In some applications, various operational requirements may impose challenges in terms of a design and manufacture of heat exchangers. For example, a gas turbine engine application may require a heat exchanger to be operative in connection with elevated pressures and elevated temperatures (on an absolute or differential basis), while still performing at high efficiency. Such requirements may demand a reduced (e.g., minimal) wall thickness to reduce (e.g., minimize) thermal resistance between a first (e.g., hot) fluid and a second (e.g., cold) fluid. Also, mechanical properties may need to be controlled/regulated to accommodate stress imposed by high pressure and transient thermal gradients.
Metal additive manufacturing processes using a layer-by-layer deposition process nominally produce a relatively rough surface finish (e.g., Ra150 to Ra1000) depending on the specific process and surface orientation. In addition, building thin walls (e.g., walls on the order of 0.001 inches to 0.004 inches (approximately 25 micrometers to 102 micrometers)) with consistently good mechanical properties is difficult. Powder and wire fed metal additive manufacturing processes typically have a lower practical wall thickness limit in a range of 0.008 inches to 0.020 inches (approximately 203 micrometers to 508 micrometers) due to process limitations. Porosity, irregular wall thickness, poor surface finish, large grain size, and build anomalies become more common in metal additive manufacturing grown components as the wall thickness approaches reduced (e.g., minimum) values.
Accordingly, what is needed is practical, low cost techniques for designing and manufacturing heat exchangers with thin walls and quality/robust mechanical properties.
The following presents a simplified summary in order to provide a basic understanding of some aspects of the disclosure. The summary is not an extensive overview of the disclosure. It is neither intended to identify key or critical elements of the disclosure nor to delineate the scope of the disclosure. The following summary merely presents some concepts of the disclosure in a simplified form as a prelude to the description below.
Aspects of the disclosure are directed to a heat exchanger comprising: an additively manufactured manifold that includes an inlet feed manifold and an outlet feed manifold, and a plurality of hypotubes fluidly coupled to the manifold, wherein the hypotubes are round in cross-section, wherein each of the hypotubes has a diameter that has a first value between 0.03 inches and 0.3 inches, and wherein each of the hypotubes has a wall thickness that has a second value between 0.001 inches and 0.0.015 inches. In some embodiments, the hypotubes are circular in cross-section. In some embodiments, the heat exchanger further comprises a second additively manufactured manifold. In some embodiments, the second additively manufactured manifold includes a second inlet feed manifold and a second outlet feed manifold. In some embodiments, the second inlet feed manifold and the second outlet feed manifold are located between the inlet feed manifold and the outlet feed manifold, and wherein the second additively manufactured manifold includes a ridge to facilitate a lap joint between the second additively manufactured manifold and the additively manufactured manifold. In some embodiments, the heat exchanger further comprises a splitter that defines a first annulus of the second additively manufactured manifold and a second annulus of the second additively manufactured manifold, wherein the splitter causes a fluid conveyed by the second additively manufactured manifold to flow around at least seventy percent of the hypotubes. In some embodiments, the heat exchanger further comprises a vane that causes the fluid conveyed by the second additively manufactured manifold to change direction in terms of flow between the first annulus and the second annulus. In some embodiments, the change in direction is between 175 degrees and 185 degrees. In some embodiments, the heat exchanger further comprises a plurality of bosses that mechanically couple the hypotubes and a wall of the additively manufactured manifold. In some embodiments, at least one of the bosses is a single-sided boss. In some embodiments, at least one of the bosses is a dual-sided boss. In some embodiments, at least one of the hypotubes includes a strain relief feature.
Aspects of the disclosure are directed to a gas turbine engine comprising: a compressor section, a combustor section, a turbine section, and a heat exchanger that includes a first additively manufactured manifold that includes a first inlet feed manifold and a first outlet feed manifold, a second additively manufactured manifold that includes a second inlet feed manifold and a second outlet feed manifold, and a plurality of hypotubes that each include a wall, wherein a first fluid is conveyed from the first inlet feed manifold to the first outlet feed manifold within an interior of the hypotubes, the interior defined relative to the wall of each of the hypotubes, wherein a second fluid is conveyed from the second inlet feed manifold to the second outlet feed manifold around an exterior of the hypotubes, the exterior defined relative to the wall of each of the hypotubes, wherein the hypotubes are round in cross-section, wherein each of the hypotubes has a diameter that has a first value between 0.03 inches and 0.3 inches, and wherein each of the hypotubes has a wall thickness that has a second value between 0.001 inches and 0.015 inches. In some embodiments, the compressor section includes a low pressure compressor section and a high pressure compressor section, and wherein the heat exchanger is an intercooler between the low pressure compressor section and the high pressure compressor section. In some embodiments, the compressor section includes a plurality of sections, and wherein the heat exchanger cools the first fluid between stages of one of the plurality of sections. In some embodiments, the first inlet feed manifold receives the first fluid from the compressor section, and wherein the first outlet feed manifold provides the first fluid to the turbine section to cool a blade of the turbine section. In some embodiments, the engine further comprises an exhaust duct, wherein the heat exchanger is located in the exhaust duct. In some embodiments, the engine further comprises a bypass duct that conveys air that bypasses the compressor section, the combustor section, and the turbine section, wherein the heat exchanger is located in the bypass duct, and wherein the first fluid includes a portion of the air.
Aspects of the disclosure are directed to a method comprising: obtaining a plurality of hypotubes, wherein each of the hypotubes is round in cross-section and includes a tube wall, additively manufacturing a manifold, wherein the manifold includes a manifold wall and wherein a profile of the manifold wall conforms to a profile of a duct of an engine, fluidly coupling the hypotubes and the manifold, and mechanically coupling the tube wall of each of the hypotubes to the manifold wall via a respective boss using at least a brazing technique, wherein each of the hypotubes has a diameter that has a first value between 0.03 inches and 0.3 inches, and wherein each of the hypotubes has a wall thickness that has a second value between 0.001 inches and 0.015 inches.
The present disclosure is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements. The figures are not necessarily drawn to scale unless explicitly indicated otherwise.
It is noted that various connections are set forth between elements in the following description and in the drawings (the contents of which are included in this disclosure by way of reference). It is noted that these connections are general and, unless specified otherwise, may be direct or indirect and that this specification is not intended to be limiting in this respect. A coupling between two or more entities may refer to a direct connection or an indirect connection. An indirect connection may incorporate one or more intervening entities.
Aspects of the disclosure are directed to a heat exchanger. The heat exchanger may be manufactured by using one or more manufacturing techniques. For example, a heat exchanger may be manufactured with one or more additive manufacturing grown manifolds and associated structure in combination with thin walled tubes (e.g., hypotubes). Tubes of this disclosure may be characterized by a quality surface finish and wrought or near-wrought mechanical properties. The use of additive manufacturing may enable/provide braze bosses for a tube-to-manifold wall joint to be locally grown on relatively thin manifold walls, enabling a reduction (e.g., minimization) in terms of weight while also providing high performance braze bond joints between the tubes and the manifold(s). The heat exchanger may include one or more materials (e.g., metals). For example, the heat exchanger may include copper, aluminum, stainless steel, or refractory nickel superalloys. The material(s) of the heat exchanger may enable the heat exchanger to reliably operate in elevated temperature and/or elevated pressure applications.
Aspects of the disclosure may be applied in connection with a gas turbine engine.
The engine sections 18-21 are arranged sequentially along the centerline 12 within an engine housing 22. Each of the engine sections 18-19B, 21A and 21B includes a respective rotor 24-28. Each of these rotors 24-28 includes a plurality of rotor blades arranged circumferentially around and connected to one or more respective rotor disks. The rotor blades, for example, may be formed integral with or mechanically fastened, welded, brazed, adhered and/or otherwise attached to the respective rotor disk(s).
The fan rotor 24 is connected to a gear train 30, for example, through a fan shaft 32. The gear train 30 and the LPC rotor 25 are connected to and driven by the LPT rotor 28 through a low speed shaft 33. The HPC rotor 26 is connected to and driven by the HPT rotor 27 through a high speed shaft 34. The shafts 32-34 are rotatably supported by a plurality of bearings 36 (e.g., rolling element and/or thrust bearings). Each of these bearings 36 is connected to the engine housing 22 by at least one stationary structure such as, for example, an annular support strut.
As one skilled in the art would appreciate, in some embodiments a fan drive gear system (FDGS), which may be incorporated as part of the gear train 30, may be used to separate the rotation of the fan rotor 24 from the rotation of the rotor 25 of the low pressure compressor section 19A and the rotor 28 of the low pressure turbine section 21B. For example, such an FDGS may allow the fan rotor 24 to rotate at a different (e.g., slower) speed relative to the rotors 25 and 28.
During operation, air enters the turbine engine 10 through the airflow inlet 14, and is directed through the fan section 18 and into a core gas path/duct 38 and a bypass gas path/duct 40. The air within the core gas path 38 may be referred to as “core air”. The air within the bypass gas path 40 may be referred to as “bypass air”. The core air is directed through the engine sections 19-21, and exits the turbine engine 10 through the airflow exhaust 16 to provide forward engine thrust. Within the combustor section 20, fuel is injected into a combustion chamber 42 and mixed with compressed core air. This fuel-core air mixture is ignited to power the turbine engine 10. The bypass air is directed through the bypass gas path 40 and out of the turbine engine 10 through a bypass nozzle 44 to provide additional forward engine thrust. This additional forward engine thrust may account for a majority (e.g., more than 70 percent) of total engine thrust. Alternatively, at least some of the bypass air may be directed out of the turbine engine 10 through a thrust reverser to provide reverse engine thrust.
Referring to
The heat exchanger 200 may include one or more manifolds, such as for example a first manifold 204 and a second manifold 208. The first manifold 204 may include a first inlet feed manifold 204a and a first outlet feed manifold 204b. The second manifold 208 may include a second inlet feed manifold 208a and a second outlet feed manifold 208b. The terms inlet and outlet as used in this context are in relation to a direction of fluid flow in the respective manifold. For example, a fluid may enter a manifold at an inlet and exit the manifold at an outlet.
The manifolds 204 and 208 may include ports/connectors to facilitate/enable connecting the manifolds to a source or a destination of a fluid conveyed by the manifolds. For example, the first inlet feed manifold 204a may include a port 214a, the first outlet feed manifold 204b may include a port 214b, the second inlet feed manifold 208a may include a port 218a, and the second outlet feed manifold 208b may include a port 218b.
The first manifold 204 may be located outboard of the second manifold 208 as shown in
A portion of the housing/wall of the manifolds 204 and 208 is removed in
The tubes 212 may include hypotubes. Hypotubes may be available as commercial, off-the-shelf products. Referring to
As shown in
Referring to
Referring to
The heat exchanger 200 (e.g., the second manifold 208) may include one or more vanes, such as for example a vane 220. The vane 220 may cause fluid flowing in the first annulus 216a to change direction and flow in the second annulus 216b. For example, and assuming a right-to-left fluid flow in the first annulus 216a in
One or more of the components (e.g., the manifolds) described herein may be at least partially manufactured via additive manufacturing. Various additive manufacturing systems and techniques are known to skilled artisans. For example, U.S. patent application publication number 2016/0326880 describes and illustrates additive manufacturing systems and techniques. The contents of U.S. patent application publication number 2016/0326880 are incorporated herein by reference.
Use of an additive manufacturing technique may enable variable wall thicknesses and local form features such as bosses, fins, pins, and stiffening ribs to be incorporated. For example,
As shown in
The bosses 302a may include a beam/web 304a that separates flanges 306a-1 and 306a-2 that protrude in a single direction (e.g., towards the wall 310—see
Assuming all other conditions being equal, the single-sided bosses 302a may provide for an increased, effective tube 212 surface area relative to the dual-sided bosses 302b. In this respect, the single-sided bosses 302a may provide for increased efficiency in terms of heat transfer/exchange relative to the dual-sided bosses 302b. On the other hand, the dual-sided bosses 302b may provide for an increased braze surface area relative to the use of single-sided bosses 302a. As such, in embodiments where structural stability or leakage is a potential concern it may be advantageous to use dual-sided bosses 302b relative to single-sided bosses 302a.
Referring to
In view of the foregoing description based on
Fabrication of the heat exchanger 200 may be accomplished in several ways. For example, as shown in
Additionally, with the use of a free form additive manufacturing process, a bond to the tubes 212 may be accomplished by directly depositing material on the tubes 212 during the fabrication of the core assembly. The surrounding manifold structure may be co-grown with the tubes 212 or may be added after a tube core assembly is complete, depending on the heat exchanger geometry and configuration.
The heat exchanger 200 may experience large thermal gradients during engine start-up, operation, and shut down. Referring to
Referring now to
In block 602, one or more tubes 212 may be obtained. In block 602, the tubes 212 may be obtained as commercial, off-the-shelf products. In some embodiments, block 602 may include manufacturing the tubes 212. The tubes 212 may be manufactured via, e.g., extrusion, die drawing, roll forming, die casting, and/or grinding. In some embodiments, block 602 may include a modification/adjustment (e.g., a reduction) of a tube wall (e.g., wall 214) via, e.g., chemical etching.
In block 608, one or more manifolds (e.g., manifolds 204 and 208) may be manufactured. The manufacture of block 608 may include application of an additive manufacturing technique. The manufacture of block 608 may conform to one or more specifications/requirements. For example, the manufacture of block 608 may conform a profile of one or more walls (e.g., wall 310) of the manifold to a profile of a duct (e.g., exhaust duct 16, bypass duct 40) of an engine (e.g., engine 10).
In block 614, the tube(s) of block 602 may be fluidly coupled to at least one of the manifolds of block 608. For example, the tube(s) may be disposed within the walls of the manifold as shown in
In block 620, tube wall(s) (e.g., wall 214) of the tube(s) of block 602 may be mechanically coupled to manifold wall(s) of block 608. The mechanical coupling of the block 620 may be facilitated via one or more bosses (e.g., bosses 302). The mechanical coupling of block 620 may include application of a brazing technique. In some embodiments, block 620 may include seating the tube(s) of block 602 in one or more slots (e.g., slots 228 of
Aspects of the disclosure may combine the complex shape making capability of additive manufacturing for a manifold housing/wall with the low cost, thin walls, and robust mechanical properties of hypotubes. Aspects of the disclosure may provide efficient, durable, light weight, high temperature-capable heat exchangers suitable for use in gas turbine engine applications.
A heat exchanger of this disclosure may be manufactured to conform to one or more specifications/requirements. For example, a heat exchanger may be manufactured to conform to the shape/geometry of another component (e.g., a duct) where the heat exchanger is deployed/installed. In this respect, the heat exchanger may be referred to as a conformal heat exchanger.
While some of the embodiments described herein pertain to heat exchangers used in engine applications, aspects of the disclosure may be used in other application environments. For example, aspects of the disclosure (e.g., heat exchangers of this disclosure) may be used/applied in spacecraft electronics, computer systems, avionics systems, power generation, chemical processing, food processing, and heating, ventilation, and air conditioning (HVAC) applications.
Aspects of the disclosure have been described in terms of illustrative embodiments thereof. Numerous other embodiments, modifications, and variations within the scope and spirit of the appended claims will occur to persons of ordinary skill in the art from a review of this disclosure. For example, one of ordinary skill in the art will appreciate that the steps described in conjunction with the illustrative figures may be performed in other than the recited order, and that one or more steps illustrated may be optional in accordance with aspects of the disclosure. One or more features described in connection with a first embodiment may be combined with one or more features of one or more additional embodiments.