Bulk acoustic wave (BAW) resonators are used in a variety of electronic devices, for example, to create high performance filters or as resonant elements associated with an integrated circuit (IC) to provide specific electronic functions, such as voltage controlled oscillators or low noise amplifiers. RAW resonators exhibit high performance including relatively low frequency drift with temperature and good power handling, have a small footprint and low profile, and their technology can be made compatible with standard IC technology. As a result, BAW resonators are increasingly used in radio frequency (RF) systems, such as mobile electronic devices and modern wireless communications systems.
A BAW resonator typically includes a layer of piezoelectric material, such as aluminum nitride, sandwiched between upper and lower metal electrodes. When an electric field is applied across the upper and lower electrodes, the structure is mechanically deformed due to the inverse piezoelectric effect and an acoustic wave is launched into the structure. The wave propagates parallel to the applied electric field and is reflected at the electrode/air interfaces.
Referring to
According to a representative embodiment, acoustic wave resonator comprises: a substrate; a first electrode supported by the substrate; a piezoelectric layer formed on the first electrode; a second electrode formed on the piezoelectric layer; a pair of low and high impedance layers formed in contact with one of the first and second electrodes; and a passivation layer formed on the second electrode if the pair of low and high impedance layers is in contact with the first electrode, or on the pair of low and high impedance layers if the pair of low and high impedance layers is in contact with the second electrode.
According to another representative embodiment, an acoustic wave resonator comprises: a substrate; a first electrode supported by the substrate; a piezoelectric layer formed on the first electrode; a second electrode formed on the piezoelectric layer; and a passivation layer formed on the second electrode, wherein at least one of the first and second electrodes comprises a pair of low and high impedance layers.
Still other aspects, embodiments, and advantages of these exemplary aspects and embodiments, are discussed in detail below. Moreover, it is to be understood that both the foregoing information and the following detailed description are merely illustrative examples of various aspects and embodiments, and are intended to provide an overview or framework for understanding the nature and character of the claimed aspects and embodiments. Any embodiment disclosed herein may be combined with any other embodiment in any manner consistent with at least one of the objects, aims, and needs disclosed herein, and references to “an embodiment,” “some embodiments,” “an alternate embodiment,” “various embodiments,” “a representative embodiment” or the like are not necessarily mutually exclusive and are intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment. The appearances of such terms herein are not necessarily all referring to the same embodiment.
Various aspects of at least one embodiment are discussed below with reference to the accompanying figures, which are not intended to be drawn to scale. The figures are included to provide illustration and a further understanding of the various aspects and embodiments, and are incorporated in and constitute a part of this specification, but are not intended as a definition of the limits of the invention. Where technical features in the figures, detailed description or any claim are followed by references signs, the reference signs have been included for the sole purpose of increasing the intelligibility of the figures, detailed description, and/or claims. Accordingly, neither the reference signs nor their absence are intended to have any limiting effect on the scope of any claim elements. In the figures, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every figure. In the figures:
The terms ‘a’ or ‘an’, as used herein are defined as one or more than one.
The term ‘plurality’ as used herein is defined as two or more than two.
As used in the specification and appended claims, and in addition to their ordinary meanings, the terms ‘substantial’ or ‘substantially’ mean to with acceptable limits or degree. For example, ‘substantially cancelled’ means that one skilled in the art would consider the cancellation to be acceptable.
As used in the specification and the appended claims and in addition to its ordinary meaning, the term ‘approximately’ means to within an acceptable limit or amount to one having ordinary skill in the art. For example, ‘approximately the same’ means that one of ordinary skill in the art would consider the items being compared to be the same.
In the following detailed description, for purposes of explanation and not limitation, specific details are set forth in order to provide a thorough understanding of illustrative embodiments according to the present teachings. However, it will be apparent to one having ordinary skill in the art having had the benefit of the present disclosure that other embodiments according to the present teachings that depart from the specific details disclosed herein remain within the scope of the appended claims. Moreover, descriptions of well-known apparati and methods may be omitted so as to not obscure the description of the illustrative embodiments. Such methods and apparati are clearly within the scope of the present teachings.
Representative embodiments are directed to a hybrid BAW resonator structure that provides advantages over known BAW resonators. According to a representative embodiment, the hybrid BAW resonator comprises an FBAR coupled to an acoustic mirror pair, as discussed in more detail below. The addition of the acoustic mirror pair may significantly alter the dispersion of the resonator and allow reduction in, or elimination of, the losses below the resonant frequency. In addition, the hybrid BAW structure may have significantly better frequency trimming tolerance than known FBAR structures, allowing manufacture of a high frequency, high coupling filter, as discussed further below. Certain aspects of the hybrid BAW resonators of representative embodiments may be fabricated according to the teachings of commonly owned U.S. Pat. Nos. 5,587,620; 5,873,153; 6,384,697; 6,507,983; and 7,275,292 to Ruby, et at; and U.S. Pat. No. 6,828,713 to Bradley, et. al. The disclosures of these patents are specifically incorporated herein by reference. It is emphasized that the methods and materials described in these patents are representative and other methods of fabrication and materials within the purview of one of ordinary skill in the art are contemplated. Moreover, when connected in a selected topology, a plurality of acoustic resonators 100 can function as an electrical filter. For example, the acoustic resonators 100 may be arranged in a ladder-filter arrangement, such as described in U.S. Pat. No. 5,910,756 to Ella, and U.S. Pat. No. 6,262,637 to Bradley, et al., the disclosures of which are specifically incorporated herein by reference. The electrical filters may be used in a number of applications, such as in duplexers.
It is to be appreciated that embodiments of the methods and apparatus discussed herein are not limited application to the details of construction and the arrangement of components set forth in the following description or illustrated in the accompanying figures. The methods and apparatus are capable of implementation in other embodiments and of being practiced or of being carried out in various ways. Examples of specific implementations are provided herein for illustrative purposes only and are not intended to be limiting. In particular, acts, elements and features discussed in connection with any one or more embodiments are not intended to be excluded from a similar role in any other embodiments.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. Any references to embodiments or elements or acts of the systems and methods herein referred to in the singular may also embrace embodiments including a plurality of these elements, and any references in plural to any embodiment or element or act herein may also embrace embodiments including only a single element. References in the singular or plural form are not intended to limit the presently disclosed systems or methods, their components, acts, or elements. The use herein of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. References to “or” may be construed as inclusive so that any terms described using “or” may indicate any of a single, more than one, and all of the described terms. Any references to front and back, left and right, top and bottom, and upper and lower are intended for convenience of description, not to limit the present systems and methods or their components to any one positional or spatial orientation.
Referring to
In one example, the piezoelectric layer 310 comprises Aluminum nitride (AIN). In other examples, other piezoelectric materials such as, for example, Zinc oxide (ZnO) or pzT may be used; however, Aluminum nitride may be presently preferred in some embodiments due to its excellent chemical, electrical and mechanical properties, particularly if the resonator is to be integrated with other integrated circuits on the same wafer, The first and second electrodes 320, 330 comprise metal, for example, a high density metal such as tungsten or molybdenum. In one example, the low acoustic impedance mirror layer 350 comprises silicon dioxide. In one example, the high acoustic impedance layer 360 comprises tungsten. Those skilled in the art will appreciate, however, given the benefit of this disclosure, that other suitable materials may be used for any of the layers discussed herein.
Referring to
As discussed above, when an electric field is applied across the two electrodes of the BAW resonator, the electric field causes the layer of piezoelectric material to vibrate. As a result, the piezoelectric material can generate a number of allowed modes of acoustic wave propagation, which include the desired longitudinal mode. However, unwanted excitation of energy in modes of wave propagation that have high energy loss, such as lateral modes, can cause a significant loss of energy in a BAW resonator and, thereby, undesirably lower the BAW resonator's quality factor (Q) at some frequencies. The Q a resonator can be defined as ratio of the resonance frequency v0 and the full width at half-maximum (FWHM) bandwidth δv of the resonance:
Accordingly, in a representative embodiment, a mode control technique may be applied to reduce the amount of energy that is excited in unwanted modes of propagation and thereby reduce loss.
Referring to
Still referring to
There are several methods by which the disrupted texture region 525 may be formed. In one example, prior to formation of the piezoelectric layer 510, the surface area that will underlie disrupted texture region 525 can be sufficiently disturbed so as to ensure that the texture of the piezoelectric material will be disrupted when piezoelectric layer 510 is formed. For example, a thin layer of material known to disrupt texture, such as silicon oxide, can be deposited over a thin seed layer (not shown in
In the example illustrated in
As a result of the mode control structure in the controlled thickness region 535, the electromechanical coupling can be controlled and, thereby, significantly reduced in the controlled thickness region 535. Thus, electromechanical coupling into unwanted modes, such as lateral modes, can be significantly reduced in the controlled thickness region 535. Coupling into the desired longitudinal mode may also be reduced in the controlled thickness region 535. However, the overall loss of coupling into the longitudinal mode in BAW resonator 500 as a result of the loss of coupling in controlled thickness region 535 is significantly less than the overall reduction in energy loss achieved in BAW resonator 500 by reducing electromechanical coupling into unwanted modes in the controlled thickness region 535. Also, the width 545, thickness 550, the composition of material segment 540, and width 555 of the disrupted texture region 525 of the piezoelectric layer 510 can be appropriately selected to optimize reduction of coupling into unwanted modes, such as lateral modes.
Thus, by utilizing the material segment 540 and optionally the disrupted texture region 525 of the piezoelectric layer 510 to reduce electromechanical coupling in the controlled thickness region 535, embodiments of the BAW resonator 500 may achieve a significant reduction of electromechanical coupling into unwanted modes, thereby significantly reducing overall energy loss in BAW resonator 500. By reducing overall energy loss, embodiments of the BAW resonator 500 may advantageously achieve an increased Q. Further examples of loss control structures and techniques are discussed in U.S. application Ser. No. 12/150,244entitled “BULK ACOUSTIC WAVE RESONATOR WITH REDUCED ENERGY LOSS,” filed on Apr. 24, 2008, and in U.S. application Ser. No. 12/150,240 entitled “BULK ACOUSTIC WAVE RESONATOR WITH CONTROLLED THICKNESS REGION HAVING CONTROLLED ELECTROMECHANICAL COUPLING,” filed on Apr. 24, 2008, the disclosures of which are specifically incorporated herein by reference in their entireties.
Referring to
Hybrid BAW resonator structures according to aspects and embodiments may also allow practical, cost-effective manufacture of a high-frequency resonator, for example, having a resonant frequency of several gigahertz. As discussed above, BAW resonators may comprise a multi-layer film stack, the thickness of which may determine the resonant frequency. During BAW resonator manufacture, there can be a wide distribution of resulting resonant frequencies after initial wafer processing due to non-uniformity of film deposition, which can adversely affect device yield. As a result, a wafer trimming process typically may be used in which a determined amount of material is removed from the top layer of the multi-film stack to achieve a target resonant frequency. The top layer is initially deposited more thickly than desired, resulting in a resonant frequency below the desired resonant frequency, then a determined thickness of the layer is removed to tune the frequency higher to the desired value. One example of a wafer trimming method, also referred to as frequency trimming, is discussed in U.S. Patent Application Publication 20100068831 entitled “METHOD FOR WAFER TRIMMING FOR INCREASED DEVICE YIELD” and filed on Sep. 12, 2008, the disclosure of which is specifically incorporated herein by reference in its entirety.
The thickness of the material removed from the top layer (e.g., top electrode or film layer disposed over the top electrode) of the resonator during the wafer trimming process determines the degree of frequency tuning. The thickness of material that must be removed to tune the resonant frequency by a certain amount depends, at least in part, on the desired resonant frequency. For example, for a resonator with a desired center resonant frequency of 5 Ghz (also referred to as 5 GHz resonator), having a known FBAR or SMR structure, as shown in
According to a representative embodiment, a hybrid BAW resonator includes a top mirror pair such that the frequency trimming process may be applied to a mirror layer, rather than the top electrode or a thin passivation layer in contact with the top electrode, as discussed further below.
Providing the mirror pair 740 as the top layers of the resonator structure may offer several advantages, including significantly easing the frequency trimming process. In particular, providing a top mirror and trimming the mirror rather than the upper electrode (e.g., first electrode 320) significantly reduces the sensitivity of the resonator to frequency trimming, making it easier to accurately trim the device to a desired resonant frequency. This reduced sensitivity due to the presence of the top mirror results because, due to the acoustic reflections performed by the mirror pair, there is less acoustic energy at the top of the structure where frequency trimming occurs and therefore removal of the material has a reduced impact on the frequency. In addition, as the desired resonant frequency of the resonator increases, the film layers (e.g., the upper and lower electrodes and piezoelectric layer, as well as an optional upper film over the upper electrode) are made thinner to achieve the high resonant frequency. As a result, trimming these thin films becomes extremely difficult because the amount of material to be removed to achieve a desired change in frequency is very small. For example, as discussed above, at 5 GHz, the tuning sensitivity of a resonator without atop mirror is about 2.8 Å/MHz. By contrast, if the trimming is performed on the top mirror, e.g., on high acoustic impedance minor layer 760, the frequency sensitivity of the resonator to is substantially reduced. For example, in one example of a hybrid BAW resonator including the minor pair 740, as illustrated in
In a representative embodiment, a BAW resonator structure may include both a top and bottom mirror. For example, a BAW resonator structure may include a known SMR structure, such as illustrated in
Referring to
Many of the details of the hybrid BAW resonator 701 are common to the hybrid BAW acoustic resonator 700 described in connection with the representative embodiments of
As described above in connection with the hybrid BAW acoustic resonator 700, providing the mirror pair 740 as the top layers of the resonator structure may offer several advantages, including significantly easing the frequency trimming process. Furthermore, in accordance with a representative embodiment, trimming layer 765 of comparatively low acoustic impedance material may be provided over the mirror pair 740, and specifically over high acoustic impedance mirror layer 760. Illustratively, the trimming layer 765 of material disposed over the mirror pair 740 may be AIN. This trimming layer 765 of comparatively low acoustic impedance material is provided to foster trimming the hybrid BAW acoustic resonator 700 as described herein.
Referring to
As discussed above, in a representative embodiment the hybrid BAW resonator includes a mode control structure to control and/or reduce loss. Thus, the method may optionally include a step 840 of forming the mode control structure. Referring to
Alternatively, as also discussed above, the material segment 540 may be formed between the piezoelectric layer 510 and the upper electrode 515, in which case, step 930 may be performed prior to step 830 and may include forming the material segment 540 over the piezoelectric layer 510 to obtain a structure such as that shown in
Referring again to
As discussed above, in one example, a cavity 790 may be formed between the substrate 770 and the vibrating part of the resonator. Accordingly, step 810 may include forming the lower electrode 730 on a sacrificial layer (not shown) which is subsequently removed in step 880 to create the cavity 790. Alternatively, the lower electrode and piezoelectric layer may be supported around its perimeter, for example, like a stretched membrane, as shown in
The hybrid BAW structure according to various representative embodiments may provide significant improvements over known BAW resonator structures, including maintaining high coupling and good performance while providing significantly improved manufacturability, particularly at high frequencies. Having thus described several aspects of at least a representative embodiment, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure and are intended to be within the scope of the invention. Accordingly, the foregoing description and drawings are by way of example only, and the scope of the invention should be determined from proper construction of the appended claims, and their equivalents.
The present application is a continuation application under 37 C.F.R. §1.53(b) of U.S. patent application Ser. No. 12/624,550 filed on Nov. 24, 2009, naming Bradley Barber, et al. as inventors. Priority under 35 U.S.C. §120 is claimed from U.S. patent application Ser. No. 12/624,550, and the entire disclosure of U.S. patent application Ser. No. 12/624,550 is specifically incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12624550 | Nov 2009 | US |
Child | 13785104 | US |