Hybrid biologic-synthetic bioabsorbable scaffolds

Abstract
A bioprosthetic device is provided for soft tissue attachment, reinforcement, and or reconstruction. The device comprises a naturally occurring extracellular matrix portion and a three-dimensional synthetic portion. In illustrated embodiments, the naturally occurring extracellular matrix portion comprises layers of small intestine submucosa, and the three-dimensional synthetic portion comprises a foam or a three-dimensional mesh, textile, or felt.
Description
FIELD OF THE INVENTION

The present invention relates to bioprosthetics and particularly to the use of bioprosthetics for the repair and replacement of connective tissue. More particularly, the present invention relates to the use of a composite bioprosthetic device made up of a synthetic portion and heterologous animal tissue.


BACKGROUND AND SUMMARY OF THE INVENTION

Currently there are multiple patents and publications which describe in detail the characteristics and properties of small intestine submucosa (SIS). See, for example, U.S. Pat. Nos. 4,352,463, 4,902,508, 4,956,179, 5,281,422, 5,372,821, 5,445,833, 5,516,533, 5,573,784, 5,641,518, 5,645,860, 5,668,288, 5,695,998, 5,711,969, 5,730,933, 5,733,868, 5,753,267, 5,755,791, 5,762,966, 5,788,625, 5,866,414, 5,885,619, 5,922,028, 6,056,777, and WO 97/37613, incorporated herein by reference. SIS, in various forms, is commercially available from Cook Biotech Incorporated (Bloomington, Ind.). Further, U.S. Pat. No. 4,400,833 to Kurland and PCT publication having International Publication Number WO 00/16822 provide information related to bioprosthetics and are also incorporated herein by reference.


It is also known to use naturally occurring extracellular matrices (ECMs) to provide a scaffold for tissue repair and regeneration. One such ECM is small intestine submucosa (SIS). SIS has been used to repair, support, and stabilize a wide variety of anatomical defects and traumatic injuries. Commercially-available SIS material is derived from porcine small intestinal submucosa that remodels the qualities of its host when implanted in human soft tissues. Further, it is taught that the SIS material provides a natural matrix with a three-dimensional microstructure and biochemical composition that facilitates host cell proliferation and supports tissue remodeling. SIS products, such as Oasis material and Surgisis material, are commercially available from Cook Biotech, Bloomington, Ind.


An SIS product referred to as RESTORE Orthobiologic Implant is available from DePuy Orthopaedics, Inc. in Warsaw, Ind. The DePuy product is described for use during rotator cuff surgery, and is provided as a resorbable framework that allows the rotator cuff tendon to regenerate itself. The RESTORE Implant is derived from porcine small intestine submucosa that has been cleaned, disinfected, and sterilized. Small intestine submucosa (SIS) has been described as a naturally-occurring ECM composed primarily of collagenous proteins. Other biological molecules, such as growth factors, glycosaminoglycans, etc., have also been identified in SIS. See Hodde et al., Tissue Eng. 2(3): 209-217 (1996); Voytik-Harbin et al., J. Cell Biochem., 67:478-491 (1997); McPherson and Badylak, Tissue Eng., 4(1): 75-83 (1998); Hodde et al., Endothelium, 8(1):11-24 (2001); Hodde and Hiles, Wounds, 13(5): 195-201 (2001); Hurst and Bonner, J. Biomater. Sci. Polym. Ed., 12(11) 1267-1279 (2001); Hodde et al., Biomaterial, 23(8): 1841-1848 (2002); and Hodde, Tissue Eng., 8(2): 295-308 (2002), all of which are incorporated by reference herein. During seven years of preclinical testing in animals, there were no incidences of infection transmission form the implant to the host, and the SIS material has not decreased the systemic activity of the immune system. See Allman et al., Transplant, 17(11): 1631-1640 (2001); Allman et al., Tissue Eng., 8(1): 53-62 (2002).


While small intestine submucosa is available, other sources of submucosa are known to be effective for tissue remodeling. These sources include, but are not limited to, stomach, bladder, alimentary, respiratory, or genital submucosa, or liver basement membrane. See, e.g., U.S. Pat. Nos. 6,379,710, 6,171,344, 6,099,567, and 5,554,389, hereby incorporated by reference. Further, while SIS is most often porcine derived, it is known that these various submucosa materials may be derived from non-porcine sources, including bovine and ovine sources. Additionally, the ECM material may also include partial layers of laminar muscular is mucosa, muscular is mucosoa, lamina propria, stratum compactum and/or other tissue materials depending upon factors such as the source from which the ECM material was derived and the delamination procedure.


For the purposes of this invention, it is within the definition of a Naturally occurring ECM to clean, delaminate, and/or comminute the ECM, or even to cross-link the collagen fibers within the ECM. It is also within the definition of naturally occurring ECM to fully or partially remove one or more sub-components of the naturally occurring ECM. However, it is not within the definition of a naturally occurring ECM to separate and purify the natural collagen or other components or sub-components of the ECM and reform a matrix material from the purified natural collagen or other components or sub-components of the ECM. While reference is made to SIS, it is understood that other naturally occurring ECMs (e.g., stomach, bladder, alimentary, respiratory, and genital submucosa, and liver basement membrane), whatever the source (e.g., bovine, porcine, ovine) are within the scope of this disclosure. Thus, in this application, the terms “naturally occurring extracellular matrix” or “naturally occurring ECM” are intended to refer to extracellular matrix material that has been cleaned, disinfected, sterilized, and optionally cross-linked. The terms “naturally occurring extracellular matrix” and “naturally occurring ECM” are also intended to include ECM foam material prepared as described in copending U.S. patent application Ser. No. 60/388,761 entitled “Extracellular Matrix Scaffold and Method for Making the Same”, filed concurrently herewith.


There are currently many ways in which various types of tissues such as ligaments and tendons, for example, are reinforced and/or reconstructed. Suturing the torn or ruptured ends of the tissue is one method of attempting to restore function to the injured tissue. Sutures may also be reinforced through the use of synthetic non-bioabsorbable or bioabsorbable materials. Autografting, where tissue is taken from another site on the patient's body, is another means of soft tissue reconstruction. Yet another means of repair or reconstruction can be achieved through allografting, where tissue from a donor of the same species is used. Still another means of repair or reconstruction of soft tissue is through xenografting in which tissue from a donor of a different species is used.


According to the present invention, a bioprosthetic device for soft tissue attachment, reinforcement, and/or reconstruction is provided. The bioprosthetic device comprises SIS or other ECM formed to include a tissue layer, and a synthetic portion coupled to the tissue layer. The tissue layer may also be dehydrated.


In one embodiment, the SIS portion of the bioprosthetic device includes a top tissue layer of SIS material and a bottom tissue layer of SIS material coupled to the top tissue layer. The synthetic portion of the bioprosthetic device includes a row of fibers positioned to lie between the top and bottom tissue layers of the SIS portion. The fibers are positioned to lie in a spaced-apart coplanar relation to one another along a length, L, of the SIS portion. The fibers are each formed to include a length L2, where L2 is longer than L so that an outer end portion of each fiber extends beyond the SIS portion in order to anchor the bioprosthetic device to the surrounding soft tissue.


Illustratively, in another embodiment, the synthetic reinforcing portion of the bioprosthetic device includes a mesh member formed to define the same length, L, as the SIS portion, or may include a mesh member having a body portion coupled to the SIS portion and outer wing members coupled to the body portion and positioned to extend beyond the length, L, and a width, W, of the SIS portion in order to provide more material for anchoring the bioprosthetic device to the surrounding soft tissue.


The synthetic reinforcing portion of the device enhances the mechanical integrity of the construct in one (for fiber reinforcements) or two (for fiber or mesh reinforcements) dimensions. For the repair of tissues such as meniscal or articular cartilage, or discs, integrity in three dimensions is desirable for the implant to withstand the shear forces that will be present after implantation. Thus, in one embodiment of the present application, the absorbable synthetic portion of the device is in a three-dimensional form, to provide mechanical strength in three dimensions. The absorbable synthetic may be a fibrous nonwoven construct or a three-dimensional woven mesh, for example.


For the repair of certain other types of tissues such as tendons, ligaments, or fascia, tissue infiltration and repair in three dimensions is desirable, although three-dimensional enhanced mechanical integrity of the implant is not necessary. Thus, another embodiment of this invention is a composite device comprised of an SIS portion and an absorbable synthetic foam. The absorbable synthetic foam, in one example, is made of a biocompatible polymer that has a degradation profile that exceeds that of the SIS portion of the device. In this case, the SIS portion of the device provides the initial suturability of the product, and the synthetic foam provides an increased surface area in three dimensions for enhanced tissue infiltration. In a further embodiment, that synthetic foam is made of 65/35 polyglycolic acid/ polycaprolactone, or 60/40 polylactic acid/polycaprolactone, or a 50:50 mix of the two.


The ECM portion of the composite may be provided as a single, hydrated sheet of SIS. Alternatively, the single sheet of SIS is lyophilized (freeze-dried). Such a treatment renders increased porosity to the SIS sheet, thereby enhancing it's capacity for allowing tissue ingrowth. Additionally, this SIS portion may comprise multiple sheets of SIS that have been laminated together by mechanical pressure while hydrated. The laminated SIS assembly optionally further physically crosslinked by partially or fully drying (down to less than 15% moisture content) under vacuum pressure. Alternatively, the laminated SIS assembly is lyophilized, instead of being vacuum dried, to increase its porosity. In still another embodiment, the SIS sheet or laminate is perforated by mechanical means, to create holes ranging, for example, from 1 mm to 1 cm. Another embodiment uses woven textiles of single or multi-layer SIS strips that have been optionally vacuum dried or lyophilized, to create meshes having different-sized openings. The woven mesh SIS optionally is assembled while the SIS is still hydrated and then the whole assembly vacuum-dried or lyophilized. Such a construct is suturable in the short term, and has the advantage of having a very open structure for tissue ingrowth over time.


The three-dimensional synthetic portion of the device is illustratively provided in the form of a fibrous nonwoven or foam material. The synthetic portion of the device preferably has interconnecting pores or voids to facilitate the transport of nutrients and/or invasion of cells into the scaffold. The interconnected voids range in size, for example, from about 20 to 400 microns, preferably 50 to 250 microns, and constitute about 70 to 95 percent of the total volume of the construct. The range of the void size in the construct can be manipulated by changing process steps during construct fabrication. The foam optionally may be formed around a reinforcing material, for example, a knitted mesh.


The synthetic reinforcing portion of the device is made of a fibrous matrix made, for example, of threads, yams, nets, laces, felts, and nonwovens. An illustrated method of combining the bioabsorbable fibrous materials, e.g. fibers, to make the fibrous matrix for use in devices of the present invention is known to one skilled in the art as the wet lay process of forming nonwovens. The wet lay method has been described in “Nonwoven Textiles,” by Radko Krema, Textile Trade Press, Manchester, England, 1967 pages 175-176.


Alternatively, the synthetic reinforcing portion of the device is made of a three-dimensional mesh or textile. A preferred method of combining the bioabsorbable fibrous materials, e.g. fibers, to make the fibrous matrix for use in devices of the present invention is known to one skilled in the art as three-dimensional weaving or knitting. The three-dimensional weaving/knitting or braiding method has been described by several groups who have used the constructs for tissue engineering applications including Chen et al. in “Collagen Hybridization with Poly(1-Lactic Acid) Braid Promotes Ligament Cell Migration,” Mater. Sci. Eng. C, 17(1-2), 95-99(2001), and Bercovy et al., in “Carbon-PLGA Prostheses for Ligament Reconstruction Experimental Basis and Short Term Results in Man,” Clin. Orthop. Relat. Res., (196), 159-68(1985). Such a three-dimensional material can provide both reinforcement and three-dimensional form.


The synthetic reinforcing portion of the tissue implant of the present invention may include textiles with woven, knitted, warped knitted (i.e., lace-like), nonwoven, and braided structures. In an exemplary embodiment the reinforcing component has a mesh-like structure. However, in any of the above structures, mechanical properties of the material can be altered by changing the density or texture of the material. The fibers used to make the reinforcing component can be for example, monofilaments, yams, threads, braids, or bundles of fibers. These fibers can be made of any biocompatible material, including bioabsorbable materials such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polydioxanone (PDO), trimethylene carbonate (TMC), polyvinyl alcohol (PVA), copolymers or blends thereof. In an exemplary embodiment, the fibers that comprise the nonwoven or three-dimensional mesh are formed of a polylactic acid and polyglycolic acid copolymer at a 95:5 mole ratio.


The ECM and the synthetic three-dimensional portion are provided in layers. It is understood for the purposes of this invention that the term “coupled to” describes a relationship wherein a surface of one layer is in contact with a surface of another layer and the two surfaces are connected through mechanical or chemical means, such as through lamination, crosslinking, diffusion of the material of one layer into interstices of the adjacent layer, stitching, and the like. “Sandwiched between” describes a relationship wherein a middle layer has a first surface in contact with a surface of an adjacent layer, and a second opposite-facing surface in contact with a surface of a second adjacent layer. Again, it is understood that the sandwiched layers are connected through mechanical or chemical means. The synthetic reinforcing portion may be provided as individual fibers or as layers. The synthetic reinforcing portion may be imbedded within a foam layer, provided between two other layers that are otherwise coupled together, or may form a layer that is coupled to one or more adjacent layers.


It is anticipated that the devices of the present invention can be combined with one or more bioactive agents (in addition to those already present in naturally occurring ECM), one or more biologically-derived agents or substances, one or more cell types, one or more biological lubricants, one or more biocompatible inorganic materials, one or more biocompatible synthetic polymers and one or more biopolymers. Moreover, the devices of the present invention can be combined with devices containing such materials.


“Bioactive agents” include one or more of the following: chemotactic agents; therapeutic agents (e.g. antibiotics, steroidal and non-steroidal analgesics and anti-inflammatories, anti-rejection agents such as immunosuppressants and anti-cancer drugs); various proteins (e.g. short chain peptides, bone morphogenic proteins, glycoprotein and lipoprotein); cell attachment mediators; biologically active ligands; integrin binding sequence; ligands; various growth and/or differentiation agents (e.g. epidermal growth factor, IGF-I, IGF-II, TGF-β I-III, growth and differentiation factors, vascular endothelial growth factors, fibroblast growth factors, platelet derived growth factors, insulin derived growth factor and transforming growth factors, parathyroid hormone, parathyroid hormone related peptide, bFGF; TGFβ superfamily factors; BMP-2; BMP-4; BMP-6; BMP-12; sonic hedgehog; GDF5; GDF6; GDF8; PDGF); small molecules that affect the upregulation of specific growth factors; tenascin-C; hyaluronic acid; chondroitin sulfate; fibronectin; decorin; thromboelastin; thrombin-derived peptides; heparin-binding domains; heparin; heparan sulfate; DNA fragments and DNA plasmids. If other such substances have therapeutic value in the orthopaedic field, it is anticipated that at least some of these substances will have use in the present invention, and such substances should be included in the meaning of “bioactive agent” and “bioactive agents” unless expressly limited otherwise.


“Biologically derived agents” include one or more of the following: bone (autograft, allograft, and xenograft) and derivates of bone; cartilage (autograft, allograft, and xenograft), including, for example, meniscal tissue, and derivatives; ligament (autograft, allograft, and xenograft) and derivatives; derivatives of intestinal tissue (autograft, allograft, and xenograft), including for example submucosa; derivatives of stomach tissue (autograft, allograft, and xenograft), including for example submucosa; derivatives of bladder tissue (autograft, allograft, and xenograft), including for example submucosa; derivatives of alimentary tissue (autograft, allograft, and xenograft), including for example submucosa; derivatives of respiratory tissue (autograft, allograft, and xenograft), including for example submucosa; derivatives of genital tissue (autograft, allograft, and xenograft), including for example submucosa; derivatives of liver tissue (autograft, allograft, and xenograft), including for example liver basement membrane; derivatives of skin tissue; platelet rich plasma (PRP), platelet poor plasma, bone marrow aspirate, demineralized bone matrix, insulin derived growth factor, whole blood, fibrin and blood clot. Purified ECM and other collagen sources are also intended to be included within “biologically derived agents.” If other such substances have therapeutic value in the orthopaedic field, it is anticipated that at least some of these substances will have use in the present invention, and such substances should be included in the meaning of “biologically-derived agent” and “biologically-derived agents” unless expressly limited otherwise.


“Biologically derived agents” also include bioremodelable collageneous tissue matrices. The expressions “bioremodelable collagenous tissue matrix” and “naturally occurring bioremodelable collageneous tissue matrix” include matrices derived from native tissue selected from the group consisting of skin, artery, vein, pericardium, heart valve, dura mater, ligament, bone, cartilage, bladder, liver, stomach, fascia and intestine, tendon, whatever the source. Although “naturally occurring bioremodelable collageneous tissue matrix” is intended to refer to matrix material that has been cleaned, processed, sterilized, and optionally crosslinked, it is not within the definition of a naturally occurring bioremodelable collageneous tissue matrix to purify the natural fibers and reform a matrix material from purified natural fibers. The term “bioremodelable collageneous tissue matrices” includes “extracellular matrices” within its definition.


“Cells” include one or more of the following: chondrocytes; fibrochondrocytes; osteocytes; osteoblasts; osteoclasts; synoviocytes; bone marrow cells; mesenchymal cells; stromal cells; stem cells; embryonic stem cells; precursor cells derived from adipose tissue; peripheral blood progenitor cells; stem cells isolated from adult tissue; genetically transformed cells; a combination of chondrocytes and other cells; a combination of osteocytes and other cells; a combination of synoviocytes and other cells; a combination of bone marrow cells and other cells; a combination of mesenchymal cells and other cells; a combination of stromal cells and other cells; a combination of stem cells and other cells; a combination of embryonic stem cells and other cells; a combination of precursor cells isolated from adult tissue and other cells; a combination of peripheral blood progenitor cells and other cells; a combination of stem cells isolated from adult tissue and other cells; and a combination of genetically transformed cells and other cells. If other cells are found to have therapeutic value in the orthopaedic field, it is anticipated that at least some of these cells will have use in the present invention, and such cells should be included within the meaning of “cell” and “cells” unless expressly limited otherwise. Illustratively, in one example of embodiments that are to be seeded with living cells such as chondrocytes, a sterilized implant may be subsequently seeded with living cells and packaged in an appropriate medium for the cell type used. For example, a cell culture medium comprising Dulbecco's Modified Eagles Medium (DMEM) can be used with standard additives such as non-essential amino acids, glucose, ascorbic acid, sodium pyrovate, fungicides, antibiotics, etc., in concentrations deemed appropriate for cell type, shipping conditions, etc.


“Biological lubricants” include: hyaluronic acid and its salts, such as sodium hyaluronate; glycosaminoglycans such as dermatan sulfate, heparan sulfate, chondroiton sulfate and keratan sulfate; synovial fluid and components of synovial fluid, including mucinous glycoproteins (e.g. lubricin), tribonectins, articular cartilage superficial zone proteins, surface-active phospholipids, lubricating glycoproteins I, II; vitronectin; and rooster comb hyaluronate. “Biological lubricant” is also intended to include commercial products such as ARTHREASE™ high molecular weight sodium hyaluronate, available in Europe from DePuy International, Ltd. of Leeds, England, and manufactured by Bio-Technology General (Israel) Ltd., of Rehovot, Israel; SYNVISC® Hylan G-F 20, manufactured by Biomatrix, Inc., of Ridgefield, N.J. and distributed by Wyeth-Ayerst Pharmaceuticals of Philadelphia, Pa.; HYLAGAN® sodium hyaluronate, available from Sanofi-Synthelabo, Inc., of New York, N.Y., manufactured by FIDIA S.p.A., of Padua, Italy; and HEALON® sodium hyaluronate, available from Pharmacia Corporation of Peapack, N.J. in concentrations of 1%, 1.4% and 2.3% (for opthalmologic uses). If other such substances have therapeutic value in the orthopaedic field, it is anticipated that at least some of these substances will have use in the present invention, and such substances should be included in the meaning of “biological lubricant” and “biological lubricants” unless expressly limited otherwise.


“Biocompatible polymers” is intended to include both synthetic polymers and biopolymers (e.g. collagen). Examples of biocompatible polymers include: polyesters of [alpha]-hydroxycarboxylic acids, such as poly(L-lactide) (PLLA) and polyglycolide (PGA); poly-p-dioxanone (PDO); polycaprolactone (PCL); polyvinyl alchohol (PVA); polyethylene oxide (PEO); polymers disclosed in U.S. Pat. Nos. 6,333,029 and 6,355,699; and any other bioresorbable and biocompatible polymer, co-polymer or mixture of polymers or co-polymers that are utilized in the construction of prosthetic implants. In addition, as new biocompatible, bioresorbable materials are developed, it is expected that at least some of them will be useful materials from which orthopaedic devices may be made. It should be understood that the above materials are identified by way of example only, and the present invention is not limited to any particular material unless expressly called for in the claims.


“Biocompatible inorganic materials” include materials such as hydroxyapatite, all calcium phosphates, alpha-tricalcium phosphate, beta-tricalcium phosphate, calcium carbonate, barium carbonate, calcium sulfate, barium sulfate, polymorphs of calcium phosphate, sintered and non-sintered ceramic particles, and combinations of such materials. If other such substances have therapeutic value in the orthopaedic field, it is anticipated that at least some of these substances will have use in the present invention, and such substances should be included in the meaning of “biocompatible inorganic material” and “biocompatible inorganic materials” unless expressly limited otherwise.


It is expected that various combinations of bioactive agents, biologically derived agents, cells, biological lubricants, biocompatible inorganic materials, biocompatible polymers can be used with the devices of the present invention.


Thus, in one aspect of this invention a bioprosthetic device is provided comprising a layer of ECM material having a first surface, and a three-dimensional synthetic portion having a first surface, wherein the first surface of the ECM layer is coupled to the first surface of the three-dimensional synthetic portion. The three-dimensional synthetic portion may be a fibrous material, illustratively selected from the group consisting of mesh, textile, and felt. Alternatively, the three-dimensional synthetic portion may be a synthetic foam.


In another aspect of this invention a prosthetic device is provided comprising one or more layers of bioremodelable collageneous tissue matrices material coupled to one or more three-dimensional synthetic bodies to provide a three-dimensional composite for tissue attachment, reinforcement, or reconstruction.


In yet another aspect of this invention, a method for making a bioprosthetic device is provided, the method comprising the steps of providing a layer of ECM material having a first surface, placing a polymer solution in contact the first surface of the ECM material to make an assembly, wherein the polymer is selected to form a foam upon lyophilization, and lyophilizing the assembly.


Additional features of the present invention will become apparent to those skilled in the art upon consideration of the following description of preferred embodiments of the invention exemplifying the best mode of carrying out the invention as presently perceived.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description particularly refers to the accompanying figures in which:



FIG. 1 is a perspective view showing a composite bioprosthetic device of the present invention formed to include a small intestinal submucosa (SIS) portion and a synthetic portion and showing the SIS portion including a top tissue layer of SIS material and a bottom tissue layer of SIS material and further showing the synthetic portion including a row of four fibers positioned to lie in coplanar relation to each other between the top and bottom tissue layers of the SIS portion and positioned to run longitudinally along a length of the SIS portion and extend beyond a first and second end of the SIS portion in order to anchor the bioprosthetic device to surrounding soft tissue;



FIG. 2 is a perspective view similar to FIG. 1 showing an SIS portion of another bioprosthetic device of the present invention being formed to include a top layer, a bottom layer, and two middle layers positioned to lie between the top and the bottom layers and a synthetic device being formed to include three rows of four fibers so that each row is positioned to lie between each of the adjacent tissue layers of the SIS portion so that each fiber is positioned to run longitudinally along a length, L, of the SIS portion;



FIG. 3 is a sectional view taken along line 3-3 of FIG. 2 showing the top, bottom, and middle tissue layers of the SIS portion and also showing the three rows of fibers of the synthetic portion of the bioprosthetic device;



FIG. 4 is a perspective view showing an SIS portion of yet another bioprosthetic device of the present invention being formed to include four tissue layers, similar to FIG. 2, and also showing a synthetic portion of the bioprosthetic device including a first row of multiple fibers positioned to lie between two tissue layers of the SIS portion along a length, L, of the SIS portion and a second row of multiple fibers positioned to lie between two other tissue layers of the SIS portion along a width, W, of the SIS portion;



FIG. 5 is an exploded perspective view of another bioprosthetic device of the present invention showing an SIS portion of the prosthetic device including top, bottom, and middle tissue layers and showing a synthetic portion including a first and a second mesh member positioned to lie between the top and middle tissue layers of and the middle and bottom tissue layers of the SIS portion, respectively;



FIG. 6 is a sectional view of the bioprosthetic device of FIG. 5 showing first and second mesh members “sandwiched” between the tissue layers of the SIS portion of the device;



FIG. 7 is a perspective view showing an SIS portion of another bioprosthetic device being formed to include a top and a bottom tissue layer and further showing a synthetic portion being formed to include a mesh member having a body portion positioned to lie between the top and bottom tissue layers and outer wing portions provided for anchoring the device to surrounding soft tissue;



FIG. 8 is a perspective view showing an SIS portion of yet another bioprosthetic device being formed to include a circularly shaped top and bottom tissue layers each having a diameter, D1, and further showing a synthetic portion of the device being formed to include a circular mesh member positioned to lie between the top and bottom tissue layers and having a diameter, D2, which is larger than D1 so that an outer rim portion of the mesh member is formed to extend beyond the top and bottom tissue layers for anchoring the bioprosthetic device to the host tissue during surgery;



FIG. 9 is a sectional view of a bioprosthetic device similar to the bioprosthetic device of FIG. 5, having two SIS layers, a reinforcing mesh material between the SIS layers, and a reinforced three-dimensional foam portion adjacent one of the SIS layers;



FIG. 10 is sectional view of another bioprosthetic device, wherein the SIS layer is sandwiched between two foam layers;



FIG. 11 is sectional view of another bioprosthetic device, wherein a foam layer is sandwiched between SIS layers;



FIG. 12 is a sectional view of another bioprosthetic device, wherein a three-dimensional synthetic layer is sandwiched between two SIS layers; and



FIG. 13 is a perspective view showing an SIS portion for use in another bioprosthetic device, wherein the SIS layer is made from weaving strips of SIS.





DETAILED DESCRIPTION OF THE DRAWINGS

A composite bioprosthetic device 10, as shown in FIG. 1, is provided for the purposes of soft tissue attachment, reinforcement, and/or reconstruction. Bioprosthetic device 10 includes a small intestinal submucosa (SIS) portion 12 and a synthetic portion 14. SIS portion 12 is provided to be absorbed into the body and replaced by host tissue. SIS portion 12 acts as a scaffold for tissue ingrowth and remodeling. Synthetic portion 14 of bioprosthetic device 10 provides additional initial mechanical strength to bioprosthetic device 10. Because device 10 includes SIS portion 12 and synthetic portion 14, bioprosthetic device 10 is provided with a differential in biodegradation and bioremodeling rates. Synthetic portion 14, for example, can be configured to degrade at a slower rate than SIS portion 12. Further, synthetic portion 14 may act as an anchor to couple bioprosthetic device 10 to the surrounding soft tissue (not shown) during surgery. Alternatively, the SIS portion may be sutured to couple the bioprosthetic device to the surrounding tissue.


SIS portion 12 of bioprosthetic device 10, as shown in FIG. 1, includes a top tissue layer 16 and a bottom tissue layer 18 coupled to top tissue layer 16 mechanically or through a dehydration process. Although top and bottom tissue layers 16, 18 are provided in bioprosthetic device 10 shown in FIG. 1, it is within the scope of this disclosure, as will be described in more detail later, to include SIS portions 12 having any number of tissue layers. It is also included within the scope of this disclosure to provide perforated tissue layers or any other physical configuration of SIS. See FIGS. 2-4, for example. Further, it is within the scope of this disclosure to define top and bottom tissue layers 16, 18 as including multiple tissue layers each. In preferred embodiments, for example, top and bottom tissue layers 16, 18 each include three to four layers of SIS tissue. SIS portion 12 further includes a first end 20, a second end 22 spaced-apart from first end 20, and sides 24 coupled to and positioned to lie between first and second ends 20, 22. A length, L, is defined as the distance between first end 20 and second end 22 and a width, W, is defined as the distance between sides 24.


Synthetic portion 14 of bioprosthetic device 10 includes row 26 of four fibers 28, as shown in FIG. 1. It is within the scope of the disclosure to define fibers to include fibers or any fibrous material. Fibers 28 are positioned to lie along length L between top and bottom tissue layers 16, 18 and are further positioned to lie in coplanar relation to one another. When making bioprosthetic device 10, fibers 28 of synthetic portion 14 are placed between top and bottom tissue layers 16, 18 prior to dehydration. Although row 26 of four fibers 28 is provided in bioprosthetic device 10 shown in FIG. 1, it is within the scope of this disclosure to include synthetic portions 14 formed to include any number of rows 26 having any number of fibers 28. It is further within the scope of this disclosure to include fibers 28 made from bioabsorbable and non-bioabsorbable materials. For example, it is within the scope of this disclosure to include fibers 28 made from polylactic acid (PLA) or polyglycolic (PGA) acid, a combination of the two, Panacryl™ absorbable suture (Ethicon, Inc, Somerville, N.J.), other bioabsorbable materials, nylon, polyethylene, Kevlar™, Dacron™, PTFE, carbon fiber, or other non-bioabsorbable materials.


As shown in FIG. 1, each fiber 28 of bioprosthetic device 10 includes two outer end portions 30 a middle portion 32 coupled to and positioned to lie between outer end portions 30. Middle portion 32 is positioned to lie between top tissue layer 16 and bottom tissue layer 18 of SIS portion 12. Middle portion 32 of fibers 28 helps to provide strength along length, L, of bioprosthetic device 10. One or more outer end portions 30 of fibers 28 can be used for anchoring bioprosthetic device 10 to surrounding soft tissue (not shown). The combination of SIS portion 12 and fibers 28 further provide bioprosthetic device 10 with differential biodegradation rates. For example, fibers 28 of synthetic portion 14 can be made to be non-bioabsorbable or can be made with material which absorbs into the body at a slower rate than SIS portion 12. Uses for bioprosthetic device 10 shown in FIG. 1 include, but are not limited to, ligament or tendon repair.


An alternate bioprosthetic device 110 is shown in FIGS. 2 and 3. Bioprosthetic device 110 include an alternate SIS portion 112 of having top tissue layer 16, bottom tissue layer 18, and two middle tissue layers 115. Top, bottom, and middle tissue layers 16, 18, 115 include one or more layers of SIS tissue each. SIS portion 112, similar to SIS portion 12, also includes a first end 20, a second end 22 spaced-apart from first end 20, and sides 24. Bioprosthetic device 110 further includes an alternate synthetic portion 114 having three rows 26 of four fibers 28. One row 26 is positioned to lie between top tissue layer 16 and one of the middle tissue layers 115. Another row 26 is positioned to lie between the two middle tissue layers 115, and the final row 26 of fibers 28 is positioned to lie between another one of the middle tissue layers 115 and bottom tissue layer 16, as shown in FIG. 3. Fibers 28 of bioprosthetic device 110, similar to fibers 28 of bioprosthetic device 10, are positioned to lie along length, L, of SIS portion 112.


Although fibers 28 of bioprosthetic devices 10, 110 are positioned to lie along length, L, of each respective SIS portion 12, 112, it is within the scope of this disclosure to include a synthetic portion 214 of an alternate bioprosthetic device 210, as shown in FIG. 4, having multi-directional fibers 28 positioned to lie along a length, L, of an SIS portion 212 and along width, W, of SIS portion 212. Synthetic portion 214 of bioprosthetic device 210 includes a first row 226 having seventeen fibers 28 positioned to lie along length, L, of SIS portion 212. Synthetic portion 214 further includes a second row 227 having eighteen fibers 28 positioned to lie along width, W, of SIS portion 212 so that the fibers 28 of first row 226 and second row 227 are positioned to lie orthogonally with respect to each other. Although rows 226 and 227 are positioned to lie in orthogonal relation to one another, it is within the scope of this disclosure to include synthetic portion 214 having first and second rows 226 and 227 which lie at any angular relation to one another. It is also within the scope of this disclosure to include rows 226 and 227 each having any number of fibers 28.


Similar to bioprosthetic device 110 shown in FIG. 2, bioprosthetic device 210 includes a top tissue layer 216, a bottom tissue layer 218, and two middle tissue layers 215, positioned to lie between top and bottom tissue layers 216, 218. As mentioned before, top, bottom, and middle tissue layers 216, 218, 215 are each formed to include one or more layers of SIS tissue. Although SIS portion 212 of bioprosthetic device 210 is shown to include four tissue layers, it is within the scope of the disclosure to include bioprosthetic device 210 having any number of tissue layers. As shown in FIG. 4, first row 226 is positioned to lie between top tissue layer 216 and one of the two middle tissue layers 215 positioned to lie adjacent to top tissue layer 216. Second row 227 is positioned to lie between the other middle tissue layer 215 and bottom tissue layer 218. It is within the scope of this disclosure, however, to include rows 226, 227 positioned to lie between any tissue layer of device 210.


Yet another bioprosthetic device 310 is shown in FIGS. 5 and 6. Bioprosthetic device 310 is similar to devices, 10, 110, and 210 and includes an SIS portion 312 having a top tissue layer 316, a bottom tissue layer 318, and a middle tissue layer 315 positioned to lie between top and bottom tissue layers 316, 318. Top, bottom, and middle tissue layers 316, 318, 315 each include one or more layers of SIS tissue. Bioprosthetic device 310 further includes a synthetic portion 314 including first mesh member 320 and second mesh member 322. It is within the scope of this disclosure to include any type of synthetic mesh member. For example, bioabsorbable and/or non-bioabsorbable mesh members 320, 322 made of either woven or nonwoven PGA and/or PLA mixtures are included within the scope of disclosure of this invention. First mesh member 320 is coupled to and positioned to lie between top tissue layer 316 and middle tissue layer 315 and second mesh member 322 is coupled to and positioned to lie between middle tissue layer 315 and bottom tissue layer 318, as shown in FIGS. 5 and 6. Each of the first and second mesh members 320, 322 has a length, L, and a width, W, approximately equal to length, L, and width, W, of tissue layers 315, 316, 318, of SIS portion 312. It is understood that in some embodiments, it may be preferable for the mesh to be slightly smaller than the SIS portion.


In FIG. 5, second mesh member 322 is shown partially coated in comminuted SIS 340. Comminuted SIS may be used to fill the interstices of second mesh member 322 to provide a stronger device. Other means for reinforcing bioprosthetic device 10 may be employed, including suturing or tacking the various layers together. Further, while comminuted SIS is discussed with respect to the embodiment shown in FIG. 5, it is understood that comminuted SIS may be used to coat the mesh or fibers for any embodiment.


Another embodiment of the present invention includes a bioprosthetic device 410 having a synthetic portion 414 including a mesh member 420, as shown in FIG. 7. Similar to the previously mentioned devices, bioprosthetic device 410 includes an SIS portion 412 having a top tissue layer 416 and a bottom tissue layer 418 coupled to top tissue layer 416. Top and bottom tissue layers 416, 418 each include one or more layers of SIS tissue. Mesh member 420 includes a central body portion (not shown) and outer wing portions 430, as shown in FIG. 7. Outer wing portions 430 are extensions of the central body portion. Although four outer wing portions 430 are shown in FIG. 7, it is within the scope of this disclosure to include a mesh member having a body portion and any number of wing portions 430 coupled to the body portion. The central body portion of mesh member 420 is formed to include a length and a width equal to length, L, and width, W, of SIS portion 412. The central body portion is coupled to and positioned to lie between top tissue layer 416 and bottom tissue layer 418 of SIS portion 420. Each wing portion 430 is coupled to the central body portion of mesh member 420 and is positioned to extend beyond the length, L, and width, W, of SIS portion 412, as shown in FIG. 7. As mentioned before, outer wing portions 430 are extensions of the central body portion. Wing portions 430 provide additional material for anchoring bioprosthetic device 410 to the surrounding soft tissue. Because outer wing portions 430 extend beyond central body portion of mesh member 420, mesh member 420 has a length and a width greater than length, L, and width, W, of SIS portion 412.


Yet another embodiment of the present invention is shown in FIG. 8 showing a bioprosthetic device 510 similar to bioprosthetic device 410, described above. Bioprosthetic device 510 includes an SIS portion 512 and a synthetic portion 514 coupled to SIS portion 512. SIS portion 512 includes a top tissue layer 516 which is circular in shape and a bottom tissue layer 518 which is also circular in shape. Each of the top and bottom tissue layers 516, 518 include one or more layers of SIS tissue. Top and bottom tissue layers 516, 518 each have a diameter, D1. The synthetic portion 514 of bioprosthetic device 510 includes a mesh member 520 coupled to and positioned to lie between top and bottom tissue layers 516, 518. Mesh member 520 is circular in shape and has a diameter, D2, which is greater than diameter, D1, of synthetic portion 512. Therefore, as shown in FIG. 8, an outer rim portion 530 of mesh member 520 is provided. Similar to outer wing portions 430 of bioprosthetic device 410, shown in FIG. 7, outer rim portion 530 of bioprosthetic device 510 provides additional material for anchoring bioprosthetic device 510 to the surrounding soft tissue during surgery.



FIG. 9 shows a three-dimensional prosthetic device 610, having several SIS layers 612, a synthetic reinforcing material 614 positioned to lie between the SIS layers 612, and a three-dimensional synthetic portion 624. The SIS layer 612 may comprise any number of tissue layers. Furthermore, illustratively, if more than one layer is used, the layers may be laminated together. It is included within the scope of this disclosure to provide perforated tissue layers or any other physical configuration of SIS. As with the embodiments shown in FIGS. 5-8, any number of SIS and reinforcing layers may be used, depending on the application.


Synthetic reinforcing material 614 illustratively comprises a two-dimensional fibrous matrix construct, as shown in FIGS. 5-8, and may have the same length and width as the SIS layer, as shown in FIG. 5, may be slightly smaller, or may extend beyond the ends of the SIS layer, as shown in FIGS. 7-8. Alternatively, synthetic reinforcing material may comprise a three-dimensional mesh, textile, felt, or other fibrous nonwoven construct, which may be shaped or formed for the particular application. The fibers comprise any biocompatible material, including PLA, PGA, PCL, PDO, TMC, PVA, or copolymers or blends thereof. In one example, mesh material is a 95:5 copolymer of PLA/PGA.


Three-dimensional synthetic portion 624 is a nonwoven material prepared to have numerous interconnecting pores or voids 626. Illustratively, the size of the voids may range from 20 to 400 microns. However, the size of the voids may be adjusted depending on the application, and the size may be manipulated by changing process steps during construction by altering freezing temperature, rate of temperature change and vacuum profile. Examples of various polymers that may be used for the foam, as well as various lyophilization profiles to control porosity, are described in U.S. Pat. Nos. 6,333,029 and 6,355,699, hereby incorporated by reference. Optionally, three-dimensional synthetic portion 624 further comprises a synthetic reinforcing layer 628 embedded within the foam. Reinforcing layer 628 illustratively provides enhanced mechanical integrity to the three-dimensional synthetic portion. In an illustrated embodiment, a Vicryl knitted mesh is used. However, other reinforcing layers may be used.


Optionally, three-dimensional synthetic portion 624 may be a hybrid ECM/synthetic foam portion. In making such a foam, the polymer solution is mixed with a slurry of comminuted SIS prior to lyophilization. See copending U.S. application Ser. No. 60/388,761 entitled “Extracellular Matrix Scaffold and Method for Making the Same”, hereby incorporated by reference.



FIG. 10 shows a bioprosthetic device 710 that is similar to that of FIG. 9. In FIG. 10, the SIS layer 712 is sandwiched between two three-dimensional synthetic portions 724, 730. Illustratively, both three-dimensional synthetic portions are foams, having voids 726. As shown, three-dimensional synthetic portion 724 has a reinforcing mesh 728, while three-dimensional synthetic portion 730 does not have a reinforcing member. However, other arrangements are possible, and FIG. 11 shows an embodiment 810 where the SIS layer 812 is sandwiched between two three-dimensional synthetic portions 824, 830, neither of which has reinforcing members.



FIG. 12 shows another embodiment 910, wherein a single three-dimensional synthetic portion 964 is sandwiched between two SIS layers 952, 953. As shown, three-dimensional synthetic portion 964 is a foam, with voids 966, but other three-dimensional synthetic portions may be used.



FIG. 13 shows a woven mesh 912 made from strips 928 of SIS. Fresh, lyophilized, or laminated strips of SIS may be cut into narrower strips and woven into a mesh. The strips may be of any width, depending on the application, for example 0.1 to 20 mm, more particularly 1.0 mm wide strips. Optionally, the woven strips may be laminated together to provide enhanced mechanical support. The SIS woven mesh may be used as the SIS layer in any of the above embodiments. When used with the synthetic foams, if sufficient space is provided in the weaving, the foams will form through the spaces within the mesh.


While the devices shown in FIGS. 9-13 specific embodiments, it is understood that other arrangements are within the scope of this invention. For example, in FIGS. 10-11, an SIS layer is sandwiched between two three-dimensional foam sections, with or without a reinforcing material embedded within the foam. Additional reinforcing layers, as shown in FIG. 9 may be used with these embodiments. Similarly, when a single three-dimensional foam portion is sandwiched between two SIS layers, as in FIG. 12, a layer of reinforcing material may be used, depending upon the application. In still another embodiment, the reinforcing portion may comprise a three-dimensional mesh or textile, and the three-dimensional foam portion may be omitted. It is also within the scope of this disclosure to further define the SIS portion to include sheets, perforated sheets, or any other physical configuration of SIS. Furthermore, the synthetic portion may comprise Prolene™ (Ethicon, Inc, Somerville, N.J.) meshes and/or sutures, Vicryl™ (Ethicon, Inc, Somerville, N.J.) meshes and/or sutures, Mersilene™ (Ethicon, Inc, Somerville, N.J.) meshes, PDS II™ (Ethicon, Inc., Somerville, N.J.) meshes or sutures, Panacryl™ (Ethicon, Inc., Somerville, N.J.) meshes or sutures, and Monocryl™ meshes or sutures, for example. Additional two or three-dimensional meshes may be constructed for particular applications. Further it is within the scope of this disclosure to include bioprosthetic devices where the SIS portion includes any number of tissue layers and where multiple tissue layers are positioned to lie along each synthetic layer. The SIS layers may be dehydrated prior to or subsequent to assembly of the device. Further, any shape and/or orientation of the SIS portion and the synthetic portion of the bioprosthetic device is within the scope of this disclosure; FIGS. 1-13 are merely examples of various embodiments of the present invention.


EXAMPLE 1

Sheets of clean, disinfected porcine SIS material were obtained as described in U.S. Pat. Nos. 4,902,508 and 4,956,178. Ten strips, 3.5 inches wide and 6 inches long were cut. The strips were hydrated by placing in RO water, at room temperature, for 5 minutes.


To assemble the implant, five SIS strips were placed on top of each other, while ensuring no air bubbles were trapped between the strips. A knitted Panacryl™ mesh, 2 inches wide and 5 inches long, was placed centrally on the 5-layer thick SIS strip. The mesh had been pretreated to remove any traces of oil or other contaminants due to handling. This was done by a series of rinses, each 2 minutes long, in 100%, 90%, 80%, 70% ethanol (200 proof) in RO water, followed by a final 5 minute in RO water. Subsequently, a second 5-layer thick strip of SIS was assembled and placed to sandwich the mesh between the two SIS strips.


The implant was dried under vacuum pressure using a gel drier system (Model FB-GD-45, Fisher Scientific, Pittsburgh, Pa.) for 3 hours. The gel drier bed temperature was set at 30° C. for the procedure. This drying procedure results in “squeezing out” of the bulk water in the implant and also reduces the amount of bound water within the tissue, resulting in a final moisture of between 7%-8%. This process also results in a physical crosslinking between the laminates of SIS and between the mesh and adjacent SIS laminates.


EXAMPLE 2

This example describes the preparation of three-dimensional composite tissue implants incorporating a biodegradable SIS laminated sheet, a synthetic reinforcement in the form of a biodegradable mesh, and a synthetic degradable foam.


A solution of the polymer to be lyophilized to form the foam component was prepared in a four step process. A 95:5 weight ratio solution of 1,4-dioxane/(40/60 PCL/PLA) was made and poured into a flask. The flask was placed in a water bath, stirring at 60-70° C. for 5 hrs. The solution was filtered using an extraction thimble, extra coarse porosity, type ASTM 170-220 (EC) and stored in flasks.


A three-dimensional mesh material composed of a 95:5 copolymer of polylactic/polyglycolic acid (PLA/PGA) knitted mesh was rendered flat to control curling by using a compression molder at 80° C. for 2 min. After preparing the mesh, 0.8-mm metal shims were placed at each end of a 4×4 inch aluminum mold, and the mesh was sized to fit the mold. The synthetic mesh was then laid into the mold, covering both shims. Next, an SIS laminated sheet was placed over the mesh followed by additional shims to cover the edges of the SIS and synthetic mesh.


The polymer solution (40:60 PCL/PLA) was added into mold such that the solution covered the sheet of SIS as well as the mesh and reached a level of 3.0 mm in the mold.


The mold assembly then was placed on the shelf of the lyophilizer (Virtis, Gardiner, N.Y.) and the freeze dry sequence begun. The freeze dry sequence used in this example was: 1) −17° C. for 60 minutes; 2) −5° C. for 60 minutes under vacuum of 100 mT; 3) 5° C. for 60 minutes under vacuum of 20 mT; 4) 20° C. for 60 minutes under vacuum of 20 mT.


After the cycle was completed, the mold assembly was taken out of the freeze drier and allowed to degas in a vacuum hood for 2 to 3 hours, and stored under nitrogen.


The resultant bioprosthetic device has a structure as illustrated in FIG. 9. The three-dimensional mesh provides both mechanical strength and three-dimensional structure to the resultant device. The foam may be shaped or sculpted for the particular application, and the mesh/SIS layers may be trimmed to fit. It is also understood that the mold could be provided in the desired shape, reducing or obviating the need for sculpting or trimming.


EXAMPLE 3

This example uses the process outlined in Example 2 to fabricate a biodegradable composite scaffold of the present invention where the foam component is a 65:35 PGA/PCL copolymer.


EXAMPLE 4

This example uses the process outlined in Example 2 to fabricate a biodegradable composite scaffold of the present invention where the synthetic knitted mesh component is composed of 100% PDO.


EXAMPLE 5

This example uses the process outlined in Example 2 to fabricate a biodegradable composite scaffold of the present invention where in place of a three-dimensional mesh, the synthetic component is a nonwoven fibrous structure composed of either 100% PDO, 100% 90/10 PGA/PLA or a combination of the two.


EXAMPLE 6

This example uses the process outlined in Example 2 to fabricate a biodegradable composite scaffold of the present invention where the SIS component is soaked overnight in the polymer solution (5% wt 60/40 PLA/PCL in dioxane) prior to placement over the synthetic mesh. Enhanced lamination between the components was found when this additional soaking step was added to the process as evidenced by a composite with a greater degree of handlability.


EXAMPLE 7

This example uses the process outlined in Example 2 to fabricate a biodegradable composite scaffold of the present invention where the SIS component is a single layer sheet rather than a laminated sheet.


EXAMPLE 8

This example uses the process outlined in Example 2 to fabricate a biodegradable composite scaffold of the present invention where the SIS laminated sheet is perforated with holes ranging from 1 mm-1 cm. These perforations allow for enhanced penetration of the polymer solution through the SIS sheet.


EXAMPLE 9

This example uses the process outlined in Example 2 to fabricate a biodegradable composite scaffold of the present invention where the SIS reinforcing component is a “woven mesh” of laminated strips sandwiched between two layers of 60/40 PLA/PCL foam. FIG. 13 shows such a woven mesh. FIG. 11, wherein the SIS layer is a woven mesh of FIG. 13, illustrates the construct of this Example.


Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.

Claims
  • 1. A bioprosthetic device comprising a layer of extracellular matrix material selected from the group consisting of small intestine submucosa, stomach submucosa, bladder submucosa, alimentary submucosa, respiratory submucosa, genital submucosa, and liver basement membrane, the layer of extracellular matrix material having a first surface, anda synthetic portion having a first surface and comprising a three-dimensional fibrous material having fibers oriented along three different axes,wherein the first surface of the extracellular matrix layer is coupled to the first surface of the synthetic portion.
  • 2. The bioprosthetic device of claim 1, wherein the extracellular matrix layer comprises small intestinal submucosa.
  • 3. The bioprosthetic device of claim 2, wherein the small intestinal submucosa layer comprises a plurality of small intestinal submucosa strips laminated together.
  • 4. The bioprosthetic device of claim 3, wherein the laminated small intestinal submucosa strips are perforated.
  • 5. The bioprosthetic device of claim 2, wherein the small intestinal submucosa comprises a woven mesh of strips of small intestinal submucosa.
  • 6. The bioprosthetic device of claim 1, wherein the fibrous material is a bioabsorbable material selected from the group consisting of PLA, PGA, PCL, PDO, TMC, PVA, copolymers thereof, and blends thereof.
  • 7. The bioprosthetic device of claim 1, further comprising an additional exogenous material selected from the group consisting of a bioactive agent, a biologically derived agent, a cell, a biological lubricant, a biocompatible inorganic material, and a biocompatible synthetic polymer.
  • 8. A bioprosthetic device comprising a non-particulate sheet of extracellular matrix material selected from the group consisting of small intestine submucosa, stomach submucosa, bladder submucosa, alimentary submucosa, respiratory submucosa, genital submucosa, and liver basement membrane, the sheet of extracellular matrix material having a first surface, anda three-dimensional synthetic portion having a first surface and comprising a synthetic foam,wherein the first surface of the extracellular matrix sheet is coupled to the first surface of the three-dimensional synthetic portion.
  • 9. The bioprosthetic device of claim 8, wherein the synthetic foam has voids in size from about 20 to 400 microns.
  • 10. The bioprosthetic device of claim 9, wherein the voids comprise about 70 to about 95 percent of the volume of the synthetic foam.
  • 11. The bioprosthetic device of claim 8, wherein the extracellular matrix layer is perforated, and the synthetic foam penetrates into the perforations in the extracellular matrix layer.
  • 12. The bioprosthetic device of claim 8, further comprising a second three dimensional synthetic portion having a second surface and comprising a synthetic foam,wherein the sheet of extracellular matrix comprises a second surface facing away from the first surface, and the second surface of the second synthetic portion is coupled to the second surface of the extracellular matrix layer.
CROSS REFERENCE

This application is a continuation-in-part of U.S. patent application Ser. No. 09/918,116, filed Jul. 30, 2001, now U.S. Pat. No. 6,638,312, which claims priority from U.S. Provisional Application No. 60/223,399, filed Aug. 4, 2000 hereby incorporated by reference. Cross reference is made to copending U.S. patent applications “Meniscus Regeneration Device and Method” (and related U.S. Provisional App. Ser. No. 60/305,786, filed Jul. 16, 2001); “Devices from Naturally Occurring Biologically Derived Materials”“Apparatus and Method for the Repair of Damaged or Diseased Cartilage”“Unitary Surgical Device and Method for Repair and Regeneration of Damaged or Diseased Intra-Articular Fibrocartilage” “Hybrid Biologic/Synthetic Porous Extracellular Matrix Scaffolds” “Lubricated Cartilage Repair and Regeneration Device and Method” and “Extracellular Matrix Scaffold and Method for Making the Same”, each of which is assigned to the same assignee as the present application, each of which is filed concurrently herewith, and each of which is hereby incorporated by reference.

US Referenced Citations (210)
Number Name Date Kind
3272204 Artandi et al. Sep 1966 A
3562820 Braun Feb 1971 A
4352463 Baker Oct 1982 A
4400833 Kurland Aug 1983 A
4418691 Yannas et al. Dec 1983 A
4610397 Fischer et al. Sep 1986 A
4642120 Nevo et al. Feb 1987 A
4703108 Silver et al. Oct 1987 A
4846835 Grande Jul 1989 A
4873976 Schreiber Oct 1989 A
4880429 Stone Nov 1989 A
4902508 Badylak et al. Feb 1990 A
4919667 Richmond Apr 1990 A
4956178 Badylak et al. Sep 1990 A
4956179 Bamberg et al. Sep 1990 A
4976715 Bays et al. Dec 1990 A
5007934 Stone Apr 1991 A
5061286 Lyle Oct 1991 A
5102421 Anspach, Jr. Apr 1992 A
5108438 Stone Apr 1992 A
5128326 Balazs et al. Jul 1992 A
5236431 Gogolewski et al. Aug 1993 A
5246441 Ross et al. Sep 1993 A
5275826 Badylak et al. Jan 1994 A
5281422 Badylak et al. Jan 1994 A
5306311 Stone et al. Apr 1994 A
5320633 Allen et al. Jun 1994 A
5329846 Bonutti Jul 1994 A
5350583 Yoshizato et al. Sep 1994 A
5352463 Badylak et al. Oct 1994 A
5372821 Badylak et al. Dec 1994 A
5374268 Sander Dec 1994 A
5376118 Kaplan et al. Dec 1994 A
5380334 Torrie et al. Jan 1995 A
5445833 Badylak et al. Aug 1995 A
5447940 Harvey et al. Sep 1995 A
5460962 Kemp Oct 1995 A
5479033 Baca et al. Dec 1995 A
5514181 Light et al. May 1996 A
5516533 Badylak et al. May 1996 A
5554389 Badylak et al. Sep 1996 A
5569252 Justin et al. Oct 1996 A
5573784 Badylak et al. Nov 1996 A
5591234 Kirsch Jan 1997 A
5593441 Lichtenstein et al. Jan 1997 A
5595621 Light et al. Jan 1997 A
5601558 Torrie et al. Feb 1997 A
5632745 Schwartz May 1997 A
5641518 Badylak et al. Jun 1997 A
5645860 Knapp, Jr. et al. Jul 1997 A
5660225 Saffran Aug 1997 A
5668288 Storey et al. Sep 1997 A
5669912 Spetzler Sep 1997 A
5677355 Shalaby et al. Oct 1997 A
5681353 Li et al. Oct 1997 A
5693085 Buirge et al. Dec 1997 A
5695998 Badylak et al. Dec 1997 A
5702462 Oberlander Dec 1997 A
5711960 Shikinami Jan 1998 A
5711969 Patel et al. Jan 1998 A
5730933 Peterson Mar 1998 A
5733337 Carr, Jr. et al. Mar 1998 A
5733868 Peterson et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5735903 Li et al. Apr 1998 A
5736372 Vacanti et al. Apr 1998 A
5753267 Badylak et al. May 1998 A
5755791 Whitson et al. May 1998 A
5759190 Vibe-Hansen et al. Jun 1998 A
5759205 Valentini Jun 1998 A
5762600 Bruchman et al. Jun 1998 A
5762966 Knapp et al. Jun 1998 A
5769899 Schwartz et al. Jun 1998 A
5773577 Cappello Jun 1998 A
5788625 Plouhar et al. Aug 1998 A
5795353 Felt Aug 1998 A
5800537 Bell Sep 1998 A
5830708 Naughton Nov 1998 A
5834232 Bishop et al. Nov 1998 A
5842477 Naughton et al. Dec 1998 A
5847012 Shalaby et al. Dec 1998 A
5855613 Antanavich et al. Jan 1999 A
5855619 Caplan et al. Jan 1999 A
5863551 Woerly Jan 1999 A
5866414 Badylak et al. Feb 1999 A
5885619 Patel et al. Mar 1999 A
5891558 Bell et al. Apr 1999 A
5899939 Boyce et al. May 1999 A
5916265 Hu Jun 1999 A
5922028 Plouhar et al. Jul 1999 A
5939323 Valentini et al. Aug 1999 A
5948429 Bell et al. Sep 1999 A
5954723 Spetzler Sep 1999 A
5954747 Clark Sep 1999 A
5955110 Patel et al. Sep 1999 A
5958874 Clark et al. Sep 1999 A
5968096 Whitson et al. Oct 1999 A
5969020 Shalaby et al. Oct 1999 A
5971987 Huxel et al. Oct 1999 A
5980524 Justin et al. Nov 1999 A
5981802 Katz Nov 1999 A
5981825 Brekke Nov 1999 A
5989269 Vibe-Hansen et al. Nov 1999 A
5989280 Euteneuer et al. Nov 1999 A
5993475 Lin et al. Nov 1999 A
5993844 Abraham et al. Nov 1999 A
5997575 Whitson et al. Dec 1999 A
6017348 Hart et al. Jan 2000 A
6027744 Vacanti et al. Feb 2000 A
6042610 Li et al. Mar 2000 A
6051750 Bell Apr 2000 A
6056752 Roger May 2000 A
6056777 McDowell May 2000 A
6056778 Grafton et al. May 2000 A
6060640 Pauley et al. May 2000 A
6068648 Cole et al. May 2000 A
6077989 Kandel et al. Jun 2000 A
6080194 Pachence et al. Jun 2000 A
6093201 Cooper et al. Jul 2000 A
6098347 Jaeger et al. Aug 2000 A
6099567 Badylak et al. Aug 2000 A
6110212 Gregory Aug 2000 A
6126686 Badylak et al. Oct 2000 A
6146385 Torrie et al. Nov 2000 A
6152935 Kammerer et al. Nov 2000 A
6153292 Bell et al. Nov 2000 A
6156044 Kammerer et al. Dec 2000 A
6165225 Antanavich et al. Dec 2000 A
6171344 Atala Jan 2001 B1
6176880 Plouhar et al. Jan 2001 B1
6179840 Bowman Jan 2001 B1
6179872 Bell et al. Jan 2001 B1
6187039 Hiles et al. Feb 2001 B1
6206931 Cook et al. Mar 2001 B1
6214049 Gayer et al. Apr 2001 B1
6224892 Searle May 2001 B1
6235057 Roger et al. May 2001 B1
6242247 Rieser et al. Jun 2001 B1
6251143 Schwartz et al. Jun 2001 B1
6251876 Bellini et al. Jun 2001 B1
6258124 Darois et al. Jul 2001 B1
6264702 Ory et al. Jul 2001 B1
6265333 Dzenis et al. Jul 2001 B1
6270530 Eldridge et al. Aug 2001 B1
6273893 McAllen, III et al. Aug 2001 B1
6280473 Lemperle et al. Aug 2001 B1
6283980 Vibe-Hansen et al. Sep 2001 B1
6288043 Spiro et al. Sep 2001 B1
6290711 Caspari et al. Sep 2001 B1
6293961 Schwartz et al. Sep 2001 B2
6294041 Boyce et al. Sep 2001 B1
6306156 Clark Oct 2001 B1
6306159 Schwartz et al. Oct 2001 B1
6306177 Felt et al. Oct 2001 B1
6319258 McAllen, III et al. Nov 2001 B1
6319271 Schwartz et al. Nov 2001 B1
6326025 Sigler et al. Dec 2001 B1
6333029 Vyakarnam et al. Dec 2001 B1
6334872 Termin et al. Jan 2002 B1
6355699 Vyakarnam et al. Mar 2002 B1
6358284 Fearnot et al. Mar 2002 B1
6364884 Bowman et al. Apr 2002 B1
6371958 Overaker Apr 2002 B1
6373221 Koike et al. Apr 2002 B1
6379367 Vibe-Hansen et al. Apr 2002 B1
6379710 Badylak Apr 2002 B1
6383221 Scarborough et al. May 2002 B1
6387693 Rieser et al. May 2002 B2
6409764 White et al. Jun 2002 B1
6440444 Boyce et al. Aug 2002 B2
6451032 Ory et al. Sep 2002 B1
6458158 Anderson et al. Oct 2002 B1
6458383 Chen et al. Oct 2002 B2
6464729 Kandel Oct 2002 B1
6497650 Nicolo Dec 2002 B1
6517564 Grafton et al. Feb 2003 B1
6572650 Abraham et al. Jun 2003 B1
6592623 Bowlin et al. Jul 2003 B1
6596296 Nelson et al. Jul 2003 B1
6638312 Plouhar et al. Oct 2003 B2
6652872 Nevo et al. Nov 2003 B2
6666892 Hiles et al. Dec 2003 B2
6692499 Törmäläet et al. Feb 2004 B2
6812221 McKeehan et al. Nov 2004 B2
6840962 Vacanti et al. Jan 2005 B1
20010024658 Chen et al. Sep 2001 A1
20010043943 Coffey Nov 2001 A1
20020019649 Sikora et al. Feb 2002 A1
20020038151 Plouhar et al. Mar 2002 A1
20020048595 Geistlich et al. Apr 2002 A1
20020090725 Simpson et al. Jul 2002 A1
20020091444 Yang Jul 2002 A1
20020099448 Hiles Jul 2002 A1
20020131989 Brown et al. Sep 2002 A1
20020173806 Giannetti et al. Nov 2002 A1
20030014126 Patel et al. Jan 2003 A1
20030021827 Malaviya et al. Jan 2003 A1
20030023316 Brown et al. Jan 2003 A1
20030032961 Pelo et al. Feb 2003 A1
20030033021 Plouhar et al. Feb 2003 A1
20030033022 Plouhar et al. Feb 2003 A1
20030036797 Malaviya et al. Feb 2003 A1
20030036801 Schwartz et al. Feb 2003 A1
20030044444 Malaviya et al. Mar 2003 A1
20030049299 Malaviya et al. Mar 2003 A1
20030212447 Euteneuer et al. Nov 2003 A1
20040059431 Plouhar et al. Mar 2004 A1
20040143344 Malaviya et al. Jul 2004 A1
20050249771 Malaviya et al. Nov 2005 A1
20050249772 Malaviya et al. Nov 2005 A1
Foreign Referenced Citations (39)
Number Date Country
0 446 105 Jan 1992 EP
0 734 736 Oct 1996 EP
1070487 Jan 2001 EP
2 215 209 Sep 1989 GB
11319068 Nov 1999 JP
WO 9009769 Sep 1990 WO
WO 9411008 May 1994 WO
WO 9505083 Feb 1995 WO
WO 9522301 Aug 1995 WO
WO 9506439 Sep 1995 WO
WO 9532623 Dec 1995 WO
WO9624304 Aug 1996 WO
WO 9624661 Aug 1996 WO
9715195 May 1997 WO
WO 9737613 Oct 1997 WO
WO 9806445 Feb 1998 WO
9822154 May 1998 WO
WO 9822158 May 1998 WO
WO 9822158 May 1998 WO
WO 9830167 Jul 1998 WO
WO 9834569 Aug 1998 WO
WO 9903979 Jan 1999 WO
9919005 Apr 1999 WO
WO 9943786 Sep 1999 WO
WO 9947188 Sep 1999 WO
WO 0016822 Mar 2000 WO
WO 0024437 May 2000 WO
WO 0024437 May 2000 WO
WO 0032250 Jun 2000 WO
WO 0048550 Aug 2000 WO
WO 0072782 Dec 2000 WO
WO 0119423 Mar 2001 WO
WO 0139694 Jun 2001 WO
WO 0139694 Jun 2001 WO
WO 0145765 Jun 2001 WO
0170293 Sep 2001 WO
WO 0166159 Sep 2001 WO
WO 03007788 Jan 2003 WO
WO 03007790 Jan 2003 WO
Non-Patent Literature Citations (92)
Entry
Hiles et al., “Mechanical properties of xenogeneic small-intestinal submucosa when used as an aortic graft in the dog”, Journal of Biomedical Materials Research, vol. 29, 883-891, (1995).
Sandusky, et al., “Healing Comparison of Small Intestine Submucosa and ePTFE Grafts in the Canine Carotid Artery”, J. Surg.Res., 58:415-420. (1995).
Knapp, et al., “Biocompatibility of Small-Intestine Submucosa in Urinary Tract as Augmentation Cystoplasty Graft and Injectable Suspension”, J Endourology, 8:125-130. (1994).
Kropp et al., “Regenerative Bladder Augmentation: A Review of the Initial Preclinical Studies with Porcine Small Intestinal Submucosa”, Muscle, Matrix, and Bladder Function. Plenum Press, New York, (1995).
Kropp et al., “Experimental Assessment of Small Intestinal Submucosa as a Bladder Wall Substitute”, Urology 446:396-400, (1995).
Vaught et al., “Detrusor Regeneration in the Rat Using Porcine Small Intestinal Submucosa Grafts: Functional Innervation and Receptor Expression”. J. Urol., 155:374-378. (1996).
Kropp et al, Characterization of Small Intestinal Submucosa Regenerated Canine Detrusor: Assessment of Reinnervation, In Vitro Compliance and contractility. J. of Urol, 156:599-607. (1996).
Kropp et al., “Regenerative Urinary Bladder Augmentation Using Small Intestinal Submucosa: Urodynamic and Histopathologic Assessment in Long-Term Canine Bladder Augmentations”, Journal of Urology, 155:2098-2104. (1996).
Aiken et al., “Small Intestinal Submucosa as an Intra-Articular Ligamentous Graft Material: A Pilot Study in Dogs”, Vet Comp Orthopedics Traumatology, 7:124-128. (1994).
Badylak et al., “The Use of Xenogeneic Small Intestinal Submucosa as a Biomaterial for Achille's Tendon Repair in a dog model”, J Biomed Materials, 9:977-985. (1995).
Hodde et al., “The Effect of Range of Motion Upon Remodeling of Small Intestinal Submucosa (SIS) when used as an Achilles Tendon Repair Material in the Rabbit”, Tissue Engineering 3, 1:27-37, (1997).
Ferrand et al., “Directional Porosity of Porcine Small-Intestinal Submucosa”, J Biomed Materials Res, 27:1235-1241, (1993).
Hiles et al., “Porosity of Porcine Small-Intestinal Submucosa for use as a Vascular Graft”, J Biomed Materials Res, 27: 139-144, (1993).
Hodde et al., “Glycosaminoglycan Content of Small Intestinal Submucosa: A Bioscaffold for Tissue Replacement”, Tissue Engineering, 2:3, 209-217. (1996).
Prevel et al., “Small Intestinal Submucosa: Utilization for Repair of Rodent Abdominal Wall Defects”, Ann Plast Surg, 35:374-380. (1995).
Clarke et al., “Intestine Submucosa and Polypropylene Mesh for Abdominal Wall Repair in Dogs”, J Surg Res, 60:107-114, (1996).
Prevel et al., “Small Intestinal Submucosa: Utilization as a Wound Dressing in Full-Thickness Rodent Wounds”, Ann Plast Surg. 35:381-388. (1995).
Cobb et al., “Histology after Dural Grafting with Small Intestinal Submucosa”, Surgical Neurology, 46: 389-394, (1996).
Cobb et al., “Porcine Small Intestinal Submucosa as a Dural Substitute”, Surgical Neurology, 51:99-104, (1999).
Voytik-Harbin et al., “Application and Evaluation of the AlamarBlue Assay for Cell Growth and Survival of Fibroblasts”, Journal of Immunological Methods. In Vitro Cell Bio-Animal, 34: 2399-246. (1998).
Suckow, M.A., “Enhanced Bone Regeneration Using Porcine Small Intestinal Submucosa”, J. Invest Surg, 12: 277, (1999).
Badylak , S., et al., “Naturally Occurring Extracellular Matrix as a Scaffold for Musculoskeletal Repair”, Clin Orthop, 3675:S333-S3433, (1999).
Cook, J.L. et al., “Induction of Meniscal Regeneration in Dogs Using a Novel Biomaterial”, Am J Sports Med, 27: 658, (1999).
Dejardin, L.M. et al., “Use of small intestinal submucosal implants for regeneration of large fascial defects: an experimental study in dogs”, J Biomed Mater Res, 46:203-211, (1999).
Sacks, M.S., et al., “Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa”, J Biomed Mater Res, 46:1-10, (1999).
COOK® New Releases, “COOK® Introduces Innovative Surgisis™ Soft Tissue Repair Biomaterial”, (May 21, 2000).
COOK® News Releases, “COOK® Oasis™ Wound Dressing Biomaterial From COOK® Remodels Partial Thickness Skin Injuries”, (Dec. 23, 1999).
COOK® News Releases, “Cook Incorporated Forms Dedicated Tissue Engineered Products Group”, (Feb. 16, 2000).
COOK® News Releases, “FDA Clears Oasis™ Wound Dressing Biomaterial From COOK® for Full-Thickness Skin Injuries”, (Jan. 24, 2000).
Klootwyk, et al., “The Use of Xenographic SIS as a Biomaterial for Achilles Tendon Repair in Dogs,” First SIS Symposium, Dec. 1996, USA.
Lenz, et al., “SIS as an ACL Replacement in Dogs and Goats,” First Symposium, Dec. 1996, USA.
Cook, et al., “Comparison of SIS Cancellous Bone as Substrates for Three-Dimensional Culture of Canine Articular Chondrocytes,” First SIS Symposium, Dec. 1996, USA.
Badylak, et al., “Different Configurations of Small Interstinal Submucosa as a Biomaterial for Achilles Tendon Repair in a Dog Model, ” First SIS Symposium, Dec. 1996, USA.
Voytik-Harbin & Badylak, “Induction of Osteogenic Activity by Small Intestinal Submucosa in Rat Calvaria Non-union Defects,” First SIS Symposium, Dec. 1996, USA.
Kandel, et al., “SIS and Reconstituted Cartilage and Its Use in Joint Resurfacing of Focal Defects in Rabbits,” First SIS Symposium, Dec. 1996, USA.
Tullius, et al., “Differential Permeabilty of SIS,” First SIS Symposium, Dec. 1996, USA.
Obermiller, et al., “Suture Retention Strength of SIS,” First SIS Symposium, Dec. 1996, USA.
Shelton, et al., “Repair of the Canine Medial Meniscus using SIS: A Feasibility Study,” Second SIS Symposium, Dec. 1998, USA.
Cook, et al., “Meniscal Regeneration in dogs Using Grafts of SIS,” Second SIS Symposium, Dec. 1998, USA.
Welch, et al., “Healing of Canine Meniscal Defect with Small Intestinal Submucosa Implants,” Dec. 1998, USA.
Solchaga, et al., “SIS as Delivery Vehicle for Mesenchymal Progenitor Cells,” Dec. 1998, USA.
Paulino, et al., “The Use of an SIS-PGA Composite Graft for Repair of Cartilage Defect,” Dec. 1998, USA.
Toombs and May, “Clinical Follow-Up of Three Canine ACL Reconstructions Using an SIS ACL Device,” Dec. 1998, USA.
Tomasek and Gifford, “Small Intestinal Submucosa Matrix Regulates the Differentiation of Myofibroblasts,” Third SIS Symposium, Nov. 2000, USA.
Cook, et al., “Tissue Engineering for Meniscal Repair Using SIS,” Third SIS Symposium, Nov. 2000, USA.
Lifrak, et al., “Enhanced Repair of Goat Meniscal Defects Using Porcine Small Intestinal Submucosa (SIS),” Third SIS Symposium, Nov. 2000, USA.
Hoffman, “SIS Disc Replacement for the Temporomandibular Joint,” Third SIS Symposium, Nov. 2000, USA.
Kaeding, “Use of SIS in the Surgical Treatment of Chronic Symptomatic Patella Tendinosis,” Third SIS Symposium, Nov. 2000, USA.
Tomczak and Kaeding, “Use of SIS in the Surgical Treatment of Tendinosis About the Foot and Ankle,” Third SIS Symposium, Nov. 2000, USA.
Moore, et al., “Bridging Segmental Defects in Long Bones With Intramedullary Tubes and Periosteal Sleeves Made From Small Intestinal Submucosa (SIS),” Third SIS Symposium, Nov. 2000, USA.
Wang, et al., “Small Intestinal Submucosa Enhances Healing of Medical Collateral Ligament in a Rabbit Model,” Third SIS Symposium, Nov. 2000, USA.
Ojha, et al., “PGA-Plla Versus Small Intestinal Submucosa (SIS): A Comparison of Neo-Cartilage Grown From Two Scaffold Materials,” Third SIS Symposium, Nov. 2000, USA.
Wiklerson, “Use of the Porcine Small Intestine Submucosal Tissue Graft and Repair of Rotator Cuff Tears,” Third SIS Symposium, Nov. 2000, USA.
“Small Intestinal Submucosa,” Third SIS Symposium, Nov. 2000, USA.
“Current Clinical Applications of SIS,” Third SIS Symposium, Nov. 2000, USA.
Hodde, et al., “Glycosaminoglycan Content of Small Intestinal Submucosa: A Potential for GAG-Growth Interactions in SIS-Mediated Healing”, First Symposium, Dec. 1996, USA.
Friess, “Collagen in drug delivery and tissue engineering”, Advanced Drug Delivery Reviews, vol. 55, No. 12, 2003, pp. 1529-1530.
Olsen et al., “Recombinant collagen and gelatin for drug delivery”, Advanced Drug Delivery Reviews, vol. 55, No. 12, 2003, pp. 1547-1567.
Aigner et al., “Collagens-major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair”, Advanced Drug Delivery Reviews, vol. 55, No. 12, 2003, pp. 1569-1593.
Geiger et al., “Collagen sponges for bone regeneration with rhBMP-2”, Advanced Drug Delivery Reviews, vol. 55, No. 12, 2003, pp. 1613-1629.
Ruszczak et al., “Collagen as a carrier for on-site delivery of antibacterial drugs”, Advanced Drug Delivery Reviews, vol. 55, No. 12, 2003, pp. 1679-1698.
O'Grady et al., “Global regulatory registration requirements for collagen-based combination products: points to consider”, Advanced Drug Delivery Reviews, vol. 55, No. 12, 2003, pp. 1699-1721.
Matthews et al., “Electrospinning of Collagen Type II: A Feasibility Study”, Journal of Bioactive and Compatible Polymers, vol. 18, Mar. 2003, pp. 125-134.
Biscarini et al., “Growth of High Vacuum Sublimed Oligomer Thin Films”, ACS Polymer Preprints, vol. 37, No. 2, 1996, pp. 618-619.
Biscarini et al., “Morphology and roughness of high-vacuum sublimed oligomer thin films”, Thin Solid Films, vol. 439-443, 1996, pp. 284-285.
Biscarini et al., “Scaling Behavior of Anisotropic Organic Thin Films Grown in High-Vacuum”, Physical Review Letters, vol. 78, No. 12, Mar. 24, 1997, pp. 2389-2392.
Voytik-Harbin et al., “Identification of Extractable Growth Factors from Small Intestinal Submucosa”,Journal of Cellular Biochemistry, vol. 67, 1997, pp. 478-491.
McPherson, Ph.D. et al., “Characterization of Fibronectin Derived from Porcine Small Intestinal Submucosa”, Tissue Engineering, vol. 4, No. 1, 1998, pp. 75-83.
Hodde, et al., “Vascular Endothelial Growth Factor in Porcine-Derived Extracellular Matrix”,Endothelium, vol. 8(1), 2001, pp. 11-24.
Hodde et al., “Wounds: A Compendium of Clinical Research and Practice”, Website: http:www.hmpcommunications.com/WNDS, Printed: Jul. 12, 2005, 7 pgs.
Hurst et al., “Mapping of the distribution of significant proteins and proteoglycans in small intestinal submucosa by fluorescence microscopy”, J. Biomater. Sci. Polymer Edn., vol. 12, No. 11, 2001, pp. 1267-1279.
Hodde et al., “Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix”, Biomaterials, vol. 23, 2002, pp. 1841-1848.
Hodde, “Naturally Occurring Scaffolds for Soft Tissue Repair and Regeneration”, Tissue Engineering, vol. 8, No. 2, 2002, pp. 295-308.
Allman et al., Xenogeneic Extracellular Matrix Grafts Elicit a Th2-Restricted Immune Response, Transplantation, vol. 71, No. 11, Jun. 15, 2001, pp. 1631-1640.
Allman et al., “The Th2-Restricted Immune Response to Xenogeneic Small Intestinal Submucosa Does Not Influence Systemic Protective Immunity to Viral and Bacterial Pathogens”, Tissue Engineering, vol. 8, No. 1, 2002, pp. 53-62.
Kr{hacek over (c)}ma, “Nonwoven Textiles”, Textile Trade Press, Manchester, England, 1962, 6 pgs.
Answers.com,. Definition of “freeze-dry”, Accessed on May 12, 2005, 6 pgs.
Ma et al., “Microtubular architecture of biodegradable polymer scaffolds”, J. Biomed. Materials Res., vol. 56, No. 4, 2001, pp. 469-477.
Ma et al., “Biodegradable Polymer Scaffolds with Well-Defined Interconnected Spherical Pore Network”, Tissue Engineering, vol. 7, No. 1, 2001, pp. 23-33.
Klawitter et al., “An Evaluation of Bone Growth into Porous High Density Polyethylene”, J. Biomed. Materials Res., vol. 10, (1976) pp. 311-323.
White et at, “Biomaterial Aspects of Interpore-200 Porous Hydroxyapatite”, Dental Clinics of North America, Reconstructive Implant Surgery and Implant Prosthodontics 1, vol. 30, No. 1, pp. 49-67.
Shors; Coralline Bone Graft Substitutes, Orthopaedic Clinics of North America, Bone Grafting and Bone Graft Substitutes, vol. 30, No. 4, Oct. 1999, pp. 599-613.
Wang, Experimental Study of Osteogenic Activity of Sintered Hydroxyapatite—On the Relationship of Sintering Temperature and Pore Size—, J. Jpn. Orthop. Assoc., vol. 64, 1990, pp. 847-859.
Nehrer et al., “Matrix collagen type and pore size influence behavior of seeded canine chondrocytes”, Biomaterials, vol. 18, No. 11, 1997, pp. 769-776.
Salem et al., “Interactions of 3T3 fibroblasts and endothelial with defined pore ffeatures”, J. Biomed Materials Res., vol. 61, No. 2, 2002, pp. 212-217.
European Search Report for European Application No. 02750038.8-1219, Mar. 15, 2007, 4 pgs.
Supplementary European Search Report, Appln No. 02753403.1 (PCT/US 223190) dated Dec. 21, 2006 (3 pages).
Definitions of “intertwine” and “twine.” American Heritage Dictionary of the English Language Online. Accessed Sep. 29, 2005. 2 pages.
On-line Medical Dictionary definition of “extracellular matrix” located at http://cancerweb.ncl.ac.uk/cgibin/omd? extracellular+matrix.
Definitions of “intertwine” and “twine” , American Heritage Dictionary of the English Language Online, Accessed Sep. 29, 2005, 2 pgs.
How to Cut Meat Products 2001, Urschel Corp., Accessed online at fr.urschel.com/literature/HTCMeat.pdf on Oct. 3, 2005, 8 pgs.
Definitions of “comminute” and “slurry”, Dictionary.com; Accessed Sep. 20, 2005, 2 pgs.
Related Publications (1)
Number Date Country
20030023316 A1 Jan 2003 US
Provisional Applications (1)
Number Date Country
60223399 Aug 2000 US
Continuation in Parts (1)
Number Date Country
Parent 09918116 Jul 2001 US
Child 10172347 US