The invention disclosed and taught herein relates generally to hybrid drill bits having at least one fixed blade with cutter elements and at least one rolling cutter assembly and, more specifically, relates to a hybrid drill bit having a mechanically fastened rolling cutter assembly.
Rotary earth-boring bits useful for oil and gas exploration and production have evolved considerably since the bi-cone bit developed by Howard R. Hughes, Sr., which had two rotatable cone-shaped cutting assemblies. Today, there are rotary bits with fixed or non-rotating blades with polycrystalline diamond cutters (PDC) mounted thereon. There are also hybrid bits combining fixed-blade cutting elements and rotating cutting elements. Most, but not all hybrid bits are modular in construction, in that the rotatable or rolling cutter elements are separate components coupled to the bit body by welding or other type of fastening.
The embodiments disclosed and taught herein are directed to an improved modular hybrid drill bit having at least one rolling cutter assembly mechanically fastened to the bit body.
As a brief summary of one of the many embodiments of the present invention, a hybrid drill bit may comprise a body having at least one blade, each blade comprising a plurality of earth formation cutting elements; at least one rolling cutter assembly pocket formed into the body and comprising a first torque-reacting structure, wherein the pocket is disposed between adjacent blades; at least one rolling cutter assembly comprising a head onto which a cutter element is rotatably coupled; the head comprising a second torque-reacting structure configured to operatively engage the first torque-reacting structure, and a plurality of mechanical fastener openings; the plurality of mechanical fasteners fabricated from high-strength, high fracture toughness, corrosion-resistant metal alloy configured to securely and removably couple the at least one rolling cutter assembly to the pocket; a locking structure formed on a portion of at least one fastener and configured to provide an interference fit between the locking structure and an associated fastener opening in the head; a plurality of locking caps, each locking cap being configured to engage an exposed portion of a respective fastener and prevent relative rotation between the fastener and the locking cap; and a plurality of weldments engaging at least a portion of each locking cap and configured to prevent dislodgement of each cap from each respective fastener and to prevent relative rotation between each locking cap and the body.
The following figures are included to further demonstrate and teach certain aspects of the present invention. The invention may be better understood by reference to one or more of these figures in combination with the detailed description of specific embodiments presented herein.
While the embodiments disclosed herein are susceptible to various modifications and alternative forms, only a few specific embodiments have been shown by way of example in the drawings and are described in detail below. The figures and detailed descriptions of these specific embodiments are not intended to limit the breadth or scope of the inventive concepts or the appended claims in any manner. Rather, the figures and detailed written descriptions are provided to illustrate the inventive concepts to a person of ordinary skill in the art and to enable such person to make and use the inventive concepts.
The figures identified above and the written description of specific structures and functions below are not presented to limit the scope of the present disclosure or the scope of the appended claims. Rather, the figures and written description are provided to teach any person skilled in the art how to make and use the invention for which patent protection is sought. Those skilled in the art will appreciate that not all features, aspects or functions of a commercial embodiment of the present disclosure are described or shown for the sake of clarity and understanding. Persons of skill in this art will also appreciate that the development of an actual commercial embodiment incorporating some or all aspects of the present disclosure will require numerous implementation-specific decisions to achieve the developer's ultimate goal for the commercial embodiment. Such implementation-specific decisions may include, and likely are not limited to, compliance with system-related, business-related, government-related and other constraints, which may vary by specific implementation, location and from time to time. While a developer's efforts might be complex and time-consuming in an absolute sense, such efforts would be, nevertheless, a routine undertaking for those of skill in this art having benefit of this disclosure. It must be understood that the embodiments disclosed and taught herein are susceptible to numerous and various modifications and alternative forms. Lastly, the use of a singular term, such as, but not limited to, “a,” is not intended as limiting of the number of items. Also, the use of relational terms, such as, but not limited to, “top,” “bottom,” “left,” “right,” “upper,” “lower,” “down,” “up,” “side,” and the like, are used in the written description for clarity in specific reference to the figures and are not intended to limit the scope of the invention or the appended claims.
Disclosed herein is a modular, hybrid drill bit comprising a single or a plurality of fixed blades and at least one rolling cutter assembly, in which the rolling cutter assembly is secured to the bit body with mechanical fasteners. The rolling cutter assembly may be configured to mate with a pocket in the bit body and to engage anti-rotation or anti-movement structures, such as a tongue and groove system. Further, shims may be used between the rolling cutter assembly and the pocket or bit body to adjust the radial projection of the rolling cutter assembly and/or the axial projection of the rolling cutter assembly.
In a preferred embodiment, the mechanical fasteners comprise threaded fasteners fabricated from high-strength, high-toughness, corrosion-resistant metal alloy and extend radially outwardly from the pocket or bit body on to which the rolling cutter assembly is placed. Threaded nuts may engage the exposed threaded fastener threads and be tightened to clamp the rolling cutter assembly into the pocket. One or more of the threaded fasteners may have a locking structure, such as an interference fit, that will elastically or plastically deform the fastener opening in the rolling cutter assembly to secure the assembly in an axial position. The nuts may be welded in place to prevent loosening of the fasteners. Alternatively and preferably, locking caps configured to engage the nut landings may be placed over the exposed nuts and welded together and to the bit body or alternatively to a locking plate held down by the nuts eliminating welding to a head or bit body, to prevent loosening of the fasteners.
Turning now to
The fixed-cutter blades 102 each have a plurality of cutting elements 108, such as, without limitation, polycrystalline diamond compact (PDC) cutting elements affixed thereto in known manner and location. The rolling cutter assembly 104 comprises a body or rolling cutter head 110 having a spindle 302 (
The rolling cutter head 110 has a plurality of mechanical fastener openings 116 substantially corresponding with fastener openings 118 in the bit body 106. The rolling cutter head 110 preferably, but not necessarily, comprises anti-movement element 120 or tongue that engages a mating portion 122 of the body such as a groove or head pocket in the bit body 106.
As illustrated in
Also illustrated in
The fastener openings 116 in the head and the corresponding openings in the bit body 106 may be, and preferably are, aligned along radial lines to a real or imaginary center of the body 106. Alternatively, the fastener openings 116, 118 may be aligned along non-radial chords into the bit body 106.
It will be appreciated that at least because of the variations in component sizes caused by manufacturing tolerances in both the bit body 106 and in the rolling cutter head 110, hybrid drill bit 100 may utilize spacers or shims to adjust the precise location of the rolling cutter head 110/rolling cutter cone 112 relative to the bit body 106, and most especially relative to the cutting element exposure. For example, as illustrated in
As discussed in more detail with respect to
As illustrated in
Lastly, as illustrated in
Turning to
While eight fasteners are shown in the embodiments described in
Illustrated in
It is preferred that the mechanical fasteners, for example, the threaded fasteners 124 and nuts 126 be fabricated from a corrosion-resistant, high-strength metal alloy material having a high-level of material toughness. For example, it is presently preferred that the mechanical fasteners be fabricated from a Nickel-bearing, heat-treatable alloy, such as INCONEL®, having a tensile strength of at least 260,000 psi. Mechanical fasteners of this type may be obtained from various commercial sources including, but not limited to, Automotive Racing Products, Inc. Threaded fasteners 124 and nuts 126 made by ARP from its Custom Age 625+® material have been used for prototypes of hybrid drill bit 100. It is preferred, but not required, that the threaded fasteners 124 and nuts 126 be fabricated from the same material.
To the extent a locking plate 128 is used with a particular hybrid bit embodiment, the material for the locking plate and for the locking caps 138 need not be, and preferably are not, made from the same material as the fasteners. In a preferred embodiment, the locking plate 128 material and the locking cap 138 material may be a conventional steel alloy, such as AISI 8620, or other metal alloy that provides ease of welding. Since the locking plate 128 and the locking cap 138 are not significant loadbearing components, strength and load corrosion-resistance is not as important as it is for the mechanical fasteners, which bear significant static and dynamic loads.
It will also be appreciated that the clamping force provided by the mechanical fasteners is an issue of design depending on the size of the bit 100, the environment anticipated and the materials from which the bit 100 are fabricated. For the embodiments illustrated in this application using eight 7/16 inch nominal mechanical fasteners for each rolling cutter assembly 104, it is desired to preload each fastener to about 21,000 pounds, or about 89% of its 0.02% offset yield load. Those of skill will appreciate it that determining the amount of fastener preload is typically done by controlling the amount of torque imposed on the nut 126. However, as is known, the relationship between torque and preload is not necessarily linear and is affected by a variety of factors, not the least of which is friction between the nut 126 and threaded fastener 124 threads. For example, it is been found that while 95 foot-pounds of torque applied to the nut can be calculated to generate 17,500 pounds of preload, it has been found that up to about 120 foot-pounds of torque was needed to achieve the same preload. This variation in calculated torque versus required torque was attributed to the friction between the threaded fastener and the nut both being fabricated from the same high-strength, high-toughness material.
As illustrated in
Also shown in
It will be appreciated that there are alternative embodiments of upset region 404 that may be used to advantage with the invention disclosed herein. For example, and without limitation, single or multiple protuberances such as diamond-shaped points may be used instead of the circumferential upset region 404 illustrated in
Now having benefit of this disclosure, it will be appreciated that a hybrid drill bit according to the present invention may be assembled as follows. If threaded fasteners are used as the mechanical fasteners, the threaded fasteners are placed in the threaded receptacles in the bit body and torqued to the desired level such as, for example, 75 foot-pounds torque. It will be appreciated that the appropriate torque level will depend on the fastener material, the bit body material and the clamping force necessary to achieve the desired stability of the rolling cutter assembly.
Radial and axial shims, if needed or desired, may be placed in position on the bit body or the rolling cutter assembly, as desired. The rolling cutter head may be placed in the desired axial and radial position on the bit body pocket so that the anti-rotation structures operatively engage each other. If threaded fasteners are used, the rolling cutter assembly is slid down the threaded fasteners. If bolts are used, the bolts are inserted into the fastener openings and screwed into the fastener receptacles in the bit body. If a fastener-locking plate is used, the plate is placed over the threaded fasteners, or placed in position before the bolts are run home.
Nuts are screwed on the threaded fasteners, if used, and each nut or bolt is torqued to the desired preload for each mechanical fastener. Once the fasteners are torqued to the appropriate level, locking caps may be placed over on the exposed position of each fastener, such as a nut or bolt head. A weld, such as a tack weld, may be laid-down between the top cap surfaces. This weld may function to prevent the caps, and, therefore, the nuts or bolt heads from loosening by rotating. Also, this weld may be beneficial in preventing the caps from canting when a side cap weld is laid down. To prevent the caps from dislodging from the bit, a weld, such as a tack weld, may be placed between the sides of each cap and between the material that contacts the underside of the nut or bolt head. It will be appreciated that when a locking plate is used, and it is made from the same material as the locking cap, a side weld may be easily placed in these regions. If a locking plate is not used, the side weld can still lock the caps to each other and to the rolling cutter head.
If the mechanically fastened rolling cutter assembly needs to be removed, such as for repair of the bit, the one or more locking cap welds can be ground off and the locking caps removed. The fasteners can be loosened and removed. To ease dismantling of the rolling cutter assembly from the bit body, a pulling tool may engage one or more threaded receptacles in the rolling cutter assembly and used to pull the rolling cutter assembly past the interference fit caused by the upset region of the mechanical fastener.
Other and further embodiments utilizing one or more aspects of the invention described above can be devised without departing from the spirit of invention. Further, the various methods and embodiments of the methods of manufacture and assembly of the system, as well as location specifications, can be included in combination with each other to produce variations of the disclosed methods and embodiments. Discussion of singular elements can include plural elements and vice-versa.
The order of steps can occur in a variety of sequences unless otherwise specifically limited. The various steps described herein can be combined with other steps, interlineated with the stated steps, and/or split into multiple steps. Similarly, elements have been described functionally and can be embodied as separate components or can be combined into components having multiple functions.
The invention has been described in the context of preferred and other embodiments and not every embodiment of the invention has been described. Obvious modifications and alterations to the described embodiments are available to those of ordinary skill in the art. The disclosed and undisclosed embodiments are not intended to limit or restrict the scope or applicability of the invention conceived of by the Applicants, but rather, in conformity with the patent laws, Applicants intend to fully protect all such modifications and improvements that come within the scope or range of equivalent of the following appended claims.
This application claims benefit of and priority to U.S. Provisional Application Ser. No. 62/002,787, filed on May 23, 2014, the entire contents of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
930759 | Hughes | Aug 1909 | A |
1388424 | George | Sep 1921 | A |
1394769 | Sorensen | Oct 1921 | A |
1519641 | Thompson | Dec 1924 | A |
1537550 | Reed | May 1925 | A |
1729062 | Bull | Sep 1929 | A |
1801720 | Bull | Apr 1931 | A |
1816568 | Carlson | Jul 1931 | A |
1821474 | Mercer | Sep 1931 | A |
1874066 | Scott et al. | Aug 1932 | A |
1879127 | Schlumpf | Sep 1932 | A |
1896243 | MacDonald | Feb 1933 | A |
1932487 | Scott | Oct 1933 | A |
1990007 | Sperry | Feb 1935 | A |
2030722 | Scott | Feb 1936 | A |
2117481 | Howard et al. | May 1938 | A |
2119618 | Zublin | Jun 1938 | A |
2184067 | Zublin | Dec 1939 | A |
2198849 | Waxler | Apr 1940 | A |
2204657 | Clyde | Jun 1940 | A |
2216894 | Stancliff | Oct 1940 | A |
2244537 | Kammerer | Jun 1941 | A |
2297157 | McClinton | Sep 1942 | A |
2318370 | Burch | May 1943 | A |
2320136 | Kammerer | May 1943 | A |
2320137 | Kammerer | May 1943 | A |
2358642 | Kammerer | Sep 1944 | A |
2380112 | Kinnear | Jul 1945 | A |
2533259 | Woods et al. | Jun 1946 | A |
2520517 | Taylor | Aug 1950 | A |
2533258 | Morlan et al. | Dec 1950 | A |
2557302 | Maydew | Jun 1951 | A |
RE23416 | Kinnear | Oct 1951 | E |
2575438 | Arthur et al. | Nov 1951 | A |
2628821 | Arthur et al. | Feb 1953 | A |
2661931 | Swart | Dec 1953 | A |
2719026 | Boice | Sep 1955 | A |
2725215 | MacNeir | Nov 1955 | A |
2815932 | Wolfram | Dec 1957 | A |
2994389 | Bus, Sr. | Aug 1961 | A |
3010708 | Hlinsky et al. | Nov 1961 | A |
3039503 | Mainone | Jun 1962 | A |
3050293 | Hlinsky | Aug 1962 | A |
3055443 | Edwards | Sep 1962 | A |
3066749 | Hildebrandt | Dec 1962 | A |
3126066 | Williams, Jr. | Mar 1964 | A |
3126067 | Schumacher, Jr. | Mar 1964 | A |
3174564 | Morlan | Mar 1965 | A |
3239431 | Raymond | Mar 1966 | A |
3250337 | Demo | May 1966 | A |
3269469 | Kelly, Jr. | Aug 1966 | A |
3387673 | Thompson | Jun 1968 | A |
3397751 | Reichmuth | Aug 1968 | A |
3424258 | Nakayama | Jan 1969 | A |
3583501 | Aalund | Jun 1971 | A |
3760894 | Pitifer | Sep 1973 | A |
RE28625 | Cunningham | Nov 1975 | E |
4006788 | Garner | Feb 1977 | A |
4108259 | Dixon et al. | Aug 1978 | A |
4140189 | Garner | Feb 1979 | A |
4190126 | Kabashima | Feb 1980 | A |
4190301 | Lachonius et al. | Feb 1980 | A |
4187922 | Phelps | Dec 1980 | A |
4260203 | Garner | Apr 1981 | A |
4270812 | Thomas | Jun 1981 | A |
4285409 | Allen | Aug 1981 | A |
4293048 | Kloesel, Jr. | Oct 1981 | A |
4314132 | Porter | Feb 1982 | A |
4320808 | Garrett | Mar 1982 | A |
4343371 | Baker, III et al. | Aug 1982 | A |
4359112 | Garner et al. | Nov 1982 | A |
4359114 | Miller et al. | Nov 1982 | A |
4369849 | Parrish | Jan 1983 | A |
4386669 | Evans | Jun 1983 | A |
4408671 | Munson | Oct 1983 | A |
4410284 | Herrick | Oct 1983 | A |
4428687 | Zahradnik | Jan 1984 | A |
4444281 | Schumacher, Jr. et al. | Apr 1984 | A |
4448269 | Ishikawa et al. | May 1984 | A |
4456082 | Harrison | Jun 1984 | A |
4468138 | Nagel | Aug 1984 | A |
4527637 | Bodine | Jul 1985 | A |
4527644 | Allam | Jul 1985 | A |
4572306 | Dorosz | Feb 1986 | A |
4600064 | Scales et al. | Jul 1986 | A |
4627882 | Soderstrom | Dec 1986 | A |
4641718 | Bengtsson | Feb 1987 | A |
4657091 | Higdon | Apr 1987 | A |
4664705 | Horton et al. | May 1987 | A |
4690228 | Voelz et al. | Sep 1987 | A |
4706765 | Lee et al. | Nov 1987 | A |
4726718 | Meskin et al. | Feb 1988 | A |
4727942 | Galle et al. | Mar 1988 | A |
4729440 | Hall | Mar 1988 | A |
4738322 | Hall et al. | Apr 1988 | A |
4756631 | Jones | Jul 1988 | A |
4763736 | Varel | Aug 1988 | A |
4765205 | Higdon | Aug 1988 | A |
4802539 | Hall et al. | Feb 1989 | A |
4819703 | Rice et al. | Apr 1989 | A |
4825964 | Rives | May 1989 | A |
4865137 | Bailey et al. | Sep 1989 | A |
4874047 | Hixon | Oct 1989 | A |
4875532 | Langford, Jr. | Oct 1989 | A |
4880068 | Bronson | Nov 1989 | A |
4892159 | Holster | Jan 1990 | A |
4892420 | Kruger | Jan 1990 | A |
4915181 | Labrosse | Apr 1990 | A |
4932484 | Warren et al. | Jun 1990 | A |
4936398 | Auty et al. | Jun 1990 | A |
4943488 | Sung et al. | Jul 1990 | A |
4953641 | Pessier | Sep 1990 | A |
4976324 | Tibbitts | Dec 1990 | A |
4981184 | Knowlton et al. | Jan 1991 | A |
4984643 | Isbell et al. | Jan 1991 | A |
4991671 | Pearce et al. | Feb 1991 | A |
5016718 | Tandberg | May 1991 | A |
5027912 | Juergens | Jul 1991 | A |
5027914 | Wilson | Jul 1991 | A |
5028177 | Meskin et al. | Jul 1991 | A |
5030276 | Sung et al. | Jul 1991 | A |
5037212 | Justman et al. | Aug 1991 | A |
5049164 | Horton et al. | Sep 1991 | A |
5092687 | Hall | Mar 1992 | A |
5116568 | Sung et al. | May 1992 | A |
5137097 | Fernandez | Aug 1992 | A |
5145017 | Holster et al. | Sep 1992 | A |
5176212 | Tandberg | Jan 1993 | A |
5199516 | Fernandez | Apr 1993 | A |
5224560 | Fernandez | Jul 1993 | A |
5238074 | Tibbitts et al. | Aug 1993 | A |
5253939 | Hall | Oct 1993 | A |
5287936 | Grimes et al. | Feb 1994 | A |
5289889 | Gearhart et al. | Mar 1994 | A |
5337843 | Torgrimsen et al. | Aug 1994 | A |
5342129 | Dennis et al. | Aug 1994 | A |
5346026 | Pessier et al. | Sep 1994 | A |
5351770 | Cawthorne et al. | Oct 1994 | A |
5361859 | Tibbitts | Nov 1994 | A |
5429200 | Blackman et al. | Jul 1995 | A |
5439067 | Huffstutler | Aug 1995 | A |
5439068 | Huffstutler et al. | Aug 1995 | A |
5452771 | Blackman et al. | Sep 1995 | A |
5467836 | Grimes et al. | Nov 1995 | A |
5472057 | Winfree | Dec 1995 | A |
5472271 | Bowers et al. | Dec 1995 | A |
5494123 | Nguyen | Feb 1996 | A |
5513715 | Dysart | May 1996 | A |
5518077 | Blackman et al. | May 1996 | A |
5531281 | Murdock | Jul 1996 | A |
5547033 | Campos, Jr. | Aug 1996 | A |
5553681 | Huffstutler et al. | Sep 1996 | A |
5558170 | Thigpen et al. | Sep 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5570750 | Williams | Nov 1996 | A |
5593231 | Ippolito | Jan 1997 | A |
5595255 | Huffstutler | Jan 1997 | A |
5606895 | Huffstutler | Mar 1997 | A |
5624002 | Huffstutler | Apr 1997 | A |
5641029 | Beaton et al. | Jun 1997 | A |
5644956 | Blackman et al. | Jul 1997 | A |
5655612 | Grimes et al. | Aug 1997 | A |
D384084 | Huffstutler et al. | Sep 1997 | S |
5695018 | Pessier et al. | Dec 1997 | A |
5695019 | Shamburger, Jr. | Dec 1997 | A |
5755297 | Young et al. | May 1998 | A |
5839526 | Cisneros et al. | Nov 1998 | A |
5862871 | Curlett | Jan 1999 | A |
5868502 | Cariveau et al. | Feb 1999 | A |
5873422 | Hansen et al. | Feb 1999 | A |
5941322 | Stephenson et al. | Aug 1999 | A |
5944125 | Byrd | Aug 1999 | A |
5967246 | Caraway et al. | Oct 1999 | A |
5979576 | Hansen et al. | Nov 1999 | A |
5988303 | Arfele | Nov 1999 | A |
5992542 | Rives | Nov 1999 | A |
5996713 | Pessier et al. | Dec 1999 | A |
6045029 | Scott | Apr 2000 | A |
6068070 | Scott | May 2000 | A |
6092613 | Caraway et al. | Jul 2000 | A |
6095265 | Alsup | Aug 2000 | A |
6109375 | Tso | Aug 2000 | A |
6116357 | Wagoner et al. | Sep 2000 | A |
6170582 | Singh et al. | Jan 2001 | B1 |
6173797 | Dykstra et al. | Jan 2001 | B1 |
6190050 | Campbell | Feb 2001 | B1 |
6209185 | Scott | Apr 2001 | B1 |
6220374 | Crawford | Apr 2001 | B1 |
6241034 | Steinke et al. | Jun 2001 | B1 |
6241036 | Lovato et al. | Jun 2001 | B1 |
6250407 | Karlsson | Jun 2001 | B1 |
6260635 | Crawford | Jul 2001 | B1 |
6279671 | Panigrahi et al. | Aug 2001 | B1 |
6283233 | Lamine et al. | Sep 2001 | B1 |
6296069 | Lamine et al. | Oct 2001 | B1 |
RE37450 | Deken et al. | Nov 2001 | E |
6345673 | Siracki | Feb 2002 | B1 |
6360831 | Akesson et al. | Mar 2002 | B1 |
6367568 | Steinke et al. | Apr 2002 | B2 |
6386302 | Beaton | May 2002 | B1 |
6401844 | Doster et al. | Jun 2002 | B1 |
6405811 | Borchardt | Jun 2002 | B1 |
6408958 | Isbell et al. | Jun 2002 | B1 |
6415687 | Saxman | Jul 2002 | B2 |
6427791 | Glowka | Aug 2002 | B1 |
6427798 | Imashige | Aug 2002 | B1 |
6439326 | Huang et al. | Aug 2002 | B1 |
6446739 | Richman et al. | Sep 2002 | B1 |
6450270 | Saxton | Sep 2002 | B1 |
6460635 | Kalsi et al. | Oct 2002 | B1 |
6474424 | Saxman | Nov 2002 | B1 |
6510906 | Richert et al. | Jan 2003 | B1 |
6510909 | Portwood et al. | Jan 2003 | B2 |
6527066 | Rives | Mar 2003 | B1 |
6533051 | Singh et al. | Mar 2003 | B1 |
6544308 | Griffin et al. | Apr 2003 | B2 |
6561291 | Xiang | May 2003 | B2 |
6562462 | Griffin et al. | May 2003 | B2 |
6568490 | Tso et al. | May 2003 | B1 |
6581700 | Curlett et al. | Jun 2003 | B2 |
6585064 | Griffin et al. | Jul 2003 | B2 |
6589640 | Griffin et al. | Jul 2003 | B2 |
6592985 | Griffin et al. | Jul 2003 | B2 |
6601661 | Baker et al. | Aug 2003 | B2 |
6601662 | Matthias et al. | Aug 2003 | B2 |
6637528 | Nishiyama et al. | Oct 2003 | B2 |
6684966 | Lin et al. | Feb 2004 | B2 |
6684967 | Mensa-Wilmot et al. | Feb 2004 | B2 |
6729418 | Slaughter, Jr. et al. | May 2004 | B2 |
6739214 | Griffin et al. | May 2004 | B2 |
6742607 | Beaton | Jun 2004 | B2 |
6745858 | Estes | Jun 2004 | B1 |
6749033 | Griffin et al. | Jun 2004 | B2 |
6797326 | Griffin et al. | Sep 2004 | B2 |
6823951 | Yong et al. | Nov 2004 | B2 |
6843333 | Richert et al. | Jan 2005 | B2 |
6861098 | Griffin et al. | Mar 2005 | B2 |
6861137 | Griffin et al. | Mar 2005 | B2 |
6878447 | Griffin et al. | Apr 2005 | B2 |
6883623 | McCormick et al. | Apr 2005 | B2 |
6902014 | Estes | Jun 2005 | B1 |
6922925 | Watanabe et al. | Aug 2005 | B2 |
6986395 | Chen | Jan 2006 | B2 |
6988569 | Lockstedt et al. | Jan 2006 | B2 |
7096978 | Dykstra et al. | Aug 2006 | B2 |
7111694 | Beaton | Sep 2006 | B2 |
7128173 | Lin | Oct 2006 | B2 |
7137460 | Slaughter, Jr. et al. | Nov 2006 | B2 |
7152702 | Bhome et al. | Dec 2006 | B1 |
7197806 | Boudreaux et al. | Apr 2007 | B2 |
7198119 | Hall et al. | Apr 2007 | B1 |
7234549 | McDonough et al. | Jun 2007 | B2 |
7234550 | Azar et al. | Jun 2007 | B2 |
7270196 | Hall | Sep 2007 | B2 |
7281592 | Runia et al. | Oct 2007 | B2 |
7292967 | McDonough et al. | Nov 2007 | B2 |
7311159 | Lin et al. | Dec 2007 | B2 |
7320375 | Singh | Jan 2008 | B2 |
7341119 | Singh | Mar 2008 | B2 |
7350568 | Mandal et al. | Apr 2008 | B2 |
7350601 | Belnap et al. | Apr 2008 | B2 |
7360612 | Chen et al. | Apr 2008 | B2 |
7377341 | Middlemiss et al. | May 2008 | B2 |
7387177 | Zahradnik et al. | Jun 2008 | B2 |
7392862 | Zahradnik et al. | Jul 2008 | B2 |
7398837 | Hall et al. | Jul 2008 | B2 |
7416036 | Forstner et al. | Aug 2008 | B2 |
7435478 | Keshavan | Oct 2008 | B2 |
7458430 | Fyfe | Dec 2008 | B2 |
7462003 | Middlemiss | Dec 2008 | B2 |
7473287 | Belnap et al. | Jan 2009 | B2 |
7493973 | Keshavan et al. | Feb 2009 | B2 |
7517589 | Eyre | Apr 2009 | B2 |
7533740 | Zhang et al. | May 2009 | B2 |
7559695 | Sexton et al. | Jul 2009 | B2 |
7568534 | Griffin et al. | Aug 2009 | B2 |
7621346 | Trinh et al. | Nov 2009 | B1 |
7621348 | Hoffmaster et al. | Nov 2009 | B2 |
7647991 | Felderhoff | Jan 2010 | B2 |
7703556 | Smith et al. | Apr 2010 | B2 |
7703557 | Durairajan et al. | Apr 2010 | B2 |
7819208 | Pessier et al. | Oct 2010 | B2 |
7836975 | Chen et al. | Nov 2010 | B2 |
7845435 | Zahradnik et al. | Dec 2010 | B2 |
7845437 | Bielawa et al. | Dec 2010 | B2 |
7847437 | Chakrabarti et al. | Dec 2010 | B2 |
7992658 | Buske | Aug 2011 | B2 |
8028769 | Pessier et al. | Oct 2011 | B2 |
8056651 | Turner | Nov 2011 | B2 |
8177000 | Bhome et al. | May 2012 | B2 |
8201646 | Vezirian | Jun 2012 | B2 |
8302709 | Bhome et al. | Nov 2012 | B2 |
8356398 | McCormick et al. | Jan 2013 | B2 |
8950514 | Buske | Feb 2015 | B2 |
20010000885 | Beuershausen et al. | May 2001 | A1 |
20010030066 | Clydesdale et al. | Oct 2001 | A1 |
20020092684 | Singh et al. | Jul 2002 | A1 |
20020100618 | Watson et al. | Aug 2002 | A1 |
20020108785 | Slaughter, Jr. et al. | Aug 2002 | A1 |
20040031625 | Lin et al. | Feb 2004 | A1 |
20040099448 | Fielder et al. | May 2004 | A1 |
20040238224 | Runia | Dec 2004 | A1 |
20050087370 | Ledgerwood, III et al. | Apr 2005 | A1 |
20050103533 | Sherwood, Jr. et al. | May 2005 | A1 |
20050167161 | Aaron | Aug 2005 | A1 |
20050178587 | Witman, IV et al. | Aug 2005 | A1 |
20050183892 | Oldham et al. | Aug 2005 | A1 |
20050252691 | Bramlett et al. | Nov 2005 | A1 |
20050263328 | Middlemiss | Dec 2005 | A1 |
20050273301 | Huang | Dec 2005 | A1 |
20060027401 | Nguyen | Feb 2006 | A1 |
20060032674 | Chen et al. | Feb 2006 | A1 |
20060032677 | Azar et al. | Feb 2006 | A1 |
20060162969 | Belnap et al. | Jul 2006 | A1 |
20060196699 | Estes et al. | Sep 2006 | A1 |
20060254830 | Radtke | Nov 2006 | A1 |
20060266558 | Middlemiss et al. | Nov 2006 | A1 |
20060266559 | Keeshavan et al. | Nov 2006 | A1 |
20060283640 | Estes et al. | Dec 2006 | A1 |
20070029114 | Middlemiss | Feb 2007 | A1 |
20070034414 | Singh et al. | Feb 2007 | A1 |
20070046119 | Cooley | Mar 2007 | A1 |
20070062736 | Cariveau et al. | Mar 2007 | A1 |
20070079994 | Middlemiss | Apr 2007 | A1 |
20070084640 | Singh | Apr 2007 | A1 |
20070131457 | McDonough et al. | Jun 2007 | A1 |
20070187155 | Middlemiss | Aug 2007 | A1 |
20070221417 | Hall et al. | Sep 2007 | A1 |
20070227781 | Cepeda et al. | Oct 2007 | A1 |
20070272445 | Cariveau | Nov 2007 | A1 |
20080028891 | Calnan et al. | Feb 2008 | A1 |
20080029308 | Chen | Feb 2008 | A1 |
20080066970 | Zahradnik et al. | Mar 2008 | A1 |
20080087471 | Chen et al. | Apr 2008 | A1 |
20080093128 | Zahradnik et al. | Apr 2008 | A1 |
20080156543 | McDonough et al. | Jul 2008 | A1 |
20080164069 | McDonough et al. | Jul 2008 | A1 |
20080264695 | Zahradnik et al. | Oct 2008 | A1 |
20080296068 | Zahradnik et al. | Dec 2008 | A1 |
20080308320 | Kolachalam | Dec 2008 | A1 |
20090044984 | Massey et al. | Feb 2009 | A1 |
20090114454 | Belnap et al. | May 2009 | A1 |
20090120693 | McClain et al. | May 2009 | A1 |
20090126998 | Zahradnik et al. | May 2009 | A1 |
20090159338 | Buske | Jun 2009 | A1 |
20090159341 | Pessier et al. | Jun 2009 | A1 |
20090166093 | Pessier et al. | Jul 2009 | A1 |
20090178855 | Zhang et al. | Jul 2009 | A1 |
20090178856 | Singh et al. | Jul 2009 | A1 |
20090183925 | Zhang et al. | Jul 2009 | A1 |
20090236147 | Koltermann et al. | Sep 2009 | A1 |
20090272582 | McCormick et al. | Nov 2009 | A1 |
20090283332 | Dick et al. | Nov 2009 | A1 |
20100012392 | Zahradnik et al. | Jan 2010 | A1 |
20100018777 | Pessier et al. | Jan 2010 | A1 |
20100043412 | Dickinson et al. | Feb 2010 | A1 |
20100155146 | Nguyen et al. | Jun 2010 | A1 |
20100224417 | Zahradnik et al. | Sep 2010 | A1 |
20100252326 | Bhome et al. | Oct 2010 | A1 |
20100276205 | Oxford et al. | Nov 2010 | A1 |
20100288561 | Zahradnik et al. | Nov 2010 | A1 |
20100319993 | Bhome et al. | Dec 2010 | A1 |
20100320001 | Kulkarni | Dec 2010 | A1 |
20110024197 | Centala et al. | Feb 2011 | A1 |
20110079440 | Buske et al. | Apr 2011 | A1 |
20110079441 | Buske et al. | Apr 2011 | A1 |
20110079442 | Buske et al. | Apr 2011 | A1 |
20110079443 | Buske et al. | Apr 2011 | A1 |
20110085877 | Osborne, Jr. | Apr 2011 | A1 |
20110162893 | Zhang | Jul 2011 | A1 |
20120111638 | Nguyen | May 2012 | A1 |
20120205160 | Ricks | Aug 2012 | A1 |
20150152687 | Nguyen et al. | Jun 2015 | A1 |
20150197992 | Ricks et al. | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
1301784 | Aug 1969 | DE |
0225101 | Jun 1987 | EP |
0157278 | Nov 1989 | EP |
0391683 | Jan 1996 | EP |
0874128 | Oct 1998 | EP |
2089187 | Aug 2009 | EP |
2183694 | Jun 1987 | GB |
2194571 | Mar 1988 | GB |
2364340 | Jan 2002 | GB |
2403313 | Dec 2004 | GB |
2001-159289 | Jun 2001 | JP |
2001159289 | Jun 2001 | JP |
1331988 | Aug 1987 | RU |
8502223 | May 1985 | WO |
2008124572 | Oct 2008 | WO |
2009135119 | Nov 2009 | WO |
2010127382 | Nov 2010 | WO |
2010135605 | Nov 2010 | WO |
2015102891 | Jul 2015 | WO |
Entry |
---|
Wittman-Regis, A., International Preliminary Report on Patentability, The International Bureau of WIPO, dated Dec. 8, 2016. |
Thomas, S., International Search Report for International Patent Application No. PCT/US2015/014011, USPTO, dated Apr. 24, 2015. |
Thomas, S., Written Opinion for International Patent Application No. PCT/US2015/014011, USPTO, dated Apr. 24, 2015. |
Dantinne, P, International Search Report for International Patent Application No. PCT/US2015/032230, European Patent Office, dated Nov. 16, 2015. |
Dantinne, P, Written Opinion for International Patent Application No. PCT/US2015/032230, European Patent Office, dated Nov. 16, 2015. |
Baharlou, International Preliminary Report of Patentability for International Patent Application No. PCT/US2009/050672, The International Bureau of WIPO, dated Jan. 25, 2011. |
Becamel, International Preliminary Report on Patentability for the International Patent Application No. PCT/US2010/039100, The International Bureau of WIPO, Switzerland, dated Jan. 5, 2012. |
Beijer, International Preliminary Report on Patentability for International Patent Application No. PCT/US2009/042514 The International Bureau of WIPO, dated Nov. 2, 2010. |
Buske, et al., “Performance Paradigm Shift: Drilling Vertical and Directional Sections Through Abrasive Formations with Roller Cone Bits”, Society of Petroleum Engineers—SPE 114975 CIPC/SPE Gas Technology Symposium 2008 Joint Conference Canada, dated Jun. 16-19, 2008. |
Choi, International Search Report for International Patent Application No. PCT/US2010/0039100, Korean Intellectual Property Office, dated Jan. 25, 2011. |
Choi, Written Opinion for International Patent Application No. PCT/US2010/039100, Korean Intellectual Property Office, dated Jan. 25, 2011. |
Dr. Wells, et al., “Bit Balling Mitigation in PDC Bit Design”, International Association of Drilling Contractors/ Society of Petroleum Engineers—IADC/SPE 114673 IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition Indonesia, dated Aug. 25-27, 2008. |
Ersoy, et al., “Wear characteristics of PDC pin and hybrid core bits in rock drilling”, Wear 188 Elsevier Science S.A., pp. 150-165, dated Mar. 1995. |
George, et al., “Significant Cost Savings Achieved Through Out the Use of PDC Bits in Compressed Air/Foam Applications”, Society of Petroleum Engineers—SPE 116118 2008 SPE Annual Technical Conference and Exhibition Denver, Colorado, dated Sep. 21-24, 2008. |
Georgescu, Written Opinion for International Patent Application No. PCT/US2010/051020, European Patent Office dated Jun. 1, 2011. |
Georgescu, International Search Report for International Patent Application No. PCT/US2010/050631, European Patent Office dated Jun. 10, 2011. |
Georgescu, Written Opinion for International Patent Application No. PCT/US2010/050631, European Patent Office dated Jun. 10, 2011. |
Georgescu, International Search Report for International Patent Application No. PCT/US2011/042437, European Patent Office dated Nov. 9, 2011. |
Georgescu, Written Opinion for International Patent Application No. PCT/US2011/042437, European Patent Office dated Nov. 9, 2011. |
Georgescu, International Search Report for International Patent Application No. PCT/US2010/051020, European Patent Office, dated Jun. 1, 2011. |
Georgescu, International Search Report for International Patent Application No. PCT/US2010/051019, European Patent Office, dated Jun. 6, 2011. |
Georgescu, Written Opinion for International Patent Application No. PCT/US2010/051019, European Patent Office, dated Jun. 6, 2011. |
Georgescu, International Search Report for International Patent Application No. PCT/US2010/051017, European Patent Office, dated Jun. 8, 2011. |
Georgescu, Written Opinion for International Patent Application No. PCT/US2010/051017, European Patent Office, dated Jun. 8, 2011. |
Georgescu, International Search Report for International Patent Application No. PCT/US2010/051014, European Patent Office dated Jun. 9, 2011. |
Georgescu, Written Opinion for International Patent Application No. PCT/US2010/051014, European Patent Office, dated Jun. 9, 2011. |
Kang, International Search Report for International Patent Application No. PCT/US2010/033513, Korean Intellectual Property Office, dated Jan. 10, 2011. |
Kang, Written Opinion for International Patent Application No. PCT/US2010/033513, Korean Intellectual Property Office, dated Jan. 10, 2011. |
Kang, International Search Report for International Patent Application No. PCT/US2010/032511, Korean Intellectual Property Office, dated Jan. 17, 2011. |
Kang, Written Opinion for International Patent Application No. PCT/US2010/032511, Korean Intellectual Property Office, dated Jan. 17, 2011. |
Kim, International Search Report for International Patent Application No. PCT/US2009/067969, Korean Intellectual Property Office, dated May 25, 2010. |
Kim, Written Opinion for International Patent Application No. PCT/US2009/067969, Korean Intellectual Property Office, dated May 25, 2010. |
Lee, International Search Report for International Patent Application No. PCT/US2009/042514, Korean Intellectual Property Office dated Nov. 27, 2009. |
Lee, Written Opinion for International Patent Application No. PCT/US2009/042514, Korean Intellectual Property Office dated Nov. 27, 2009. |
Williams, et al., “An Analysis of the Performance of PDC Hybrid Drill Bits”, SPE/IADC 16117, SPE/IADC Drilling Conference, pp. 585-594, dated Mar. 1987. |
Lee, International Search Report for International Patent Application No. PCT/US2009/050672, Korean Intellectual Property Office dated Mar. 3, 2010. |
Warren, et al., “PDC Bits: What's Needed to Meet Tomorrow's Challenge”, SPE 27978, University of Tulsa Centennial Petroleum Engineering Symposium, pp. 207-214, dated Aug. 1994. |
Lee, Written Opinion for International Patent Application No. PCT/US2009/050672, Korean Intellectual Property Office dated Mar. 3, 2010. |
Tomlinson, et al., “Rock Drilling—Syndax3 Pins—New Concepts in PCD Drilling”, Industrial Diamond Review, pp. 109-114, dated Mar. 1992. |
Mills Machine Company, “Rotary Hole Openers—Section 8”, Retrieved from the internet on May 7, 2009 using <URL: http://www.millsmachine.com/pages/home_page/mills_catalog/cat_holeopen/cat_holeopen.pdf>. |
Ott, International Search Report for International Patent Application No. PCT/US2010/049159, European Patent Office, dated Apr. 21, 2011. |
Ott, Written Opinion for International Patent Application No. PCT/US2010/049159, European Patent Office, dated Apr. 21, 2011. |
Smith Services, “Hole Opener—Model 6980 Hole Opener”, Retrieved from the internet on May 7, 2008 using <URL: http://www.siismithservices.com/b_products/product_page.asp?ID=589>. |
Pessier, et al., “Hybrid Bits Offer Distinct Advantages in Selected Roller Cone and PDC Bit Applications”, IADC/SPE Paper No. 128741, dated Feb. 2-4, 2010, pp. 1-9. |
Schneiderbauer, International Search Report for International Patent Application No. PCT/US2012/024134, European Patent Office, dated Mar. 7, 2013. |
Schneiderbauer, International Written Opinion for International Patent Application No. PCT/US2012/024134, European Patent Office, dated Mar. 7, 2013. |
Schouten, International Search Report for International Patent Application No. PCT/US2008/083532 European Patent Office, dated Feb. 25, 2009. |
Schouten, Written Opinion for International Patent Application No. PCT/US2008/083532, European Patent Office dated Feb. 25, 2009. |
Sheppard, et al., “Rock Drilling—Hybrid Bit Success for Syndax3 Pins”, Industrial Diamond Review, pp. 309-311, dated Jun. 1993. |
Number | Date | Country | |
---|---|---|---|
20150337603 A1 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
62002787 | May 2014 | US |