This invention can relate to buttons with improved strength and durability. More particularly, this invention can relate to hybrid buttons formed from plastic and at least one additional material.
For example, conventional center-mounted buttons on selected models of the iPod™ media player made by Apple Computer, Inc., of Cupertino, Calif. are formed from plastic and incorporate certain design functionality. These buttons include distinct mechanical anti-rotation features that are formed using conventional manufacturing techniques.
Although media players such as these work well, it can be desirable to retain design functionality of the center-mounted button on an iPod™, or other similar media player, while providing the center-mounted button a metallic or other non-plastic cosmetic finish and to provide an improved surface for engaging the button.
The invention can relate to retaining certain design functionality, such as anti-rotation, of a center-mounted button on an iPod™, or other similar media player, and providing additional functionality, such as forming the center-mounted button in non-planar (e.g., concave) that was previously difficult to manufacture within the design specifications of the button when it was formed wholly in plastic.
In one embodiment, this invention can relate to a portable media player. The portable media player can include a housing, which can include an Input/Output (I/O) platform. The I/O platform can be in the form of one or more buttons.
This invention can also relate to buttons for use in cellular phones, personal digital assistants (PDAs), video games, radios, MP3 players, CD players, DVD players, televisions, game players, cameras, etc.
In one embodiment, a button according to the invention can retain design functionality of the center-mounted button, while providing the center-mounted button a metal or other non-plastic cosmetic finish.
A button according to one embodiment of the invention can also retain various mechanical functions, such as anti-rotation, easily implemented in plastic buttons. A button according to the invention can also provide additional functionality such as providing an upper face formed in a concave shape, such shape that was previously substantially unobtainable within the design specifications of the button when it was formed wholly in a cosmetically-desirable plastic.
A method of manufacturing a button according to one embodiment of the invention can include lathing a non-plastic upper portion of the button whereby the lathing includes forming a reverse flange in the upper non-plastic portion of the button, anodizing the non-plastic upper portion following the forming of the non-plastic upper portion, and injection-molding a plastic lower portion of the button onto the non-plastic upper portion of the button. The injection-molding can include fixing the position of the plastic lower portion with respect to the non-plastic upper portion by injection-molding at least a portion of the lower portion into the reverse flange.
It should be noted that a button according to the invention formed from at least partially from a metallic material may exhibit greater reliability, strength, dependability and electrical properties such as conductivity. Such properties can substantially improve the functionality of the button. Furthermore, a metallic or other non-plastic button may exhibit improved cosmetic properties because the material of the button can be matched to the material of the housing, thereby improving the look and feel of the button and harmonizing the look and feel of the electronic device.
The following detailed description of the embodiment of the present disclosure can best be understood when read in conjunction with the following drawings in which features are not necessarily drawn to scale but rather are drawn as to best illustrate the pertinent features.
A button according to the invention can include a non-plastic portion formed with a computer-numerically controlled (CNC) lathe and a plastic injection-molded portion that can be injection-molded directly onto the non-plastic portion.
One purpose of the injection-molded center button according to the invention can be to retain all-plastic button design functionality.
In one embodiment, the button can present an anodized aluminum surface or other metallic surface to a user when the non-plastic portion is formed from a metal. The button can also present a rotationally symmetric (e.g., concave) surface to the user while achieving, or even exceeding, the design specifications of the all-plastic button. Additionally, the injection-molded button according to the invention may be produced in relatively high volumes at a relatively low cost to meet high production requirements.
As mentioned above, one method of forming a button is to make a metal portion of the button using a CNC-lathe, which can be used to obtain a button surface shape of a predetermined finish, (e.g., a textured face, a concave face, etc.).
Nevertheless, certain functions (e.g., rotation prevention, adaptability to couple to a specific flexible printed circuit (FPC) relief, such as the ability to provide a space for a portion of the FPC to pass therethrough, retention flange and/or other features) cannot easily be obtained in a part that was completely formed with a CNC-lathe because conventional lathing can only shape the metal portion of the button around a rotational axis. Although features may be added to metal portions through additional processing (e.g., milling), such an addition could be both time consuming and costly.
In one embodiment of the invention, the button can be manufactured as follows: An upper non-plastic portion of the button is formed using a CNC-lathe. The non-plastic portion can be formed to include a machined-concave face. The non-plastic portion can also be further formed to include an undercut retention feature suitable for accepting a plastic ledge. The non-plastic portion can be further formed to incorporate a center button actuator nub on the underside—i.e., the side that faces away from a user—of the button. This non-plastic portion of the button can be finished on the lathe to a very fine finish, and then anodized according to any known anodization processes.
The finished anodized part can then be placed in an injection-molding cavity of an injection-molding machine. An additional plastic element (or elements) can then be injection-molded onto the underside of the non-plastic portion of the button (or, in alternative embodiments, on any suitable location on the button).
Alternatively, other embodiments of the invention can include an all-metal button that does not include an anti-rotation feature but does include FPC relief, which was machined or coined into the retainer plate on the underside of the button.
Yet another aspect of the invention relates to the additional advantages obtained by forming at least a portion of the button from a material other than plastic. For example, plastic iPod™ buttons formed from commercially-available resins such as ABS, PC, AND ABS-PC, are normally only formed at thicknesses of greater than 0.5 millimeters. When the plastic button is formed thinner than 0.5 millimeters, surface quality can degrade at least because the actuator nub, which is typically formed on the underside of the button, can show through to the concave face of the button because of limitations in the flow of the plastic. A button formed according to the invention, however, can be formed at thicknesses of about 0.5 millimeters, about 0.3 millimeters, or even less, because of superior metallic and/or other non-plastic properties and processing.
A number of embodiments of this invention are described below with reference to
Electronic device 10 can also be any handheld, or miniature consumer electronic device. Miniature electronic devices may have a form factor that is smaller than that of hand-held devices. Illustrative miniature electronic devices can include, but are not limited to, watches, rings, necklaces, belts, accessories for belts, headsets, accessories for shoes, virtual reality devices, other wearable electronics, accessories for sporting equipment, accessories for fitness equipment, or combinations thereof.
In the illustrated embodiment in
Scroll wheel 110, which can alternatively be referred to herein as a touchpad, is an intuitive interface that can provide easy one-handed operation i.e., it lets a user interact with the media player with one or more fingers. Scroll wheel 110 can be configured to provide one or more control functions associated with the media player.
In one embodiment of the invention, button 112 can be implemented without scroll wheel 110. Alternatively, the position of button 112 can be widely varied relative to scroll wheel 110 and housing 102. For example, they can be adjacent one another or spaced apart. In the illustrated embodiment, button 112 is configured to be surrounded by scroll wheel 110. In this manner, button 112 can provide a tangible surface that defines the inner boundary of scroll wheel 110. Alternatively, a single device may have multiple buttons (not shown). By way of example, a plurality of buttons can include a menu button, a play/stop button, a forward seek button and a reverse seek button, and the like. Additionally, button 112 can be placed at any external surface (e.g., top, side, front, or back) of housing 102 that is accessible to a user during manipulation of the media player. Furthermore, button 112 can be integrated with scroll wheel 110, as shown in
Further, button 112 can be configured to provide one or more dedicated control functions for making selections or issuing commands associated with operating the media player. By way of example, in the case of an MP3 music player, the button functions can be associated with opening a menu, playing a song, fast forwarding a song, seeking through a menu and the like. In most cases, the button functions are implemented via a mechanical clicking action. For example, dome switch 210 in
Housing 102 can include integrated circuit chips and other circuitry. Such circuitry can include a microprocessor (e.g., CPU), memory (e.g., ROM, RAM), a power supply (e.g., battery), a circuit board, a hard drive, other memory (e.g., flash) and/or various I/O support circuitry. The electrical components can also include components for inputting or outputting music or sound such as a microphone, amplifier and a digital signal processor (DSP). The electrical components can also include components for capturing images such as image sensors (e.g., charge coupled device (CCD) or include complimentary oxide semiconductor (CMOS)) or optics (e.g., lenses, splitters, filters etc.). The electrical components can also include components for sending and receiving media (e.g., antenna, receiver, transmitter, transceiver, etc.).
A user interface for the media player can be formed from button 112 and scroll wheel 110, among other things, such as a speaker for audible feedback or a vibratory mechanism for providing tactile feedback. While the user interface can be widely varied, this invention can relate to the implementation of buttons on a number of user interface variations. Such variations, which are described in greater detail above, can include buttons implemented on switches, keys, dials, trackballs, joysticks, touch pads, touch screens, displays, microphones, speakers, cameras and the like.
In other embodiments of the invention, a media player can include an all-metal button that does not include an anti-rotation feature but does include FPC relief which was machined or coined into the retainer plate on the underside of the button.
While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. For example, although the invention has been largely described in terms of a music player, it should be appreciated that the invention can also be applied to other types of devices.
The method according to the invention can preferably implemented by a combination of hardware and software, but can also be implemented in hardware or software. The method can also be embodied as computer readable code on a computer readable medium. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, hard drive, flash memory, CD-ROMs, DVDs, magnetic tape, optical data storage devices, and carrier waves.
In yet another alternative embodiment of the invention, the plastic portion of the button may be implemented using rubber or other material that is more flexible than some types of injection-molded plastic. In such an embodiment, the more flexible material would not have to be injected-molded onto the other portion (hereinbefore referred to as the “non-plastic” portion) of the button. Rather, the material could be stretched onto the reverse flange of the other portion of the button providing that the flexible portion retained sufficient grip on the reverse flange of the other portion of the button to remain stationary with respect to the other portion of the button for an extended time.
It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention. The embodiments described herein-above are further intended to explain the best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other embodiments and with the various modifications required by the particular applications or uses of the invention.
Accordingly, the description is not intended to limit the invention to the form disclosed herein. Also, it is intended that the appended claims be construed to include alternative embodiments.
This application is a divisional of U.S. patent application Ser. No. 11/519,259 filed on Sep. 11, 2006, now allowed.
Number | Date | Country | |
---|---|---|---|
Parent | 11519259 | Sep 2006 | US |
Child | 12844502 | US |