Protection and Communication, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY, vol. 120, No. 4, Jan. 2006, pp. 2026-2036.
International Patent Application No. PCT/US2014/017112, International Search Report and Written Opinion, May 8, 2015, 22 pages.
International Patent Application No. PCT/US2015/017124, International Search Report and Written Opinion, Jul. 13, 2015, 19 pages.
International Patent Application No. PCT/US2015/035073, International Search Report and Written Opinion, Oct. 8, 2015, 11 pages.