Hybrid-capture sequencing for determining immune cell clonality

Information

  • Patent Grant
  • 11788136
  • Patent Number
    11,788,136
  • Date Filed
    Tuesday, May 29, 2018
    6 years ago
  • Date Issued
    Tuesday, October 17, 2023
    7 months ago
Abstract
A method of capturing a population of T-Cell receptor and/or immunoglobulin sequences with variable regions within a patient sample, the method comprising: extracting and/or preparing DNA fragments from the patient sample; ligating a nucleic acid adapter to the DNA fragments, the nucleic acid adapter suitable for recognition by a pre-selected nucleic acid probe; capturing DNA fragments existing in the patient sample using a collection of nucleic acid hybrid capture probes, wherein each capture probe is designed to hybridize to a known V gene segment and/or a J gene segment within the T cell receptor and/or immunoglobulin genomic loci.
Description
FIELD OF THE INVENTION

The invention relates to methods of capturing and sequencing immune-associated nucleotide sequences, and more particularly to methods of determining clonality of immune cells.


BACKGROUND OF THE INVENTION

The maturation of lymphocytes is a fascinating process that is marked not only by immunophenotypic changes, but also by discrete and regulated molecular events(1-3). As T-cells mature, an important part of the associated molecular “maturation” involves the somatic alteration of the germline configuration of the T-cell receptor (TR) genes to a semi-unique configuration in order to permit the development of a clone of T-cells with an extracellular receptor specific to a given antigen(1-3). B-cells undergo a similar maturation process involving different loci that encode the antibody-containing B-cell receptor (BR). These clones, when considered together as a population, produce a repertoire of antigen sensitivity orders of magnitude larger than would be possible by way of inherited immunological diversity alone(3). Indeed, the somatic rearrangement of the TR and BR genes is one of the key ontological events permitting the adaptive immune response(3).


When molecular carcinogenesis occurs in a lymphoid cell lineage, the result is the selective growth and expansion of the tumoural lymphocytes relative to their normal counterparts(2). The so-called precursor (historically termed “lymphoblastic”) lesions are believed to reflect molecular carcinogenesis in lymphoid cells at a relatively immature stage of maturation(2). In contrast, if molecular carcinogenesis occurs at a point during or after the process of T-cell receptor gene re-arrangement (TRGR), the result is a “mature” (often also termed “peripheral”) T-cell lymphoma in which the tumour contains a massively expanded population of malignant T-cells with an immunophenotype reminiscent of mature lymphocytes, most if not all bearing an identical TR gene configuration(4). It is this molecular “homogeneity” of the TR configuration within a T-cell neoplasm that defines the concept of clonality in T-cell neoplasia(1,2,4).


The T-cell receptor is a heteroduplex molecule anchored to the external surface of T lymphocytes(5,21); there the TR, in cooperation with numerous additional signalling and structural proteins, functions to recognize an antigen with a high degree of specificity. This specificity, and indeed the vast array of potential antigenic epitopes that may be recognized by the population of T-cells on the whole, is afforded by (1) the number of TR encoding regions of a given T-cell receptor's genes as present in the germline; and (2) the intrinsic capacity of the TR gene loci to undergo somatic re-arrangement(3). There are four TR gene loci, whose protein products combine selectively to form functional TRs: T-cell receptor alpha (TRA) and T-cell receptor beta (TRB) encode the α and β chains, respectively, whose protein products pair to form a functional α/β TR; T-cell receptor gamma (TRG) and T-cell receptor delta (TRD) encode the γ and δ chains, respectively, whose protein products pair to form a functional γ/δ TR. The vast majority (>95%) of circulating T-cells are of the α/β type(21,22); for reasons as yet not fully understood, γ/δ T-cells tend to home mainly to epithelial tissues (e.g. skin and mucosae) and appear to have a different function than the more common a/s type T-cells.


The TRA locus is found on the long arm of chromosome 14 in band 14q11.2 and spans a total of 1000 kilobases (kb)(23); interestingly, sandwiched between the TRA V and J domains, is the TRD locus (14q11.2), itself spanning only 60 kb(24). The TRB locus is found on the long arm of chromosome 7 in band 7q35 and spans a total of 620 kb(25). The TRG locus is found on the short arm of chromosome 7 in region 7p15-p14 and spans 160 kb(26).


Within each TR gene locus are a variable number of variable (V) and join (J) segments(23-26) additional diversity (D) segments are present within the TRB and TRD loci(24,25). These V, D and J segments are grouped into respective V, D and J regions (see FIG. 1-1). In the germline configuration, a full complement of V (numbering from 4-6 in TRG to 45-47 in TRA), D (2 in TRB and 3 in TRD) and J (numbering as few as 4 in TRD to as many as 61 in TRA) segments can be detected, varying based on inheritance(23-26). In this configuration, the specificity of any resulting coding sequence would be uniformly based on inherited variation. During maturation, however, somatic mutation (i.e. rearrangement) occurs such that there is semi-random recombination of variable numbers of the V, D and J segments to produce a lineage of cells with a “re-arranged” configuration of TR gene segments. This gene re-arrangement, when later subject to gene transcription and translation, produces a TR unique to the given T-lymphocyte (and its potential daughter cells). This process is represented pictorially in FIG. 1-2. Although the specific details of this re-arrangement process are far beyond the scope of this work, the process is at least partly mediated by enzymes of similar function to those used to perform splicing(21,22).


BIOMED-2(29) is a product of several years of collaborative expert study, resulting in a thoroughly studied consensus T-cell clonality assay. The BIOMED-2 assay includes multiplexed primer sets for both Immunoglobulin (IG) and TR clonality assessment and can be implemented with commercially available electrophoresis systems (e.g. Applied Biosystems fluorescence electrophoresis platforms)(29). These commercially available primer sets have the advantage of standardization and ease of implementation. In addition, by virtue of the extensive study performed by the BIOMED consortium, the BIOMED-2 assay has the well-documented advantage of capturing the mono-clonality of the vast majority of control lymphomas bearing productive T-cell receptors (i.e. flow-sorted positive for either α/β or γ/δ T-cell receptors) using the specified TRB and TRG primer sets(29). Of note, having been in use for over a decade, the BIOMED-2 has been globally accepted as the diagnostic assay primer set of choice.


The current approach to TRGR testing is subject to a number of technical and practical caveats that dilute the applicability of TRGR testing to the full breadth of real-world contexts.


Because the PCR-based techniques that are employed in TRGR assays are subject to amplicon size restrictions(29,34), the sheer size of the TRA locus prevents a complete assay of the TRA gene in clinical settings. Indeed, although of smaller size, the TRB locus as a whole is also prohibitively large to sequence in its germline configuration. It is therefore of no surprise that much of the published data pertaining to the utility and validity of TRGR assays has stemmed from assays specific to only subparts of TRB as well as TRG, a locus of size much more amenable to a single-assay. In addition, since the TRD locus is often deleted after TR gene rearrangement (since it is contained within the TRA locus and excised whenever the TRA locus is rearranged), assays for TRD have also not been as rigorously studied. For this reason, any BIOMED-2-based T-cell clonality assay aimed at directing immunotherapy, requiring a complete sequence-based understanding of the TR genes involved, would be insufficient.


The BIOMED-2 assay is subject to additional technical challenges. As part of the standard TRGR assay, most laboratories rely on the demonstration of electrophoretic migration patterns for the determination of TR clonality. Interpretation of the assay depends on the demonstration (or lack thereof) of a dominant amplicon of specific (albeit not pre-defined) molecular weight, rather than the normal Gaussian distribution of amplicons of variable size. This approach, as has been described previously(35-47), is subject to interpretative error and other technical problems. Also, given the large amounts of DNA required for the multitude of multiplex tubes making up the assay, the overall assay can very quickly deplete DNA supplies, especially when obtained from limited sample sources.


Finally, and arguably of greatest import, is the issue of diagnostic bias used in the study of TRGR assay performance. More precisely, when laboratories seek to validate a TRGR assay, the requirement of “standard” samples will typically require that the laboratory utilize previously established clonal samples or samples previously diagnosed and accepted to represent clonal entities (e.g. previously diagnosed cases of lymphoma); these samples are in turn compared to “normal” controls. In contrast, the demographics of subsequent “real-life” test samples are unlikely to be so decidedly parsed into “normal” and “abnormal” subsets.


Current T-Cell Receptor (TCR) rearrangement profiling assays rely on targeted PCR amplification of rearranged TCR genomic loci. The simplest method for assessing clonality of T-cells involves qualitative assessment through multiplexed amplification of the individual loci using defined primer sets and interpretation of fragment size distributions according to the BIOMED2 protocolA1,2. Next-generation sequencing can be used as a read-out to provide quantitative assessment of the TCR repertoire including detection of low abundance rearrangements from bulk immune cells, or even pairing of the heterodimeric chain sequences with single cell preparation methodsA3,4. Hybrid-capture based library subsetting is an alternative method to PCR-based amplification that can improve coverage uniformity and library complexity when sample is not limiting and allows for targeted enrichment of genetic loci of interest from individual genes to entire exomesA5. In hybrid-capture methods, the formation of probe-library fragment DNA duplexes are used to recover regions of interestA6 7,8.


Similar to T-cells, B-cells involved in adaptive immunity also undergo somatic rearrangement of germline DNA to encode a functional B-cell receptor (BR). Like TRs, these sequences comprise by discrete V, D, J segments that are rearranged and potentially altered during B-cell maturation to encode a diversity of unique immunoglobulin proteins. The clonal diversity of B-cell populations may have clinical utility and, similar to T-cell lymphomas, several cancers are characterized by clonal expansion of specific BR/Ig sequences.


SUMMARY OF THE INVENTION

There is described herein, the development of a novel NGS-based T-cell clonality assay, incorporating all four TR loci. The assay was both analytically and clinically validated. For the former, a series of idealized specimens was used, with combined PCR/Electrophoresis and Sanger Sequencing to confirm NGS-data. The latter validation compared NGS results to the current gold standard for clinical T-cell clonality testing (i.e. the BIOMED-2 primer PCR method) on an appropriately-sized minimally-biased sample of hematopathology specimens. In the latter dataset also, the patterns of T-cell clonality were also correlated with clinical, pathologic, and outcome data.


In an aspect, there is provided, a method of capturing a population of T-Cell receptor and/or immunoglobulin sequences with variable regions within a patient sample, said method comprising: extracting/preparing DNA fragments from the patient sample; ligating a nucleic acid adapter to the DNA fragments, the nucleic acid adapter suitable for recognition by a pre-selected nucleic acid probe; capturing DNA fragments existing in the patient sample using a collection of nucleic acid hybrid capture probes, wherein each capture probe is designed to hybridize to a known V gene segment and/or a J gene segment within the T cell receptor and/or immunoglobulin genomic loci.


In an aspect, there is provided, a method of immunologically classifying a population of T-Cell receptor and/or immunoglobulin sequences, the method comprising:

    • (a) identifying all sequences containing a V gene segment from the sequences of the DNA fragments by aligning the sequences of the DNA fragments to a library of known V gene segment sequences;
    • (b) trimming the identified sequences in (a) to remove any sequences corresponding to V gene segments to produce a collection of V-trimmed nucleotide sequences;
    • (c) identifying all sequences containing a J gene segment in the population of V-trimmed nucleotide sequences by aligning the V-trimmed nucleotide sequences to a library of known J gene segment sequences;
    • (d) trimming the V-trimmed nucleotide sequences identified in (c) to remove any sequences corresponding to J gene segments to produce VJ-trimmed nucleotide sequences;
    • (e) identifying any D gene segment comprised in the VJ-trimmed nucleotide sequences identified in (d) by aligning the VJ-trimmed nucleotide sequences to a library of known D gene segment sequences;
    • (f) for each VJ-trimmed nucleotides sequence identified in (d), assembling a nucleotide sequence comprising the V gene segment, any D gene segment, and the J gene segment identified in steps (a), (e) and (c) respectively;
    • (g) selecting from the nucleotide sequence assembled in step (f) a junction nucleotide sequence comprising at least the junction between the V gene segment and the J gene segment, including any D gene segment, the junction nucleotide sequence comprising between 18 bp and 140 bp, preferably 40-100 bp, further preferably about 80 bp;


and optionally (h) and (i):

    • (h) translating each reading frame of the junction nucleotide sequence and its complementary strand to produce 6 translated sequences; and
    • (i) comparing the 6 translated sequences to a library of known CDR3 regions of T-Cell receptor and/or immunoglobulin sequences to identify the CDR3 region in the DNA fragments.


In an aspect, there is provided, a method of identifying CDR3 regions in T-Cell receptor and/or immunoglobulin sequences, the method comprising:

    • (a) identifying a V gene segment comprised in the immunoglobulin sequence by aligning the immunoglobulin sequence to a library of known V gene segment sequences;
    • (b) identifying a J gene segment comprised in the immunoglobulin sequence by aligning the immunoglobulin sequence to a library of known J gene segment sequences;
    • (c) if V and J gene segments are identified, then comparing the immunoglobulin sequence to a library of known CDR3 regions of T-Cell receptor and/or immunoglobulin sequences to identify any CDR3 region in the immunoglobulin sequence.





BRIEF DESCRIPTION OF FIGURES

The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.


These and other features of the preferred embodiments of the invention will become more apparent in the following detailed description in which reference is made to the appended drawings wherein:



FIG. 1: TRGR Assay Wet-Bench Work-Flow Schematic. 1, DNA isolation; 2, Shearing (˜200 bp); 3, Library Production; 4, Hybridization with Biotinylated DNA Probes; 5, Enrichment with Streptavidin-Bound Paramagnetic Beads; 6, PCR; 7, Illumina sequencing.



FIG. 2: Schematic Representation of V and J Gene Probe Placement Relative to the Germline. The germline V-genes are highlighted in solid red, with 100 bp probe placement shown above; probes are oriented inward and abut the 5′ & 3′ ends of the germline V-gene configuration. The germline J-genes are highlighted in solid blue, with 100 bp probe placement shown above; J-gene probes cover the entire J-gene, and on occasion some flanking extragenic sequence.



FIG. 3: An overview of the CapTCR-Seq hybrid-capture method. (A) Hybrid-capture method experimental flow diagram. Fragments are colored based on whether they contain V-region targets (blue), J-region targets (red), D-regions (green), constant regions (yellow) or non-TCR coding regions (black). (B) V(D)J rearrangement and CDR3 sequence detection algorithm flow diagram. (C) Number of unique VJ pairs recovered relative to library DNA input amount for one-step V capture of A037 PBMC derived libraries. (D) A037 polyclonal human beta locus VJ rearrangements determined by CapTCR-seq. (E) A037 polyclonal human beta locus VJ rearrangements determined by a PCR-based profiling service. (F) Subtractive comparison between CapTCR-seq and PCR-based profiling service. Red indicates relative enrichment of indicated pair by CapTCR-seq while blue indicates relative enrichment of indicated pair by PCR-based profiling.



FIG. 4: Cell line and tumor isolate T-cell clonality. Boxes represent individual unique VJ pairs and box size reflects abundance in sample. Samples ordered by decreasing clonality. (A) Beta chain VJ rearrangements. (B) Gamma chain VJ rearrangements. (C) L2D8 Gp100 antigen specific beta locus VJ rearrangements determined by CapTCR-seq. (D) L2D8 Gp100 antigen specific beta locus VJ rearrangements determined by a PCR-based profiling service. (E) Subtractive comparison between CapTCR-seq and PCR-based profiling service. Red indicates relative enrichment of indicated pair by CapTCR-seq while blue indicates relative enrichment of indicated pair by PCR-based profiling.



FIG. 5: Comparison of different method variants in terms of yielded average unique CDR3 sequences (normalized to reads and library input).



FIG. 6: Comparison of different hybridization and capture temperatures in terms of yielded average unique CDR3 sequences (normalized to reads and library input).



FIG. 7: Comparison of different depletion dean-up steps in terms of yielded average unique CDR3 sequences (normalized to reads and library input).



FIG. 8: Comparison of different permutations of iterative captures in terms of yielded average unique CDR3 sequences (normalized to reads and library input).



FIG. 9: CD3+ T cell fraction dilution curve. Comparison of average unique CDR3 sequences (normalized to reads and library input) for samples with varying amounts of source material added to generate the library (10 ng-250 ng).



FIG. 10: PBMC fraction dilution curve. Comparison of average unique CDR3 sequences (normalized to reads and library input) for samples with varying amounts of source material added to generate the library (10 ng-250 ng).



FIG. 11: PBMC fraction cDNA dilution curve. Comparison of average unique CDR3 sequences (normalized to reads and library input) for samples with varying amounts of source material added to generate the library (5 ng-40 ng).



FIG. 12: Comparison of VJ beta locus repertoire for A037 sample derived from genomic DNA (panel 1) and from cDNA (panel 2). A subtractive heatmap is shown in panel 3 that shows differences in overall repertoire between the two samples. Red indicates deviation for genomic, while blue indicates deviation for cDNA.



FIG. 13: Prevalence comparison of the top 1000 beta locus CDR3 in the genomic DNA set compared with their prevalences in the cDNA set.



FIG. 14: Beta locus VJ repertoire of an adoptive cell transfer immunotherapy patient over time. Samples are indicated on the X axis ordered by date of sample. VJ clones are ordered in all samples according to prevalence in the TIL infusion product and the top nine most prevalent TIL infusion clones are colored.



FIG. 15: Nine most prevalent TIL infusion clones at the Beta locus of an adoptive cell transfer immunotherapy patient over time. Samples are indicated on the X axis ordered by date of sample.



FIG. 16: TCR total signal (VJ counts) and repertoire diversity (unique CDR3 counts) for all samples from five patients.



FIG. 17: TCR total signal (VJ counts) and repertoire diversity (unique CDR3 counts) for all tumor samples from five patients.



FIG. 18: Top ten most prevalent beta locus rearrangements from patient A tumor.



FIG. 19: Sample fractions within all patient A samples for top ten most prevalent VJ rearrangements in tumor. Alpha locus (panel 1), beta locus (panel 2), gamma locus (panel 3), delta locus (panel 4).





DETAILED DESCRIPTION

In the following description, numerous specific details are set forth to provide a thorough understanding of the invention. However, it is understood that the invention may be practiced without these specific details.


The advantages of high-throughput DNA sequencing technologies could potentially be applied to T-cell clonality testing. The nature of T-cell gene diversity, requiring the consideration of potential variability arising from four distinct gene loci, makes obvious the benefit of multiplexing; what has traditionally required multiple separate tests could be combined in a single reaction. The capacity of modem DNA sequencing technologies to query longer contiguous segments of DNA in greater quantities relative to traditional techniques also provides an opportunity to explore the potential meaning of TRA and TRB sequence rearrangements. Sequence-level data might afford a greater ease of assay result interpretation. Indeed, the generation of sequence-level data in a TRGR assay would likely be much more informative than gross estimates of DNA electrophoretic migration patterns when disease trends are being studied; the high-level analysis of such data might help the identification of heretofore hidden patterns of TR rearrangement in specific T-cell lymphoma subtypes. The issue of replicate numbers for establishing test sensitivity/specificity can be easily overcome by exploiting the high-throughput capacity of modem DNA sequencing platforms; for a comparable investment of time (and possibly cost), sequencing-based approach to TRGR could perform a greater number of individual tests, thereby potentially allowing a more statistically robust estimate of test performance.


Traditional sequencing uses PCR-based techniques to markedly amplify input template DNA, thus improving the sensitivity of detection during the sequencing step. Indeed, many sequencing-based technologies still perform directed library preparation using PCR-based techniques to isolate and sequence regions of interest(38). By this approach, one might employ specific primer sets to enrich for regions of interest in the library preparation step. In the context of TRGR, however, a primer-based approach to library preparation would be challenging: in order to provide the sufficient breath of coverage required to interrogate the status of the vast number of TR genes (especially in the TRA locus), a massive array of primers would be required. Although it is theoretically possible to prime multiple regions in tandem, previous data suggest that such an approach might open the door to the possibility of technical error (for a more thorough review of the details of these errors and the studies that have supported this evidence, see(38)). In the context of TRGR, furthermore, a primer-based approach to library preparation introduces the possibility of allele dropout when the assay attempts to prime a rearranged gene based on the known germline configuration (an easily digestible review to this effect may be found here(39)).


A paradigm shift away from PCR primer-directed amplification of genomic areas of interest was required for sequencing experiments aimed at large numbers of genes. Indeed most sequencing-based technologies rather employ the upfront production of vast libraries of template oligonucleotides followed by a series of template enrichment steps(38). These latter steps may simply involve the extraction of DNA of specific lengths or quality, or rather the focus may be to enrich DNA containing specific sequences of interest. In the latter scenario, when specific sequence motifs are enriched for during library preparation, the resulting sequencing data will be enriched for the sequences of interest. Additionally, using the above stepwise approach, library preparation may be generalized to permit the enrichment of specific sequences out of a mix of “all” sequences produced from the primary non-specific amplification step; it is easy to see how this approach may be used to permit multiple separate assays using different enrichment approaches applied to a single input library(40).


Hybrid capture is a form of library enrichment in which a library is probed for known sequences of interest using tagged nucleic acid probes followed by a subsequent “pull-down” of the tagged hybrids(38); for example, DNA probes tagged with biotin can be efficiently enriched when hybridization is followed by a streptavidin enrichment step(38,40-43). The biotin/streptavidin enrichment procedure is schematized in FIG. 1. In reference to the assessment of TRGR, this approach has the advantage of enriching TR genes based on the available well-defined germline TR gene sequences, which can be performed in a massively parallel fashion using several hundred probes. Notably, this approach also allows for enrichment of rearranged sequences as the hybrid-capture probes can also hybridize to (and therefore enrich for) subsequences of the rearrangement product. This latter “pull-down” of rearranged TR genes would be difficult using a primer-only approach to library preparation.


Rather than restricting the assessment of test performance of the above DNA sequencing approaches to a pre-set (and potentially biased) sample of “malignant” and “benign” T-cell lymphoproliferative disorders, a more prudent sampling rubric might use a “real-world” series of consecutive samples taken from a population as similar to the “test population” as possible. In the context of TRGR validation, such a sample might consist of a series of consecutive tissue samples from patients being worked-up by a hematologist and submitted for molecular (i.e. T-cell clonality) assessment. The overall sample size could be established based on an estimate of the historical incidence of T-cell lymphomas in such a population, such that the total size of the sample is adequately large to include a sufficient “expected” number of clonal T-cell lymphoproliferative disorders.


In many validation studies, the final pathology diagnosis is used as the gold standard against which the novel test is measured(41). While not unreasonable, there are arguments against employing such an approach. Of foremost concern is the potential for diagnostic or interpretative error, by which “true positivity” of disease could be misappropriated(44). In the realm of T-cell lymphomas, given at least partly due to their rarity, the frequent lack of pathologist experience might make this problem more likely. Furthermore, evidence indicates that even when diagnoses are based on consensus or panel based interpretation, the possibility of diagnostic bias by dominant opinion should be considered(45).


When a single clearly-defined outcome measure does not exist (or is limited by bias), a composite gold-standard might be more appropriate(46). Composite gold-standards might include a number of individual test results or clinical observations logically combined to produce “positive” or “negative” composites(46); of key import is that (1) well-defined rules of composition be set out a priori and (2) the number of samples or subjects with each of the composite test results should be well-described(46). Ideally, all samples or subjects should be evaluated using each of the composite tests(46).


In order to best study a novel test of TLPDs, rather than limiting the reference test to the gold-standard BIOMED-2 T-cell clonality assay or to pathology diagnoses, a series of both individual and composite references might be considered. From the perspective of analytical validity, one might consider validating an sequencing-based TRGR assay using standard PCR techniques followed by Sanger sequence verification. Since the sequences of each of the TR V and J genes are known, forward and reverse primer sets for each V and J genes, respectively, identified by the capture and sequencing assay could be used to verify that the detected result is valid; this could be followed by Sanger sequencing to validate the result of the DNA sequencing result (with deference specifically to the CDR3 variability-defining region).


In another experiment, one might consider comparing a sequencing-based TRGR result to the BIOMED-2 result (with each test applied to all specimens under study). The primary limitation of this approach would be that the BIOMED-2 assay, as explained above, does not test for any TRA rearrangements; thus this comparison alone would be insufficient. Additional comparisons might involve assessment of the sensitivity and specificity of each of the BIOMED-2 and sequencing-based TRGR assays at identifying benign or malignant TLPDs. For this, a composite gold-standard including histologic features (i.e. pathology diagnosis), immunophenotypic features, additional molecular features (as available, e.g. cytogenetic changes), clinical observations (e.g. presence or absence of features of malignancy), and outcome results (e.g. significant deviation in individual patient survival from the median) might be considered. The clinical validity of the sequencing results could thus be assessed against the current diagnostic standard by means of a much more thorough evaluation.


T-cell lymphomas are cancers of immune cell development that result in clonal expansion of malignant clones that dominate the T-cell repertoire of affected patients. Therefore, clonality assessment of these cell populations is essential for the identification and monitoring of T-cell lymphomas. We have developed a hybrid-capture method that recovers rearranged sequences of T-cell receptor (TCR) chains from all four classes (alpha, beta, gamma, and delta loci) in a single reaction from an Illumina sequencing library. We use this method to describe the TCR V(D)J repertoire of monoclonal cancer cell lines, tumor-derived lymphocyte cultures, and peripheral blood mononuclear cells from a healthy donor, as well as a set of 63 clinical isolates sent for clinical clonality testing for suspected T-cell lymphoma. PCR amplification and Sanger sequencing confirmed cell line and tumor predominant rearrangements, individual beta locus V and J allele prevalence was well correlated with results from a commercial PCR-based DNA sequencing assay with an r2 value of 0.94, and BIOMED2 PCR fragment size beta and gamma locus clonotyping of clinical isolates showed 73% and 77% agreement respectively. Our method allows for rapid, high-throughput and low cost characterization of TCR repertoires that will enhance sensitivity of tumor surveillance as well as facilitate serial analysis of patient samples with a quantitative read-out during clinical immunotherapy interventions.


In an aspect, there is provided, a method of capturing a population of T-Cell receptor and/or immunoglobulin sequences with variable regions within a patient sample, said method comprising: extracting/preparing DNA fragments from the patient sample; ligating a nucleic acid adapter to the DNA fragments, the nucleic acid adapter suitable for recognition by a pre-selected nucleic acid probe; capturing DNA fragments existing in the patient sample using a collection of nucleic acid hybrid capture probes, wherein each capture probe is designed to hybridize to a known V gene segment and/or a J gene segment within the T cell receptor and/or immunoglobulin genomic loci.


As used herein, “T-Cell Receptor” or “TCR” means a molecule found on the surface of T lymphocytes (or T cells), preferably human, that is responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. The TCR is a disulfide-linked membrane-anchored heterodimeric protein normally consisting of the highly variable alpha (α) and beta (β) chains expressed as part of a complex with the invariant CD3 chain molecules. T cells expressing this receptor are referred to as α:β (or αβ) T cells, though a minority of T cells express an alternate receptor, formed by variable gamma (γ) and delta (δ) chains, referred as γδ T cells. Each chain is composed of two extracellular domains: Variable (V) region and a Constant (C) region. The variable domain of both the TCR α-chain and β-chain each have three hypervariable or complementarity determining regions (CDRs). CDR3 is the main CDR responsible for recognizing processed antigen.


The terms “antibody” and “immunoglobulin”, as used herein, refer broadly to any immunological binding agent or molecule that comprises a human antigen binding domain, including polyclonal and monoclonal antibodies. Depending on the type of constant domain in the heavy chains, whole antibodies are assigned to one of five major classes: IgA, IgD, IgE, IgG, and IgM. Several of these are further divided into subclasses or isotypes, such as IgG1, IgG2, IgG3, IgG4, and the like. The heavy-chain constant domains that correspond to the difference classes of immunoglobulins are termed α, δ, ε, γ and μ, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known. The “light chains” of mammalian antibodies are assigned to one of two clearly distinct types: kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains and some amino acids in the framework regions of their variable domains. The variable domains comprise the complementarity determining regions (CDRs). The methods described herein may be applied to immunoglobulin sequences, including B-cell immunoglobulin sequences.


“V gene segments”, “J gene segments” and “D gene segments” as used herein, refer to the variable (V), joining (J), and diversity (D) gene segments involved in V(D)J recombination, less commonly known as somatic recombination. V(D)J recombination is the mechanism of genetic recombination that occurs in developing lymphocytes during the early stages of T and B cell maturation. The process results in the highly diverse immune repertoire of antibodies/immunoglobulins (Igs) and T cell receptors (TCRs) found on B cells and T cells, respectively.


The term “nucleic acid” includes DNA and RNA and can be either double stranded or single stranded.


The term “probe” as used herein refers to a nucleic acid sequence that will hybridize to a nucleic acid target sequence. In one example, the probe hybridizes to the RNA biomarker or a nucleic acid sequence complementary thereof. The length of probe depends on the hybridization conditions and the sequences of the probe and nucleic acid target sequence. In one embodiment, the probe is at least 8, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 400, 500 or more nucleotides in length.


The term “adapter” as used herein refers a moiety capable of conjugation to a nucleic acid sequence for a particular purpose. For example, the adapter may be used to identify or barcode the nucleic acid. Alternatively, the adapter may be a primer which can be used to amplify the nucleic acid sequence.


The term “hybridize” or “hybridizable” refers to the sequence specific non-covalent binding interaction with a complementary nucleic acid. In a preferred embodiment, the hybridization is under stringent conditions. Appropriate stringency conditions which promote hybridization are known to those skilled in the art, or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1 6.3.6. For example, 6.0× sodium chloride/sodium citrate (SSC) at about 45° C., followed by a wash of 2.0×SSC at 50° C. may be employed.


In some embodiments, the method further comprises sequencing the captured DNA fragments, wherein the sequencing can be used to determine clonotypes within the patient sample. Various sequencing techniques are known to the person skilled in the art, such as polymerase chain reaction (PCR) followed by Sanger sequencing. Also available are next-generation sequencing (NGS) techniques, also known as high-throughput sequencing, which includes various sequencing technologies including: Illumina (Solexa) sequencing, Roche 454 sequencing, Ion torrent Proton/PGM sequencing, SOLiD sequencing. NGS allow for the sequencing of DNA and RNA much more quickly and cheaply than the previously used Sanger sequencing. In some embodiments, said sequencing is optimized for short read sequencing.


In some embodiments, the method further comprises amplifying the population of sequences using nucleic acid amplification probes/oligonucleotides that recognize the adapter prior to said sequencing.


In some embodiments, the method further comprises fragmenting DNA extracted from the patient sample to generate the DNA fragments.


In some embodiments, the ligating step is performed before the capturing step.


In some embodiments, the capturing step is performed before the ligating step.


The term “patient” as used herein refers to any member of the animal kingdom, preferably a human being and most preferably a human being that has AML or that is suspected of having AML.


The term “sample” as used herein refers to any fluid, cell or tissue sample from a subject which can be assayed for nucleic acid sequences. In some embodiments, the patient sample comprises tissue, urine, cerebral spinal fluid, saliva, feces, ascities, pleural effusion, blood or blood plasma.


In some embodiments, the patient sample comprises cell-free nucleic acids in blood plasma.


In some embodiments, the clonality analyses described herein may be use to track clonality across samples types.


In some embodiments, the hybrid capture probes are at least 30 bp in length. In a further embodiment, the hybrid capture probes are between 60 bp and 150 bp in length. In a further embodiment, the hybrid capture probes are between 80 bp and 120 bp in length. In a further embodiment, the hybrid capture probes are about 100 bp in length.


In some embodiments, the hybrid capture probes hybridize to at least 30 bp, preferably 50 bp, more preferably 100 bp of the V gene segment and/or J gene segment.


In some embodiments, the hybrid capture probes hybridize to at least a portion of the V gene segment and/or J gene segment at either the 3′ end or the 5′ end of the V gene segment and/or J gene segment respectively.


In some embodiments, the screening probes hybridize to at least a portion of the V gene segment.


In some embodiments, the screening probes hybridize to at least a portion of the V gene segment at the 3′ end.


In some embodiments, hybridizing comprises hybridizing under stringent conditions, preferably very stringent conditions.


In some embodiments, the collection of nucleic acid hybrid capture probes comprise at least 2, 5, 10, 20, 30, 80, 100, 300, 400, 500, 600, 700, 800 or 900 unique hybrid capture probes.


In some embodiments, the collection of nucleic acid hybrid capture probes is sufficient to capture at least 50%, 60%, 70%, 80%, 90% or 99% of known T-Cell receptor and/or immunoglobulin loci clonotypes.


In some embodiments, the hybrid capture probes are immobilized on an array.


In some embodiments, the hybrid capture probes comprise a label. In a further embodiment, the label is used to distinguish between sequences bound to the screening probes and unbound double stranded fragments, and preferably the capture is performed in solution.


In some embodiments, preparing the DNA fragments comprises extracting RNA from the patient sample and preparing corresponding cDNA.


In some embodiments, the method further comprises a depletion step, comprising depleting the DNA fragments of non-rearranged sequences using probes that recognize nucleic acid sequences adjacent to V and/or J gene segments in the genome. In some embodiments, the capturing of DNA fragments using V gene segment and J gene segment hybrid capture probes is performed in separate steps, and in any order with the depletion step, preferably in the following order: J gene capture, depletion, then V gene capture.


In an aspect, there is provided, a method of immunologically classifying a population of T-Cell receptor and/or immunoglobulin sequences, the method comprising:

    • (a) identifying all sequences containing a V gene segment from the sequences of the DNA fragments by aligning the sequences of the DNA fragments to a library of known V gene segment sequences;
    • (b) trimming the identified sequences in (a) to remove any sequences corresponding to V gene segments to produce a collection of V-trimmed nucleotide sequences;
    • (c) identifying all sequences containing a J gene segment in the population of V-trimmed nucleotide sequences by aligning the V-trimmed nucleotide sequences to a library of known J gene segment sequences;
    • (d) trimming the V-trimmed nucleotide sequences identified in (c) to remove any sequences corresponding to J gene segments to produce VJ-trimmed nucleotide sequences;
    • (e) identifying any D gene segment comprised in the VJ-trimmed nucleotide sequences identified in (d) by aligning the VJ-trimmed nucleotide sequences to a library of known D gene segment sequences;
    • (f) for each VJ-trimmed nucleotides sequence identified in (d), assembling a nucleotide sequence comprising the V gene segment, any D gene segment, and the J gene segment identified in steps (a), (e) and (c) respectively;
    • (g) selecting from the nucleotide sequence assembled in step (f) a junction nucleotide sequence comprising at least the junction between the V gene segment and the J gene segment, including any D gene segment, the junction nucleotide sequence comprising between 18 bp and 140 bp, preferably 40-100 bp, further preferably about 80 bp; and optionally (h) and (i):
    • (h) translating each reading frame of the junction nucleotide sequence and its complementary strand to produce 6 translated sequences; and
    • (i) comparing the 6 translated sequences to a library of known CDR3 regions of T-Cell receptor and/or immunoglobulin sequences to identify the CDR3 region in the DNA fragments.


Alternatively, step (h) may be searching the 6 translated sequences for flanking invariable anchor sequences to define the intervening T-Cell receptor and/or B-cell receptor CDR3 sequences encoded by the DNA fragments.


In some embodiments, the method further comprises, prior to step (a), aligning left and right reads of overlapping initial DNA fragments to produce the DNA fragments on which step (a) is performed.


In some embodiments, steps (a), (c), (e) are performed with BLASTn and step (i) is performed using expression pattern matching to known sequences and IMGT annotated data.


In an aspect, there is provided, a method of identifying CDR3 regions in T-Cell receptor and/or immunoglobulin sequences, the method comprising:

    • (a) identifying a V gene segment comprised in the immunoglobulin sequence by aligning the immunoglobulin sequence to a library of known V gene segment sequences;
    • (b) identifying a J gene segment comprised in the immunoglobulin sequence by aligning the immunoglobulin sequence to a library of known J gene segment sequences;
    • (c) if V and J gene segments are identified, then comparing the immunoglobulin sequence to a library of known CDR3 regions of T-Cell receptor and/or immunoglobulin sequences to identify any CDR3 region in the immunoglobulin sequence.


Alternatively, step (c) may be if V and J gene segments are identified, then searching the immunoglobulin sequence for flanking invariable anchor sequences to define the intervening T-Cell receptor and/or immunoglobulin CDR3 sequences.


In some embodiments, wherein steps (a) and (b) are performed using the Burrows-Wheeler Alignment or other sequence alignment algorithm.


In some embodiments, wherein if a CDR3 region is identified in step (c), then the method further comprises determining whether the identified V and J gene segments could be rearranged in the same locus using a heuristic approach.


In some embodiments, wherein if a CDR3 region is not identified in step (c), then the method further comprises determining if a combination of V(D)J gene segments is present based on Smith Waterman Alignment scores.


In an aspect, there is provided, a method for characterizing the immune repertoire of a subject, the immune repertoire comprising the subject's T-Cell population, the method comprising any of the hybrid capture methods described herein, any of the algorithmic methods described herein, or any combination thereof.


Any of the methods described herein may be used to capture a population of T-Cell receptor sequences, for immunologically classifying a population of T-Cell receptor sequences or for identifying CDR3 regions in T-Cell receptor.


In an aspect, the methods described herein are for characterizing T-cell clonality for a disease in the subject.


In some embodiments, the T-Cell receptor sequences are from tumour infiltrating lymphocytes.


In an aspect, the methods described herein are for identifying therapeutic tumour infiltrating lymphocytes for the purposes of expansion and reinfusion into a patient and/or adoptive cell transfer immunotherapy.


In an aspect, the methods described herein are for monitoring T-cell populations/turnover in a subject, preferably a subject with cancer during cancer therapy, preferably immunotherapy.


In an aspect, the methods described herein are for characterizing the immune repertoire of a subject, the immune repertoire comprising the subject's B-Cell population.


In an aspect, the methods described herein are for capturing a population of B-Cell receptor sequences with variable regions within a patient sample, for immunologically classifying a population of B-Cell receptor sequences, or for identifying CDR3 regions in B-Cell receptor sequences.


In an aspect, the methods described herein are for characterizing B-cell clonality as a feature of a disease in the subject.


The present methods may be used in subjects who have cancer. Cancers include adrenal cancer, anal cancer, bile duct cancer, bladder cancer, bone cancer, brain/cns tumors, breast cancer, castleman disease, cervical cancer, colon/rectum cancer, endometrial cancer, esophagus cancer, ewing family of tumors, eye cancer, gallbladder cancer, gastrointestinal carcinoid tumors, gastrointestinal stromal tumor (gist), gestational trophoblastic disease, hodgkin disease, kaposi sarcoma, kidney cancer, laryngeal and hypopharyngeal cancer, leukemia (acute lymphocytic, acute myeloid, chronic lymphocytic, chronic myeloid, chronic myelomonocytic), liver cancer, lung cancer (non-small cell, small cell, lung carcinoid tumor), lymphoma, lymphoma of the skin, malignant mesothelioma, multiple myeloma, myelodysplastic syndrome, nasal cavity and paranasal sinus cancer, nasopharyngeal cancer, neuroblastoma, non-hodgkin lymphoma, oral cavity and oropharyngeal cancer, osteosarcoma, ovarian cancer, pancreatic cancer, penile cancer, pituitary tumors, prostate cancer, retinoblastoma, rhabdomyosarcoma, salivary gland cancer, sarcoma—adult soft tissue cancer, skin cancer (basal and squamous cell, melanoma, merkel cell), small intestine cancer, stomach cancer, testicular cancer, thymus cancer, thyroid cancer, uterine sarcoma, vaginal cancer, vulvar cancer, waldenstrom macroglobulinemia, and wilms tumor.


In embodiments relating to T-cells, the subject may have a T-cell related disease, such as a T-cell lymphoma.


T-cell lymphomas are types of lymphoma affecting T cells, and can include peripheral T-cell lymphoma not otherwise specified, extranodal T cell lymphoma, cutaneous T cell lymphoma, including Sézary syndrome and Mycosis fungoides, anaplastic large cell lymphoma, angioimmunoblastic T cell lymphoma, adult T-cell Leukemia/Lymphoma (ATLL), blastic NK-cell Lymphoma, enteropathy-type T-cell lymphoma, hematosplenic gamma-delta T-cell Lymphoma, lymphoblastic Lymphoma, nasal NK/T-cell Lymphomas, treatment-related T-cell lymphomas.


In other embodiments relating to B-cells, the subject may have a B-cell related disease, plasma cell disorder, preferably a B-cell lymphoma.


B-cell are types of lymphoma affecting B cells and can include, diffuse large B-cell lymphoma (DLBCL), follicular lymphoma, marginal zone B-cell lymphoma (MZL) or mucosa-associated lymphatic tissue lymphoma (MALT), small lymphocytic lymphoma (also known as chronic lymphocytic leukemia, CLL), mantle cell lymphoma (MCL), DLBCL variants or sub-types of primary mediastinal (thymic) large B cell lymphoma, T cell/histiocyte-rich large B-cell lymphoma, primary cutaneous diffuse large B-cell lymphoma, leg type (Primary cutaneous DLBCL, leg type), EBV positive diffuse large B-cell lymphoma of the elderly, diffuse large B-cell lymphoma associated with inflammation, Burkitt's lymphoma, lymphoplasmacytic lymphoma, which may manifest as Waldenström's macroglobulinemia, nodal marginal zone B cell lymphoma (NMZL), splenic marginal zone lymphoma (SMZL), intravascular large B-cell lymphoma, primary effusion lymphoma, lymphomatoid granulomatosis, primary central nervous system lymphoma, ALK-positive large B-cell lymphoma, plasmablastic lymphoma, large B-cell lymphoma arising in HHVB-associated multicentric Castleman's disease, B-cell lymphoma, unclassifiable with features intermediate between diffuse large B-cell lymphoma and Burkitt lymphoma, B-cell lymphoma, unclassifiable with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma, AIDS-related lymphoma, classic Hodgkin's lymphoma and nodular lymphocyte predominant Hodgkin's lymphoma.


In an aspect, the methods described herein are for identifying therapeutic B-cells for the purposes of expansion and reinfusion into a patient.


In an aspect, the methods described herein are for monitoring B-cell populations/turnover in a subject, preferably a subject with cancer during cancer therapy, preferably immunotherapy.


In an aspect, the methods described herein are for detecting minimal residual disease, whereby TCR or immunoglobulin rearrangements may be used as a marker of disease.


In an aspect, there is provided a library of probes comprising the depletion probes in Table D or at least one of the V-gene and J-gene probes set forth in any of Tables 2.1, 4, B1, or B2.


In some embodiments, the clonality analyses described herein may be performed serially.


In some embodiments, the clonality analyses described herein may be used to distinguish between samples.


The advantages of the present invention are further illustrated by the following examples. The examples and their particular details set forth herein are presented for illustration only and should not be construed as a limitation on the claims of the present invention.


Example 1

Methods and Materials


Assay Development


Several important theoretical considerations were entertained during the design phase of our novel sequencing-based TRGR assay (heretofore referred to as the NTRA).


Unlike the current BIOMED approach, we wished to avoid a gene-specific primer-based approach to signal amplification. To accomplish this, we chose a “hybrid capture” target enrichment approach by which input genomic DNA containing the TR genes might be enriched (or “captured”) relative to other segments of the genome. Several methodological approaches to target enrichment already exist, with multiple commercially available and rigorously optimized kits capable of enriching nearly any well-defined gene target(s)(47-48).


The NTRA needed to be robust enough to accommodate sample types of variable DNA quality; this requirement reflects the clinical need to apply TRGR assays to a wide variety of specimens in a wide variety of contexts. Knowing that Formalin-fixed paraffin-embedded (FFPE) specimens typically contain degraded and often poor quality DNA (as such representing the “lowest common denominator” of specimen quality)(49), it was deemed necessary to specifically evaluate NTRA performance on FFPE specimens. Furthermore, the use of hybrid capture is also amenable to highly fragmented DNA specimens such as those from circulating cell-free DNA.


Likewise, the most useful NTRA should allow users to both accurately assess the “clonality” of an input sample (as can be done using BIOMED-2 based assays) but also fully characterize the clonotypes of constituent TRGR configurations. Thus it was essential that the NTRA not simply produce a binary “clonal” vs. “polyclonal” result but also provide a much more robust and quantitative data output, including the genes and CDR3 regions present within identified TRGR configurations.


We recognized that much of the utility of the NTRA would depend on the design of a robust bioinformatic analysis pipeline. Of note, at the time at which this project was undertaken, only a single widely-used pipeline existed (the International standard source for ImMunoGeneTics sequences & metadata (IMGT) V-QUEST system), mainly designed around 5′RACE PCR followed by Roche 454 sequencing(51). As outlined below, several methodological and logistic motivations demanded a novel pipeline of our own design.


Current sequencing-based applications generally require that resultant sequence data (i.e. reads) be mapped to a reference (typically the genome of the organism of interest) using some form of alignment algorithm. Once this alignment is complete, secondary and tertiary tools are used to search for and catalogue sequence deviation from the reference. For our purposes, however, using the entire human genome as a reference map would be unnecessarily cumbersome, especially since the presence of closely juxtaposed V(D)J sequence within a single short (i.e. <500 basepairs (bp)) fragment of DNA is tantamount to evidence of TRGR. Furthermore, aligning to a single reference genome raises the informatics challenge of detecting gene rearrangements from a single alignment step. As such, a strategy of mapping sequence reads to only the reference genes in a parallel fashion (i.e. one mapping procedure to the V genes, and one separate mapping procedure to the J genes) was selected, along with an integrated TRGR detection algorithm


This strategy required the theoretical consideration that short sequence read input might result in excessive false negatives (i.e. artificially low TRGR detection rates). This problem might be mitigated, in theory at least, by ensuring that input DNA fragment lengths (and the resulting sequencing read lengths) are carefully set to within a reasonable range of sensitivity for the detection of TRGR in a given sequence. Since all possible TRGRs are combinatorially vast, this process could only be simulated using, for our purposes, an artificial test set of simply-concatenated sequences of all catalogued V, D, and J genes (a test set numbering 197400). By evaluating k-mer subsequences over a range of lengths (k), centred (without loss of generality) about the median of each artificial junction, an estimate of the sensitivity of TRGR detection for variable sequencing windows can be produced. This sequencing window can then be used as an “evidence-based” DNA insert length.


Insert Length Simulation


Appendix 2.0 outlines a MATLAB script designed to estimate the optimal DNA insert length (a value also generalizable to optimal shearing length and minimal Paired-end rEAd mergeR (PEAR)-assembled sequencing length) for the purposes of the NTRA. This optimum is subject to an important restriction: for our purposes, using the Illumina NEXTSEQ platform, read lengths are limited to paired-ended reads of 150 bp each—this translates to <300 bp read lengths when paired-ends are joined by overlapping sequence (using, in our case, the PEAR algorithm(52)). Briefly, the code produces a simulation read set of all possible combinations of V-D-J sequences by way of simple concatenation (with the caveat that a much larger diversity of sequence is found in nature stemming from alterations of junctional sequence by way of splicing inconsistencies); next, the algorithm selects a k-mer (of length from k=32 to 302, in intervals of 30 bp) from within each simulation sequence; the resulting k-mer (centred, without loss of generality, at the junction median) is then subject to Burrows-Wheeler Alignment algorithm (BWA) alignment against the known reference V and J genes (as in the TRSeq pipeline) to evaluate how well the k-mers of each of the artificial reads can be mapped to both V and J genes (representing bioinformatic identification of TRGR within the sequence in question). A histogram of percent detection vs. read length was then produced; analysis of those artificial V-D-J read combinations that could be reliably detected was also performed.


DNA Probe Design


We began by reviewing the sequence and metadata of all reference TR genes obtained by way of a (FASTA-formatted) data download from the IMGT database. All sequences were subjected to a series of Clustal W(53) alignment analyses to verify that sequence alignment was limited to known reference motifs (i.e. the J-gene F/W-G-X-G motif and V-gene conserved Cysteine(54)) and to allele-to-allele overlap.


DNA probe design was then performed using the IMGT reference sequences (including all annotated V and J gene functional, pseudogene and open reading frame sequences) using the XGEN LOCKDOWN probe technology. Briefly, this technology is a hybrid-capture-based technology by which biotin-tagged DNA probes (complementary to known sequences/genomic regions set at a 1×depth of coverage) are allowed to hybridize with sample DNA, followed by a streptavidin elution procedure performed to enrich the target sequences(40-43).


In line with previous studies employing XGEN LOCKDOWN probes(40), each DNA probe was designed to a length as close to 100 bp as possible. Using the IMGT database, germline-configuration sequences were extracted for all alleles of all J-genes, with additional leading and trailing IMGT nucleotides added (as necessary) to obtain 100 bp probe lengths; for those instances in which the IMGT data was insufficient to prepare 100 bp probes, additional random nucleotides were added to the leading and trailing ends of the available sequences. Again using the IMGT database, germline-configuration sequences were extracted for all alleles of all V-genes, with additional leading and trailing IMGT nucleotides added to ensure that the 5′ and 3′ ends of the germline-configuration genes were covered by a given probe (this design, it was theorized, would be able to account for gene re-arrangement at either end of a V-gene, regardless of strandedness, while still covering the vast majority of the sequence of each gene/allele). With careful placement of the probes as outlined above, we hoped that this design would also limit any specific stoichiometric bias among the V-genes represented in the target pool.


Table 2.1 outlines the complete list of XGEN LOCKDOWN probe design sequences (with relevant associated metadata).


NTRA Work-Flow


The NTRA work-flow is summarized in FIGS. 1 and 3. Briefly, the process begins with DNA isolation, performed for the purposes of this study according to the protocol of Appendix 2.1. Isolated DNA was retrieved from frozen archives and quantified using the QUBIT assay, per Appendix 2.2. Input DNA was shorn using a Covaris sonicator (Appendix 2.3) set to a desired mean DNA length of 200 base pairs; adequate shearing was confirmed using TAPESTATION assessment. Sequence libraries for each specimen were prepared using the protocol outlined in Appendix 2.4; multiplexing was accommodated using either TRUSEQ or NEXTFLEX-96 indices (the latter employed in the final validation run to permit large-scale multiplexing). Library preparation results were validated relative to input short DNA using TAPESTATION assessment. Subsequently, hybrid-capture with the above described XGEN LOCKDOWN probes was performed; captures were performed in pools of 9-13 input libraries, based on a pre-calculated balance of input DNA. The captured library fragments were then repeat-amplified, followed by final QUBIT and TAPESTATION QC-steps. Finally, paired-end 150-bp sequencing was performed on the Illumina NEXTSEQ platform using either a mid- or high-output kit (depending on sample throughput), according to the manufacturer's instructions (Appendix 2.5). The resulting read-pair zipped FASTQ-formatted data files were de-compressed and merged using the publically available PEAR alignment algorithm using a minimum of 25 bp overlap; this allowed the 150-bp sequencing maximum to be expanded to at least 200 bp, as suggest by the results of Section 2.1.2. Non-paired results were also tallied as a means of quality assurance. Subsequent analyses were performed using the custom-designed TRSeq analysis pipeline, as described below.


NTRA Data Analysis: The TRSeq Pipeline


The NTRA TRSeq pipeline was designed around three main algorithmic steps. The first performs local alignment indexed to the TR V and J genes implemented using the Burrows-Wheeler-Alignment (BWA) algorithm(55). From this algorithm, two important results are obtained: the first is a “reads-on-target” estimate (since the genes enriched for (i.e. the TR V and J genes) are those genes used as the index reference gene set); second, by way of the resulting Sequence Alignment Map (SAM) file output, the original input reads are filtered to exclude those unlikely to contain any of the TR V or J genes. This latter step reduces the informatic burden of input to the (relatively computationally slow) second algorithm step (using either heuristics or the Smith-Waterman Alignment (SWA)). Of note, the BWA algorithm could be implemented on a UNIX-based platform only(55).


The second algorithm step is designed to extract CDR3 sequences wherever present. This algorithm was implemented in MATLAB, guided by previous publications(56), and using a regular-expression (regexp) based search algorithm.


The third step combined the above alignment and CDR3 data (where present), to decide whether a given read contains a TRGR. To do this, one of two decision approaches is used: if a CDR3 is identified in a read, a heuristic approach is employed to decide if the BWA-alignment reference genes could be rearranged within the same locus; the second, in the event that a CDR3 is not detected, relies on the SWA-determined alignment scores to determine if a given combination of V(D)J genes is present.


Bioinformatic Target Enrichment (Burrows-Wheeler-Alignment Algorithm)


Much like the technical aspects of the NTRA function to enrich TR genes at the DNA level, so too can an informatics target-enrichment approach be employed. Using the BWA algorithm(55), a series of FASTQ-formatted reads are first mapped relative to a reference index of IMGT TR V and J genes. Any reads containing sequence mapping to any of the reference genes are flagged as such in the SAM-formatted output file as mapped, whereas those not containing any TR V or J gene mapped sequence are assigned the SAM Flag 4. In this context, unmapped reads are unlikely to contain any detectable TR V(D)J gene rearrangements; this predicate is logical inasmuch as sufficient residual germline sequence of a TR V and/or J gene are required in a read to permit TRGR detection.


Reads-on-target and gene-coverage estimates are also derived using the BWA algorithm, since NTRA input probes consist only of TR V and J genes; this measure is calculated as a percentage of the number of unique reads mapped to the IMGT reference TR V and J gene indices relative to the total number of reads in the input FASTQ-formatted file.


CDR3 Sequence Extraction and SWA Alignment


This part of the TRSeq algorithm was implemented in MATLAB using strategies similar to those employed by the IMGT56-58). The IMGTN-QUEST system utilizes a CDR3 sequence extraction algorithm(57,59) and an SWA(60) algorithm performed against the IMGT reference sequences; the IMGT algorithms are all implemented in JAVA and processing is performed on IMGT servers.


As highlighted previously, we were unable to rely solely on the IMGT system for informatics results for several reasons: (1) the export of patient sequence data to an external non-secured network can be risky if insufficiently censored identifying metadata are also included; (2) the IMGT/High V-Quest system has a 500,000 sequence input limit (which may be substantially less than the number of sequence reads that need to be analyzed in the run of even a single high-throughput sequencing run); and (3) the queueing used by the IMGT can be lengthy, requiring a wait of possibly several days for sequence interpretation to begin.


A MATLAB implementation was chosen for convenience, programming familiarity, and because of easy vectorization, parallel computation and object-oriented programming capabilities. In addition, the MATLAB programming and command-line environments are able to easily incorporate UNIX and PERL-based scripts, including the BWA(Li, 2009) and CIRCOS software(61) suites, respectively.


The full coding of the analysis algorithm is presented in Appendix 2.6.2. The MATLAB code was written to accommodate FASTQ-formatted data, align each read using BWA to the reference TR V and J gene germline sequences, index the resultant data, test each indexed read for (and extract if present) a CDR3 sequence (using the uniformly present C-X(5 . . . 21)-F/W-G-X-G amino acid motif, per the IMGT canonical sequence motif(62,63)), and perform either an heuristic or SWA alignment-based validation of the reads mapped by BWA as evidence of a rearrangement within the read in question.


The SWA algorithm produces an optimal local alignment(60,64) of two co-input sequences (in this case, a query sequence relative to an IMGT reference sequence), and provides an alignment score (a unit-less measure of the degree to which the alignment perfectly matches an input sequence to its co-input sequence). For the purpose of this instance of the algorithm, for any case in which multiple possible alignments were produced, the alphabetical highest-scoring alignment was selected as the “correct” alignment, provided that this score was at least greater than the minimum cut-off score.


The minimum SWA alignment cut-off score was empirically determined for each of the three V, D, and J-gene gene groups using a large set of confirmed-negative sequences evaluated using the IMGT/HighV-QUEST system(56,57). The MATLAB code required for implementation of this algorithm is outlined in Appendix 2.6.1. A “practice” set obtained from the IMGT database(65,66) was also employed to test the pipeline, consisting of IMGT PCR-confirmed TRGR sequences with known V-D-J combinations and CDR3 sequences (see Section 3.1.3 for results of this practice set analysis).


Analytical Validation


A selection of 10 “First-Run” samples formed the basis of the analytical validation. These samples included 6 de-identified actual patient samples, obtained from flow-sorted peripheral blood specimens, tumour-infiltrating lymphocyte populations or in vitro cultures of lymphocytes. These samples were each subjected to flow-cytometric evaluation and cell-counting for basic immunophenotyping and cell-input consistency. In addition, four cell lines with known and well-described TR gene rearrangements (based on references cited by the IMGT database(67)) were also included (i.e. Jurkat (Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) ACC-282), SUPT1 (American Type Culture Collection (ATCC) CRL-1942), CEM (ATCC CCL-119) and MOLT4 (ATCC CRL-1582)).


A three-part analytical validation approach was employed. First, the results obtainable by analysis of the sequencing data using the IMGT/High V-Quest pipeline were directly compared with the results of the TRSeq pipeline. Next, a PCR & Gel Electrophoresis experiment was designed to confirm the presence of the upper 90th centile of rearrangement configurations. Finally, the predominant rearrangements with accompanying TRSeq-identified CDR3 sequences were further Sanger-sequenced to validate this latter component of the NTRA analysis.


Comparison with IMGT Results


Given the limited input size capacity of the IMGT/High V-Quest system, a read-by-read comparison of a 10% random subset of the NTRA sequencing data was performed. From the IMGT analysis, a read was assumed to contain evidence of a rearrangement when the IMGT pipeline Junction analysis yielded an in-frame result. In addition, a read-by-read comparison of the alignment results (by gene name, for all V, D and J genes) was also performed.


PCR & Gel Electrophoresis Validation


A PCR-based experiment was deemed a reasonable orthogonal validation approach, given the gold standard BIOMED-2 assay methodology. Knowing that the number of possible rearrangements detected by the NTRA might be substantially large, the PCR validation was arbitrarily limited to those TRSeq-detected rearrangements in the upper 90th centile (i.e. percent rearrangement of greater than 10% of total rearrangements). Given this restriction, however, to ensure an adequate denominator of reactions for comparative purposes, all PCR validation experiments were uniformly performed across all 10 first-run samples.


PCR validation primer sets were constructed modeling the standard V-D-J orientation of rearranged TR genes; specifically, the PCR forward primer was set in the V gene and the reverse primer set in the anti-sense strand of the J gene. For each TRSeq-identified rearrangement above 10% of total rearrangements, the V and J genes were identified and the IMGT primer set database searched for gene (not allele) specific primers. While the IMGT primer database did contain a number of suggested primers, many of the TR genes did not have an available appertaining primer. As a result, where necessary, the anticipated rearrangement sequence (containing the V gene sequence artificially positioned before the J gene) was used to derive custom primers using the NCBI Primer-Blast tool(68). Careful attention was paid to ensure that each resulting theoretical PCR product length was at least 100 bp (the lower limit of fragment size reliably detectable by standard gel electrophoresis) and that a sufficient amount of the anticipated CDR3 region sequence would be preserved in the PCR product. In addition, the theoretical product length was recorded as an approximate size reference for analysis of the resulting electrophoresis migration patterns.


All putative primer pairs were then re-submitted to Primer-Blast M to assess for the possibility of non-specific products; the final set of putative primers pairs was also evaluated using the UCSC in silico PCR algorithm6) to confirm that no germline configuration products of less than 4 kb might be produced. Primer set physicochemical characteristics were evaluated using the IDT OligoAnalyzer Tool (v 3.1); Clustal W(55) alignments were used to identify significant primer sequence overlaps (Clustal W alignments note significant overlap of the TRGJ1 and TRGJ2 primers. This overlap was considered acceptable in order to define which of the TRGJ1 and TRGJ2 genes were present (given the presence of 5′ end non-homology). Since the PCR/electrophoresis results suggested the presence of both TRGJ1 and TRGJ2 positive products, the dominant TRGJ1 primer was selected for subsequent analyses and the TRGJ2 results excluded). The final primer-set sequences are listed in Table 2.2.


Custom primer set production was performed commercially by IDT and the forward and reverse primers were then mixed according to the design outlined in Appendix 2.7.2. PCR was performed in a 384-well plate on an Applied Biosystems VERITI thermal cycler using the Thermo Scientific 2×REDDYMIX PCR Master Mix kit according to the manufacturer's instructions; several control reactions were included, as highlighted in Appendix 2.7.2. Gel electrophoresis was performed in a 96-well Bio-Rad SUB-CELL Agarose Gel Electrophoresis System (necessitating 4 separate runs); electrophoretic migration was referenced against an Invitrogen TRACKIT 1 kb DNA ladder and visualized using ethidium bromide fluorescence, photographed in an ALPHAIMAGER Gel Imaging System. Electropherograms were digitally rendered, adjusted and composited using ADOBE PHOTOSHOP CC 2014. The resulting electrophoretic results were used in Receiver-Operating Characteristic (ROC) curve analyses relative to the corresponding TRSeq normalized read counts.


Sanger Sequencing Validadon


Based on the results of the above PCR & Gel Electrophoresis experiment, rearrangement-positive PCR products were purified using a QIAQUICK Spin PCR purification kit (100 bp to 1 kb range) according to the manufacturer's instructions (Appendix 2.7.3). Purified PCR products were then quantified by QUBIT and 20 ng equivalent aliquots were taken (with an additional volume reduction step using a SPEEDVAC, as required, for large volumes). The corresponding primer of the original primer pair with the lowest melting point was then selected for the purposes of single-direction Sanger Sequencing (performed at the TCGA Sick Kids Hospital Sequencing Facility).


The resulting sequencing results were analyzed using the FinchTV v 1.4 software suite, with corrections to sequencing error and reverse-complement sequence corrections performed manually as required. The originating TRSeq CDR3 sequences were then compared to the “reference” Sanger Sequence result. This comparison was performed in two ways: first, a basic multi-alignment comparison was performed (using the multialign algorithm of the MATLAB Bioinformatics Toolbox); second, a k-mer based PHRED-quality adjusted comparison was performed.


For the k-mer based approach, for a given V and J gene configuration, the most frequently detected TRSeq CDR3 sequences were aligned to the corresponding Sanger Sequencing result. In this context the Sanger Sequencing results were taken to represent a “consensus” of sequence data produced over all possible V and J configuration CDR3 sequences for that V-J gene configuration (reflecting the possibility of variable TRGR subclones). As such, in order to adjust the Sanger sequencing results to account for the potential alignment of a non-dominant subclone, a quality-based alignment algorithm was employed, based on the methods of(70). Each input TRSeq CDR3 sequence was aligned along a progressive series of k-mers of the Sanger sequence using a custom quality-based alignment algorithm (code outlined in Appendix 2.8). For each alignment result, if the optimal alignment score occurred within the expected sequencing region (thereby representing an optimal alignment within a region of Sanger sequence expected to contain the actual CDR3 based on flanking primer sets), as outlined in Table 3.1A, the CDR3 sequence was classified as correct (and vice-versa). This classification was then used to perform ROC analysis to determine what number of TRSeq CDR3 sequence read counts might be considered a validated cut-off.


Coverage Analysis


In addition to the above validation results, more detailed assessment of NTRA technical performance was also performed. Specifically, given that the NTRA relies on target enrichment, an assessment of the gene coverage of the NTRA was required. In addition, given that much of the utility of the NTRA might relate to identifying clonal cell populations, it was necessary to assess the dynamic sensitivity of the NTRA to decreasing numbers of cells bearing specific TR gene rearrangement configurations and, conversely, assess how standardized read counts might correlate with approximate input cell numbers.


Coverage Dynamics by Specimen Clonality


Given the nature of TRGR, by which genomic components are excised upon rearrangement, we evaluated the coverage dynamics across the first-run specimens. This analysis served not only as a mean of qualitatively comparing how V and J gene coverage might be expected to vary in specific types of specimens, but also to evaluate which coverage metrics might be most predictive of specimen type (i.e. clonal vs not) and what specific cut-off criteria might be used to this effect. To do this, ROC-based analyses of mean overall and locus-specific coverage data for V and J genes was performed, as well as percent genes at least 100×for each of V and J gene types.


Negative Control Coverage Assessment


For the purposes of this project, a fully germline TR gene configuration was approximated using a cell lines of embryonic origin and a cell line that has been fully sequenced without any known/reported TR gene derangements. The former scenario was approximated using the HEK293 cell line (an embryonic kidney cell line; ATCC CRL-1573) and the latter using a Coriell cell line (whose genome has been well-characterized and is not known to contain TR rearrangements). Use of the latter cell line was incorporated given that, in our hands, this cell line had been previously and purposefully degraded by FFPE treatment, representing a scenario of TR gene coverage assessment in the context of degraded DNA.


Total genomic DNA was extracted from previously cultured HEK293 cells and FFPE treated Coriell cell cultures and subsequently subjected to the NTRA, as outlined in Appendices 2.1 to 2.5. Standard TRSeq analyses were performed for each sample, with special deference paid to the coverage results.


Dilution Series


A rigorous dilution series experiment, in the context of this project, might involve a flow-sort spike of cells with a known TR gene configuration into a population previously determined to be “polyclonal”; this might be approximated, for example, using a well-characterized cell line spiked into a population of lymphocytes obtained from normal blood. Rather than undertaking this more complex and expensive approach, an approximation of this dilution experiment was undertaken with DNA obtained from the Jurkat cell line spiked into a known-polyclonal lymphocyte population DNA isolate (the A037 sample; see Results section 3.2). Specifically, Jurkat DNA was spiked in at log-decrements (as outlined in Table 2.3) based on a lymphocyte total DNA complement assumed to be 0.7 pg, given the results of previous publications(71-73). The total DNA of each sample in the dilution series was verified (and compared to expected values) using a QUBIT assay; the samples were then subjected to the NTRA, as outlined in Appendices 2.1 to 2.5. Standard TRSeq analyses were performed, with special deference to changes in the raw read counts of Jurkat-specific TRGR configurations across the dilution series.


Alternative Method and Algorithm


Hybrid-Capture Protocol


For T cell receptor (TCR) diversity and clonality analyses we investigated genomic DNA isolated from flow sorted T cells isolated by affinity magnetic bead isolation, peripheral blood mononuclear cells (PBMC) isolated from blood by density gradient separation, cell-free plasma DNA extracted from blood, or scraped and pelleted immortalized cell lines.


Isolated DNA is sheared to ˜275 bp fragments by sonication in 130 uL volumes (Covaris). DNA libraries are generated for illumina platform sequencing from 100-1000 ng of sheared DNA by ligation of sequencing library adaptors (NEXTFLEX) using the KAPA library preparation kit with standard conditions. Libraries are visually assessed (Agilent TAPESTATION) and quantified (QUBIT) for quality.


Hybridization with probes specifically targeting the V and J genes is performed under standard SEQCAP (Roche) conditions with XGEN blocking oligos (IDT) and human cot-1 blocking DNA (Invitrogen). Hybridization is performed either at 65 C overnight. The target capture panel consists of 598 probes (IDT) targeting the 3′ and 5′ 100 bp of all TCR V gene regions, and 95 probes targeting the 5′ 100 bp of all TCR J gene regions as annotated by IMGT (four loci, 1.8 Mb, total targeted 36 kb). Hybridization and capture can be performed as a single step with a combined V/J panel, as a single step with only the V panel, or as a three step process when non-rearranged fragment depletion is desired consisting of a V capture, then depletion, then J capture.


For depletion of non-rearranged fragments 500 ng-1000 ng of library is depleted by hybridization with a panel of 137 probes (IDT) targeting the 5′ 120 bp of selected TCR V gene region 3′ untranslated regions as annotated by IMGT (four loci, 1.8 Mb, total targeted 16.5 kb) and 131 probes (IDT) targeting the 5′ 120 bp of selected Ig V gene region 3′ untranslated regions as annotated by IMGT (three loci, 3.1 Mb, total targeted 15.7 kb). A modified and truncated SEQCAP protocol is employed wherein following incubation with M-270 streptavidin linked magnetic beads (Invitrogen), the hybridization reaction is diluted with wash buffer I, beads are discarded and the supernatant is cleaned up by standard Agencourt AMPURE XP SPRI bead purification (Beckman).


Algorithm


A custom Bash/Python/R pipeline is employed for analysis of paired read sequencing data generated by Illumina NEXTSEQ 2500 instrument from the hybrid-capture products. Referring to FIG. 5, this pipeline consists of four major steps: (1) Merging of the paired reads; (2) Identification of specific V, J, and D genes within the fragment sequence; (3) identification of the V/J junction position as well as the antigen specificity determining Complementarity Determining Region 3 (CDR3) sequence at this site; (4) Calculation and visualization of capture efficiency and clone frequency within and across individual samples.


(1) 150 bp paired-end reads are merged using PEAR 0.9.6 with a 25 bp overlap parameter. This results in an approximate 275 bp sequence for each fragment and enhances the sensitivity of V,J,D gene detection using the subsequent search strategies.


(2) Individual BLAST databases are created using all annotated V, D, J gene segments from IMGT. These full-length gene sequences are the targets of the hybrid-capture probe panel. Individual merged reads are iteratively aligned using BLASTn with an e value cut-off of 1 to the V database, J database then D database with word size of 5 for D segment queries. Trimming of identified V or J segments in the query sequence is performed prior to subsequent alignment to reduce false positives and increase specificity, particularly for the D gene query.


(3) In order to identify CDR3 sequences, the V/J junction position is extracted from the previous search data for those fragments containing both a V and J search result. 80 bp of DNA sequence flanking this junction is translated to amino acid sequence in all six open reading frames and sequences lacking stop codons are searched for invariable anchor residues using regular expressions specific for each TCR class as determined by sequence alignments of polyclonal hybrid-captured data from a healthy patient as well as TCR polypeptides annotated by IMGT.


(4) Calculation of capture efficiency (on-target/off-target capture ratio) is performed by aligning all recovered, merged reads to the human genome (BWA) and dividing the number of reads aligning to the TCR loci by the total number of reads. The total number of unique TCR clones is determined by finding the unique minimum set of V/J combinations and the number of occurrences of each is tabulated. This data is visualized using R as stacked bar charts to generate figures that can be quickly visually assessed on a sample-by-sample basis for monoclonal or polyclonal signatures or clinically relevant enrichment of particular clones.


Application of the Algorithm to Existing Sequencing Data


The custom pipeline is not dependent on our hybrid-capture protocol and can be performed on non-target captured whole genome or RNA-seq data. In this situation, an in silico capture is performed by extracting reads aligning to the four TCR loci (7:38250000-38450000, 7:141950000-142550000, 14:22000000-23100000) or Ig loci (chr2:89,100,000-90,350,000, chr14:106,400,000-107,300,000, chr22:22,350,000-23,300,000) from DNA (BWA) or RNA (STAR) sequence data (SamTools), followed by paired-end nucleotide sequencing data extraction (PicardTools). These reads are then inserted in to the previously described computational pipeline.


Results and Discussion


Informatics


Insert Length Simulation


The DNA Insert Length Simulation results were generated (data not shown). The analysis suggested a plateau of sensitivity of greater than 99.1% reached after 182 bp. For convenience, an adequately “evidence-based” insert length and informatics read length goal of 200 bp was chosen for the NTRA.


After further analysis excluded extra-locus V-D-J gene combinations (i.e. combinations not likely to result from rearrangements within the same TR locus), the number of missed combinations was reduced from 1752 to 80.


From among the above 80 intra-locus combinations, missed rearrangements originated only from among the TRB and TRG loci, with particular enrichment of TRBV6-2*01 and TRBV6-3*01 within the former (65 of 80) and enrichment of the TRGJ1*02 within the latter (15 of 80).


Analysis by phylogenetic sequence alignment (using the SWA alignment algorithm) within the TRBV6 group showed significant cophenetic linkage between the TRBV6-2*01 and TRBV6-3*01 genes (data not shown). Similarly, analysis by phylogenetic sequence alignment within the TRGJ gene group suggested significant cophenetic linkage between TRGJ1*02 and TRGJ2*01 (data not shown). These results suggest that combinations within the artificial read set involving either of these TRBV genes were likely misaligned to another TRBV gene (likely the next closest cophenetic “cousin,” TRBV6-2*02) and that the TRGJ1*02 gene was likely misaligned to the TRGJ1*01 gene. Of note, the observation of closer cophenetic linkage between TRBV6-2*01 and TRBV6-3*01 rather than between TRBV6-2*01 and TRBV6-2*02 (as would be expected for two alleles of the same TR gene) and of closer cophenetic linkage between TRGJ1*02 and TRGJ2*01 rather than between TRGJ1*01 and TRGJ1*02, suggests error on the part of the IMGT classification.


MATLAB SWA Score Cut-Off Determination


The results of the empirical V, D and J-gene MATLAB alignment score cut-off score experiment were generated (data not shown). This experiment employed the code presented in Appendix 2.6.1 run on a test set of 91375 Illumina sequencing reads obtained from anonymized myeloid leukemia samples enriched for sequences outside of the IG/TR loci. These sequences were “confirmed” negative for V, D, and J gene sequences using the IMGT/High V-QUEST system (Brochet et al., 2008; Giudicelli et al., 2011). Given an experimental number of sequencing reads of at least 1 million, a 6-sigma cut-off score for MATLAB TRSeq analysis suggests 53.23 for the V genes; 19.02 for the D genes; and 34.43 for the J genes. It is easily observed that the cut-off values increase respectively from D, to J, to V genes; this observation parallels the mean length of the reference sequences from D to J to V genes.


TRSeq Analysis of IMGT-Produced TRGR Sample Sequence Reads


A sample of 268 short read sequences was downloaded from the IMGT website. These sequences consist of a variety of previously characterized TR and IG gene rearrangements available for download in FASTA format. After re-formatting into FASTQ format (using arbitrary quality scores), the dataset was analyzed using the TRSeq pipeline. Of the 268 short read sequences, 55 were identified by the IMGT as containing TR genes (either V or J genes); to these reads, there was perfect (100%) TRSeq alignment concordance, both in relation to gene name and allele. The TRSeq algorithm identified 50 of the 55 reads as containing evidence of TRGR; the 5 remaining reads were identified by the IMGT as containing rearrangements within the TRD locus, each with a TRSeq CDR3 region correctly identified. These results suggest that the 5 TRSeq “false-negatives” were informatically rejected by the TRSeq algorithm based on insufficient TRD D-gene SWA alignment score values; this form of error is not alarming given the more stringent means by which the TRSeq SWA alignment score cut-off values were determined relative to the IMGT/High V-QUEST pipeline(55,58).


First-Run Results Summary


Table 2.5 outlines the flow-cytometric features of the 6 patient lymphocyte samples. These immunophenotypic features were in keeping with the lymphocyte sample sources of origin (also documented in Table 2.5), varying from normal patient peripheral blood mononuclear cells to highly immune-sensitized lymphocyte cultures from tumour infiltrating lymphocyte specimens. Notably, the A037 sample served as a model of a “polyclonal” lymphocyte population whereas, for the purposes of qualitative assessment at least, the L2D8 sample could be immunophenotypically interpreted as highly “clonal” in nature.


In addition, model “clonal” samples were included, consisting of the Jurkat, CEM, SUPT1 and MOLT4 cell lines. Table 2.6 lists the previously documented rearrangements, as cited in the IMGT database(67).


Prior to target enrichment and sequencing, adequate quality control was assured, as documented by pre and post-library preparation TAPESTATION tracings (data not shown). Post-target enrichment quality control was assured in the same manner.


Illumina NEXTSEQ sequencing was then performed on TAPESTATION-normalized pooled input target-enriched DNA. The appertaining read-pair FASTQ-formatted zipped files were decompressed and the PEAR paired-end merging algorithm was run with a minimum strand sequence overlap of 25 bp. A breakdown of the PEAR results were generated (data not shown). The resulting PEAR-merged FASTQ-formatted read files were input to the TRSeq pipeline.


TRSeq metadata for the first-run sample series were generated (data not shown), including input reads, reads-on-target, summary coverage statistics, and a histogram of read counts for the proportion of each locus contributing to identified TRGR's, respectively.


One important highlight is the variation in coverage seen across the 10 specimens relating to the D locus. As described in the introduction, since the D locus genes are sandwiched within the larger A locus, the D locus genes are often deleted upon A locus rearrangement. The coverage profiles of the D locus therefore paralleled this phenomenon with lower D locus coverage identified in the clearly clonal or oligoclonal samples relative to the polyclonal samples (e.g. 1.2D8 and cell line samples vs. A037 peripheral blood sample).


Composites of the circos plots obtained from the 10 first-run samples were generated (data not shown). Much as the coverage profiles differed across the samples (data not shown), the resulting circos plots demonstrated a clear aesthetic difference from polyclonal to clonal/oligoclonal samples, with emphasis on the number and relative width of the composite circos links (i.e. fewer and broader in width in the more clonal cases and vice versa). Also of note, the color distributions were distinctly different with the more polyclonal cases, containing a larger number of smaller-quantity “subclones” involving a more disparate number of TR genes.


Analytical Validation


IMGT/High V-Quest Comparison


Comparison of the IMGT/High V-Quest pipeline analysis to the TRSeq results were generated (data not shown). The degree of concordance of read-to-read interpretation with respect to identifiable rearrangements (as present or not identified) is excellent (99%), as is the degree of concordance of named D genes (99%). A lower degree of concordance is noted for named V and J genes (68% and 84%, respectively). These results may relate to different initial alignment algorithms employed, as well as different gene-identity cut-off values employed in the SWA algorithms of the IMGT/High V-Quest and TRSeq pipelines. In light of the results seen in Section 3.1.1, the possibility of V and J gene phylogenetic sequence misclassification in the publically-available IMGT sequence databases should also be considered as a possible contributing factor.


The high D-gene concordance relative to the V and J-gene values may relate to both the shorter reference sequences of the D-genes relative to the V and J genes, as well as the lower number of reference D-genes available for rearrangement. It is important to point out the possibility of a theoretical bias against D-gene identification in input reads, given that TRGR reads containing D-genes require 3 rather than 2 composite genes, which could be more difficult to detect in the context of restricted average read lengths. This consideration was brought to bear during the NTRA assay design phase (as described in Section 3.1.1), with the conclusion that adequate flanking 5′ and 3′ sequence would be available on average in the scenario of read input length of 200 bp or more to reliably identify reads containing V-D-J rearrangements.


PCR & Gel Electrophoresis


PCR primers were mixed and the results by Agarose gel electrophoresis were generated (data not shown). Note that results obtained from PCR reactions using the TRGJ2 reverse primer are excluded, as noted in Section 2.2.2. Two classification approaches may then be entertained, one based on dark-staining PCR bands only, and the other based on any staining (assuming bands to be of appropriate molecular weights, as set out in Table 3.1A). When these classifiers are compared with the read-count-normalized results of the TRSeq algorithm (as set out in Table 3.1A), the ROC curves of are obtained, respectively (data not shown). In the former scenario, the ROC Area-Under-the-Curve (AUC)=0.91 and p-value <0.001, with a TRSeq normalized read count of 6.7 or more. Based on the results, a less stringent classification results in a reduced AUC=0.71 and p-value <0.001, with a TRSeq normalized read count of 1.7 or more.


Sanger Sequencing Results


PCR reactions that were post-PCR purified were submitted for Sanger Sequencing. Alignment of each corresponding TRSeq CDR3 sequence (and associated raw read count) in relation to the manually-verified/corrected Sanger Sequencing Result were generated (data not shown); only those Sanger Sequencing specimens containing TRSeq-identified CDR3 regions, those of sufficient quality for interpretation, and those not rejected based on use of the TRGJ2 reverse primer were further considered.


There appears to be a trend for each distinct primer configuration inasmuch as TRSeq-identified CDR3 sequence configurations having sufficient associated read counts (data not shown), as suggested from Section 3.3.2, show the best contiguous alignments to the corresponding “reference” Sanger Sequences.


To better quantify this relationship, we utilized a k-mer based quality-score adjusted alignment analysis. For each relevant primer configuration, the corresponding CDR3 was aligned using PHRED-based quality-score adjustment across the length of the Sanger “reference” sequence. If the optimal alignment from this process was present within the sequence window in which a CDR3 was theoretically predicted to exist, the CDR3 read configuration was classified as “compatible.” The resulting classification analysis is represented by the ROC curve (AUC=0.832, p-value=0.006) (data not shown). Based on this analysis, the optimal TRSeq normalized read count cut-off is 4.9.


Coverage Analysis


Coverage Dynamics by Specimen Clonality


Using the qualitative data of Table 2.5, specimens were classified as either “clonal” or “polyclonal.” The resulting ROC curves for the various coverage metrics were prepared (data not shown). Of note, a mean V-gene coverage assessment of the gamma locus appeared to suggest the highest non-unity AUC. Further, the ROC analysis suggested that a mean V-gene coverage of greater than/equal to 4366.4 showed optimal sensitivity and specificity (86% and 67%, respectively) for predicting whether a specimen was unlikely to be clonal. Care should be taken not to use these cut-off points without additional validation, however, given the low number of data points constituting the analysis. Rather, these data stand to suggest a need for further evaluation of the potential predictability of “clonal” status derived from coverage analysis within the gamma locus.


Negative Control Coverage Assessment


The NTRA was tested on samples of previously cultured HEK293 and Coriell cell lines; these analyses aimed mainly at estimating coverage ceilings for the NTRA, but also served as added negative control specimens (i.e. specimens known or expected not to contain any TRGRs).


Applying the PEAR algorithm(52) (with a minimum 25 bp forward-reverse read overlap) resulted in pairing of 83% of input reads in the HEK293 sample and 90% of input reads in the Coriell sample.


In both instances, the number of subsequently identified TRGR configurations did not meet the TRSeq cut-off criteria (TRGRs were identified in 0 of 5,729,205 total input reads in the HEK293 cell line and only 7 of 2,761,466 total input reads in the Coriell cell line). This was in keeping with the anticipated fully-germline configuration of each of these non-lymphoid origin cell types.


For the HEK293 cell line, the percent V and J genes at or above 100×coverage was 100%; the overall TR V gene coverage averaged 29960x; and the overall TR J gene coverage averaged 8789x.


For the Coriell cell line, the percent V and J genes at or above 100×coverage was 100%; the overall TR V gene coverage averaged 13379x; and the overall TR J gene coverage averaged 3925x.


Dilution Series


A dilution experiment was performed at log-reduction intervals, set up according to the design of Table 2.3, and adjusted according to Table 3.2 to account for Jurkat DNA concentration discrepancies. Three Jurkat cell line unique TRGR configurations were selected for inter-dilution comparison, namely the TRAV8-4-TRAJ3, TRGV11-TRGJ1 and TRGV8-TRGJ2 rearrangements identified & confirmed in Section 3.3. The above configurations were confirmed absent in the polyclonal (A037) sample. In addition, each of these configurations showed a specific dominant CDR3 sequence.


The mean of the raw read-counts (i.e. not normalized) across the three tracked V-J configurations (with error bars for standard deviation) vs. expected approximate Jurkat cell numbers (with adjustments for significant digits) from Table 3.2 were generated (data not shown). An exponential trend line could be applied, with R-squared=0.9996.


Of note, when the extremum of the first dilution is excluded, the dilution curve is remarkably linear (data not shown), but with a positive slope. This suggests a linear direct correspondence between read count and number of cells bearing a given V-J configuration at low levels.


In contrast to the reliable low-level detection by way of V-J configuration, detection narrowed to absolute clonotype (by including the CDR3 sequence) was limited to only the first three dilution specimens (i.e. sensitivity down to an approximated 1 in 125 cells; data not shown).


This limited sensitivity speaks to the sensitivity of the TRSeq junction finder to sequencing error. Indeed, if even a single base is changed relative to the canonical regular expression required for detection of a CDR3 sequence, the junction finder will not identify the sequence correctly: likewise, any non-triplicate base insertion will not be detected as an in-frame CDR3 sequence. In contrast, since the TRSeq V and J gene enumeration scheme uses alignment-based algorithms, the TRSeq results relating to V and J gene enumeration are much more forgiving of higher the higher likelihood of sequencing error in clonotypes with low read counts, thus substantially improving the assay sensitivity for characteristically unique V-J gene configurations.


Support for these suppositions is echoed in part by previous work pertaining to core clonotype analyses(27). Indeed, when the proposed criteria of Bolotin, et. al.(27) for gathering low-level reads of similar but error-prone sequence into common core clonotypes are applied to the dilution experiment (implemented in Appendix 3), it is possible to identify reads comparable to the clonotypes described above in even the most dilute samples.


For example, running the code of Appendix 3 with the input core clonotype of the TRGV8-TRGJ2 configuration, and allowing for a maximum of 3 sequence mismatches, 3 or more reads of satisfactory clonotype can be identified in dilutions 2-5. If the number of sequence mismatches is increased to 4, reads of satisfactory clonotype can be identified in all dilutions (i.e. down to an estimated sensitivity of 1 in 185646 cells).


The importance of these results stems from the applicability of this form of core clonotype analysis to a more accurate identification of minimal-residual disease, for example, at very low levels with remarkable sensitivity, even in the absence of traditional primer-directed sequence enrichment(77).


NTRA—BIOMED-2 Comparison


In keeping with the general approach used to assess BIOMED-2 results, the NTRA TRB and TRG clonotype tables were analyzed to compare the ratio of the dominant clonotype read count relative to the “background” read count. The largest read count not satisfying the normalized TRSeq read count according to the results of Section 3.3 was taken as the background read count value; alternatively, in the case where the dominant clonotype did not satisfy the normalized TRSeq read count cut-off of Section 3.3, the next largest clonotype read count was taken as “background”. From among each of the TRB and TRG loci, the largest dominant clonotype-to-background ratios were compared to the overall BIOMED-2 results using a ROC analysis.


The ROC analysis result could be classified as “good” (78) with AUC=0.82, p-value <0.001 (data not shown). Of note, this AUC value appears comparable to those observed in Section 3.3. Of even more impressive note is that the ROC-suggested dominant clonotype-to-background cut-off value was also comparable to that outlined in the current BIOMED-2 TRGR assay interpretation guidelines(79); indeed, the ROC analysis-suggested value of 3.4, which is effectively the median value of the “indeterminate” range of dominant peak-to-background ratios recommended for BIOMED-2 result interpretation(79).


Interestingly, when the above process was broken down into two separate comparisons of the TRB and TRG loci, the TRG locus was found to be the significant driver: the TRG locus comparison alone yielded a ROC AUC=0.81 (p-value <0.001) whereas the TRB locus comparison alone yielded a ROC AUC=0.60 (p-value=0.17).


NTRA Coverage Metrics—BIOMED-2 Comparison


As in Section 3.4, an analysis of coverage variation in relating to clonal status was undertaken. In contrast to the results of Section 3.4, a far less significant series of areas-under-the-curve were observed from this analysis. The greatest AUC was noted by analysis of mean V-gene coverage (i.e. mean V-gene coverage over all four loci) with AUC=0.59, p-value=0.213.


Furthermore, the data from Section 3.4 suggested that analysis of coverage from the Gamma locus might be predictive of clonal status. Unfortunately, these hypotheses were not substantiated by way of the clinical validation set, from which the AUC for the TRG locus V-gene analysis and TRG locus J-gene analysis were 0.59 and 0.57, respectively.


The clear discordance between these results and those of Section 3.4 likely relates to several factors. First, the sample size in Section 3.4 is one-sixth that of the clinical validation set, making the results of Section 3.4 much more vulnerable to the effects of outliers. Second, the overall coverage in the analytical validation set was lower, owing to base-output restrictions using the mid-output NEXTSEQ kit; as such, coverage correlations made in Section 3.4 might not necessarily be applicable to experiments performed using the high-output NEXTSEQ kit. Thirdly, the clinical validation experiment was not subject to bias of assumption as to the clonality of each input specimen; rather clonality was specifically assayed using an orthogonal method.


SUMMARY

Described above is the first hybrid-capture-based T-cell clonality assay designed to assess clonality and provide clonotype data over all four T-cell gene loci. For this purpose, a custom MATLAB-based analysis pipeline was implemented using optimized object-oriented programming integrating the ultra-fast BWA alignment system and the aesthetically-pleasing circos-based genomic data visualization suite. The latter visualization was designed with current methods in mind, in which electropherographic plots serve as the primary means by which clonotypes are visualized.


Advantages of NTRA Over Traditional T-Cell Clonality Testing Assays


Not only can the NTRA identify clonotypes from all four loci, the use of hybrid capture makes the process platform-agnostic. The laboratory work-flow can be integrated into any standard library preparation work-flow with the addition of a single hybridization step, capable of enriching for sequences containing T-cell genes of a several specimens at a time. In addition, as part of laboratory work-flows already using a hybrid-capture approach for other purposes, the probes used as part of the NTRA are amenable to “spike-in” combined hybridization reactions, provided that there is no significant probe-set sequence overlap or complementarity.


In comparison to the current BIOMED-2 based donality assays, the NTRA adds a dearth of extra data, especially as pertaining to clonotype data from the gene-rich alpha-locus. This locus has traditionally been too diffusely distributed within the genome to be amenable to primer-based amplification, a challenge easily overcome using a hybrid-capture approach. Akin to the requirements of the IMGT, the NTRA outputs a clonotype table containing data specific to the best aligned allele. In contrast, however, visualized data is restricted to gene-level only, thereby providing a means of visualization comparable to electropherographic output. In addition, included with the latter, is the in-frame CDR3 sequence (where detected), data currently not available using either standard PCR-based techniques or the mainstream sequencing-based solutions (e.g. Invivoscribe).


In addition to validating the wet-bench and informatics using a number of orthogonal approaches, the NTRA was also shown to be theoretically sensitive to low-level clonotypes. This latter observation is an important boon to the hybrid-capture approach, suggesting that carefully performed hybrid-capture methods can provide signal amplification comparable to flow-cytometric(81) and molecular approaches(32)(82)(83).


Assay Cost & Efficiency Considerations


As highlighted in Section 3.8, the assay may be considered cost effective, depending on the specific scenario of interest. In addition, the use of a hybrid-capture approach allows for spike-ins of additional probes for other genomic regions of interest. This allows the possibility of running multiple assays from a single library preparation step, requiring only bioinformatic separation of the resulting enriched sequences.


Applications


Assessment of lymphocyte clonality is integral to the diagnosis of diseases and cancer affecting the immune system. In addition, sequencing of the T-cell repertoire of a patient has gained clinical value with the recent understanding of T-cell mediated recognition and destruction of neoplasms. Further, the development of adoptive cell therapy and recombinatorial engineering of T-cell receptors requires high-throughput molecular characterization of in vitro T-cell populations before transplant. PCR-based methods such as BIOMED-2 and Immunoseq are currently in use for TCR characterization however their costs and complexity remain barriers for clinical deployment requiring high-throughput multi-patient, multi-sample work-flows at low cost. We have therefore developed a hybrid-capture-based method that recovers rearranged TCR sequences of heavy and light TCR chains from all four classes in one tube per sample at low cost. TCR clonality and CDR3 prevalence can be rapidly assessed in a three-day turn-around time with an automated pipeline generating summary figures that can be rapidly assessed by clinicians.


Adaptive T-cell immunotherapy has become a field of great interest in the treatment of multiple solid-tumor cancer types. Non-childhood cancers, particularly those linked to chronic exposure of known carcinogens, are driven by the accumulation of mutations. Some of these mutations drive pro-tumorigenic changes, while others result in non-tumorigenic changes to proteins expressed by the carrier cell. During normal protein turnover these modified proteins are broken down in to short polypeptides and make their way to the surface of the cell in association with molecular surveillance molecules (MHC I). In this context these modified polypeptides are recognized as foreign neo-antigens by the host immune system, and in the context of other signals, lead to the activation of T-cells that direct the destruction of cells expressing these modified proteins.


It is now understood that many solid-tumours exist in a state where their presence recruits neo-antigen specific T-cell lymphocytes to the margins however further advance and effective destruction of the tumor is prevented by expression of checkpoint inhibition molecules on the tumor cell surfaces. Therefore immunotherapy has become a major area of advance in cancer therapy wherein such checkpoint inhibition molecules are masked through transfusion of antibodies. This allows recognition of tumor and its destruction by neo-antigen specific T cells. In order to further enhance such anti-tumor activity, tumor infiltrating lymphocytes (TIL) can be isolated from tumor biopsies and expanded in vitro, followed by subsequent transfusion in great numbers back in to the patient following immunodepletion to enhance transplant colonization thereby driving a durable antitumor response.


T-cell lymphocytes are fundamental to this process, however due to their exquisite specificity, only neo-antigen specific T-cells are capable of driving anti-tumor activity. As a result there is a need for molecular characterization of circulating T-cells in the patient before and after treatment, infiltrating T-cells in the tumor before and after treatment, and screening of expanded populations in vitro for safety and efficacy. Our method provides a high-throughput, low cost and rapid turn-around method for T-cell receptor characterization in order to facilitate clinical deployment and uptake of adoptive cell transfer immunotherapy.


This method is not only of use in immunotherapy applications, as any disease involving expansion of T-cell clones would benefit from its use. The symptoms of autoimmune diseases are driven largely by T-cell mediated cytotoxicity of “self” tissue and therefore the identification and expansion of specific T-cell clones can be monitored using this method. This method would also be useful to follow immune challenges such as infection or immunization in the development of anti-infectives or vaccines.


Example 2

There is also described herein a laboratory and bioinformatic workflow for targeted hybrid-capture enrichment of T-cell receptor loci followed by Illumina sequencing to assess the clonality of a range of specimens with variable T-cell clonal complexity as well as a set of 63 T-cell isolates referred for clinical testing at our institution.


Methods and Materials


Probe design—All annotated V, D, J gene segments were retrieved from the IMGT/LIGM-DB website (www.imgt.org9). The 100 bp of annotated 3′ V gene coding regions and up to 100 bp, when available, of annotated 5′ J gene coding regions were selected as baits. Probes with duplicate sequences were not included.


DNA isolation—CD3+ T cells were isolated by flow assisted cell sorting of PBMC populations separated from whole blood. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood by centrifugation followed by DNA isolation with a GENTRA PUREGENE kit (Qiagen) according to manufacturer protocol. In the case of fresh/frozen tissues, a QIAGEN ALLPREP (Qiagen) kit was employed, according to the manufacturer's instructions. In contrast, for FFPE samples a previously optimized in-house approach was used. First, sample FFPE tissue blocks were cored with a sterilized TISSUE-TEK QUICK-RAY punch (Sakura) in a pre-selected area of representative tissue; alternatively, under sterile conditions, 10×10 μm DNA curls/unstained slides were obtained for each submitted block of FFPE tissue. In a fumehood, 400-1000 μL xylene was aliquot into each tube (volume increased for larger FFPE fragments), followed by vigorous vortexing for 10 sec, incubation in a 65° C. water bath for 5 min, and centrifugation at 13200 rpm for 2 min. The supernatant was then discarded and step an additional xylene treatment step was performed. Subsequently, addition of 400-1000 μL ethanol (volume adjusted for larger input tissue volumes) was performed, followed by vigorous vortexing for 10 sec, and centrifugation at 13200 rpm for 2 min. The supernatant was then discarded and the ethanol treatment step repeated. The resulting pellet was then dried using a SPEEDVAC (Thermo Scientific) for 5 min, after which 150 μL of QIAAMP buffer ATL (Qiagen) was added, followed by 48-hour incubation at 65° C. with 50-150 μL of proteinase K (volume increased for higher input volumes). A final ethanol clean-up step was performed, as above, to produce a purified DNA product. Resuspension in TE buffer (Qiagen) was then performed.


Hybrid capture—Isolated genomic DNA was diluted in TE buffer to 130 uL volumes. Shearing to ˜275 bp was then performed on either a Covaris M220 Focused-ultrasonicator or E220 Focused-ultrasonicator, depending on sample throughput, with the following settings: for a sample volume of 130 μL and desired peak length of 200 bp, Peak Incident Power was set to 175 W; duty factor was set to 10%; cycles per burst was set to 200; treatment time was set to 180 s. In addition, temperature and water levels were carefully held to manufacturer's recommendations given the instrument in use.


Illumina DNA libraries were generated from 100-1000 ng of fragmented DNA using the KAPA HYPERPREP Kit (Sigma) library preparation kit following manufacturer's protocol version 5.16 employing NEXTFLEX sequencing library adapters (BIOO Scientific). Library fragment size distribution was determined using the Agilent TAPESTATION D1000 kit and quantified by fluorometry using the Invitrogen QUBIT.


Hybridization with probes specifically targeting V and J loci (Supplemental Table 3) was performed under standard SEQCAP (Roche) conditions with XGEN blocking oligos (IDT) and human Cot-1 blocking DNA (Invitrogen). Hybridization is performed either at 65 C overnight. The target capture panel consists of 598 probes (IDT) targeting the 3′ and 5′ 100 bp of all TR V gene regions, and 95 probes targeting the 5′ 100 bp of all TR J gene regions as annotated by IMGT (four loci, 1.8 Mb, total targeted 36 kb).


Capture Analysis—A custom Bash/Python/R pipeline was employed for analysis of paired read sequencing data generated by Illumina NEXTSEQ 2500 instrument from the hybrid-capture products. First, 150 bp paired reads were merged using PEAR 0.9.6 with a 25 bp overlap parameterA18. This results in a single 275 bp sequence for each sequenced fragment. Next, specific V, J, and D genes within the fragment sequence were identified by aligning regions against a reference sequence database. Specifically, individual BLAST databases were created using all annotated V, D, J gene segments retrieved from the IMGT/LIGM-DB website (www.imgt.orgA9), as these full-length gene sequences were the source of probes used to design the hybrid-capture probe panel. Individual merged reads are iteratively aligned using BLASTn with an e value cut-off of 1 to the V database, J database then D database with word size of 5 for D segment queriesA19. Trimming of identified V or J segments in the query sequence is performed prior to subsequent alignment. From reads containing V and J sequences, we identified V/J junction position and the antigen specificity determining Complementarity Determining Region 3 (CDR3) sequences. In order to identify CDR3 sequences, the V/J junction position is extracted from the previous search data for those fragments containing both a V and J search result. 80 bp of DNA sequence flanking this junction is translated to amino acid sequence in all six open reading frames and sequences lacking stop codons are searched for invariable anchor residues using regular expressions specific for each TR class as determined by sequence alignments of polyclonal hybrid-captured data from rearranged TR polypeptides annotated by IMGT9


Results and Discussion


The CapTCR-seq method employs hybrid capture biotinylated probe sets designed based on all unique Variable (V) gene and Joining (J) gene annotations retrieved from the IMGT database version 1.1, LIGMDB_V129. These probe sets specifically target the 3′ regions of V gene coding regions and the 5′ regions of J gene coding regions that together flank the short Diversity (D) gene fragment in heavy chain encoding loci and which together form the antigen specificity conferring CDR3 (FIG. 3A). D regions (absent in alpha and gamma rearrangements) were not probed due to their short lengths, high potential junctional diversity introduced by the recombination process, and to permit a single universal probe set for both light and heavy chain loci. These biotinylated probes are hybridized with a fragmented DNA sequencing library, and probe-target hybrid duplexes are subsequently recovered by way of streptavidin-linked magnetic beads. The subsetted library is PCR amplified from the bead-purified hybrid-duplex population using a single set of adapter-specific amplification primers and the resulting library is subjected to paired read 150 bp sequencing on an Illumina NEXTSEQ 500 instrument. A 250 bp fragment size was selected as mid-range between the maximum length of a merged fragment from 150 bp paired-end read sequencing (275 bp) and a lower limit of 182 bp based on alignments of simulated reads centered at the VJ junction with variable insert sizes that had successful V and J alignment sensitivity of >99%.


To identify V(D)J rearrangements from the pool of captured V and J sequences, we used a computational method that performed: (1) Read merging to collapse paired reads in to a single long-read sequence to enhance V(D)J and CDR3 identification, (2) progressive BLASTn-based V, J and D detection utilizing iterative end trimming and (3) CDR3 scoring using regular expression pattern matching (FIG. 3B). This BLAST-based sequence alignment approach was employed due to its tolerance for nucleotide mismatches that could arise from junctional diversity or the presence of allelic variants not present in the reference database. We acknowledge that numerous alternative V(D)J and CDR3 calling algorithms are availableA10-16 and these may be used in addition or in lieu of our pipeline to analyze V(D)J fragments captured by our laboratory approach. A head-to-head comparison of these methods is beyond the scope of this proof-of-principle report.


We employed this method to identify V(D)J rearrangements and CDR3 sequences in PBMCs isolated from a healthy human. With a single step hybridization and capture reaction employing the probe panel targeting TCR V genes, the number of detected unique VJ rearrangements increased with increasing amount of sample genomic DNA used to generate the initial library, with 52 times more rearrangements detected with an input of 1,000 ng compared with 100 ng (1925 vs 37) (FIG. 3C). The number of unique VJ rearrangements is dependent on the number of T cells in the original sample with an approximate fourfold increase for CD3+ sorted cells over PBMCs (2475 vs 759) (Supplemental Table 1). Addition of the J probe panel to form a single-step capture using a pooled V and J panel improved recovery of unique CDR3 sequences per 1 ng of library input by 5 fold (single-step V capture mean: 1.7, single-step VJ capture mean: 8.56) (Supplemental Table 1). This modification also increased the ratio of on-target reads, effectively decreasing the amount of sequencing needed to obtain the same number of rearranged fragments (single-step V capture mean: 14.4%, single-step VJ capture mean: 42.9%). Overall, we saw a diverse representation of alleles for all four classes with 2895 alpha, 1100 beta, 59 gamma, 9 delta unique VJ rearrangements observed from 16 independent captures of independent libraries (data not shown). This corresponded to 6257 alpha, 4950 beta, 1802 gamma, 109 delta unique CDR3 sequences. We also submitted a portion of these samples for parallel characterization by a commercial PCR-based TCR profiling service and found similar V/J gene usage and representation with no more than 2% variation (FIG. 3D-F) and correlation with an r2 value of 0.94 (data not shown).


To test the ability of CapTCR-seq to assess TCR clonality of samples with a range of clonal signatures, we analyzed libraries derived from CD3+ flow-sorted Tumor Infiltrating Lymphocytes (TIL) expanded cultures (oligoclonal) and lymphoblast cell lines (clonal) (FIG. 4A-B: and data not shown). As expected, the cell-lines and antigen-specific cell-sorted samples were more clonal (12-22 unique VJ rearrangements) than the TIL cultures (123-446 unique VJ rearrangements). The predominant alpha rearrangement represented 40-80% of the recovered reads in clonal samples compared to 2.5-17.5% for the latter TIL cultures. Specifically, we detected 12 unique VJ rearrangements in L2D8, a GP100 antigen-specific tumor-infiltrating lymphocyte clone. In OV7, a mixed ovarian tumor-infiltrating lymphocyte population expanded with IL-2 treatment, we found 311 unique VJ rearrangements. We profiled two populations isolated from the same tumor: M36_EZM, a cell suspension of melanoma tumor with brisk CD3 infiltration harbored 123 unique VJ rearrangements, while M36_TIL2, tumor-infiltrating lymphocytes from this tumor expanded in IL-2 harbored 446 unique VJ rearrangements, reflecting a likely expansion of low prevalence T cells. STIM1 is MART1-specific cell line made from peptide stimulation of healthy donor PBMCs, FACS sorting and expansion of tetramer+ cells from which we found 195 unique VJ rearrangements. The cell lines were found to encode previously reported gene rearrangements at the TCR beta and gamma loci, and additional rearrangements not previously reported (Supplemental Table 2)A17. Targeted PCR amplification of V/J rearrangement pairs, including the most frequently observed for each sample, was performed on these samples. We observed expected product for all prevalent rearrangements with some amplification failures for low prevalence rearrangements (Sample: Observed bands/expected bands; A037: 9/11; L2D8: 4/5; EZM: 3/4; TIL2: 8/9; OV7: 5/9; STIM1: 7/9; SE14 2005: 4/4; SE14 2033: 3/4; SE14 2034: 4/4; SE14 2035: 4/4) (data not shown). We also submitted the GP100 antigen specific L2D8 sample for beta locus profiling by a PCR-based commercial service and found VJ repertoire usage to be highly congruent (FIG. 4C-E), however the commercial service identified extensive low level VJ gene usage not present in the capture data (FIG. 4D). This signal may represent low-level alternative VJ pair antigen specific clones, or sample contamination with non-antigen specific clones.


To demonstrate the potential clinical utility of our approach, we generated DNA sequencing libraries from an unselected cohort of 63 samples submitted for clinical T-cell receptor rearrangement testing and subjected these to capture, sequencing and analysis (Supplemental Table 1). Samples were found to have varying degrees of clonality, with the predominant CDR3 sequence representing up to 40% of the most clonal sample (average 12.2%; median 6.3%%, range 0.8-100%, data not shown). When a clonal population was defined as having the most abundant to third most abundant rearrangements observed at two or more times the level of the next most abundant rearrangement, we observed three groups of samples: 11 with clonal enrichment of both beta and gamma rearrangements, 12 with clonal enrichment of beta or gamma rearrangements, and 41 that were polyclonal for both beta and gamma. When 61 of these samples were assessed by BIOMED2 assay we observed 73% agreement for beta (44/60) and 77% for gamma (46/60), 60% of samples were in agreement for both beta and gamma clonality measures (36/60). For the beta locus, 13 samples that were scored as clonal by BIOMED2 were scored as polyclonal based on relative prevalence when assessed by hybrid capture profiling. Six had low top clone prevalence (predominant rearrangement relative proportion of 1.3%, 1.8%, 2.6%, 3.1%, 3.4%, 3.8%) with a median unique VJ rearrangement count of 185. Seven had higher top clone prevalence (predominant rearrangement relative proportion of 7.6%, 8.4%, 8.5%, 8.8%, 11.9%, 12.1%, 16.9%) with a considerably lower median unique VJ rearrangement count of 44. These 13 samples had variable diversity but no predominant rearrangement was more than twofold enriched relative to the next most common rearrangement. Conversely, three samples that were scored as polyclonal by BIOMED2 at the beta locus were scored as clonal based on relative prevalence (predominant rearrangement relative proportion of 25.9%, 18.6%, 6.5%) with a median unique VJ rearrangement count of 191. These discrepancies could be resolved with deeper sequencing of these libraries to determine whether insufficient depth was distorting the interpretation or whether these represent incorrect interpretations by the BIOMED2 protocol. Improvements in the BIOMED2 primer sets have led to reduced false positives compared to previous generations, and can be further diminished through the use of higher resolution gel separation and additional analysesA2, however if available, sequencing-based methods provide a more quantitative assessment and relative comparison between all rearrangements. To determine whether there was unexpected enrichment in the A037 or lymphoma data sets we compared their gene usages (data not shown). A037 and the lymphoma collection had similar VJ usage profiles with few individual unique VJ rearrangement proportion enriched in A037 of up to 1% and more enrichments amongst the lymphoma set of up to 3% as expected given the clonal enrichment of select rearrangements in T-cell lymphomas.


In summary, CapTR-Seq allows for rapid, inexpensive and high-throughput profiling of all four loci from multiple samples of diverse types from a given DNA sequencing library with fragment size of 250 bp and sequencing length of 150 bp. This method will permit intensive monitoring of TR repertoires of patients with T-cell malignancies as well as monitoring of tumor-infiltrating lymphocytes in tumors from patients undergoing immune checkpoint blockade, adoptive cell transfer and other immunotherapies.


Example 3

Adoptive Cell Transfer (ACT) of in-vitro expanded Tumour-Infiltrating Lymphocytes (TIL) has emerged as an effective treatment for numerous types of solid tumours, often resulting in a durable response and in some cases a complete remission by the patientB1. This intervention effectively replaces nearly the entire heterogenous T-cell repertoire of the patient with tumour antigen and patient-specific effector T cells. Effector T-cells are integral for the adaptive immune response due to their roles in cellular cytotoxicity and cytokine production, with specificity conferred by the TCR-MHC interactionB2. The CD8+ effector T-cell repertoire consists of alpha/beta and gamma/delta subtypes, both polyclonal and skewing in the incidence of an antigen-specific response or malignancyB3. In high mutation load neoplasms, the MHC molecule often presents tumour-associated neo-antigens generated as a result of mutation that lead to clonal expansion and infiltration of tumour-infiltrating lymphocytes (TILs)B4. These TILs are largely clonal and distinct from the circulating repertoire in multiple types of neoplasiaB5. While these TILs are capable of driving an effective anti-tumour response in vitro, they are often exhausted within the tumour microenvironment as a result of expression of immunosuppressive cell-surface proteins by the tumour but their activities can be restored with immune checkpoint blockade therapyB6. The combined effect of immunotherapy intervention: immunodepletion, TIL ACT and checkpoint blockade together present an effective treatment for many patients but have a disruptive effect on the endogenous immune repertoire and therefore proper patient care would benefit from longitudinal monitoring of the T-cell repertoire during the course of disease and treatment.


During ACT immunotherapy, both the requisite immunodepletion and T-cell transfer radically disrupt the abundance and diversity of the endogenous T-cell population and therefore molecular profiling methods are required for monitoring of the patient during the course of immunotherapyB7. The TCR repertoire consists of cell-specific heterodimeric receptors uniquely rearranged and expressed from either the alpha/beta or gamma/delta genomic lociB8. The TCR has unique specificity for an antigen presented in the context of the an MHC molecule as defined by the combined interactions of the amino acid residues encoded at the V-(D)-J junction known as the complementarity determining region 3 (CDR3), and by the CDR1 and CDR2 regions in the upstream V gene fragment.


Methods and Materials


Probe design—All annotated V (V-panel), D, J (J panel) gene segments and V 3′-UTR (depletion panel) sequences were retrieved from the IMGT/LIGM-DB website (www.imgt.org). The 100 bp of annotated 3′ V gene coding regions, up to 100 bp, when available, of annotated 5′ J gene coding regions, and 120 bp of V 3′-UTR sequences were selected as baits. Probes with duplicate sequences were not included. The V-panel consists of 299 probes (IDT) targeting the 3′ and 5′ 100 bp of all TR V gene regions, and the J-panel consists of 95 probes targeting the 5′ 100 bp of all TR J gene regions as annotated by IMGT (four loci, 1.8 Mb, total targeted 36 kb). The depletion-panel consists of 131 probes targeting the 5′ 120 bp of 3′-UTR Immunoglobulin V regions, and 107 probes targeting the 5′ 120 bp of 3′-UTR TCR V regions.


DNA Isolation—CD3+ T cells were isolated by flow assisted cell sorting of PBMC populations separated from whole blood. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood by centrifugation followed by DNA isolation with a GENTRA PUREGENE kit (Qiagen) according to manufacturer protocol. In the case of fresh/frozen tissues, a QIAGEN ALLPREP kit (Qiagen) was employed to extract DNA and RNA, according to the manufacturer's instructions. The whole blood plasma fraction was then treated with red blood cell lysis buffer and circulating DNA (cfDNA) was extracted using the QIAGEN NUCLEIC ACID kit (Qiagen) according to manufacturer protocol. cDNA synthesis—mRNA was separated from isolated total RNA using the NEBNEXT Poly(A) mRNA Magnetic Isolation Module (NEB) according to manufacturer's instructions. To generate cDNA, first NEBNEXT RNA First Strand Synthesis Module (NEB) was used followed by NEBNEXT RNA Second Strand Synthesis Module (NEB) according to manufacturer's instructions.


Library preparation—Isolated genomic DNA or synthesized cDNA was diluted in TE buffer to 130 uL volumes. Shearing to ˜275 bp was then performed on either a Covaris M220 Focused-ultrasonicator or E220 Focused-ultrasonicator, depending on sample throughput, with the following settings: for a sample volume of 130 μL and desired peak length of 200 bp, Peak Incident Power was set to 175 W; duty factor was set to 10%; cycles per burst was set to 200; treatment time was set to 180 s. In addition, temperature and water levels were carefully held to manufacturer's recommendations given the instrument in use.


Illumina DNA libraries were generated from 100-1000 ng of fragmented DNA using the KAPA HYPERPREP Kit (Sigma) library preparation kit following manufacturer's protocol version 5.16 employing NEXTFLEX sequencing library adapters (BIOO Scientific). Library fragment size distribution was determined using the Agilent TAPESTATION D1000 kit and quantified by fluorometry using the Invitrogen QUBIT.


Hybrid capture—For cDNA derived libraries, hybridization was performed with a pooled panel of probes targeting V and J loci in equimolar concentrations. For genomic DNA derived libraries, hybridization and capture was performed iteratively with probes specifically targeting V loci, 3′-UTR sequences, or J loci under standard SEQCAP (Roche) conditions with XGEN blocking oligos (IDT) and human Cot-1 blocking DNA (Invitrogen). Hybridization is performed at 50 C overnight. The Capture process consisting of bead incubations and washes are performed at 50 C.


For the iterative hybridization and capture process, the first J hybridization and capture is performed in completion with terminal PCR amplification with 4 steps. Following clean-up by Agencourt AMPURE XP SPRI bead purification (Beckman) this product is used as input for a subsequent depletion step. For depletion, a modified and truncated SEQCAP protocol is employed wherein following incubation of the hybridization mixture with M-270 streptavidin linked magnetic beads (Invitrogen), the 15 uL hybridization reaction is separated on a magnetic rack, the supernatant is recovered and diluted to 100 uL with TE buffer, followed by clean up by standard Agencourt AMPURE XP SPRI bead purification (Beckman). The depletion-probe-target-beads are discarded. The purified supernatant is then used as input for a subsequent V-panel capture and hybridization as described above, but with terminal PCR amplification with 16 or amplifications steps to achieve sufficient library for sequencing.


Capture Analysis—A custom Bash/Python/R pipeline was employed for analysis of paired read sequencing data generated by Illumina NEXTSEQ 2500 instrument from the hybrid-capture products. First, 150 bp paired reads were merged using PEAR 0.9.6 with a 25 bp overlap parameter. This results in a single 275 bp sequence for each sequenced fragment. Next, specific V, J, and D genes within the fragment sequence were identified by aligning regions against a reference sequence database. Specifically, individual BLAST databases were created using all annotated V, D, J gene segments retrieved from the IMGT/LIGM-DB website (www.imgt.org), as these full-length gene sequences were the source of probes used to design the hybrid-capture probe panel. Individual merged reads are iteratively aligned using BLASTn with an e value cut-off of 1 to the V database, J database then D database with word size of 5 for D segment queries. Trimming of identified V or J segments in the query sequence is performed prior to subsequent alignment. From reads containing V and J sequences, we identified V/J junction position and the antigen specificity determining Complementarity Determining Region 3 (CDR3) sequences. In order to identify CDR3 sequences, the V/J junction position is extracted from the previous search data for those fragments containing both a V and J search result. 80 bp of DNA sequence flanking this junction is translated to amino acid sequence in all six open reading frames and sequences lacking stop codons are searched for invariable anchor residues using regular expressions specific for each TR class as determined by sequence alignments of polyclonal hybrid-captured data from rearranged TR polypeptides annotated by IMGT.


Results and Discussion


Methods Improvement


We experimented with alternate capture methods, using an iterative three-step hybridization and capture, first with a J panel then molecular depletion of unrearranged V-gene sequences, then subsequently with a V panel (data not shown). The depletion probes (V-gene and J-gene) are shown in Table D. These altered protocols improved recovery of unique CDR3 sequences when normalized to reads. When compared to a one-step V-panel capture, the one-step combined VJ-panel capture increased signal by 6.84×, the two-step J and V iterative capture increased signal by 12×(no significant difference was observed for J-V or V-J iterative order), and the three-step J-depletion-V iterative capture increased signal by 31.2×(FIG. 5).


We experimented with reducing hybridization and wash temperatures to improve recovery (FIG. 6). When 50 C to 65 C in 5 C increments were tested at each step of the hybridization and capture, 50 C yielded the highest signal and diversity.


We determined the best method for depletion (FIG. 7). We found that direct reuse of the hybridization mixture following bead-probe-target separation yielded reduced signal than setting up a new reaction following Agencourt XP bead purification of the supernatant. We also found that direct separation rather than separation of the hybridization following addition of wash buffer yielded increased signal.


We tested whether depletion should be preceded by a V or J capture (FIG. 8). We found that direct depletion of the library, followed by V or J capture yielded reduced signal compared to either V-Depletion-J or J-Depletion-V, both of which had increased, yet similar yields.


Input Source Material Comparisons


To determine whether we could characterize the TCR repertoire from both low and high signal samples, we performed a series of dilution curves for CD3+ genomic DNA (FIG. 9), PBMC genomic DNA (FIG. 10), and PBMC derived cDNA (FIG. 11). Less input actually yielded a higher amount of diversity when normalized for input and reads suggesting that high input libraries are being undersequenced or that probes are being saturated and leaving behind less preferable, but still on-target, targets. Additionally, we observed yields for the cDNA samples to be ˜100× that of genomic DNA reflecting enrichment of the TCR signal as a consequence of the high level of transcript expression of the rearranged TCR gene relative to other genes. In contrast, signal from genomic DNA is a related to the fraction of the complete genome of the target sequence and capture efficiency.


Since each sequenced sample represents only a snapshot of the TCR repertoire with the extent dependent on the amount of input material and the complexity of the source repertoire, we were interested in whether the method could assay complete VJ or CDR3 saturation of a patient. We looked at unique VJ pair recovery across multiple samples derived from a single patient blood draw (data not shown). Beta locus VJ saturation was achieved with fewer than ten runs. With sufficient input and sequencing depth, VJ saturation could be achieved in a single run. We also looked at CDR3 saturation across these same samples and were able to achieve approximately 50% beta locus saturation (data not shown). This level could be achieved with fewer samples by using cDNA libraries as input with deeper sequencing.


We looked at whether the genomic DNA and cDNA samples were recapitulating the same VJ combinations at the beta locus (FIG. 19). This was largely the case with only two discordant VJ pairs showing greater (<3% overall) change.


We looked at whether the genomic DNA and cDNA samples were recapitulating the same CDR3 sequences (FIG. 13). For the most prevalent 1000 CDR3 sequences detected from genomic DNA, their correlation with cDNA prevalences had an r squared value of 0.67. Many had similar prevalences however a large number had very low or zero prevalence values in cDNA. This is likely explained by the second group consisting of non-productive rearrangements that are encoded on the alternate chromosome and which are not expressed.


Investigation of Samples from Adoptive Cell Transfer Immunotherapy


We next applied the CapTCR-Seq methodology to samples derived from expanded Tumor Infiltrating Lymphocyte (TIL) infusion populations and PBMCs from serial blood draws from patients undergoing adoptive cell transfer immunotherapy. We wanted to track clones from the TIL culture over time to determine whether they successfully colonized the patient and the extent of their population over time (FIG. 14). Repertoire profiling reveals a polyclonal and diverse baseline repertoire before treatment, a less complex oligoclonal TIL derived culture, less complex oligoclonal repertoires following chemodepletion and transfusion of the TIL infusion, and finally restoration of a more complex polyclonal repertoire over time. When compared to the baseline, highly prevalent clones in the TIL infusion product persist over time albeit in decreasing amounts. The dominant rearrangements decrease in prevalence over time as the native repertoire is reestablished however the TIL product rearrangements persist. We can observe this persistence by graphing the individual profiles for these top nine rearrangements over time (FIG. 15). We can see that while they decrease over time, they remain higher than what was found in the apheresis sample after two years.


Comparison Between Uncaptured and Captured Tumor Samples


We wished to demonstrate the value of this method for interrogating existing cDNA RNA-Seq libraries (data not shown). To do this, Illumina cDNA sequencing libraries were generated from FFPE-derived total RNA and subjected to sequencing followed by analysis using the TCR annotation pipeline to identify unique TCR CDR3 sequences (bulk unique CDR3). Residual library then underwent CapTCR-Seq to identify unique TCR CDR3 sequences (capture unique CDR3). The CapTCR-Seq method yielded a greatly increased number of unique CDR3 sequences (mean: 466 fold, median: 353 fold). When normalized to number of total reads sequenced, we observed a 15fold increase in signal per read sequenced (mean: 15.2, median: 14.5, n=41).


Investigation of Tumor Repertoires from Different Cancer Types


We next wanted to characterize tumor repertoires and investigate highly prevalent TIL clones in the blood repertoire before and during anti-PDL1 immunotherapy treatment. We selected five patients, each with a different tumor type: Patient A: Head and neck; Patient B: Breast; Patient C: Ovarian; Patient D: Melanoma; Patient E: Cervical. Each patient had three sample types: Tumor tissue (extracted DNA and RNA), pre-treatment blood (extracted PBMC DNA, PBMC RNA, and plasma cfDNA), on-treatment blood (extracted plasma cfDNA).


We first queried the extent of the TCR signal in the tumor samples in terms of infiltration and clonality. TCR signal is defined as the total number of counts of fragments containing both a V and J gene region (non-unique, reads normalized) while diversity is defined as the total number of unique CDR3 sequences detected (unique, reads normalized). Overall, diversity increased with signal (FIG. 16). cfDNA samples had the lowest signal, genomic DNA samples had intermediate signal, while cDNA samples had the highest signal. Blood sample signal and diversity is similar for all five patients, however tumor signal and diversity varied. Two patients had ten-fold higher TCR signal and diversity in their tumors likely reflecting increased infiltration of immune cells (FIG. 17).


Next we assessed the clonality of the tumor sample TIL repertoire. Tumors with clonal infiltration have a larger than expected population of one or more VJ rearrangements, the population of which are significantly greater than the next most prevalent clone. Patient A appears to have a large alpha rearrangement population in its tumor compared to baseline blood, while the most prevalent beta rearrangement is only slightly enriched (FIG. 18 and data not shown). The tumor sample for patient B showed both greatly enriched top alpha and beta VJ rearrangements compared to baseline blood (data not shown). The tumor sample for patient C showed both greatly enriched top alpha and beta VJ rearrangements compared to baseline blood (data not shown). The tumor sample for patient D showed both greatly enriched top alpha (2) and beta VJ (1) rearrangements compared to baseline blood (data not shown). The tumor sample for patient E showed only a slightly enriched top beta VJ rearrangement compared to baseline blood (data not shown).


Next we assessed how the most prevalent tumor VJ rearrangements differed in terms of prevalence across the other patient samples (FIG. 19 and data not shown). In general, prevalent TIL clones were not prevalent in the blood repertoire demonstrating clonal expansion within the tumor or selective infiltration. However, for a number of the most prevalent TIL clones, we saw very high levels within the plasma samples suggesting that while these clones are actively undergoing cell death. In combination with their high tumor infiltration, this suggests that these are anti-tumor T-cells undergoing active expansion, anti-tumor cytotoxicity and turnover.


Example 4

We performed similar experiments relating to B-cells. Our design targets more than 500 V-regions and 50 J-regions within the IGH, IGK and IGL loci annotated in the IMmunoGeneTics database. This accounts for all known Ig alleles while maximizing depth of coverage in selected regions. A blast-based informatics pipeline calls V(D)J recombinations and an algorithm combining information from large-insert and soft-clipped reads are used to predict candidate rearrangements which are manually verified in Integrated Genome Viewer.


Candidate V(D)J rearrangements and translocations detected through this approach have been validated in three well-characterized cell-lines with publically available whole genome data; an additional 67 MM cell lines have been annotated for V(D)J rearrangements and translocations into IGH, IGL and IGK genes. The limit of detection was established with a cell-line dilution series. We were also able to translate these techniques to cell-free DNA. These methods are applicable to the detection of MRD in mature B-cell malignancies and immunoglobulin repertoire profiling in a many clinical scenarios including cellular immunotherapy and therapeutics with immunomodulatory effects. V(D)J and complex rearrangement annotations in 70 MM cell-lines are highly relevant in further in-vitro studies.


The B-cell V-gene and J-gene capture probes used are shown in Tables B1 and B2 respectively.


Although preferred embodiments of the invention have been described herein, it will be understood by those skilled in the art that variations may be made thereto without departing from the spirit of the invention or the scope of the appended claims. All documents disclosed herein, including those in the following reference list, are incorporated by reference.


REFERENCE LIST
References



  • 1. Bertness V, Kirsch I, Hollis G, Johnson B, Bunn P A Jr. T-cell receptor gene rearrangements as clinical markers of human T-cell lymphomas. N Engl J Med. 1985 Aug. 29; 313(9):534-8.

  • 2. Swerdlow S H, Cancer I A for R on, Organization W H. WHO classification of tumours of haematopoietic and lymphoid tissues [Internet]. International Agency for Research on Cancer; 2008. Available from: books.google.ca/books?id=WqsTAQAAMAAJ

  • 3. van Dongen J J, Wolvers-Tettero I L. Analysis of immunoglobulin and T cell receptor genes. Part I: Basic and technical aspects. Clin Chim Acta. 1991 April, 198(1-2):1-91.

  • 4. Aisenberg A C. Utility of gene rearrangements in lymphoid malignancies. Annu Rev Med. 1993; 44:75-84.

  • 5. Rezuke W N, Abernathy E C, Tsongalis G J. Molecular diagnosis of B- and T-cell lymphomas: fundamental principles and clinical applications. Clin Chem. 1997 October; 43(10):1814-23.

  • 6. Armitage J O. The aggressive peripheral T-cell lymphomas: 2012 update on diagnosis, risk stratification, and management. Am J Hematol. 2012 May; 87(5):511-9.

  • 7. Abouyabis A N, Shenoy P J, Lechowicz M J, Flowers C R. Incidence and outcomes of the peripheral T-cell lymphoma subtypes in the United States. Leuk Lymphoma. 2008 November; 49(11):2099-107.

  • 8. Criscione V D, Weinstock M A. Incidence of cutaneous T-cell lymphoma in the United States, 1973-2002. Arch Dermatol. 2007 July; 143(7):854-9.

  • 9. Ko O B, Lee D H, Kim S W, Lee J S, Kim S, Huh J, et al. Clinicopathologic characteristics of T-cell non-Hodgkin's lymphoma: a single institution experience. Korean J Intern Med. 2009 June; 24(2):128-34.

  • 10. Luminari S, Cesaretti M, Rashid I, Mammi C, Montanini A, Barbolini E, et al. Incidence, clinical characteristics and survival of malignant lymphomas: a population-based study from a cancer registry in northern Italy. Hematol Oncol. 2007 December; 25(4):189-97.

  • 11. Vazquez A, Khan M N, Blake D M, Sanghvi S, Baredes S, Eloy J A. Extranodal natural killer/T-Cell lymphoma: A population-based comparison of sinonasal and extranasal disease. Laryngoscope. 2014 April, 124(4):888-95.

  • 12. Liao J B, Chuang S S, Chen H C, Tseng H H, Wang J S, Hsieh P P. Clinicopathologic analysis of cutaneous lymphoma in taiwan: a high frequency of extranodal natural killer/t-cell lymphoma, nasal type, with an extremely poor prognosis. Arch Pathol Lab Med. 2010 July; 134(7):996-1002.

  • 13. Mitamun W, Suwiwat S, Pradutkanchana J. Epstein-Barr virus-associated extranodal non-Hodgkin's lymphoma of the sinonasal tract and nasopharynx in Thailand. Asian Pac J Cancer Prev Apjcp. 2006 January; 7(1):91-4.

  • 14. Shih L Y, Liang D C. Non-Hodgkin's lymphomas in Asia. Hematol—Oncol Clin N Am. 1991 October; 5(5):983-1001.

  • 15. Ai W Z, Chang E T, Fish K, Fu K, Weisenburger D D, Keegan T H. Racial patterns of extranodal natural killer/T-cell lymphoma, nasal type, in California: a population-based study. Br J Haematol. 2012 March; 156(5):626-32.

  • 16. Korgavkar K, Xiong M, Weinstock M. Changing incidence trends of cutaneous T-cell lymphoma. JAMA Dermatol. 2013 November; 149(11):1295-9.

  • 17. Weinstock M A. Epidemiology of mycosis fungoides. Semin Dermatol. 1994 September; 13(3):154-9.

  • 18. Weiss L M, Arber D A, Strickler J G. Nasal T-cell lymphoma. Ann Oncol. 1994; 5 Suppl 1:39-42.

  • 19. Zackheim H S, Vonderheid E C, Ramsay D L, LeBoit P E, Rothfleisch J, Kashani-Sabet M. Relative frequency of various forms of primary cutaneous lymphomas. J Am Acad Dermatol. 2000 November; 43(5 Pt 1):793-6.

  • 20. United Nations D of E and SA Population Division. Intemational Migration Report 2009: A Global Assessment. United Nations, New York; 2011.

  • 21. Cossman J, Uppenkamp M, Andrade R, Medeiros U. T-cell receptor gene rearrangements and the diagnosis of human T-cell neoplasms. Crit Rev Oncol-Hematol. 1990; 10(3):267-81.

  • 22. Vantourout P, Hayday A. Six-of-the-best: unique contributions of gammadelta T cells to immunology. Nat Rev Immunol. 2013 February; 13(2):88-100.

  • 23. Lefranc M P. TRA (T cell receptor alpha). Atlas Genet Cytogenet Oncol Haematol. 2003; 7(4):245-8.

  • 24. Lefranc M P. TRD (T cell receptor delta). Atlas Genet Cytogenet Oncol Haematol. 2003; 7(4):252-4.

  • 25. Lefranc M P. TRB (T cell receptor beta). Atlas Genet Cytogenet Oncol Haematol. 2003; 7(4):249-51.

  • 26. Lefranc M P. TRG (T cell receptor gamma). Atlas Genet Cytogenet Oncol Haematol. 2003; 7(4):255-6.

  • 27. Bolotin D A, Mamedov I Z, Britanova O V, Zvyagin I V, Shagin D, Ustyugova S V, et al. Next generation sequencing for TCR repertoire profiling: platform-specific features and correction algorithms. Eur J Immunol. 2012 November; 42(11):3073-83.

  • 28. Linnemann C, Heemskerk B, Kvistborg P, Kluin R J, Bolotin D A, Chen X, et al. High-throughput identification of antigen-specific TCRs by TCR gene capture. Nat Med. 2013 November; 19(11):1534-41.

  • 29. van Dongen J J, Langerak A W, Bruggemann M, Evans P A, Hummel M, Lavender F L, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia. 2003 December; 17(12):2257-317.

  • 30. Amagai M, Hayakawa K, Amagai N, Kobayashi K, Onodera Y, Shimizu N, et al. T cell receptor gene rearrangement analysis in mycosis fungoides and disseminated lymphocytoma cutis. Dermatologica. 1990; 181(3):193-6.

  • 31. Dosaka N, Tanaka T, Fujita M, Miyachi Y, Horio T, Imamura S. Southern blot analysis of clonal rearrangements of T-cell receptor gene in plaque lesion of mycosis fungoides. J Invest Dermatol. 1989 November; 93(5):626-9.

  • 32. Chan D W, Liang R, Chan V, Kwong Y L, Chan T K. Detection of T-cell receptor delta gene rearrangement by clonal specific polymerase chain reaction. Leukemia. 1997 April, 11 Suppl 3:281-4.

  • 33. Lynch J W Jr, Linoilla I, Sausville E A, Steinberg S M, Ghosh B C, Nguyen D T, et al. Prognostic implications of evaluation for lymph node involvement by T-cell antigen receptor gene rearrangement in mycosis fungoides. Blood. 1992 Jun. 15; 79(12):3293-9.

  • 34. McClure R F, Kaur P, Pagel E, Ouillette P D, Holtegaard C E, Treptow C L, et al. Validation of immunoglobulin gene rearrangement detection by PCR using commercially available BIOMED-2 primers. Leukemia. 2006 January; 20(1):176-9.

  • 35. Bagg A, Braziel R M, Arber D A, Bijwaard K E, Chu A Y. Immunoglobulin heavy chain gene analysis in lymphomas: a multi-center study demonstrating the heterogeneity of performance of polymerase chain reaction assays. J Mol Diagn. 2002 May; 4(2):81-9.

  • 36. Cushman-Vokoun A M, Connealy S, Greiner T C. Assay design affects the interpretation of T-cell receptor gamma gene rearrangements: comparison of the performance of a one-tube assay with the BIOMED-2-based TCRG gene clonality assay. J Mol Diagn. 2010 November; 12(6):787-96.

  • 37. Groenen P J, Langerak A W, van Dongen J J, van Krieken J H. Pitfalls in TCR gene clonality testing: teaching cases. J Hematop. 2008 September; 1(2):97-109.

  • 38. Mamanova L, Coffey A J, Scott C E, Kozarewa I, Turner E H, Kumar A, et al. Target-enrichment strategies for next-generation sequencing. Nat Methods. 2010 February; 7(2):111-8.

  • 39. Bossler A V D V. Chapter 4: Conventional and Real-Time Polymerase Chain Reaction. In: Tubbs R R. S M, editor. Cell and Tissue Based Molecular Pathology. Churchill Livingstone Elsevier; 2009. p. 33-49.

  • 40. Rhodenizer D daSilva C; Skinner N; Hegde, M. One library, many tests: The evolution of Next Generation Sequencing panel testing. In 2014.

  • 41. Bowen D C M; Kautzer, C; Landers, T; Mehta, G; Olivares. Improved Performance of Solution-based Target Enrichment with Spike-in of Individually Synthesized Capture DNA Probes. In 2012.

  • 42. Jarosz M Z Z: Lipson D; Frampton, G; Yalensky, R; Parker A; Cronin, M. High Performance Solution-Based Target Selection Using Individually Synthesized Oligonucleotide Capture Probes. In 2011.

  • 43. Shi W C C; Tang, T; Hipolito, L; Srinivasan, P; Chiang, D; Pend, D; Di Tomaso, E; Tangri, S; Lameh, J; Pollner, R. Development of a Clinical Targeted Next-Generation Sequencing (NGS) Test for Formalin-Fixed Paraffin-Embedded (FFPE) Cancer Samples. In 2014.

  • 44. Schmidt R L, Factor R E. Understanding sources of bias in diagnostic accuracy studies. Arch Pathol Lab Med. 2013 April; 137(4):558-65.

  • 45. Tomaszewski J E, Bear H D, Connally J A, Epstein J I, Feldman M, Foucar K, et al. Consensus conference on second opinions in diagnostic anatomic pathology. Who, What, and When. Am J Clin Pathol. 2000 September; 114(3):329-35.

  • 46. Naaktgeboren C A, Bertens L C, van Smeden M, de Groot J A, Moons K G, Reitsma J B. Value of composite reference standards in diagnostic research. BMJ. 2013; 347:f5605.

  • 47. Duncavage E J, Magrini V, Becker N, Armstrong J R, Demeter R T, Wylie T, et al. Hybrid capture and next-generation sequencing identify viral integration sites from formalin-fixed, paraffin-embedded tissue. J Mol Diagn. 2011 May; 13(3):325-33.

  • 48. Gnirke A, Melnikov A, Maguire J, Rogov P, LeProust E M, Brockman W, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat Biotechnol. 2009 February; 27(2):182-9.

  • 49. Gilbert M T, Haselkom T, Bunce M, Sanchez J J, Lucas S B, Jewell L D, et al. The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS One. 2007; 2(6):e537.

  • 50. Bolotin D A, Poslavsky S, Mitrophanov I, Shugay M, Mamedov I Z, Putintseva E V, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015 Apr. 29; 12(5):380-1.

  • 51. Li S, Lefranc M-P, Miles J J, Alamyar E, Giudicelli V, Duroux P, et al. IMGT/HighV QUEST paradigm for T cell receptor IMGT clonotype diversity and next generation repertoire immunoprofiling. Nat Commun [Internet]. 2013 Sep. 2 [cited 2016 Jan. 30]; 4. Available from: www.nature.com/doifinder/10.1038/ncomms3333

  • 52. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinforma Oxf Engl. 2014 Mar. 1; 30(5):614-20.

  • 53. Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007 Nov. 1; 23(21):2947-8.

  • 54. Giudicelli V, Chaume D, Lefranc M P. IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 2005 Jan. 1; 33(Database issue):D256-61.

  • 55. Li H D R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009; 25:1754-60.

  • 56. Brochet X, Lefranc M P, Giudicelli V. IMGTN-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 2008 Jul. 1; 36(Web Server issue):W503-8.

  • 57. Giudicelli V, Lefranc M P. IMGTrjunctionanalysis: IMGT standardized analysis of the V-J and V-D-J junctions of the rearranged immunoglobulins (IG) and T cell receptors (TR). Cold Spring Harb Protoc. 2011 June; 2011(6):716-25.

  • 58. Giudicelli V, Brochet X, Lefranc M P. IMGTN-QUEST: IMGT standardized analysis of the immunoglobulin (IG) and T cell receptor (TR) nucleotide sequences. Cold Spring Harb Protoc. 2011 June; 2011(6):695-715.

  • 59. Yousfi Monod M, Giudicelli V, Chaume D, Lefranc M P. IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V-J and V-D-J JUNCTIONs. Bioinformatics. 2004 Aug. 4; 20 Suppl 1:i379-85.

  • 60. Smith T F, Waterman M S. Identification of common molecular subsequences. J Mol Biol. 1981 Mar. 25; 147(1):195-7.

  • 61. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009 September; 19(9):1639-45.

  • 62. Lefranc M P. Unique database numbering system for immunogenetic analysis. Immunol Today. 1997 November; 18(11):509.

  • 63. Lefranc M P, Pommie C, Ruiz M, Giudicelli V, Foulquier E, Truong L, et al. IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev Comp Immunol. 2003 January; 27(1):55-77.

  • 64. Altschul S, Erickson B. Optimal sequence alignment using affine gap costs. Bull Math Biol. 1986 Sep. 1; 48(5-6):603-16.

  • 65. Lefranc M P. IMGT-ONTOLOGY and IMGT databases, tools and Web resources for immunogenetics and immunoinformatics. Mol Immunol. 2004 January; 40(10):647-60.

  • 66. Lefranc M P. IMGT databases, web resources and tools for immunoglobulin and T cell receptor sequence analysis, imgt.cines.fr. Leukemia. 2003 January; 17(1):260-6.

  • 67. Sandberg Y, Verhaaf B, van Gastel-Mol E J, Wolvers-Tettero I L, de Vos J, Macleod R A, et al. Human T-cell lines with well-defined T-cell receptor gene rearrangements as controls for the BIOMED-2 multiplex polymerase chain reaction tubes. Leukemia. 2007 February; 21(2):230-7.

  • 68. Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012; 13:134.

  • 69. Kent W J. S C. W.; Furey, T. S.; Roskin, K. M.; Pringle, T. H.; Zahler, A. M.; Haussler, D. The human genome browser at UCSC. Genome Res. 2002 June; 12(6):996-1006.

  • 70. Malde K. The effect of sequence quality on sequence alignment. Bioinformatics. 2008 Apr. 1; 24(7):897-900.

  • 71. Davidson J N, Leslie I, White J C. Quantitative studies on the content of nucleic acids in normal and leukaemic cells, from blood and bone marrow. J Pathol Bacteriol. 1951 July; 63(3):471-83.

  • 72. Glen A C. Measurement of DNA and RNA in human peripheral blood lymphocytes. Clin Chem. 1967 April; 13(4):299-313.

  • 73. Metais P, Mandel P. [Percentage of desoxypentosenucleic acid in leucocytes in normal and pathological conditions]. C R Seances Soc Biol Fil. 1950 February; 144(3-4):277-9.

  • 74. Jones S R, Carley S, Harrison M. An introduction to power and sample size estimation. Emerg Med J. 2003 September; 20(5):453-8.

  • 75. Network NCC. NCCN Clinical Practice Guidelines in Oncology. National Comprehensive Cancer Network, Inc.; 2014.

  • 76. Jaffe E S, Organization W H. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues [Internet]. IARC Press; 2001. Available from: books.google.ca/books?id=XSKqcy7TUZUC

  • 77. Gazzola A, Mannu C, Rossi M, Laginestra M A, Sapienza M R, Fuligni F, et al. The evolution of clonality testing in the diagnosis and monitoring of hematological malignancies. Ther Adv Hematol. 2014 Apr. 1; 5(2):35-47.

  • 78. Tape T. Interpreting Diagnostic Tests [Internet]. University of Nebraska Medical Center; [cited 2015 Nov. 8]. Available from: gim.unmc.edu/dxtests/Default.htm

  • 79. Hu P C, Hegde M R, Lennon P A, editors. Modem clinical molecular techniques. New York: Springer; 2012. 436 p.

  • 80. Brunet J-P, Tamayo P, Golub T R, Mesirov J P. Metagenes and molecular pattern discovery using matrix factorization. Proc Nati Acad Sci USA. 2004 Mar. 23; 101(12):4164-9.

  • 81. Tembhare P, Yuan C M, Xi L, Morris J C, Liewehr D, Venzon D, et al. Flow cytometric immunophenotypic assessment of T-cell clonality by VP repertoire analysis: detection of T-cell clonality at diagnosis and monitoring of minimal residual disease following therapy. Am J Clin Pathol. 2011 June; 135(6):890-900.

  • 82. Sufficool K E, Lockwood C M, Abel H J, Hagemann I S, Schumacher J A, Kelley T W, et al. T-cell clonality assessment by next-generation sequencing improves detection sensitivity in mycosis fungoides. J Am Acad Dermatol. 2015 August; 73(2):228-36.e2.

  • 83. Cazzaniga G, Biondi A. Molecular monitoring of childhood acute lymphoblastic leukemia using antigen receptor gene rearrangements and quantitative polymerase chain reaction technology. Haematologica. 2005 March; 90(3):382-90.

  • 84. Lima M, Almeida J, Santos A H, dos Anjos Teixeira M, Alguero M C, Queirós M L, et al. Immunophenotypic analysis of the TCR-Vbeta repertoire in 98 persistent expansions of CD3(+)/TCR-alphabeta(+) large granular lymphocytes: utility in assessing clonality and insights into the pathogenesis of the disease. Am J Pathol. 2001 November; 159(5):1861-8.

  • 85. Miles J J, Douek D C, Price D A. Bias in the αβ T-cell repertoire: implications for disease pathogenesis and vaccination. Immunol Cell Biol. 2011 March, 89(3):375-87.

  • 86. Society C C. Non-Hodgkin Lymphoma Statistics [Internet]. Cancer Information. 2014. Available from: www.cancer.ca/en/cancer-information/cancer-type/non-hodgkin-lymphoma/statistics/?region=on

  • 87. Canada S. Population by year, by province and territory [Internet]. 2014 September Available from: www.statcan.gc.ca/tables-tableaux/sum-som/IO1/cst01/demo02a-end.htm

  • 88. Information CI for H. DAD Abstracting Manual, 2012-2013 Edition [Internet]. 2012 April Available from: sda.chass.utoronto.ca.myaccess.library.utoronto.ca/sdaweb/cihi/2011to2013/clin/more_doc/DA D_Abstracting_Manual_2012-2013_E.pdf

  • 89. Information CI for H. CIHI Specifications Form for Research Analytical Files [Internet]. 2014 February Available from: sda.chass.utoronto.ca.myaccess.library.utoronto.ca/sdaweb/cihi/2011to2013/clin/more_doc/Specifications-DAD-RAF-EN.pdf

  • A1. van Dongen, J. J. M. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17, 2257-2317 (2003).

  • A2. Langerak, A. W. et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig1TCR clonality testing in suspected lymphoproliferations. Leukemia 26, 2159-2171 (2012).

  • A3. Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotech 32, 684-692 (2014).

  • A4. Stubbington, M. J. T. et al. T cell fate and clonality inference from single-cell transcriptomes. Nat Meth 13, 329-332 (2016).

  • A5. Samorodnitsky, E. et al. Evaluation of Hybridization Capture Versus Amplicon-Based Methods for Whole-Exome Sequencing. Human Mutation 36, 903-914 (2015).

  • A6. Mamanova, L. et al. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7, 111-118 (2010).

  • A7. Bodi, K. et al. Comparison of Commercially Available Target Enrichment Methods for Next-Generation Sequencing. J Biomol Tech 24, 73-86 (2013).

  • A8. Mertes, F. et al. Targeted enrichment of genomic DNA regions for next-generation sequencing. Briefings in Functional Genomics 10, 374-386 (2011).

  • A9. Giudicelli, V. et al. IMGT/LIGM-DB, the IMGT comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res. 34, D781-784 (2006).

  • A10. Bolotin, D. A. et al. MiTCR: software for T-cell receptor sequencing data analysis. Nat Meth 10, 813-814 (2013).

  • A11. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Meth 12, 380-381 (2015).

  • A12. Brochet, X., Lefranc, M.-P. & Giudicelli, V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 36, W503-508 (2008).

  • A13. Thomas, N., Heather, J., Ndifon, W., Shawe-Taylor, J. & Chain, B. Decombinator: a tool for fast, efficient gene assignment in T-cell receptor sequences using a finite state machine. Bioinformatics 29, 542-550 (2013).

  • A14. Yu, Y., Ceredig, R. & Seoighe, C. LymAnalyzer: a tool for comprehensive analysis of next generation sequencing data of T cell receptors and immunoglobulins. Nucl. Acids Res. gkv1016 (2015). doi:10.1093/nar/gkv1016

  • A15. Zhang, W. et al. IMonitor: A Robust Pipeline for TCR and BCR Repertoire Analysis. Genetics 201, 459-472 (2015).

  • A16. Calis, J. J. A. & Rosenberg, B. R. Characterizing immune repertoires by high throughput sequencing: strategies and applications. Trends Immunol 35, 581-590 (2014).

  • A17. Sandberg, Y. et al. Human T-cell lines with well-defined T-cell receptor gene rearrangements as controls for the BIOMED-2 multiplex polymerase chain reaction tubes. Leukemia 21, 230-237 (2007).

  • A18. Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614-620 (2014).

  • A19. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

  • B1. Rosenberg, S. A., and Restifo, N. P. (2015). Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62-68.

  • B2. Hadrup, S., Donia, M., and thor Straten, P. (2013). Effector CD4 and CD8 T Cells and Their Role in the Tumor Microenvironment. Cancer Microenvironment 6, 123-133.

  • B3. Attaf, M., Huseby, E., and Sewell, A. K. (2015). as T cell receptors as predictors of health and disease. Cell. Mol. Immunol. 12, 391-399.

  • B4. Gubin, M. M., Artyomov, M. N., Mardis, E. R., and Schreiber, R. D. (2015). Tumor neoantigens: building a framework for personalized cancer immunotherapy. Journal of Clinical Investigation 125, 3413-3421.

  • B5. Clemente, M. J., Przychodzen, B., Jerez, A., Dienes, B. E., Afable, M. G., Husseinzadeh, H., Rajala, H. L. M., Wodarski, M. W., Mustjoki, S., and Maciejewski, J. P. (2013). Deep sequencing of the T-cell receptor repertoire in CD8+ T-large granular lymphocyte leukemia identifies signature landscapes. Blood 122, 4077-4085.

  • B6. Topalian, S. L., Drake, C. G., and Pardoll, D. M. (2015). Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450-461.

  • B7. Novosiadly, R., and Kalos, M. (2016). High-content molecular profiling of T-cell therapy in oncology. Molecular Therapy—Oncolytics 3, 16009.

  • B8. Abbey, J. L., and O'Neill, H. C. (2007). Expression of T-cell receptor genes during early T-cell development. Immunol Cell Biol 86, 166-174.

  • B9. Emerson, R. O., Sherwood, A. M., Rieder, M. J., Guenthoer, J., Williamson, D. W., Carlson, C. S., Drescher, C. W., Tewari, M., Bielas, J. H., and Robins, H. S. (2013). High-throughput sequencing of T-cell receptors reveals a homogeneous repertoire of tumour-infiltrating lymphocytes in ovarian cancer. J. Pathol. 231, 433-440.

  • B10. Gerlinger, M., Quezada, S. A., Peggs, K. S., Fumess, A. J. S., Fisher, R., Marafioti, T., Shende, V. H., McGranahan, N., Rowan, A. J., Hazell, S., et al. (2013). Ultra-deep T cell receptor sequencing reveals the complexity and intratumour heterogeneity of T cell clones in renal cell carcinomas. J. Pathol. 231, 424-432.

  • B11. Restifo, N. P., Dudley, M. E., and Rosenberg, S. A. (2012). Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269-281.

  • B12. Silva-Santos, B., Serre, K., and Norell, H. (2015). γδ T cells in cancer. Nat Rev Immunol 15, 683-691.

  • B13. Tscharke, D. C., Croft, N. P., Doherty, P. C., and La Gruta, N. L. (2015). Sizing up the key determinants of the CD8(+) T cell response. Nat. Rev. Immunol. 15, 705-716.

  • B14. Wherry, E. J., and Kurachi, M. (2015). Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15, 486-499.













List of Abbreviations
















ATCC
American Type Culture Collection (Biorepository)


AUC
Area-under-the-curve


bp
basepair


BWA
Burrows-Wheeler Alignment algorithm


CIHI
Canadian Institutes for Health Information


D
T-cell receptor “diversity” type gene


DAD
Discharge Abstracts Database (CIHI database)


DSMZ
Deutsche Sammlung von Mikroorganismen und



Zellkulturen GmbH (German Collection of



Microorganisms and Cell Cultures)


FDR
False-Discovery Rare


FFPE
Formalin-fixed paraffin-embedded


ICD-10
International classification of disease, version 10


IG
Immunoglobulin


IMGT
The International standard source for ImMunoGeneTics



sequences & metadata


J
T-cell receptor gene “join” type gene


kb
kilobase


LGL
Large-Granular-Lymphocyte (Leukemia/Lymphoma)


NGS
Next-generation sequencing (technology)


NMF
Non-negative Matrix Factorization


NTRA
Novel NGS-based T-cell receptor gene re-arrangement



assay


PEAR
Paired-end rEAd mergeR


PTCL
Peripheral T-cell lymphoma


ROC
Receiver-Operating Characteristic (Curve)


SAM
Sequence Alignment Map


SEER
Surveillance, epidemiology, and end results program



(the primary US source of Cancer Statistics)


SWA
Smith-Waterman Alignment (algorithm)


TGH
Toronto General Hospital


TLPD
T-cell lymphoproliferative disorder


TR
T-cell receptor


TRA
T-cell receptor alpha gene


TRB
T-cell receptor beta gene


TRD
T-cell receptor delta gene


TRG
T-cell receptor gamma gene


TRGR
T-cell receptor gene re-arrangement


V
T-cell receptor “variable” type gene


WHO
World Health Organization


















TABLE 2.1





SEQ ID NO
Name
Sequence







SEQ ID NO: 873
TRAV1-1*01-5′
ggacaaagccttgagcagccctctgaagtgacagctgtggaaggagccattgtccagataaactgcacgtaccagacatctgggttttatgggctgtcct





SEQ ID NO: 874
TRAV101*01-3′
gtttttcttcattccttagtcgctctgatagttatggttacctccttctacaggagctccagatgaaagactctgcctcttacttctgcgctgtgagaga





SEQ ID NO: 875
TRAV1-1*02-5′
ggacaaagccttgagcagccctctgaagtgacagctgtggaaggagccattgtccagataaactgcacgtaccagacatctgggttttatgggctgtcct





SEQ ID NO: 876
TRAV1-1*02-3′
caggtcgtttttccttcattccttagtcgctctgatagttatggttacctccttctacaggagctccagatgaaagactctgcctcttacttctgcgctgt





SEQ ID NO: 877
TRAV1-2*01-5′
ggacaaaacattgaccagcccactgagatgacagctacggaaggtgccattgtccagatcaactgcacgtaccagacatctgggttcaacgggctgttct





SEQ ID NO: 878
TRAV1-2*01-3′
gtttttccttcattccttagtcggtctaaagggtacagttacctccttttgaaggagctccagatgaaagactctgcctcttacctctgtgctgtgagaga





SEQ ID NO: 879
TRAV1-2*02-5′
ggacaaaacattgaccagcccactgagatgacagctacggaaggtgccattgtccagatcaactgcacgtaccagacatctgggttcaacgggctgttct





SEQ ID NO: 880
TRAV1-2*02-3′
catctgggttcaacgggctgttctggtaccagcaacatgctggcgaagcacccacatttctgtcttacaatgttctggatggtctggaggagaaaggtcg





SEQ ID NO: 881
TRAV10*01-5′
aaaaaccaagtggagcagagtcctcagtccctgatcatcctggagggaaagaactgcactcttcaatgcaattatacagtgagccccttcagcaacttaa





SEQ ID NO: 882
TRAV10*01-3′
agatatacagcaactctggatgcagacacaaagcaaagctctctgcacatcacagcctcccagctcagcgattcagcctcctacatctgtgtggtgagcg





SEQ ID NO: 883
TRAV11*01-5′
ctacatacactggagcagagtccttcattcctgaatattcaggagggaatgcatgccgttcttaattgtacttatcaggagagaacactcttcaatttct





SEQ ID NO: 884
TRAV11*01-5′
caaatattttaaagaactgcttggaaagaaaaattttatagtgtttggaatatcgcagcctctcatctgggagattcagccacctacttctgtgctttg





SEQ ID NO: 885
TRAV12-1*01-5′
cggaaggaggtggagcaggatcctggacccttcaatgttccagagggagccactgtcgctttcaactgtacttacagcaacagtgcttctcagtctttct





SEQ ID NO: 886
TRAV12-1*01-3′
aggtttacagcacagctcaatagagccagccagtatatttccctgctcatcagagactccaagctcagtgattcagccacctacctctgtgtggtgaaca





SEQ ID NO: 887
TRAV12-1*02-5′
cggaaggaggtggagcaggatcctggacccttcaatgttccagagggagccactgtcgctttcaactgtacttacagcaacagtgcttctcagtctttct





SEQ ID NO: 888
TRAV12-1*02-3′
acagcacacgtcaatagagccagccagtatatttccctgctcatcagagactccaagctcagtgattcagccacctacctctgtgtggtgaacattcgcc





SEQ ID NO: 889
TRAV12-2*01-5′
cagaaggaggtggagcagaattctggacccctcagtgttccagagggagccattgcctctctcaactgcacttacagtgaccgaggttcccagtccttct





SEQ ID NO: 890
TRAV12-2*01-3′
aggttacagcacagctcaataaagccagccagtatgtttctctgctcatcagagactcccagcccagtgattcagccacctacctctgtgccgtgaaca





SEQ ID NO: 891
TRAV12-2*02-5′
cagaaggaggtggagcagaattctggacccctcagtgttccagagggagccattgcctctctcaactgcacttacagtgaccgaggttcccagtccttct





SEQ ID NO: 892
TRAV12-2*02-3′
gtttacagcacagctcaataaagccagccagtatgtttctctgctcatcagagactcccagcccagtgattcagccacctacctctgtgccgtgtaccac





SEQ ID NO: 893
TARV12-2*03-5′
ggacccctcagtgttccagagggagccattgcctctctcaactgcacttacagtgaccgagtttcccagtccttcttctggtacagacaatattctggga





SEQ ID NO: 894
TRAV12-2*03-3′
aaggtttacagcacagctcaataaagccagccagtatgtttctctgctcatcagagactcccagcccagtgattcagccacctacctctgtgccgtgaac





SEQ ID NO: 895
TRAV12-3*01-5′
cagaaggaggtggagcaggatcctggaccactcagtgttccagagggagccattgtttctctcaactgcacttacagcaacagtgcttttcaatacttca





SEQ ID NO: 896
TRAV12-3*01-3′
aggtttacagcacaggtcgataaatccagcaagtatatctccttgttcatccagagactcacagcccagtgattcagccacctacctctgtgcaatgagcg





SEQ ID NO: 897
TRAV12-3*02-5′
cagaaggaggtggagcaggatcctggaccactcagtgttccagagggagccattgtttctctcaactgcacttacagcaacagtgcttttcaatacttca





SEQ ID NO: 898
TRAV12-3*02-3′
aggtttacagcacaggtcgataaatccagcaagtatatctccttgttcatcagagactcacagcccagtgattcagccacctacctctgtgcaatgagcg





SEQ ID NO: 899
TRAV13-1*02-5′
ggagagaatgtggagcagcatccttcaaccctgagtgtccaggagggagacagcgctgttatcaagtgtacttattcagacagtgcctcaaactacttcc





SEQ ID NO: 900
TRAV13-1*01-3′
cgaattgctgttacattgaacaagacagccaaacatttctccctgcacatcacagagacccaacctgaagactcggctgtctacttctgtgcagcaagta





SEQ ID NO: 901
TRAV13-1*02-5′
ggagagaatgtggagcagcatccttcaaccctgagtgtccaggagggagacagcgctgttatcaagtgtacttattcagacagtgcctcaaactacttcc





SEQ ID NO: 902
TRAV13-1*02-3′
tgttacattgaacaagacagccaaacatttctccctgcacatcacagagacccaacctgaagactcggctgtctacttctgtgcagcaagtaggaaggac





SEQ ID NO: 903
TRAV13-1*03-5′
ggagagaatgtggagcagcatccttcaaccctgagtgtccaggagggagacagcgctggttatcaagtgtacttattcagacagtgcctcaaactacttcc





SEQ ID NO: 904
TRAV13-1*03-3′
gcttattatagacattcgttcaaatgtgggcgaaaagaaagaccaacgaattgctgttacattgaacaagacagccaaacatttctccctgcagatcaca





SEQ ID NO: 905
TRAV13-2*01-5′
ggagagagtgtggggctgcatcttcctaccctgagtgtccaggagggtgataactctattatcaactgtgcttattcaaacagcgcctcagactacttca





SEQ ID NO: 906
TRAV13-2*01-3′
agagtcaccgttttattgaataagacagtgaaacatctctctctgcaaattgcagctactcaacctggagactcagctgtctacttttgtgcagagaata





SEQ ID NO: 907
TRAV13-2*02-5′
ggagagagtgtggggctgcatcttcctaccctgagtgtccaggagggtgacaactctattatcaacztgtgcttattcaaacagcgcctcagactacttca





SEQ ID NO: 908
TRAV13-2*02-3′
caaagagtcaccgttttattgaataagacagtgaaacatctctctctgcaaattgcagctactcaacctggagactcagctgtctacttttgtgcagaga





SEQ ID NO: 909
TRAV14/DV4*01-5′
gcccagaagataactcaaacccaaccaggaatgttcgtgcaggaaaaggaggctgtgactctggactgcacatatgacaccagtgatccaagttatggtc





SEQ ID NO: 910
TRAV14/DV4*01-3′
actcattgaatttccagaaggcaagaaaatccgccaaccttgtcatctccgcttcacaactgggggactcagcaatgtacttctgtgccaatgagagaggg





SEQ ID NO: 911
TRAV14/DV4*02-5′
gcccagaagataactcaaacccaaccaggaatgttcgtgcaggaaaaggaggctgtgactctggactgcacatatgacaccagtgatcaaagttatggtc





SEQ ID NO: 912
TRAV14/DV4*02-3′
actcattgaatttccagaaggcaagaaaatccgccaaccttgtcatctccgcttcacaactgggggactcagcaatgtatttctgtgcaatgagagaggg





SEQ ID NO: 913
TRAV14/DV4*03-5′
gcccagaagataactcaaacccaaccaggaatgttcgtgcaggaaaaggaggctgtgactctggactgcacatatgacaccagtgatccaagttatggtc





SEQ ID NO: 914
TRAV14/DV4*03-3′
aggtcgctactcattgaatttccagaaggcaagaaaatccgccaaccttgtcatctccgcttcacaactgggggactcagcaatgtatttctgtgcaatg





SEQ ID NO: 915
TRAV14/DV4*04-5′
cagaagataactcaaacccaaccaggaatgttcgtgcaggaaaaggaggctgtgactctggactgcacatatgacaccagtgatcaaagttatggtctct





SEQ ID NO: 916
TRAV14/DR4*04-3′
gcaacagaaggtcgctactcattgaatttccagaaggcaagaaaatccgccaaccttgtcatctccgcttcacaactgggggactcagcaatgtacttct





SEQ ID NO: 917
TRAV15*01-5′
ctccatattctggagtagagtccttcattcattcctgagtatccgggagggaatgcacaacattcttaattgcacttatgaggagagaacgttctcttaa





SEQ ID NO: 918
TRAV15*01-3′
acattttaaagaagcgcttggaaaagagaagttttatagtgttttgaatatgctggtctctcatcctggagattcaggcacctacttctgtgctttgaag





SEQ ID NO: 919
TRAV16*01-T′
gcccagagagtgactcagcccgagaaagctcctctctgtctttaaaggggccccagtggagctgaagtgcaactattcctattctgggagtcctgaactct





SEQ ID NO: 920
TRAV16*01-3′
gcttcactgctgaccttaacaaaggcgagacatcttttcacctgaagaaaccatttgctcaagaggaagactcagccatgtattactgtgctctaagtgg





SEQ ID NO: 921
TRAV17*01-5′
agtcaacagggagaagaggatcctcaggccttgagcatccaggagggtgaaaatgccaccatgaactgcagttacaaaactagtataaacaatttacagt





SEQ ID NO: 922
TRAV17*-1-3′
agattaagagtcacgcttgacacttccaagaaaagcagttccttgttgatcacggcttcccgggcagcagacactgcttcttacttctgtgctacggacg





SEQ ID NO: 923
TRAV18*01-5′
ggagactcggttacccagacagaaggcccagttaccctccctgagagggcagctctgacattaaactgcacttatcagtccagctattcaacttttctat





SEQ ID NO: 924
TRAV18*01-3′
gttttcaggccagtcctatcaagagtgacagttccttccacctggagaagccctcggtgcagctgtcggactctgccgtgtactactgcgctctgagaga





SEQ ID NO: 925
TRAV19*01-5′
gctcagaaggtaactcaagcgcagactgaaatttctgtggtggagaaggaggatgtgaccttggactgtgtgtatgaaacccgtgatactacttattact





SEQ ID NO: 926
TRAV19*01-3′
attcttggaacttccagaaatccaccagttccttcaacttcaccatcacagcctcacaagtcgtggactcagcagtatacttctgtgctctgagtgaggc





SEQ ID NO: 927
TRAV2*01-5′
aaggaccaagtgtttcagccttccacagtggcatcttcagagggagctgtggtggaaatcttctgtaatcactctgtgtccaatgcttacaacttcttct





SEQ ID NO: 928
TRAV2*01-3′
agggacgatacaacatgacctatgaacggttctcttcatcgctgctcatcctccaggtgcgggaggcagatgctgctgtttactactgtgctgtggagga





SEQ ID NO: 929
TRAV2*02-5′
aaggaccaagtgtttcagccttccacagtggcatcttcagagggagctgtggtggaaatcttctgtaatcactctgtgtccaatgcttacaacttcttct





SEQ ID NO: 930
TRAV2*02-3′
gggacgatacaacatgacctatgaacggttctcttcatcgctgctcatcctccaggtgcgggaggcagatgctgctgtttactactgtgctgtggcctgg





SEQ ID NO: 931
TRAV20*01-5′
gaagaccaggtgacgcagagtcccgaggccctgagactccaggagggagagagtagcagtcttaactgcagttacacagtcagcggtttaagagggctgt





SEQ ID NO: 932
TRAV20*01-3′
aaagaaaggctaaaagccacattaacaaagaaggaaagctttctgcacatcacagcccctaaacctgaagactcagccacttatctctgtgctgtgcagg





SEQ ID NO: 933
TRAV20*02-5′
gaagaccaggtgacgcagagtcccgaggccctgagactccaggagggagagagtagcagtctcaactgcagttacacagtcagcggtttaagagggctgt





SEQ ID NO: 934
TRAV20*02-3′
aaaggagaaagaaaggctaaaagccacattaacaaagaaggaaagctttctgcacatcacagcccctaaacctgaagactcagccacttatctctgtgct





SEQ ID NO: 935
TRAV20*03-5′
gaagaccaggtgacgcagagtcccgaggccctgagactccaggagggagagagtcgcagtctcaactgcagttacacagtcagcggtttaagagggctgt





SEQ ID NO: 936
TRAV20*03-3′
agaaaaggagaaagaaaggctaaaagccacattaacaagaaggaaagctttctgcacatcacagcccctaaacctgaagactcagccacttatctctgt





SEQ ID NO: 937
TRAV20*04-5′
gaagaccaggtgacgcagagtcccgaggccctgagactccaggagggagagagtagcagtctcaactgcagttgcacagtcagcggtttaagagggctgt





SEQ ID NO: 938
TRAV20*04-3′
aaaggagaaagaaaggctaaaagccacattaacaaagaaggaaagctttctgcacatcacagcccctaaacctgaagactcagccacttatctctgtgct





SEQ ID NO: 939
TRAV21*01-5′
aaacaggaggtgacgcagattcctgcagctctgagtgtcccagaaggagaaaacttggttctcaactgcagtttcactgatagcgctatttacaacctcc





SEQ ID NO: 940
TRAV21*01-3′
aagacttaatgcctcgctggataaatcatcaggacgtagtactttatacattgcagcttctcagcctggtgactcagccacctacctctgtgctgtgagg





SEQ ID NO: 941
TRAV21*02-5′
aaacaggaggtgacacagattcctgcagctctgagtgtcccagaaggagaaaacttggttctcaactgcagtttcactgatagcgctattacaacctcc





SEQ ID NO: 942
TRAV21*02-3′
aagtggaagacttaatgcctcgctggataaatcatcaggacgtagtactttatacattgcagcttctcagcctggtgactcagccacctacctctgtgct





SEQ ID NO: 943
TRAV22*01-5′
ggaatacaagtggagcagagtcctccagacctgattctccaggagggagccaattccacgctgcggtgcaatttttctgactctgtgaacaatttgcagt





SEQ ID NO: 944
TRAV22*01-3′
agattaagcgccacgactgtcgctacggaacgctacagcttattgtacatttcctcttcccagaccacagactcaggcgtttatttctgtgctgtggagc





SEQ ID NO: 945
TRAV23/DV6*01-5′
cagcagcaggtgaaacaaagtcctcaatcttgatagtccagaaaggagggatttcaattataaactgtgcttatgagaacactgcgtttgactactttc





SEQ ID NO: 946
TRAV23/DV6*01-3′
agattcacaatctccttcaataaaagtgccaagcagttctcattgcatatcatggattcccagcctggagactcagccacctacttctgtgcagcaagta





SEQ ID NO: 947
TRAV23/DV6*02-5′
cagcagcaggtgaaacaaagtcctcaatctttgatagtccagaaaggagggattccaattataaactgtgcttatgagaacactgcgtttgactactttc





SEQ ID NO: 948
TRAV23/DV6*02-3′
agattcacaatctccttcaataaaagtgccaagcagttctcattgcatatcatggattcccagcctggagactcagccacctacttctgtgcagcaagcg





SEQ ID NO: 949
TRAV23/DV6*03-5′
cagcagcaggtgaaacaaagtcctcaatctttgatagtccagaaaggagggatttcaattataaactgtgcttatgagaacactgcgtttgactactttc





SEQ ID NO: 950
TRAV23/DV6*03-3′
agattcacaatctccttcaataaaagtgccaagcagttctcattgcatatcatggattcccagcctggagactcagccacctacttctgtgcagcaagca





SEQ ID NO: 951
TRAV23/DV6*04-5′
cagcaggtgaaacaaagtcctcaatctttgatagtccagaaaggagggatttcaattataaactgtgcttatgagaacactgcgtttgactactttccat





SEQ ID NO: 952
TRAV23/DV6*04-3′
gaaagaaggaagattcacaatctccttcaataaaagtgccaagcagttctcattgcatatcatggattcccagcctggagactcagccacctacttctgt





SEQ ID NO: 953
TRAV24*01-5′
aggacgaataagtgccactcttaataccaaggagggttacagctatttgtacatcaaaggatcccagcctgaagactcagccacatacctctgtgccttt





SEQ ID NO: 954
TRAV24*01-3′
ggacgaataagtgccactcttaataccaaggagggttacagctatttgtacatcaaaggatcccagcctgaagactcagccacatacctctgtgccttta





SEQ ID NO: 955
TRAV24*02-5′
atactgaacgtggaacaaggtcctcagtcactgcatgttcaggagggagacagcaccaatttcacctgcagcttcccttccagcaatttttatgccttac





SEQ ID NO: 956
TRAV24*02-3′
ggacgaataagtgccactcttaataccaaggagggttacagctatttgtacatcaaaggatcccagcctgaagattcagccacatacctctgtgccttta





SEQ ID NO: 957
TRAV25*01-5′
ggacaacaggtaatgcaaattcctcagtaccagcatgtacaagaaggagaggacttcaccacgtactgcaattcctcaactactttaagcaatatacagt





SEQ ID NO: 958
TRAV25*01-3′
gaaaagactgacatttcagtttggagaagcaaaaaagaacagctccctgcacatcacagccacccagactacagatgtaggaacctacttctgtgcaggg





SEQ ID NO: 959
TRAV26-1*01-5′
gatgctaagaccacccagcccccctccatggattgcgctgaaggaagagctgcaaacctgccttgtaatcactctaccatcagtggaaatgagtatgtgt





SEQ ID NO: 960
TRAV26-1*01-3′
gcctctctgatcatcacagaagacagaaagtccagcaccttgatcctgccccacgctacgctgagagacactgctgtgtactattgcatcgtcagagtcg





SEQ ID NO: 961
TRAV26-1*02-5′
gatgctaagaccacccagcccacctccatggattgcgctgaaggaagagctgcaaacctgccttgtaatcactctaccatcagtggaaatgagtatgtgt





SEQ ID NO: 962
TRAV26-1*02-3′
ctctgatcatcacagaagacagaaagtccagcaccttgatcctgccccacgctacgctgagagacactgctgtgtactattgcatcgtcagagattgggt





SEQ ID NO: 963
TRAV26-1*03-5′
gatgctaagaccacccagcccccctccatggattgcgctgaaggaagagctgcaaacctgccttgtaatcactctaccatcagtggaaatgagtatgtgt





SEQ ID NO: 964
TRAV26-1*03-3′
caatgaaatggcctctctgatcatcacagaagacagaaagtccagcaccttgatcctgccccacgctacgctgagagacactgctgtgtactattgcatc





SEQ ID NO: 965
TRAV26-2*01-5′
gatgctaagaccacagccaaattcaatggagagtaacgaagaagagcctgttcacttgccttgtaaccactccacaatcagtggaactgattacatac





SEQ ID NO: 966
TRAV26-2*01-3′
ggcctctctggcaatcgctgaagacagaaagtccagtaccttgatcctgcaccgtgctaccttgagagatgctgctgtgtactactgcatcctgagagac





SEQ ID NO: 967
TRAV26-2*02-5′
gatgctaagaccacacagccaaattcaatggagagtaacgaagaagagcctgttcacttgccttgtaaccactccacaatcagtggaactgattacatac





SEQ ID NO: 968
TRAV26-2*02-3′
ccctcccagggtccagagtacgtgattcatggtcttacaagcaatgtgaacaacagaatggcctgtgtggcaatcgctgaagacagaaagtccagtacct





SEQ ID NO: 969
TRAV27*01-5′
acccagctgctggagcagagccctcagtttctaagcatccaagagggagaaaatctcactgtgtactgcaactcctcaagtgttttttccagcttacaat





SEQ ID NO: 970
TRAV27*01-3′
aagagactaacctttcagtttggtgatgcaagaaaggacagttctctccacatcactgcagcccagcctggtgatacaggcctctacctctgtgcaggag





SEQ ID NO: 971
TRAV27*02-5′
acccagctgctggagcagagccctcagtttctaagcatccaagagggagaaaatctcactgtgtactgcaactcctcaagtgtttttccagcttacaat





SEQ ID NO: 972
TRAV27*02-3′
tgaagagactaacctttcagtttggtgatgcaagaaaggacagttctctccacatcactgcggcccagcctggtgatacaggccactacctctgtcagg





SEQ ID NO: 973
TRAV27*03-5
acccagctgctggagcagagccctcagtttctaagcatccaagagggagaaaattcactgtgtactgcaactcctcaagtgttttttccagcttacat





SEQ ID NO: 974
TRAV27*03-3′
gctgaagagactaacctttcagtttggtgatgcaagaaaggacagttctctccacatcactgcagcccagactggtgatacaggcctctacctctgtgca





SEQ ID NO: 975
TRAV28*01-5′
aaagtggagcagagtcctcaggtcctgatcctccaagagggaagaaattcattcctggtgtgcagttgttctatttacatgatccgtgtgcagtggtttc





SEQ ID NO: 976
TRAV28*01-3′
gaagactaaaatccgcagtcaaagctgaggaactttatggccacctatacatcagattcccagcctgaggactcagctatttacttctgtgctgtgggga





SEQ ID NO: 977
TRAV29/DV5*01-5′
gaccagcaagttaagcaaaattcaccatccctgagcgtccaggaaggaagaatttctattctgaactgtgactatactaacagcatgtttgattatttcc





SEQ ID NO: 978
TRAV29/DV5*01-3′
agattcactgtcttcttaaacaaaagtgccaagcacctctctctgcacattgtgccctcccagcctggagactctgcagtgtacttctgcagcaagcg





SEQ ID NO: 979
TRAV29/DV5*02-5′
gaccagcaagttaagcaaaattcaccatccctgagcgtccaggaaggaagaatttctattctgaactgtgactatactaacagcatgtttgattatttcc





SEQ ID NO: 980
TRAV29/DV5*02-3′
aagattcactgttttcttaaacaaaagtgccaagcatctctctctcgacattgtgccctcccagcctggagactctgcagtgtacttctgtgcagcaagc





SEQ ID NO: 981
TRAV29/DV5*03-5′
gaccagcaagttaagcaaaattcaccatccctgagcgtccaggaaggaagaatttctattctgaactgtgactatactaacagcatgtttgattatttcc





SEQ ID NO: 982
TRAV29/DV5*03-3′
agattcactgttttcttaaacaaaagtgccaagcacctctctctgcacattgtgccctcccagcctggagactctgcagtgtacttctgtgcagcaagcg





SEQ ID NO: 983
TRAV3*01-5′
gctcagtcagtggctcagccggaagatcaggtcaacgttgctgaagggaatcctctgactgtgaaatgcacctattcagtctctggaaacccttatcttt





SEQ ID NO: 984
TRAV3*01-3′
tttgaagctgaatttaacaagagccaaacctccttccacctgaagaaaccatctgcccttgtgagcgactccgctttgtacttctgtgctgtgagagaca





SEQ ID NO: 985
TRAV3*02-5′
gctcagtcagtggctcagcggaagatcaggtcaacgttgctgaagggaatcctctgactgtgaaatgcacctattcagtctctggaaacccttatctttt





SEQ ID NO: 986
TRAV3*02-3′
ctttgaagctgaatttaacaagagccaaacctccttccacctgaagaaaccatctgcccttgtgagcgactccgctttgtacttctgtgctgtgagaccc





SEQ ID NO: 987
TRAV30*01-5′
caacaaccagtgcagagtcctcaagccgtgatcctccgagaaggggaagatgctgtcatcaactgcagttcctccaaggctttatattctgtacactggt





SEQ ID NO: 988
TRAV30*01-3′
aaaatatctgcttcatttaatgaaaaaaagcagcaaagctccctgtaccttacggcctcccagctcagttactcaggaacctacttctgcggcacagaga





SEQ ID NO: 989
TRAV30*02-5′
caacaaccagtgcagagtcctcaagccgtgatcctccgagaaggggaagatgctgtcaccaactgcagttcctccaaggctttatattctgtacactggt





SEQ ID NO: 990
TRAV30*02-3′
tcgtgaaaaaatatctgcttcatttaatgaaaaaaagcagcaaagctccctgtaccttacggcctcccagctcagttactcaggaacctacttctgcggg





SEQ ID NO: 991
TRAV30*03-5′
caacaaccagtgcagagtcctcaagccgtgatcctccgagaaggggaagatgctgtcatcaactgcagttcctccaaggctttatattctgtacactggt





SEQ ID NO: 992
TRAV30*03-3′
tcatgaaaaaatatctgcttcatttaatgaaaaaaagcggcaaagctccctgtaccttacggcctcccagctcagttactcaggaacctacttctgcggc





SEQ ID NO: 993
TRAV30*04-5′
caacaaccagtgcagagtcctcaagccgtgatcctccgagaaggggaagatgctgtcatcaactgcagttcctccaaggctttatattctgtacactggt





SEQ ID NO: 994
TRAV30*04-3′
tcctgatgatattactgaagggtggagaacagaagcgtcatgaaaaaatatctgcttcatttaatgaaaaaaagcagcaaagctccctgtaccttacggc





SEQ ID NO: 995
TRAV31*01-5′
cagagggtcattcaatcccaaccagcaatatctacgtaggagggtgagaccgtgaaactggactgtgcatacaaaactaatattgtatattacatattgt





SEQ ID NO: 996
TRAV31*01-3′
tattctgtgagcttccagaaaacaactaaaactattcagcttatcatatcatcatcacagccagaagacctgcaacatatttctgttgtctcaaagagcc





SEQ ID NO: 997
TRAV32*01-5′
aaggatgtgatacagagttattcaaatctaaatgtctaggagagagaatggccgttattaatgacagttatacagatggagctttgaattatttctgtt





SEQ ID NO: 998
TRAV32*01-3′
aggctcactgtactgttgaataaaaatgctaaacatgtctccctgcatattacagccacccaaccaggagactcattcctgtacttctgtgcagtgagaa





SEQ ID NO: 999
TRAV33*01-5′
gctcagaaagtaacccaagttcagaccacagtaactaggcagaaaggagtagctgtgaccttggactgcatgtttgaaaccagatagaattcgtacactt





SEQ ID NO: 1000
TRAV33*01-3′
gcaaagcctgtgaactttgaaaaaaagaaaaagttcatcaacctcaccatcaattccttaaaactgactcagccaagtacttctgtgctctcaggaatcc





SEQ ID NO: 1001
TRAV34*01-5′
agccaagaactggagcagagtcctcagtccttgatcgtccaagagggaaagaatctcaccataaactgcacgtcatcaaagacgttatatggcttatact





SEQ ID NO: 1002
TRAV34*01-3′
aagataactgccaagttggatgagaaaaagcagcaaagttccctgcatatcacagcctcccagcccagccatgcaggcatctacctctgtggagcagaca





SEQ ID NO: 1003
TRAV35*01-5′
ggtcaacagctgaatcagagtcctcaatctatgtttatccaggaaggagaagatgtctccatgaactgcacttcttcaagcatatttaacacctggctat





SEQ ID NO: 1004
TRAV35*01-3′
aagactgactgctcagtttggtataaccagaaaggacagcttcctgaatatctcagcatccatacctagtgatgtaggcatctacttctgtgctgggcag





SEQ ID NO: 1005
TRAV35*02-5′
ggtcaacagctgaatcagagtccctcaatctatgtttatccaggaaggagaagatgtctccatgaactgcacttcttcaagcatatttaacacctggctat





SEQ ID NO: 1006
TRAV35*02-3′
aaatggaagactgactgctcagtttggtataaccagaaaggacagcttcctgaatatctcagcatccatacctagtgatgtaggcatctacttctgtgct





SEQ ID NO: 1007
TRAV36/DV7*01-5′
gaagacaaggtggtacaaagccctctatctctggttgtccacgagggagacaccgtaactctcaattgcagttatgaagtgactaactttcgaagcctac





SEQ ID NO: 1008
TRAV36/DV7*01-3′
agactaagtagcatattagataagaaagaactttccagcatcctgaacatcacagccacccagaccggagactcggccatctacctctgtgctgtggagg





SEQ ID NO: 1009
TRAV36/DV7*02-5′
gaagacaaggtggtacaaagccctcaatctctggttgtccacgagggagacattgtaactctcaattgcagttatgaaatgactaactttcgaagcctac





SEQ ID NO: 1010
TRAV36/DV7*02-3′
ggaagactaagtagcatattagataagaaagaacttttcagcatcctgaacatcacagccacccagaccggagactcggccgtctacctctgtgctgtgg





SEQ ID NO: 1011
TRAV36/DV7*03-5′
gaagacaaggtggtacaaagccctctatctctggttgtccacgagggagacactgtaactcccaattgcagttatgaagtgactaactttcgaagcctac





SEQ ID NO: 1012
TRAV36/DV7*03-3′
gtcaggaagactaagtagcatattagataagaagaacttttcagcatcctgaacatcacagccacccagaccggagactcggccgtctacctctgtgct





SEQ ID NO: 1013
TRAV36/DV7*04-5′
gaagacaaggtggtacaaagccctctatctctggttgtccacgagggagacactgtaactctcaattgcagttatgaagtgactaactttcgaagcctac





SEQ ID NO: 1014
TRAV36/DV7*04-3′
tcaggaagactaagtagcatattagataagaaagaacttttcagcatcctgaacatcacagccacccagaccggagactcggccgtctacctctgtgctg





SEQ ID NO: 1015
TRAV37*01-5′
caactgccagtggaacagaatgctccttccctgaaagtcaaggaaggtgacagcgtcacactgaactgcagttacagagacagcccttcagatttcttca





SEQ ID NO: 1016
TRAV37*01-3′
agattcacagccaggcttaaaaaaggagaccagcacatttccctgcacatacaggattcccagctccatgactcaaccacattcttctgcgcagcaagca





SEQ ID NO: 1017
TRAV38-1*01-5′
gcccagacagtcactcagtctcaaccagagatgtctgtgcaggaggcagagactgtgaccctgagttgcacatatgacaccagtgagaataattattatt





SEQ ID NO: 1018
TRAV38-1*01-3′
tctctgtgaacttccagaaagcagccaaatccttcagtctcaagatctcagactcacagctgggggacactgcgatgtatttctgtgctttcatgaagca





SEQ ID NO: 1019
TRAV38-1*02-5′
gcccagacagtcactcagtctcaaccagagatgtctgtgcaggaggcagagactgtgaccctgagttgcacatatgacaccagtgagaatgattattatt





SEQ ID NO: 1020
TRAV38-1*02-3′
gagaatcgtttctctgtgaacttccagaaagcagccaaatccttcagtctcaagatctcagactacagctgggggacactgcgatgtatttctgtgctt





SEQ ID NO: 1021
TRAV38-1*03-5′
gcccagacagtcactcagtctcaaccagagatgtctgtgcaggaggcagagactgtgaccctgagttgcacatatgacactagtgagagtaattattatt





SEQ ID NO: 1022
TRAV38-1*03-3′
aatcgtttctctgtgaacttccagaaagcagccaaatccttcagtctcaagatctcagactcacagctgggggacactgcgatgtatttctgtgctttca





SEQ ID NO: 1023
TRAV38-1*04-5′
gcccagacagtcactcagtcccagccagagatgtctgtgcaggaggcagagactgtgaccctgagttgcacatatgacaccagtgagaataattattatt





SEQ ID NO: 1024
TRAV38-1*04-3′
ggagaatcgtttctctgtgaacttccagaaagcagccaaatccttcagtctcaagatctcagactcacagctgggggacactgcgatgtatttctgtgca





SEQ ID NO: 1025
TRAV38-2/DV8*01-5′
gctcagacagtcactcagtctcaaccagagatgtctgtgcaggaggcagagaccgtgaccctgagctgcacatatgacaccagtgagagtgattattatt





SEQ ID NO: 1026
TRAV38-2/DV8*01-3′
ttctctgtgaacttccagaaagcagccaaatccttcagtctcaagatctcagactcacagctgggggatgccgcgatgtatttctgtgcttataggagcg





SEQ ID NO: 1027
TRAV39*01-5′
gagctgaaagtggaacaaaaccctctgttcctgagcatgcaggagggaaaaaactataccatctactgcaattattcaaccacttcagacagactgtatt





SEQ ID NO: 1028
TRAV39*01-3′
cgattaatggcctcacttgataccaaagcccgtctcagcaccctccacatcacagctgccgtgcatgacctctctgccacctacttctgtgccgtggaca





SEQ ID NO: 1029
TRAV4*01-5′
cttgctaagaccacccagcccatctccatggactcatatgaaggacaagaagtgaacataacctgtagccacaacaacattgctacaaatgattatatca





SEQ ID NO: 1030
TRAV4*01-3′
gcctccctgtttatccctgccgacagaaagtccagcactctgagcctgccccgggtttccctgagcgacactgctgtgtactactgcctcgtgggtgaca





SEQ ID NO: 1031
TRAV40*01-5′
agcaattcagtcaagcagacgggccaaataaccgtctcggagggagcatctgtgactatgaactgcacatacacatccacggggtaccctacccttttct





SEQ ID NO: 1032
TRAV40*01-3′
aaaacttcggaggcggaaatattaaagacaaaaactcccccattgtgaatattcagtccaggtatcagactcagccgtgtactactgtcttctgggaga





SEQ ID NO: 1033
TRAV41*01-5′
aaaaatgaagtggagcagagtcctcagaacctgactgcccaggaaggagaatttatcacaatcaactgcagttactcggtaggaataagtgccttacact





SEQ ID NO: 1034
TRAV41*01-3′
aagattaattgccacaataaacatacaggaaaagcacagctccctgcacatcacagcctcccatcccagagactctgcgtctacatctgtgctgtcaga





SEQ ID NO: 1035
TRAV5*01-5′
ggagaggatgtggagcagagtcttttcctgagtgtccgagagggagacagctccgttataaactgcacttacacagacagctcctccacctacttatact





SEQ ID NO: 1036
TRAV5*01-3′
agactcactgttctattgaataaaaaggataaacatctgtctctgcgcattgcagacacccagactggggactcagctatctacttctgtgcagagagta





SEQ ID NO: 1037
TRAV6*01-5′
agccaaaagatagaacagaattccgaggcccgaacattcaggagggtaaaacggccaccctgacctgcaactatacaaactattccccagcatacttac





SEQ ID NO: 1038
TRAV6*01-3′
agactgaaggtcacctttgataccacccttaaacagagtttgtttcatatcacagcctcccagcctgcagactcagctacctacctctgtgctctagaca





SEQ ID NO: 1039
TRAV6*02-5′
agccaaaagatagaacagaattccgaggccctgaacattcaggagggtaaaacggccaccctgacctgcaactatacaaactattctccagcatacttac





SEQ ID NO: 1040
TRAV6*02-3′
gaaagaaagactgaaggtcaccttgataccacccttaaacagagtttgtttcatatcacagcctcccagcctgcagactcagctacctacctctgtgct





SEQ ID NO: 1041
TRAV6*03-5′
gaggccctgaacattcaggagggtaaaacggccaccctgacctgcaactatacaaactattctccagcatacttacagtggtaccgacaagatccaggaa





SEQ ID NO: 1042
TRAV6*03-3′
gaaagaaagactgaaggtcacctttgataccacccttaaacagagtttgtttcatatcacagcctcccagcctgcagactcagctacctacctctgtgct





SEQ ID NO: 1043
TRAV6*04-5′
gaggccctgaacattcaggagggtaaaacggccaccctgacctgcaactatacaaactattctccagcatacttacagtggtaccgacaagatccaggaa





SEQ ID NO: 1044
TRAV6*04-3′
gaaagaaagactgaaggtcacctttgataccacccttaaacagagtttgtttcatgtcacagcctcccagcctgcagactcagctacctacctctgtgct





SEQ ID NO: 1045
TRAV6*05-5′
gaggccctgaacattcaggagggtaaaacggccaccctgacctgcaactatacgaactattctccagcatacttacagtggtaccgacaagatccaggaa





SEQ ID NO: 1046
TRAV6*05-3′
gaaagaaagactgaaggtcacctttgataccacccttaaacagagtttgtttcatatcacagcctcccagcctgcagactcagctacctacctctgtgct





SEQ ID NO: 1047
TRAV6*06-5′
agccaaaagatagaacagaattccgaggccctgaacattcaggagggtaaaacggccaccctgacctgcaactatacaaactattctccagcatacttac





SEQ ID NO: 1048
TRAV6*06-3′
ccaggaagaggccctgttttcttgctactcatacgtgaaaatgagaaagaaaaaaggaaagaaagactgaaggtcacctttgataccacccttaaccaga





SEQ ID NO: 1049
TRAV7*01-5′
gaaaaccaggtggagcacagccctcattttctgggaccccagcagggagacgttgcctccatgagctgcacgtactctgtcagtcgttttaacaatttgc





SEQ ID NO: 1050
TRAV7*01-3′
aaaggaagactaaatgctacattactgaagaatggaagcagcttgtacattacagccgtgcagcctgaagattcagccacctatttctgtgctgtagatg





SEQ ID NO: 1051
TRAV8-1*01-5′
gcccagtctgtgagccagcataaccaccacgtaattctctctgaagcagcctcactggagttgggatgcaactattcctatggtggaactgttaatctct





SEQ ID NO: 1052
TRAV8-1*01-3′
gctttgaggctgaatttataaagagtaaattctcctttaatctgaggaaaccctctgtgcagtggagtgacacagctgagtacttctgtgccgtgaatgc





SEQ ID NO: 1053
TRAV8-1*02-5′
gcccagtctgtgagccagcataaccaccacgtaattctctctgaagcagcctcactggagttgggatgcaactattcctatggtggaactgttaatctct





SEQ ID NO: 1054
TRAV8-1*02-3′
ttttcaggggatccactggttaaaggcatcaagggcgttgaggctgaatttataaagagtaaattctcctttaatctgaggaaccctctgtgcagtgga





SEQ ID NO: 1055
TRAV8-2*01-5′
gcccagtcggtgacccagcttgacagccacgtctctgtctctgaaggaaccccggtgctgctgaggtgcaactactcatcttcttattcaccatctctct





SEQ ID NO: 1056
TRAV8-2*01-3′
gttttgaggctgaatttaagaagagtgaaacctccttccacctgacgaaaccctcagcccatatgagcgacgcggctgagtacttctgtgttgtgagtga





SEQ ID NO: 1057
TRAV8-2*02-5′
gcccagtcggtgacccagcttagcagccacgtctctgtctctgaaggaaccccggtgctgctgaggtgcaactactcatcttcttattcaccatctctct





SEQ ID NO: 1058
TRAV8-2*02-3′
tttaagaagagtgaaacctccttccacctgacgaaaccctcagcccatatgagcgacgcggctgagtacttctgtgttgtgacccgtcacgagctttcag





SEQ ID NO: 1059
TRAV8-3*01-5′
gcccagtcagtgacccagcctgacatccacatcactgtctctgaaggagcctcactggagttgagatgtaactattcctatggggcaacaccttatctct





SEQ ID NO: 1060
TRAV8-3*01-3′
gctttgaggctgaatttaagaggagtcaatcttccttcaatctgaggaaaccctctgtgcattggagtgatgctgctgagtacttctgtgctgtgggtgc





SEQ ID NO: 1061
TRAV8-3*02-5′
gcccagtcagtgacccagcctgacatccacatcactgtctctgaaggagcctcactggagttgagatgtaactattcctatggggcaacaccttatctct





SEQ ID NO: 1062
TRAV8-3*02-3′
aggctttgaggctgaatttaagaggagtcaatcttccttcaacctgaggaaaccctctgtgcattggagtgatgctgctgagtacttctgtgctgtggtt





SEQ ID NO: 1063
TRAV8-3*03-5′
gcccagtcagtgacccagcctgacatccacatcactgtctctgaaggagcctcactggagttgagatgtaactattcctatggggcaacaccttatctct





SEQ ID NO: 1064
TRAV8-3*03-3′
tattaaaggctttgaggctgaatttaagaggagtcaatcttccttcaatctgaggaaaccctctgtgcattggagtgatgcgtcgagtacttctgtgct





SEQ ID NO: 1065
TRAV8-4*01-5′
gcccagtcggtgacccagcttggcagccacgtctctgtctctgaaggagccctggttctgctgaggtgcaactactcatcgtctgttccaccatatctct





SEQ ID NO: 1066
TRAV8-4*01-3′
gttttgaggctgaatttaagaagagtgaaacctccttccacctgacgaaaccctcagcccatatgagcgacgcggctgagtacttctgtgctgtgagtga





SEQ ID NO: 1067
TRAV8-4*02-5′
gcccagtcggtgacccagcttggcagccacgtctctgtctctgaaggagccctggttctgctgaggtgcaactactcatcgtctgttccaccatatctct





SEQ ID NO: 1068
TRAV8-4*02-3′
gaatttaagaagagtgaaacctccttccacctgacaaaaccctcagcccatatgagcgacgcggctgagtacttctgtgctgtgagtgatctcgaaccga





SEQ ID NO: 1069
TRAV8-4*03-5′
gcccagtcggtgacccagcttggcagccacgtctctgtctctgagggagccctggttctgctgaggtgcaactactcatcgtctgttccaccatatctct





SEQ ID NO: 1070
TRAV8-4*03-3′
catcaacggttttgaggctgaatttaagaagagtgaaacctccttccacctgacgaaccctcagcccatatgagcgacgcggctgagtacttctgtgct





SEQ ID NO: 1071
TRAV8-4*04-5′
gcccagtcggtgacccagcttggcagccacgtctctgtctctgaacgagccctggttctgctgaggtgcaactactcatcgtctgttccaccatatctct





SEQ ID NO: 1072
TRAV8-4*04-3′
aggcatcaacggttttgaggctgaatttaagaagagtgaaacctccttccacctgacgaaaccctcagcccatatgagcgacgcggctgagtacttctgt





SEQ ID NO: 1073
TRAV8-4*05-5′
gcccagtcggtgacccagcttggcagccacgtctctgtctctgaaggagccctggttctgctgaggtgcaactactcatcgtctgttccaccatatctct





SEQ ID NO: 1074
TRAV8-4*05-3′
ggctgaatttaagaagagtgaaacctccttccacctgacgaaaccctcagcccatatgagcgacgcggctgagtacttctgtgctgtgagtgagtctcca





SEQ ID NO: 1075
TRAV8-4*06-5′
ctcttctggtatgtgcaataccccaaccaaggactccagcttctcctgaagtacacatcagcggccaccctggttaaaggcatcaacggttttgaggctg





SEQ ID NO: 1076
TRAV8-4*06-3′
gaatttaagaagagtgaaacctccttccacctgacgaaacccgcagcccatatgagcgacgcggctgagtacttctgtgctgtgagtgatctcgaacga





SEQ ID NO: 1077
TRAV8-4*07-5′
gttgaaccatatctcttctggtatgtgcaataccccaaccaaggactccagcttctcctgaagtacacaacaggggccaccctggttaaaggcatcaacg





SEQ ID NO: 1078
TRAV8-4*07-3′
acggttttgaggctgaatttaaaaagagtgaaacctccttccacctgacgaaaccctcagcccatatgaccgacccggctgagtacttctgtgctgtgag





SEQ ID NO: 1079
TRAV8-5*01-5′
gcccagtcagtgacccagcctgacatccgcatcactgtctctgaaggagcctcactggagttgagatgtaactattcctatggggcgatgttgtgggaag





SEQ ID NO: 1080
TRAV8-5*01-3′
tggacacttatcacttccccaatcaatacccctgtgatttcctatgcctgtctttactttaatctcttaatcctgtcagctgaggaggatgtatgtcacc





SEQ ID NO: 1081
TRAV8-6*01-5′
gcccagtctgtgacccagcttgacagccaagtccctgtctttgaagaagcccctgtggagctgaggtgcaactactcatcgtctgtttcagtgtatctct





SEQ ID NO: 1082
TRAV8-6*01-3′
gttttgaggctgaatttaacaagagtcaaacttccttccacttgaggaaaccctcagtccatataagcgacacggctgagtacttctgtgctgtgagtga





SEQ ID NO: 1083
TRAV8-6*02-5′
gcccagtctgtgacccagcttgacagccaagtccctgtctttgaagaagcccctgtggagctgaggtgcaactactcatcgtctgtttcagtgtatctct





SEQ ID NO: 1084
TRAV8-6*02-3′
gttttgaggctgaatttaacaagagtcaaacttccttccacttgaggaaaccctcagtccatataagcgatacggctgagtacttctgtgctgtgagtga





SEQ ID NO: 1085
TRAV8-7*01-5′
acccagtcggtgacccagcttgatggccacatcactgtctctgaagaagcccctctggaactgaagtgcaactattcctatagtggagttccttctctct





SEQ ID NO: 1086
TRAV8-7*01-3′
aggctgaatttaagaagagcgaaacctccttctacctgaggaaaccatcaacccatgtgagtgatgctgctgagtacttctgtgctgggtgacaggag





SEQ ID NO: 1087
TRAV9-1*01-5′
ggagattcagtggtccagacagaaggccaagtgctcccctctgaaggggattccctgattgtgaactgctcctatgaaaccacacagtacccttcccttt





SEQ ID NO: 1088
TRAV9-1*01-3′
gttttgaagccatgtaccgtaaagaaaccacttctttccacttggagaaagactcagttcaagagtcagactccgctgtgtacttctgtgctctgagtga





SEQ ID NO: 1089
TRAV9-2*01-5′
ggaaattcagtgacccagatggaagggccagtgactctctcagaagaggccttcctgactataaactgcacgtacacagccacaggatacccttcccttt





SEQ ID NO: 1090
TRAV9-2*01-3′
gttttgaagccacataccgtaaagaaaccacttctttccacttggagaaaggctcagttcaagtgcagactcagcggtgtacttctgtgctctgagtga





SEQ ID NO: 1091
TRAV9-2*02-5′
ggagattcagtgacccagatggaagggccagtgactctctcagaagaggccttcctgactataaactgcacgtacacagccacaggatacccttcccttt





SEQ ID NO: 1092
TRAV9-2*02-3′
caacaaaggttttgaagccacataccgtaaagaaaccacttctttccacttggagaaaggctcagttcaagtgtcagactcagcggtgtacttctgtgct





SEQ ID NO: 1093
TRAV9-2*03-5′
ggagattcagtgacccagatggaagggccagtgactctctcagaagaggccttcctgactataaactgcacgtacacagccacaggatacccttcccttt





SEQ ID NO: 1094
TRAV9-2*03-3′
caacaaaggttttgaagccacataccgtaaggaaaccacttctttccacttggagaaaggctcagttcaagtgtcagactcagcggtgtacttctgtgct





SEQ ID NO: 1095
TRAV9-2*04-5′
ggaaattcagtgacccagatggaagggccagtgactctctcagaagaggccttcctgactataaactgcacgtacacagccacaggatacccttcccttt





SEQ ID NO: 1096
TRAV9-2*04-3′
caacaaaggttttgaagccacataccgtaaggaaaccacttctttccacttggagaaaggctcagttcaagtgtcagactcagcggtgtacttctgtgct





SEQ ID NO: 1097
TRBV1*01-5′
gatactggaattacccagacaccaaaatacctggtcacagcaatggggagtaaaaggacaatgaaacgtgagcatctgggacatgattctatgtattggt





SEQ ID NO: 1098
TRBV1*01-3′
acttcacacctgaatgccctgacagctctcgcttataccttcatgtggtcgcactgcagcaagaagactcagctgcgtatctctgaccagcagccaaga





SEQ ID NO: 1099
TRBV10-1*01-5′
gatgctgaaatcacccagagcccaagacacaagatcacagagacaggaaggcaggtgaccttggcgtgtcaccagacttggaaccacaacaatatgttct





SEQ ID NO: 1100
TRBV10-1*01-3′
gctacagtgtctctagattaaacacagaggacctccccctcactctggagtctgctgcctcctcccagacatctgtatatttctgcgccagcagtgagtc





SEQ ID NO: 1101
TRBV10-1*02-5′
gatgctgaaatcacccagagcccaagacacaagatcacagagacaggaaggcaggtgaccttggcgtgtcaccagacttggaaccacaacaatatgttct





SEQ ID NO: 1102
TRBV10-1*02-3′
agatggctacagtgtctctagatcaaacacagaggacctccccctcattctggagtctgctgcctcctcccagactctgtatatttctgcgccagcagt





SEQ ID NO: 1103
TRBV10-1*03-5′
aggcaggtgaccttggcgtgtcaccagacttggaaccacaacaatatgttctggtatcgacaagacctgggacatgggctgaggctgatccattactcat





SEQ ID NO: 1104
TRBV10-1*03-3′
ctacaaaggagaagtctcagatggctacagtgtctctagatcaaacacagaggacctccccctcactctgtagtctgctgcctcctcccagacatctgt





SEQ ID NO: 1105
TRBV10-2*01-5′
gatgctggaatcacccagagcccaagatacaagatcacagagacaggaaggcaggtgaccttgatgtgtcaccagacttggagccacagctatatgttct





SEQ ID NO: 1106
TRBV10-2*01-3′
gctatgttgtctccagatccaagacagagaatttccccctcactctggagtcagctacccgctcccagacatctgtgtatttctgcgccagcagtgagtc





SEQ ID NO: 1107
TRBV10-2*02-5′
aaggcaggtgaccttgatgtgtcaccagacttggagccacagctatatgttctggtatcgacaagacctgggacatgggctgaggctgatctattactca





SEQ ID NO: 1108
TRBV10-2*02-3′
agataaaggagaagtccccgatggctacgttgtctccagatccaagacagagaatttccccctcactctggagtcagctacccgctcccagacatctgtg





SEQ ID NO: 1109
TRBV10-3*01-5′
gatgctggaatcacccagagcccaagacacaaggtcacagagacaggaacaccagtgactctgagatgtcaccagactgagaaccaccgctatatgtact





SEQ ID NO: 1110
TRBV10-3*01-3′
gctatagtgtctctagatcaaagacagaggatttcctcctcactctggagtccgctaccagctcccagatatctgtgtacttctgtgccatcagtgagtc





SEQ ID NO: 1111
TRBV10-3*02-5′
gatgctggaatcacccagagcccaagacacaaggtcacagagacaggaacaccagtgactctgagatgtcatcagactgagaaccaccgctatatgtact





SEQ ID NO: 1112
TRBV10-3*02-3′
gctatagtgtctctagatcaaagacagaggatttcctcctcactctggagtccgctaccagctcccagacatctgtgtacttctgtgccatcagtgagtc





SEQ ID NO: 1113
TRBV10-3*03-5′
gatgctggaatcacccagagcccaagacacaaggtcacagagacaggaacaccagtgactctgagatgtcaccagactgagaaccaccgctacatgtact





SEQ ID NO: 1114
TRBV10-3*03-3′
agaagtctcagatggctatagtgtctctagatcaaagacagaggatttcctcctcactctggagtccgctaccagctcccagacatctgtgtacttctgt





SEQ ID NO: 1115
TRBV10-3*04-5′
gatgctggaatcacccagagcccaagacacaaggtcacagagacaggaacaccagtgactctgagatgtcaccagactgagaaccaccgctacatgtact





SEQ ID NO: 1116
TRBV10-3*04-3′
agaagtctcagatggctatagtgtctctagatcaaagacagaggatttcctcctcactctggagtccgctaccagctcccagacatctgtgtacttctgt





SEQ ID NO: 1117
TRBV11-1*01-5′
gaagctgaagttgcccagtcccccagatataagattacagagaaaagccaggctgtggctttttggtgtgatcctatttctggccatgctaccctttact





SEQ ID NO: 1118
TRBV11-1*01-3′
gattttctgcagagaggctcaaaggagtagactccactctcaagatccagcctgcagagcttggggactcggccatgtatctctgtgccagcagcttagc





SEQ ID NO: 1119
TRBV11-2*01-5′
gaagctggagttgcccagtctcccagatataagattatagagaaaaggcagagtgtggctttttggtgcaatcctatatctggccatgctaccctttact





SEQ ID NO: 1120
TRBV11-2*01-3′
gattttctgcagagaggctcaaaggagtagactccactctcaagatccagcctgcaaagcttgaggactcggccgtgtatctctgtgccagcagcttaga





SEQ ID NO: 1121
TRBV11-2*02-5′
gaagctggagttgcccagtctcccagatataagattatagagaaaaggcagagtgtggctttttggtgcaatcctatatctggccatgctaccctttact





SEQ ID NO: 1122
TRBV11-2*02-3′
ggatcgattttctgcagagaggctcaaaggagtagactccactctcaagatccagcctgcaaagcttgagaactcggccgtgtatctctgtgccagcagt





SEQ ID NO: 1123
TRBV11-2*03-5′
gaagctggagttgcccagtctcccagatataagattatagagaaaaggcagagtgtggctttttggtgcaatcctatatctggccatgctaccctttact





SEQ ID NO: 1124
TRBV11-2*03-3′
ggatcgattttctgcagagaggctcaaaggagtagactccactctcaagatccaacctgcaaagcttgaggactcggcgtgtatctctgtgcagcagc





SEQ ID NO: 1125
TRBV11-3*01-5′
gaagctggagtggttcagtctcccagatataagattatagagaaaaaacagcctgtggctttttggtgcaatcctatttctggccacaataccctttact





SEQ ID NO: 1126
TRBV11-3*01-3′
gattttctgcagagaggctcaaaggagtagactccactctcaagatccagcctgcagagcttggggactcggccgtgtatctctgtgccagcagcttaga





SEQ ID NO: 1127
TRBV11-3*02-5′
gaagctggagtggttcagtctcccagatataagattatagagaaaaagcagcctgtggctttttggtgcaatcctatttctggccacaataccctttact





SEQ ID NO: 1128
TRBV11-3*02-3′
ggatcgattttctgcagagaggctcaaaggagtagactccactctcaagatccagcctgcagagcttggggactcggccgtgtatctctgtgccagcagc





SEQ ID NO: 1129
TRBV11-3*03-5′
ggtctcccagatataagattatagagaagaaacagcctgtggctttttggtgcaatccaatttctggccacaataccctttactggtacctgcagaactt





SEQ ID NO: 1130
TRBV11-3*03-3′
ggatcgattttctgcagagaggctcaaaggagtagactccactctcaagatccagccagcagagcttggggactcggccatgtatctctgtgccagcagc





SEQ ID NO: 1131
TRBV12-1*01-5′
gatgctggtgttatccagtcacccaggcacaaagtgacagagatgggacaatcagtaactctgagatgcgaaccaatttcaggccacaatgatcttctct





SEQ ID NO: 1132
TRBV12-1*01-3′
gattctcagcacagatgcctgatgtatcattctccactctgaggatccagcccatggaacccagggacttgggcctatatttctgtgccagcagctttgc





SEQ ID NO: 1133
TRBV12-2*01-5′
gatgctggcattatccagtcacccaagcatgaggtgacagaaatgggacaaacagtgactctgagatgtgagccaatttttggccacaatttccttttct





SEQ ID NO: 1134
TRBV12-2*01-3′
gattctcagctgagaggcctgatggatcattctctactctgaagatccagcctgcagagcagggggactcggccgtgtatgtctgtgcaagtcgcttagc





SEQ ID NO: 1135
TRBV12-3*01-5′
gatgctggagttatccagtcaccccgccatgaggtgacagagatgggacaagaagtgactctgagatgtaaaccaatttcaggccacaactcccttttct





SEQ ID NO: 1136
TRBV12-3*01-3′
gattctcagctaagatgcctaatgcatcattctccactctgaagatccagccctcagaacccagggactcagctgtgacttctgtgccagcagtttagc





SEQ ID NO: 1137
TRBV12-4*01-5′
gatgctggagttatccagtcaccccggcacgaggtgacagagatgggacaagaagtgactctgagatgtaaaccaatttcaggacacgactaccttttct





SEQ ID NO: 1138
TRBV12-4*01-3′
gattctcagctaagatgcctaatgcatcattctccactctgaagatccagccctcagaacccagggactcagctgtgacttctgtgccagcagtttagc





SEQ ID NO: 1139
TRBV12-4*02-5′
gatgctggagttatccagtcacccggcacgaggtgacagagatgggacaagaagtgactctgagatgtaaaccaatttcaggacatgactaccttttct





SEQ ID NO: 1140
TRBV12-4*02-3′
tcgattctcagctaagatgcctaatgcatcattctccactctgaggatcagccctcagaacccagggactcagctgtgtacttctgtgccagcagttta





SEQ ID NO: 1141
TRBV12-5*01-5′
gatgctagagtcacccagacaccaaggcacaaggtgacagagatgggacaagaagtaacaatgagatgtcagccaattttaggccacaatactgttttct





SEQ ID NO: 1142
TRBV12-5*01-3′
gattctcagcagagagcctgatgcaactttagccactctgaagatccagccctcagaacccagggactcagctgtgtatttttgtgctagtggtttggt





SEQ ID NO: 1143
TRBV13*01-5′
gctgctggagtcatccagtccccaagacatctgatcaaagaaaagagggaaacagccactctgaaatgctatcctatccctagacacgacactgtctact





SEQ ID NO: 1144
TRBV13*01-3′
gattctcagctcaacagttcagtgactatcattctgaactgaacatgagctccttggagctgggggactcagccctgtacttctgtgccagcagcttagg





SEQ ID NO: 1145
TRBV13*02-5′
gctgctggagtcatccagtccccaagacatttgatcagagaaaagagggaaacagccactctgaaatgctatcctatccctagacacgacactgtctact





SEQ ID NO: 1146
TRBV13*02-3′
tgatcgattctcagctcaacagttcagtgactatcattctgaactgaacatgagctccttggagctgggggactcagcctgtacttctgtgccagcagc





SEQ ID NO: 1147
TRBV14*01-5′
gaagctggagttactcagttccccagccacagcgtaatagagaagggccagactgtgactctgagatgtgacccaatttctggacatgataatctttatt





SEQ ID NO: 1148
TRBV14*01-3′
gattcttagctgaaaggactggagggacgtattctactctgaaggtgcagcctgcagaactggaggattctggagtttatttctgtgccagcagccaaga





SEQ ID NO: 1149
TRBV14*02-5′
gaagctggagttactcagttccccagccacagcgtaatagagaagggccagactgtgactctgagatgtgacccaatttctggacatgataatctttatt





SEQ ID NO: 1150
TRBV14*02-3′
caatcgattcttagctgaaaggactggagggacgtattctactctgaaggtgcagcctgcagaactggaggattctggagtttatttctgtgccagcagc





SEQ ID NO: 1151
TRBV15*01-5′
gatgccatggtcatcagaacccaagataccaggttacccagtttggaaagccagtgaccctgagttgttctcagactttgaaccataacgtcatgtact





SEQ ID NO: 1152
TRBV15*01-3′
acttccaatccaggaggccgaacacttctttctgctttcttgatatccgctcaccaggcctgggggacacagccatgtacctgtgtgccaccagcagaga





SEQ ID NO: 1153
TRBV15*02-5′
gatgccatggtcatccagaacccaagataccaggttacccagtttggaaagccagtgaccctgagttgttctcagactttgaaccataacgtcatgtact





SEQ ID NO: 1154
TRBV15*02-3′
ggtgaagaagtcgcccagactccaaaacatcttgtcagaggggaaggacagaaagcaaaattatattgtgccccaataaaaggacaagttatgtttttt





SEQ ID NO: 1155
TRBV15*03-5′
gatgccatggtcatccagaacccaagataccgggttacccagtttggaaagccagtgaccctgagttgttctcagactttgaaccataacgtcatgtact





SEQ ID NO: 1156
TRBV15*03-3′
tgataacttccaatccaggaggccgaacacttctttctgctttctagacatccgctcaccaggcctgggggacgcagccatgtaccagtgtgccaccagc





SEQ ID NO: 1157
TRBV16*01-5′
ggtgaagaagtcgcccagactccaaaacatcttgtcagaggggaaggacagaaagcaaaattatattgtgccccaataaaaggacacagttatgtttttt





SEQ ID NO: 1158
TRBV16*01-3′
gattttcagctaagtgcctcccaaattcaccctgtagccttgagatccaggctacgaagcttgaggattcagcagtgtatttttgtgccagcagccaatc





SEQ ID NO: 1159
TRBV16*02-5′
ggtgaagaagtcgcccagactccaaaacatcttgtcagaggggaaggacagaaagcaaaattatattgtgccccaataaaaggacacagttaggtttttt





SEQ ID NO: 1160
TRBV16*02-3′
gattttcagctaagtgcctcccaaattcaccctgtagccttgagatccaggctacgaagcttgaggattcagcagtgtatttttggccagcagccaatc





SEQ ID NO: 1161
TRBV16*03-5′
ggtgaagaagtcgcccagactccaaaacatcttgtcagaggggaaggacagaaagcaaaattatattgtgccccaataaaaggacacagttatgtttttt





SEQ ID NO: 1162
TRBV16*03-3′
ggaaagattttcagctaagtgcctcccaaattcaccctgtagccttgagatccaggctacgaagcttgaggattcagcagtgtatttttgtgccagcagc





SEQ ID NO: 1163
TRBV17*01-5′
gagcctggagtcagccagacccccagacacaaggtcaccaacatgggacaggaggtgattctgaggtgcgatccatcttctggtcacatgtttgttcact





SEQ ID NO: 1164
TRBV17*01-3′
aacgattcacagctgaaagacctaacggaacgtcttccacgctgaagatccatcccgcagagccgagggactcagccgtgtatctctacagtagcggtgg





SEQ ID NO: 1165
TRBV18*01-5′
aatgccggcgtcatgcagaacccaagacacctggtcaggaggaggggacaggaggcaagactgagatgcagcccaatgaaaggacacagtcatgtttact





SEQ ID NO: 1166
TRBV18*01-3′
gattttctgctgaatttcccaaagagggccccagcatcctgaggatccagcaggtagtgcgaggagattcggcagcttatttctgtgccagctcaccacc





SEQ ID NO: 1167
TRBV19*01-5′
gatggtggaatcactcagtccccaaagtacctgttcagaaaggaaggacagaatgtgaccctgagttgtgaacagaatttgaaccacgatgccatgtact





SEQ ID NO: 1168
TRBV19*01-3′
ggtacagcgtctctcgggagaagaaggaatcctttcctctcactgtgacatcggcccaaagaacccgacagctttctatctctgtgccagtagtataga





SEQ ID NO: 1169
TRBV19*02-5′
gatggtggaatcactcagtccccaaagtacctgttcagaaaggaaggaacagaatgtgaccctgagttgtgaacagaatttgaaccacgatgccatgtact





SEQ ID NO: 1170
TRBV19*02-3′
ggtacagcgtctctcgggagaagaaggaatcctttcctctcactgtgacatcggcccaaaagaacccgacagctttctatctctgtgccagtagtataga





SEQ ID NO: 1171
TRBV19*03-5′
gatggtggaatcactcagtccccaaagtacctgttcagaaaggaaggacagaatgtgaccctgagttgtgaacagaatttgaaccatgatgccatgtact





SEQ ID NO: 1172
TRBV19*03-5′
tgaagggtacagcgtctctcgggagaagaaggaatcctttcctctcactgtgacatcggcccaaaagaacccgacagctttctatctctgtgccagtagc





SEQ ID NO: 1173
TRBV2*01-5′
gaacctgaagtcacccagactcccagccatcaggtcacacagatgggacaggaagtgatcttgcgctgtgtccccatctctaatcacttatacttctatt





SEQ ID NO: 1174
TRBV2*01-3′
aattctcagttgaaaggcctgatggatcaaatttcactctgaagatccggtccacaaagctggaggactcagccatgtacttctgtgccagcagtgaagc





SEQ ID NO: 1175
TRBV2*02-5′
gaacctgaagtcacccagactcccagccatcaggtcacacagatgggacaggaagtgatcttgcactgtgtccccatctctaatcacttatacttctatt





SEQ ID NO: 1176
TRBV2*02-3′
tgatcaattctcagttgaaaggcctgatggatcaaatttcactctgaagatccggtccacaaagctggaggactcagccatgtacttctgtgccagcagt





SEQ ID NO: 1177
TRBV2*03-5′
gaacctgaagtcatccagactcccagccatcaggtcacacagatgggacaggaagtgatcttgcgctgtgtccccatctctaatcacttatacttctatt





SEQ ID NO: 1178
TRBV2*03-3′
tcaattctcagttgagaggcctgatggatcaaatttcactctgaagatccggtccacaaagctggaggactcagccatgtacttctgtgccagcagtgaa





SEQ ID NO: 1179
TRBV20-1*01-5′
ggtgctgtcgtctctcaacatccgagctgggttatctgtaagagtggaacctctgtgaagatcgagtgccgttccctggactttcaggccacaactatgt





SEQ ID NO: 1180
TRBV20-1*01-3′
acaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgctagaga





SEQ ID NO: 1181
TRBV20-1*02-5′
ggtgctgtcgtctctcaacatccgagcagggttatctgtaagagtggaacctctgtgaagatcgagtgccgttccctggactttcaggccacaactatgt





SEQ ID NO: 1182
TRBV20-1*02-3′
gaaggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgct





SEQ ID NO: 1183
TRBV20-1*03-5′
ggtgctgtcgtctctcaacatccgagctgggttatctgtaagagtggaacctctgtgaagatcgagtgccgttccctggactttcaggccacaactatgt





SEQ ID NO: 1184
TRBV20-1*03-3′
gaaggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgct





SEQ ID NO: 1185
TRBV20-1*04-5′
ggtgctgtcgtctctaacatccgagcagggttatctgtaagagtggaacctctgtgaagatcgagtgccgttccttggactttcaggccacaactatgt





SEQ ID NO: 1186
TRBV20-1*04-3′
ggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgctagt





SEQ ID NO: 1187
TRBV20-1*05-5′
ggtgccgtcgtctctcaacatccgagcagggttatctgtaagagtggaacctctgtgaagatcgagtgccgttccctggactttcaggccacaactatgt





SEQ ID NO: 1188
TRBV20-1*05-3′
ggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccgtgcccatcctgaagacagcagcttctacatctgcagtgctaga





SEQ ID NO: 1189
TRBV20-1*06-5′
ggtgctgtcgtctctcaacatccgagtagggttatctgtaagagtggaacctctgtgaagatcgagtgccgttccctggactttcaggccacaactatgt





SEQ ID NO: 1190
TRBV20-1*06-3′
gaaggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgct





SEQ ID NO: 1191
TRBV20-1*07-5′
ggtgctgtcgtctctcaacatccgagcagggttatctgtaagagtggaacctctgtgaagatcgagtgccgttccctggactttcaggccacaactatgt





SEQ ID NO: 1192
TRBV20-1*07-3′
ggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgctaga





SEQ ID NO: 1193
TRBV20/OR9-2*01-5′
agtgctgtcgtctctcaacatccgagcagggttatctgtaagagtggaacctctgtgaacatcgagtgccgttccctggactttcaggccacaactatgt





SEQ ID NO: 1194
TRBV20/OR9-2*01-3′
acaagtttcccatcaaccatccaaacctgaccttctccgctctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgctagaga





SEQ ID NO: 1195
TRBV20/OR9-2*02-5′
ggtgctgtcgtctctcaacatccgagcagggttatctgtaagagtggaacctctgtgaacatcgagtgccgttccctggactttcaggccacaactatgt





SEQ ID NO: 1196
TRBV20/OR9-2*02-3′
gaaggacaagtttcccatcaaccatccaaacctgaccttctccgctctgacagtgacctgtgcccatcctgaagacagcagcttctacatctgcagtgct





SEQ ID NO: 1197
TRBV20/OR9-2*02-5′
agtgctgtcgtctctcaacatccgagcagggttatctgtaagagtggaacctctgtgaacatcgagtgccgttccctggactttcaggccacaactatgt





SEQ ID NO: 1198
TRBV20/OR9-2*03-3′
acaagtttcccatcaactatccaaacctgaccttctccgctctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgctagaga





SEQ ID NO: 1199
TRBV21-1*01-5′
gacaccaaggtcacccagagacctagacttctggtcaaagcaagtgaacagaaagcaaagatggattgtgttcctataaaagcacatagttatgtttact





SEQ ID NO: 1200
TRBV21-1*01-3′
gatttttagcccaatgctccaaaaactcatcctgtaccttggagatccagtccacggagtcaggggacacagcactgtatttctgtgccagcagcaaagc





SEQ ID NO: 1201
TRBV21/OR9-2*01-5′
gacaccaaggtcacccagagacctagatttctggtcaaagcaaatgaacagaagcaaagatggactgtgttcctataaaaagacatagttatgtttact





SEQ ID NO: 1202
TRBV21/OR9-2*01-3′
gattttcagcccaatgcccccaaaactcaccctgtaccttggagatccagtccacggagtcaggagacacagcacggtatttctgtgccaacagcaagc





SEQ ID NO: 1203
TRBV22-1*01-5′
gatgctgacatctatcagatgccattccagctcactggggctggatgggatgtgactctggagtggaaacggaatttgagacacaatgacatgtactgct





SEQ ID NO: 1204
TRBV22-1*01-3′
aggctacgtgtctgccaagaggagaaggggctatttcttctcagggtgaagttggcccacaccagccaaacagctttgtacttctgtcctgggagcgcac





SEQ ID NO: 1205
TRBV22/OR9-2*01-5′
gatgctgacatctatcagacgccattccagctcactggggctggatgggatgtgaccctggagtagaaacaatttgagacacaatgacatgtactggtac





SEQ ID NO: 1206
TRBV22/OR9-2*01-3′
ggctacggtgtctcccgagaggagaaggggctgtttcttctcatggtgaagctggcccacaccagccaaacagctctgtacttctgtcctgggagtgcac





SEQ ID NO: 1207
TRBV23-1*01-5′
catgccaaagtcacacagactccaggacatttggtcaaaggaaaaggacagaaaacaaagatggattgtacccccgaaaaaggacatacttttgtttatt





SEQ ID NO: 1208
TRBV23-1*01-3′
gattctcatctcaatgccccaagaacgcaccctgcagcctggcaatcctgtcctcagaaccgggagacacggcactgtatctctgcgccagcagtcaatc





SEQ ID NO: 1209
TRBV23/OR9-2*01-5′
catgccaaagtcacacagactccaggatatttggtcaaaggaaaaggaaggaaaacaaagatgtattgtacccccaaaacggacatacttttgtttgtt





SEQ ID NO: 1210
TRBV23/OR9-2*01-3′
gatgcacaagaagcgattctcatctcaatgccccaagaacccaccctgcagcctggcaatcctgtcctcggaacgggagacaccgcactgtatctctgt





SEQ ID NO: 1211
TRBV23/OR9-2*02-5′
catgccaaagtcacacagactccaggatatttggtcaaaggaaaaggaaggaaaacaaagatgtattgtacccccaaaaacggacatacttttgtttgttt





SEQ ID NO: 1212
TRBV23/OR9-2*02-3′
gtttttgatttcctttcagaatgaacaagttcttcaagaaatggagatgcacaagaagcgattctcatctcaatgccccaagaacgcaccctgcagcctg





SEQ ID NO: 1213
TRBV24-1*01-5′
gatgctgatgttacccagaccccaaggaataggatcacaaagacaggaaagaggattatgctggaatgttctcagactaagggtcatgatagaatgtact





SEQ ID NO: 1214
TRBV24-1*01-3′
ataccagtgtctctcgacaggcacaggctaaattctccctgtccctagagtctgccatccccaaccagacagctctttacttctgtgccaccagtgatttg





SEQ ID NO: 1215
TRBV24/OR9-2*01-5′
gatgctgatgttacccagaccccaaggaataggatcacaaagacaggaaagaggattatgctggaatgttctcagactaagggtcatgatagaatgtact





SEQ ID NO: 1216
TRBV24/OR9-2*01-3′
atacagtgtctctcgacaggcacaggctaaattctccctgtccctagagtctgccacccccaaccgacagctctttacttctgtgccaccagtgatttg





SEQ ID NO: 1217
TRBV24/OR9-2*02-5′
gatgctgatgttatccagaccccaaggaataggatcacaaagacaggaaagaggattatgctggcatgttctcagactaagggtcatgatggaatgtact





SEQ ID NO: 1218
TRBV24/OR9-2*02-3′
cagttgatctattgctcctttgatgtcaaaatatataaacaaaagagagatctctgatggatacagtgtctcttgacaggaacaggctaaattctccctg





SEQ ID NO: 1219
TRBV24/OR9-2*03-5′
gatgctgatgttatccagaccccaaggaataggatcacaaagacaggaaagaggattatgctggaatgttctcagactaagggtcatgatggaatgtact





SEQ ID NO: 1220
TRBV24/OR9-2*03-3′
agtgtctcttgacaggaacaggctaaattctccctgtccctagagcctgccacccccaaccagacagcttctaggttacttcagtgccaccagtgatttc





SEQ ID NO: 1221
TRBV25-1*01-5′
gaagctgacatctaccagaccccaagataccttgttatagggacaggaaagaagatcactctggaatgttctcaaaccatgggccatgacaaaatgtact





SEQ ID NO: 1222
TRBV25-1*01-3′
agtcaatagtctccagaataaggacggagcattttcccctgaccctggagtctgccaggccctcacatacctctcagtacctctgtgccagcagtgaata





SEQ ID NO: 1223
TRBV25/OR9-2*01-5′
gaagctgaaatctaccagaccccaagacaccgtgttataggggcaggaaagaagatcactctggaatgttctcaaaccatgggccatgacaaaatgtat





SEQ ID NO: 1224
TRB25/OR9-1*01-3′
agtcaacagtctccagaataaggatagagcgttttcccctgaccctggagtctgccagcccctcacatacctctcagtacctctgtgccagcagtgaata





SEQ ID NO: 1225
TRBV25/OR9-2*02-5′
gaagctgaaatctaccagaccccaagacaccgtgttataggggcaggaaagaagatcactctggaatgttctcaaaccatgggccatgacaaaatgtact





SEQ ID NO: 1226
TRBV25/OR9-2*02-3′
gagttaattccacagagaagggagatctttgctctgagtcaacagtctccagaataaggatagagcgttttcccctgaccctggagtctgccagcccctc





SEQ ID NO: 1227
TRBV26*01-5′
gatgctgtagttacacaattcccaagacacagaatcattgggacaggaaaggaattcattctacagtgttccccagaatatgaatcatgttacaatgtact





SEQ ID NO: 1228
TRBV26*01-3′
ggtatcatgtttcttgaaatactatagcatcttttcccctgaccctgaagtctgccagcaccaaccagacatctgtgtatctctatgccagcagttcatc





SEQ ID NO: 1229
TRBV26/OR9-2*01-5′
gatgctgtagttacacaattctcaagacacagaatcattgggacaggaaaggaattcattctactgtgtccccagaatatgaatcatgttgcaatgtact





SEQ ID NO: 1230
TRBV26/OR9-2*01-3′
ggtatcatgtttcttgaaatactatagcatcttttctcctgaccctgaagtcgctagcaccaaccagacatgtgtgtatctctgcgcagcagttcatc





SEQ ID NO: 1231
TRBV26/OR9-2*02-5′
gatgctgtagttacacaattcccaagacacagaatcattgggacaggaaaggaattcattctactgtgccccagaatatgaatcatgttgcaatgtact





SEQ ID NO: 1232
TRBV26/OR9-2*02-3′
ggtatcatgtttcttgaaatactatagcatcttttctcctgaccctgaagtctgctagcaccaaccagacatgtgtgtatctctgcgccagcagttcatc





SEQ ID NO: 1233
TRBV27*01-5′
gaagcccaagtgacccagaacccaagatacctcatcacagtgactggaaagaagttaacagtgacttgttctcagaatatgaaccatgagtatatgtcct





SEQ ID NO: 1234
TRBV27*01-3′
ggtacaaagtctctcgaaaagagaagaggaatttccccctgatcctggagtcgcccagccccaaccagacctctctgtacttctgtgccagcagtttatc





SEQ ID NO: 1235
TRBV28*01-5′
gatgtgaaagtaacccagagctcgagatatctagtcaaaaggacgggagagaaagtttttctggaatgtgtccaggatatggaccatgaaaatatgttct





SEQ ID NO: 1236
TRBV28*01-3′
ggtacagtgtctctagagagaagaaggagcgcttctccctgattctggagtccgccagcaccaaccagacatctatgtacctctgtgccagcagtttatg





SEQ ID NO: 1237
TRBV29-1*01-5′
agtgctgtcatctctcaaaagccaagcagggatatctgtcaacgtggaacctccctgacgatccagtgtcaagtcgatagccaagtcaccatgatgttct





SEQ ID NO: 1238
TRBV29-1*01-3′
acaagtttcccatcagccgcccaaacctaacatttcaactctgactgtgagcaacatgagccctgaagacagcagcatatatctctgcagcgttgaaga





SEQ ID NO: 1239
TRBV29-1*02-5′
agtgctgtcatctctcaaaagccaagcagggatatctgtcaacgtggaacctccctgacgatccagtgtcaagtcgatagccaagtcaccatgatgttc





SEQ ID NO: 1240
TRBV29-1*02-3′
tgacaagtttcccatcagccgccaaacctaacattctcaagtctgactgtgagcaacatgagccctgaagacagcagcatatatctctgcagcgttgaa





SEQ ID NO: 1241
TRBV29-1*03-5′
acgatccagtgtcaagtcgatagccaagtcaccatgatattctggtaccgtcagcaacctggacagagcctgacactgatcgcaactgcaaatcagggct





SEQ ID NO: 1242
TRBV29-1*03-3′
tgacaagtttcccatcagccgcccaaacctaacattctcaactctgactgtgagcaacatgagccctgaagacagcagcatatatctctgcagcgcgggc





SEQ ID NO: 1243
TRBV29/OR9-2*01-5′
agtgctgtcatctctcaaaagccaagcagggatatctgtcaacgtggaacctccatgatgatccagtgtcaagtcgacagccaagtcaccatgatgttct





SEQ ID NO: 1244
TRBV29/OR9-2*01-3′
acaagtttcccatcagccgcccaaacctaacattctcaactctgactgtgagcaacaggagacctgaagacagcagcatatacctctgcagcgttgaaga





SEQ ID NO: 1245
TRBV29/OR9-2*02-5′
agtgctgtcatctctcaaaagccaagcagggatatctgtcaacgtggaacctccatgatgatccagtgtcaagtcgacagccaagtcaccatgatgttct





SEQ ID NO: 1246
TRBV29/OR9-2*02-3′
acaagtttcccatcagccgcccaaacctaacattctcaactctgactgtgagcaacaggagacctgaagacagcagcatatacctctgcagcgttgaaga





SEQ ID NO: 1247
TRBV3-1*01-5′
gacacagctgtttcccagactccaaaatacctggtcacacagatgggaaacgacaagtccattaaatgtgaacaaaatctgggccatgatactatgtatt





SEQ ID NO: 1248
TRBV3-1*01-3′
gcttctcacctaaatctccagacaaagctcacttaaatcttcacatcaattccctggagcttggtgactctgctgtgtatttctgtgccagcagccaaga





SEQ ID NO: 1249
TRBV3-1*02-5′
gacacagctgtttcccagactccaaaatacctggtcacacagatgggaaacgacaagtccattaaatgtgaacaaaatctgggccatgatactatgtatt





SEQ ID NO: 1250
TRBV3-1*02-3′
tccaaatcgattctcacctaaatctccagacaaagctaaattaaatcttcacatcaattccctggagcttggtgactctgctgtgtatttctgtgccagc





SEQ ID NO: 1251
TRBV3-2*01-5′
gacacagccgtttcccagactccaaaatacctggtcacacagatgggaaaaaaggagtctcttaaatgagaacaaaatctgggccataatgctatgtatt





SEQ ID NO: 1252
TRBV3-2*01-3′
gcttctcacctgactctccagacaaagctcatttaaatcttcacatcaattccctggagcttggtgactctgctgtgtatttctgtgccagcagccaaga





SEQ ID NO: 1253
TRBV3-2*02-5′
gacacagccgtttcccagactccaaaaatacctggtcacacagatgggaaaaaaggagtctcttaaatgagaacaaaatctgggccataatgctatgtatt





SEQ ID NO: 1254
TRBV3-2*02-3′
gcttctcacctgactctccagacaaagttcatttaaatcttcacatcaattccctggagctrtggtgactctgctgtgtatttctgtccagagccaaga





SEQ ID NO: 1255
TRBV3-2*03-5′
gacacagccgtttcccagactccaaaatacctggtcacacagacgggaaaaaaggagtctcttaaatgagacaaaatctgggccataatgctatgtatt





SEQ ID NO: 1256
TRBV3-2*03-3′
tcgcttctcacctgactctccagacaaagttcatttaaatcttcacatcaattccctggagcttggtgactctgctgtgtatttctgtgccagcagccaa





SEQ ID NO: 1257
TRBV30*01-5′
tctcagactattcatcaatggccagcgaccctggtgcagcctgtgggcagcccgctctctctggagtgcactgtggagggaacatcaaaccccaacctat





SEQ ID NO: 1258
TRBV30*01-3′
agaatctctcagcctccagaccccaggaccggcagttcatcctgagttctaagaagctccttctcagtgactctggcttctatctctgtgcctggagtgt





SEQ ID NO: 1259
TRBV30*02-5′
tctcagactattatcaatggccagcgaccctggtgcagcctgtgggcagcccgctctctctggagtgcactgtggagggaacatcaaaccccaacctat





SEQ ID NO: 1260
TRBV30*02-3′
agaatctctcagcctccagaccccaggaccggcagttcatcctgagttctaagaagctcctcctcagtgactctggcttctatctctgtgcctggagtgt





SEQ ID NO: 1261
TRBV30*04-5′
actattcatcaatggccagcgaccctggtgcagcctgtgggcagcccgctctctctggagtgcactgtggagggaacatcaaaccccaacctatactggt





SEQ ID NO: 1262
TRBV30*04-3′
ccagaatctctcagcctccagaccccaggaccggcagttcattctgagttctaagaagctcctcctcagtgactctggcttctatctctgtgcctggagt





SEQ ID NO: 1263
TRBV30*05-5′
tctcagactattcatcaatggccagcgaccctggtgcagcctgtgggcagcccgctctccctggagtgcactgtggagggaacatcaaaccccaacctat





SEQ ID NO: 1264
TRBV30*05-3′
ccagaatctctcagcctccagaccccaggaccggcagttcatcctgagttctaagaagctccttctcagtgactctggcttctatctctgtgcctgggga





SEQ ID NO: 1265
TRBV4-1*01-5′
gacactgagttacccagacaccaaaacacctggtcatgggaatgacaaataagaagtctttgaaatgtgaacaacatatggggcacagggctatgtatt





SEQ ID NO: 1266
TRBV4-1*01-3′
gcttctacctgaatgccccaacagctctctcttaaaccttcacctacacgccctgcagccagaagactcagccctgtatctctgcgccagcagccaaga





SEQ ID NO: 1267
TRBV4-1*02-5′
cacctggtcatgggaatgacaaataagaagtctttgaaatgtgaacaacatatggggcacagggcaatgtattggtacaagcagaaagctaagaagccac





SEQ ID NO: 1268
TRBV4-1*02-3′
tcgcttctcacctgaatgccccaacagctctctcttaaaccttcacctacacgccctgcagccagaagactcagccctgtatctctgcgccagcagccaa





SEQ ID NO: 1269
TRBV4-2*01-5′
gaaacgggagttacgcagacaccaagacacctggtcatgggaatgacaaataagaagtctttgaaatgtgaacaacatctggggcataacgctatgtatt





SEQ ID NO: 1270
TRBV4-2*01-3′
gcttctcacctgaatgccccaacagctctcacttattccttcacctacacaccctgcagccagaagactcggccctgtatctctgtgccatgcagccaaga





SEQ ID NO: 1271
TRBV4-2*02-5′
gaaacgggagttacgcagacaccaagacacctggtcatgggaatgacaaataagaagtctttgaaatgtgaacaacatctggggcataacgctaatgtatt





SEQ ID NO: 1272
TRBV4-2*02-3′
aagtcgcttctcacctgaatgccccaacagctctcacttatgccttcacctacacaccctgcagccagaagactcggccctgtatctctgtgccagcacc





SEQ ID NO: 1273
TRBV4-3*01-5′
gaaacgggagttacgcagacaccaagacacctggtcatgggaatgacaaataagaagtctttgaaatgtgaacaacatctgggtcataacgctaatgtatt





SEQ ID NO: 1274
TRBV4-3*01-3′
gcttctcatctgaatgccccaacagctctcacttattccttcacctacacaccctgcagccagaagactcggccctgtatctctgcgccagcagccaaga





SEQ ID NO: 1275
TRBV4-3*02-5′
gaaacgggagttacgcagacaccaagacacctggtcatgggaatgacaaataagaagtctttgaaatgtgaacaacatctgggtcataacgctatgtatt





SEQ ID NO: 1276
TRBV4-3*02-3′
aagtcgcttctcacctgaatgccccaacagctctcacttatcccttcacctacacaccctgcagccagaagactcggccctgtatctctgcgccagcagc





SEQ ID NO: 1277
TRBV4-3*03-5′
gaaacgggagttacgcagacaccaagacacctggtcatgggatgacaaataagaagtctttgaaagtgaacaacatctgggtcataacgctatgtatt





SEQ ID NO: 1278
TRBV4-3*03-3′
aagtcgcttctcactgaatgccccaacagctctcacttattccttcacctacacaccctgcagccagaagactcggccctgtatctctgcgccagcagc





SEQ ID NO: 1279
TRBV4-3*04-5′
aagaagtctttgaaatgtgaacaacatctggggcataacgctatgtattggtacaagcaaagtgctaagaagccazctggagctcatgtttgtctacagtc





SEQ ID NO: 1280
TRBV4-3*04-3′
aagtcgcttctcacctgaatgccccaacagctctcacttattccttcacctacacaccctgcagccagaagactcggccctgtatctctgcgccagcagc





SEQ ID NO: 1281
TRBV5-1*01-5′
aaggctggagtcactcaaactccaagatatctgatcaaaacgagaggacagcaagtgacactgagctgctcccctatctctgggcataggagtgtatcct





SEQ ID NO: 1282
TRBV5-1*01-3′
cgattctcagggcgccagttctctaactctcgctctgagatgaatgtgagcaccttggagctgggggactcggccctttatctttgcgccagcagcttgg





SEQ ID NO: 1283
TRBV5-1*02-5′
agggctggggtcactcaaactccaagacatctgatcaaaacgagaggacagcaagtgacactgggctgctcccctatctctgggctaggagtgtatcct





SEQ ID NO: 1284
TRBV5-1*02-3′
tcgattctcagggcgccagttctctaactctcgctctgagatgaatgtgagcaccttggagctgggggactcggccctttatctttgcgccagcgcttgc





SEQ ID NO: 1285
TRBV5-2*01-5′
gaggctggaatcacccaagctccaagacacctgatcaaaacaagagaccagcaagtgacactgagatgctcccctgcctctgggcataactgtgtgtcct





SEQ ID NO: 1286
TRBV5-2*01-3′
aacttgcctatgattctcagctcaccacgtccataactattactgagtcaaacacggagctaggggactcagccctgtatctctgtgccagcaacttg





SEQ ID NO: 1287
TRBV5-3*01-5′
gaggctggagtcacccaaagtcccacacacctgatcaaaacgagaggacagcaagtgactctgagatgctctcctatctctgggcacagcagtgtgtcct





SEQ ID NO: 1288
TRBV5-3*01-3′
cgattctcagggcgccagttccatgactgttgctctgagatgaatgtgagtgccttggagctgggggactcggccctgtatctctgtgccagaagcttgg





SEQ ID NO: 1289
TRBV5-3*02-5′
gaggctggagtcacccaaagtcccacacacctgattaaaacgagaggacagcaagtgactctgagatgctctcctatctctgggcacagcagtgtgtcct





SEQ ID NO: 1290
TRBV5-3*02-3′
cgattctcagggcgccagttccatgactattgctctgagatgaatgtgagtgccttggagctgggggactcggccctgtatctctgtgccagaagcttgg





SEQ ID NO: 1291
TRBV5-4*01-5′
gagactggagtcacccaagtcccacacacctgatcaaaacgagaggacagcaagtgactctgagatgctcttctcagtctgggcacaacactgtgtcct





SEQ ID NO: 1292
TRBV5-4*01-3′
agattctcaggtctccagttccctaattatagctctgagctgaatgtgaacgccttggagctggacgactcggccctgtatctctgtgccagcagcttgg





SEQ ID NO: 1293
TRBV5-4*02-5′
gagactggagtcacccaaagtcccacacacctgatcaaaacgagaggacagcaagtgactctgagatgctcttctcagtctgggcacaacactgtgtcct





SEQ ID NO: 1294
TRBV5-4*02-3′
tcctagattctcaggtctccagttccctaattataactctgagctgaatgtgaacgccttggagctggacgactcggccctgtatctctgtgccagcagc





SEQ ID NO: 1295
TRBV5-4*03-5′
cagcaagtgacactgagatgctcttctcagtctgggcacaacactgtgcctggtaccaacaggccctgggtcaggggccccagtttatctttcagtatt





SEQ ID NO: 1296
TRBV5-4*03-3′
tcctagattctcaggtctccagttccctaattatagctctgagctgaatgtgaacgccttggagctggacgactcggccctgtatctctgtgccagcagc





SEQ ID NO: 1297
TRBV5-4*04-5′
actgtgtcctggtaccaacaggccctgggtcaggggccccagtttatctttcagtattatagggaggaagagaatggcagaggaaactcccctcctagat





SEQ ID NO: 1298
TRBV5-4*04-3′
tcctagattctcaggtctccagttccctaattatagctctgagctgaatgtgaacgccttggagctggacgactcggccctgtatctctgtgccagcagc





SEQ ID NO: 1299
TRBV5-5*01-5′
gacgctggagtcacccaaagtcccacacacctgatcaaaacgagaggacagcaagtgactctgagatgctctcctatctctgggcacaagagtgtgtcct





SEQ ID NO: 1300
TRBV5-5*01-3′
cgattctcagctcgccagttccctaactatagctctgagctgaatgtgaacgccttgttgctgggggactcggccctgtatctctgtgccagcagcttgg





SEQ ID NO: 1301
TRBV5-5*02-5′
gacgctggagtcacccaaagtcccacacacctgatcaaaacgagaggacagcacgtgactctgagatgctctcctatctctgggcacaagagtgtgtcct





SEQ ID NO: 1302
TRBV5-5*02-3′
tgatcgattctcagctcgccagttccctaactatagctctgagctgaatgtgaacgccttgttgctgggggactcggccctgtatctctgtgccagcagc





SEQ ID NO: 1303
TRBV5-5*03-5′
gacgctggagtcatccaaagtcccacacacctgatcaaaacgagaggacagcaagtgactctgagatgctctcctatctctgagcacaagagtgtgtcct





SEQ ID NO: 1304
TRBV5-5*03-3′
tgatcgattctcagctcgccagttccctaactatagctctgagctgaatgtgaacgccttgttgctgggggactcggccctgtatctctgtgccagcagt





SEQ ID NO: 1305
TRBV5-6*01-5′
gacgctggagtcacccaaagtcccacacacctgatcaaaacgagaggacagcaagtgactctgagatgctctccttagtctgggcatgacactgtgtcct





SEQ ID NO: 1306
TRBV5-6*01-3′
cgattctcaggtcaccagttccctaactaatagctctgagctgaatgtgaacgccttgttgctgggggactcggccctctatctctgtgccagcagcttgg





SEQ ID NO: 1307
TRBV5-7*01-5′
gatgctggagtcacccaaagtcccacacacctgatcaaaacgagaggacagcacgtgactctgagatgctctcctatctctgggcataccagtgtgtcct





SEQ ID NO: 1308
TRBV5-7*01-3′
caattctcaggtcatcagttccctaactatagctctgagctgaatgtgaacgccttgttgctaggggactcggccctctatctctgtgccagcagcttgg





SEQ ID NO: 1309
TRBV5-8*01-5′
gaggctggagtcacacaaagtcccacacacctgatcaaaacgagaggacagcaagcgactctgagatgctctcctatctctgggcacaccagtgtgtact





SEQ ID NO: 1310
TRBV5-8*01-3′
agattttcaggtcgccagttccctaattatagctctgagctgaatgtgaacgccttggagctggaggactcggccctgtatctctgtgccagcagcttgg





SEQ ID NO: 1311
TRBV5-8*02-5′
aggacagcaagcgactctgagatgctctcctatctctgggcacaccagtgtgtactggtaccaacaggccctgggtctgggcctccagctcctcctttgg





SEQ ID NO: 1312
TRBV5-8*02-3′
tcctagattttcaggtcgccagttccctaattatagctctgagctgaatgtgaacgccttggagctggaggactcggccctgtatctctgtgccagcagc





SEQ ID NO: 1313
TRBV6-1*01-5′
aatgctggtg6cactcagaccccaaaattccaggtcctgaagacaggacagagcatgacactgcagtgtgcccaggatatgaaccataactccatgtact





SEQ ID NO: 1314
TRBV6-1*01-3′
gctacaatgtctccagattaaacaaacgggagttctcgctcaggctggagtcggctgctccctcccagacatctgtgtacttctgtgccagcagtgaagc





SEQ ID NO: 1315
TRBV6-2*01-5′
aatgctggtgtcactcagaccccaaaattccgggtcctgaagacaggacagagcatgacactgctgtgtgcccaggatatgaaccatgaatacatgtact





SEQ ID NO: 1316
TRBV6-2*01-3′
gctacaatgtctccagattaaaaaaacagaatttcctgctggggttggagtcggctgctccctcccaaacatctgtgtacttctgtgccagcagttactc





SEQ ID NO: 1317
TRBV6-2*02-5′
aatgctggtgtcactcagaccccaaaattccgggtcctgaagacaggacagagcatgacactgctgtgtgcccaggatatgaaccatgaataccatgtact





SEQ ID NO: 1318
TRBV6-2*02-3′
tggctacaatgtctccagattaaaaaaacagaatttcctgctggggttggagtcggctgctccctcccaaacatctgtgtacttctgtgccagcagccct





SEQ ID NO: 1319
TRBV6-3*01-5′
aatgctggtgtcactcagaccccaaaattccgggtcctgaagacaggacagagcatgacactgctgtgtgcccaggatatgaaccatgaatacatgtact





SEQ ID NO: 1320
TRBV6-3*01-3′
gctacaatgtctccagattaaaaaaacagaatttcctgctggggttggagtcggctgctccctcccaaacatctgtgtacttctgtgccagcagttactc





SEQ ID NO: 1321
TRBV6-4*01-5′
attgctgggatcacccaggcaccaacatctcagatcctggcagcaggacggcgcatgacactgagatgtacccaggatatgagacataatgccatgtact





SEQ ID NO: 1322
TRBV6-4*01-3′
gttatagtgtctccagagcaaacacagatgatttccccctcacgttggcgtctgctgtaccctctcagacatctgtgtacttctgtgccagcagtgactc





SEQ ID NO: 1323
TRBV6-4*02-5′
actgctgggatcacccaggcaccaacatctcagatcctggcagcaggacggagcatgacactgagatgtacccaggatatgagacataatgccatgtact





SEQ ID NO: 1324
TRBV6-4*02-3′
gttatagtgtctccagagcaaacacagatgatttccccctcacgttggcgtctgctgtaccctctcagacatctgtgtacttctgtgccagcagtgactc





SEQ ID NO: 1325
TRBV6-4*01-5′
aatgctggtgtcactcagaccccaaaattccaggtcctgaagacaggacagagcatgacactgcagtgtgcccaggatatgaaccatgaatacatgtcct





SEQ ID NO: 1326
TRBV6-4*01-3′
gctacaatgtctccagatcaaccacagaggatttcccgctcaggctgctgtcggctgctccctcccagacatctgtgtacttctgtgccagcagttactc





SEQ ID NO: 1327
TRBV6-6*01-5′
aatgctggtgtcactcagaccccaaaattccgcatcctgaagataggacagagcatgacactgcagtgtacccaggatatgaaccataactacatgtact





SEQ ID NO: 1328
TRBV6-6*01-3′
gctacaacgtctccagatcaaccacagaggatttcccgctcaggctggagttggctgctccctcccagacatctgtgtacttctgtgccagcagttactc





SEQ ID NO: 1329
TRBV6-6*02-5′
aatgctggtgtcactcagaccccaaaattccgcatcctgaagataggacagagcatgacactgcagtgtgcccaggatatgaaccataactacatgtact





SEQ ID NO: 1330
TRBV6-6*02-3′
gaatggctacaacgtctccagatcaaccacagaggatttccgctcaggctggagttggctgctccctcccagacatctgtgtacttctgtgccagcagt





SEQ ID NO: 1331
TRBV6-6*03-5′
aatgctggtgtcactcagaccccaaaattccgcatcctgaagataggacagagcatgacactgcagtgtgcccaggatatgaaccataactacatgtact





SEQ ID NO: 1332
TRBV6-6*03-3′
gaatggctacaacgtctccagatcaaccacagaggatttcccgctcaggctggagttggctgctccctcccagacatctgtgtacttctgtgccagcagt





SEQ ID NO: 1333
TRBV6-6*04-5′
aatgctggtgtcactcagaccccaaaattccgcatcctgaagataggacagagcatgacactgcagtgtacccaggatatgaaccatgaatacatgtact





SEQ ID NO: 1334
TRBV6-6*04-3′
tggctacaatgtctccagatcaaccacagaggatttcccgctcaggctggagttggctgctccctcccagacatctgtgtacttctgtgccagcagtcga





SEQ ID NO: 1335
TRBV6-6*05-5′
aatgctggtgtcactcagaccccaaaattccgcatcctgaagataggacagagcatvgacactgcagtgtgcccaggatatgaaccataactacatgtact





SEQ ID NO: 1336
TRBV6-6*05-3′
gaatggctacaacgtctccagatcaaccacagaggatttcccgctcaggctggagttggctgctgcctcccagacatctgtgtacttctgtgccagcagc





SEQ ID NO: 1337
TRBV6-7*01-5′
aatgctggtgtcactcagaccccaaaattccacgtcctgaagacaggacagagcatgactctgctgtgtgcccaggatatgaaccatgaatacatgtatc





SEQ ID NO: 1338
TRBV6-7*01-3′
gctacaatgtctccagatcaaacacagaggatttccccctcaagctggagtcagctgctccctctcagacttctgtttacttctgtgccagcagttactc





SEQ ID NO: 1339
TRBV6-8*01-5′
aatgctggtgtcactcagaccccaaaattccacatcctgaagacaggacagagcatgacactgcagtgtgccaggatatgaaccatggatacatgtcct





SEQ ID NO: 1340
TRBV6-8*01-3′
gctacaatgtctctagattaaacacagaggatttcccactcaggctggtgtcggctgctccctcccagacatctgtgtacttgtgtgccagcagttactc





SEQ ID NO: 1341
TRBV6-9*01-5′
aatgctggtgtcactcagaccccaaaattccacatcctgaagacaggacagagcatgacactgcagtgtgcccaggatatgaaccatggatacttgtcct





SEQ ID NO: 1342
TRBV6-9*01-3′
gctacaatgtatccagatcaaacacagaggatttcccgctcaggctggagtcagctgctccctcccagacatctgtatacttctgtgccagcagttattc





SEQ ID NO: 1343
TRBV7-1*01-5′
ggtgctggagtctcccagtccctgagacacaaggtagcaaagaagggaaaggatgtagctctcagataatgatccaatttcaggtcataatgccctttatt





SEQ ID NO: 1344
TRBV7-1*01-3′
ggttctctgcacagaggtctgagggatccatctccactctgaagttccagcgcacatagcagggggacttggctgtgtatctctgtgccagcagctcag





SEQ ID NO: 1345
TRBV7-2*01-5′
ggagctggagtctcccagtcccccagtaacaaggtcacagagaagggaaaggatgtagagctcaggtgtgatccaatttcaggtcatactgccctttact





SEQ ID NO: 1346
TRBV7-2*01-3′
gcttctctgcagagaggactgggggatccgtctccactctgacgatccagcgcacacagcaggaggactcggccgtgtatctcgtgccagcagcttagc





SEQ ID NO: 1347
TRBV7-2*02-5′
ggagctggagtctcccagtcccccagtaacaaggtcacagagaagggaaaggatgtagagctcaggtgtgatccaatttcaggtcatactgccctttact





SEQ ID NO: 1348
TRBV7-2*02-3′
gcttctctgcagagaggactggggaatccgtctccactctgacgatccagcgcacacagcaggaggactcggccgtgtatctctgtgccagcagcttagc





SEQ ID NO: 1349
TRBV702*03-5′
ggagctggagtctcccagtcccccagtaacaaggtcacagagaagggaaaggatgtagagctcaggtgtgatccaatttcaggtcatactgccctttact





SEQ ID NO: 1350
TRBV7-2*03-3′
gcttctctgcagagaggactggggaatccgtctccactctgacgatccagcgcacacagcaggaggactcggccgtgtatctctgtaccagcagcttagc





SEQ ID NO: 1351
TRBV7-2*04-5′
ggagctggagtttcccagtcccccagtaacaaggtcacagagaagggaaaggatgtagagctcaggtgtgatccaatttcaggtcatactgccctttact





SEQ ID NO: 1352
TRBV702*04-3′
tcgcttctctgcagagaggactgggggatccgtctccactctgacgatccagcgcacacagcaggaggactcggccgtgtatctctgtgccagcagctta





SEQ ID NO: 1353
TRBV7-3*01-5′
ggtgctggagtctcccagacccccagtaacaaggtcacagagaagggaaaatatgtagagctcaggtgtgatccaatttcaggtcatactgccctttact





SEQ ID NO: 1354
TRBV7-3*01-3′
ggttctttgcagtcaggcctgagggatccgtctctactctgaagatccagcgcacagagcggggggactcagccgtgtatctctgtgccagcagcttaac





SEQ ID NO: 1355
TRBV7-3*02-5′
ggtgctggagtctcccagacccccagtaacaaggtcacagagaagggaaaagatgtagagctcaggtgtgatccaatttcaggtcatactgccctttact





SEQ ID NO: 1356
TRBV7-3*02-3′
ggttctttgcagtcaggcctgagggatccgtctctactctgaagatccagcgcacagagcagggggactcagccgtgtatctccgtgccagcagcttaac





SEQ ID NO: 1357
TRBV7-3*03-5′
ggtgctggagtctcccagacccccagtaacaaggtcacagagaagggaaaagatgtagagctcaggtgtgatccaatttcaggtcatactgccctttact





SEQ ID NO: 1358
TRBV7-3*03-3′
ggttctttgcagtcaggcctgagggatccgtctctactctgaagatccagcgcacagagcagggggactcagccgcgtatctccgtgccagcagcttaac





SEQ ID NO: 1359
TRBV7-3*04-5′
ggtgctggagtctcccagacccccagtaacaaggtcacagagaagggaaaatatgtagagctcaggtgtgatccaatttcaggtcatactgccctttact





SEQ ID NO: 1360
TRBV7-3*04-3′
cgatcggttctttgcagtcaggcctgagggatccgtctctactctgaagatccagcgcacagagcggggggactctgccgtgtatctctgtgccagcagc





SEQ ID NO: 1361
TRBV7-3*05-5′
tgggagctcaggtgtgatccaatttcaggtcatactgccctttactggtaccgacaaagcctggggcagggcccagagcttctaatttacttccaaggca





SEQ ID NO: 1362
TRBV7-3*05-3′
tgatcggttctttgcagtcaggcctgagggatccgtctctactctgaagatccagcgcacagagcggggggactcagccgtgtatctctgtgccagcagc





SEQ ID NO: 1363
TRBV7-4*01-5′
ggtgctggagtctcccagtccccaaggtacaaagtcgcaaagaggggacgggatgtagctctcaggtgtgattcaatttcgggtcatgtaaccctttatt





SEQ ID NO: 1364
TRBV7-4*01-3′
ggttctctgcagagaggcctgagagatccgtctccactctgaagatccagcgcacagagcagggggactcagctgtgtatctctgtgccagcagttagc





SEQ ID NO: 1365
TRBV7-4*02-5′
ggtgctggagtcctcccagtccccaaggtacaaagtcgcaaagaggggacgggatgtagctctcaggtgtgattcaatttcgggtcatgtaaccctttatt





SEQ ID NO: 1366
TRBV7-4*02-3′
aacgagacaaatcagggcggcccagtggtcggttctctgcagagaggcctgagagatcgtctccactccgaagatccagcgcacagagcagggggactca





SEQ ID NO: 1367
TRBV7-5*01-5′
ggtgctggagtctcccagtccccaaggtacgaagtcacacagaggggacaggatgtagctcccaggtgtgatccaatttcgggtcaggtaaccctttatt





SEQ ID NO: 1368
TRBV7-5*01-3′
tcattctccacagagaggtctgaggatcttctccacctgaagatccagcgcacagagcaagggcgactcggctgtgtatctctgtgccagaagcttag





SEQ ID NO: 1369
TRBV7-5*02-5′
ggtgctggagtctcccagtccccaaggtacgaagtcacacagaggggacaggatgtagctcccaggtgtgatccaatttcgggtcaggtaaccctttatt





SEQ ID NO: 1370
TRBV7-5*02-3′
caattctccacagagaggtctgaggatctttctccacctgaagatccagcgcacagagtaagggcgactcggctgtgtatctctgtgcagaagcttagc





SEQ ID NO: 1371
TRBV7-6*01-5′
ggtgctggagtctcccagtctcccaggtacaaagtcacaaagaggggacaggatgtagctctcaggtgtgatccaatttcgggtcatgtatccctttatt





SEQ ID NO: 1372
TRBV7-3*01-3′
ggttctctgcagagaggcctgagggatccatctccactctgacgatccagcgcacagagcagcgggactcggccatgtatcgctgtgccagcagcttagc





SEQ ID NO: 1373
TRBV7-6*02-5′
ggtgctggagtctcccagtctcccaggtacaaagtcacaaagaggggacaggatgtagctctcaggtgtgatccaatctcgggtcatgtatccctttatt





SEQ ID NO: 1374
TRBV7-6*02-3′
tgatcggttctctgcagagaggcctgagggatccatctccactctgacgatccagcgcacagagcagcgggactcggccatgtatcgctgtgccagcagc





SEQ ID NO: 1375
TRBV7-7*01-5′
ggtgctggagtctcccagtctcccaggtacaaagtcacaaagaggggacaggatgtaactctcaggtgtgatccaatttcgagtcatgcaaccctttatt





SEQ ID NO: 1376
TRBV7-7*01-3′
ggttctctgcagagaggcctgagggatccatctccactctgatgattcagcgcacagagcagcgggactcagccatgtatcgctgtgccagcagcttagc





SEQ ID NO: 1377
TRBV7-7*02-5′
ggtgctggagtctcccagtctcccaggtacaaagtcacaaagaggggacaggatgtaactctcaggtgtgatccaatttcgagtcatgtaaccctttatt





SEQ ID NO: 1378
TRBV7-7*02-3′
tgatcggttctctgcagagaggcctgagggatccatctcactctgacgattcagcgcacagagcagcgggactcagccatgtatcgctgtgccagcagc





SEQ ID NO: 1379
TRBV7-8*01-5′
ggtgctggagtctcccagtcccctaggtacaaagtcgcaaagagaggacaggatgtagctctcaggtgtgatccaatttcgggtcatgtatcccttttt





SEQ ID NO: 1380
TRBV7-8*01-3′
gcttcttgcagaaaggcctgagggatccgtctccactctgaagatccagcgcacacagcaggaggactccgccgtgtatctctgtgccagcagcttagc





SEQ ID NO: 1381
TRBV7-8*02-5′
ggtgctggagtctcccagtcccctaggtacaaagtcgcaaagagaggacaggatgtagctctcaggtgtgatccaatttcgggtcatgtatcccttttt





SEQ ID NO: 1382
TRBV7-8*02-3′
gcttctttgcagaaaggcctgagggatccgtctccactctgaagatccagcgcacacagaaggaggactccgccgtgtatctctgtgccagcagcttagc





SEQ ID NO: 1383
TRBV7-8*03-5′
ggtgctggagtctcccagtcccctaggtacaaagtcgcaaagagaggacaggaatgtagctctcaggtgtgatccaatttcgggtcatgtatcccttttt





SEQ ID NO: 1384
TRBV7-8*03-3′
tcgcttctttgcagaaaggcctgagggatccgtctccactcgaagatccagcgcacacagcaggaggactccgccgtgtatctctgtgccagcagccga





SEQ ID NO: 1385
TRBV7-9*01-5′
gatactggagtctcccagaaccccagacacaagatcacaaagaggggacagaatgtaactttcaggtgtgatccaatttctgaacacaaccgcctttatt





SEQ ID NO: 1386
TRBV7-9*01-3′
ggttctctgcagagaggcctaagggatctttctccaccttggagatccagcgcacagagcagggggactcggccatgtatctctgtgccagcagcttagc





SEQ ID NO: 1387
TRBV7-9*02-5′
gatactggagtctcccagaaccccagacacaacatcacaaagaggggacagaatgtaactttcaggtgtgatccaatttctgaacacaaccgcctttatt





SEQ ID NO: 1388
TRBV7-9*02-3′
tcggttctctgcagagaggcctaagggatctttctccaccttggagatccagcgcacagagcagggggactcggccatgtatctctgtgccagcagctta





SEQ ID NO: 1389
TRBV7-9*03-5′
gatactggagtctcccaggaccccagacacaagatcacaaagaggggacagaatgtaactttcaggtgtgatccaatttctgaacacaaccgcctttatt





SEQ ID NO: 1390
TRBV7-9*03-3′
tgatcggttctctgcagagaggcctaagggatctttctccaccttggagatccagcgcacagagcagggggactcggccatgtatctctgtgccagcagc





SEQ ID NO: 1391
TRBV7-9*04-5′
atatctggagtctcccacaaccccagacacaagatcacaaagaggggacagaatgtaactttcaggtgtgatccaatttctgaacacaacgcctttatt





SEQ ID NO: 1392
TRBV7-9*04-3′
tcggatctctgcagagaggcctaagggatctttctccaccttggagatccagcgcacagagcagggggactcggccatgtatctctgtgccagcagctct





SEQ ID NO: 1393
TRBV7-9*05-5′
gatactggagtctcccagaaccccagacacaagatcacaaagaggggacagaatgtaactttcaggtgtgatccaatttctgaacacaaccgcctttatt





SEQ ID NO: 1394
TRBV7-9*05-3′
tcggttctctgcagagaggcctaagggatctctctccaccttggagatccagcgcacagagcagggggactcggccatgtatctctgtgccagcaccaaa





SEQ ID NO: 1395
TRBV7-9*06-5′
gatactggagtctcccagaaccccagacacaagatcacaaagaggggacagaatgtaactttcaggtgtgatccaatttctgaacacaaaccgcctttatt





SEQ ID NO: 1396
TRBV7-9*06-3′
tcggttctctgcagagaggcctaagggatctctttccaccttggagatccagcgcacagagcaggggactcggccatgtatctctgtgccagcacgttg





SEQ ID NO: 1397
TRBV7-9*07-5′
cacaaccgcctttattggtaccgacagaccctggggcagggcccagagtttctgacttacttccagaatgaagctcaactagaaaaatcaaggctgctca





SEQ ID NO: 1398
TRBV7-9*07-3′
gttctctgcagagaggcctaagggatctttctccaccttggagatccagcgcacagaggagggggactcggccatgtatctctgtgccagcagcagcagt





SEQ ID NO: 1399
TRBV8-1*01-5′
gaggcagggatcagccagataccaagatatcacagacacacagggaaaaagatcatcctgaaatatgctcagattaggaaccattattcagtgttctgtt





SEQ ID NO: 1400
TRBV8-1*01-3′
ggaagggtacaatgtctctggaaacaagctcaagcattttccctcaaccctggagtctactagcaccagccagacctctgtacctctgtggcagtgcatc





SEQ ID NO: 1401
TRBV8-2*01-5′
gatgctgggatcacccagatgccaagatatcacattgtacagaagaaagagatgatcctggaatgtgctcaggttaggaacagtgttctgatatcgacag





SEQ ID NO: 1402
TRBV8-2*01-3′
agaggggtactgtgtttcttgaaacaagcttgagcatttccccaatcctggcatccaccagcaccagccagacctaatctgtaccactgtggcagcacatc





SEQ ID NO: 1403
TRBV9*01-5′
gattctggagtcacacaaaccccaaagcacctgatcacagcaactggacagcgagtgacgctgagatgctcccctaggtctggagcctctctgtgtact





SEQ ID NO: 1404
TRBV9*01-3′
cgattctccgcacaacagttccctgacttgcactctgaactaaacctgagctctctggagctgggggactcagctttgtatttctgtgccagcagcgtag





SEQ ID NO: 1405
TRBV9*02-5′
gattctggagtcacacaaaccccaaagcacctgatcacagcaactggacagcgagtgacgctgagatgctcccctaggtctggagacctctctgtgtact





SEQ ID NO: 1406
TRBV9*02-3′
cgattctccgcacaacagttccctgacttgcactctgaactaaacctgagctctctggagctgggggactcagctttgtatttctgtgccagcagcgtag





SEQ ID NO: 1407
TRBV9*03-5′
gattctggagtcacacaaaccccaaagcacctgatcacagcaactggacagcgagtgacgttgagatgctcccctaggtctggagacctctctgtgtact





SEQ ID NO: 1408
TRBV9*03-3′
tgaatgattctccgcataacagttccctgacttgcactcgaactaaacctgagctctctggagctgggggactcagctttgtatttctgtgccagcagc





SEQ ID NO: 1409
TRBVA*01-5′
gaagctgaagccacctagactctaagacacctgattgcagagacaggaaaggagttctcaagataagtgccaagatttcatactggttttcacaagaatc





SEQ ID NO: 1410
TRBVA*01-3′
tccctattgaaaatatttcctggcaaaaaatagaagttctctttggctcgaaatctgcaactccctttcaggtgtccctgtgccttgtaccgtcactc





SEQ ID NO: 1411
TRBVA/OR9-2*01-5′
gaagctgaagtcacctagactccaagacacctgattgtagagacaggaaaggagttctcaggatatgtgccataatttcatactggtttctacaagaatc





SEQ ID NO: 1412
TRBVA/OR9-2*01-3′
tccctgttgaaaatatttcccggcaaaaaacagaagttccctttggctctgaaatctgcaaagccctttcagatgtccctgtgtccttgtgccgtcactc





SEQ ID NO: 1413
TRBVB*01-5′
aatgtcaaagtaacacagaccctgagatgaggcaggaaagttgtatcggaatgttttcagactatcaaccagaccaaacgttctggaatccataagatcc





SEQ ID NO: 1414
TRBVB*01-3′
gactctgagaccctctgcagcagcagcctatcagtgcagccacatcctctctgagcggatatgacaaaccccagggttgaagcgacctaacctatgagcc





SEQ ID NO: 1415
TRBVC*01-5′
agtgacttctaaattggtctatgaagagaatctcccccattcctggagtcgcccagtccagacctctctgtacatttgcaccagcagtttatccacagt





SEQ ID NO: 1416
TRDV1*01-5′
gcccagaaggttactcaagcccagtcatcagtatccatgccagtgaggaaagcagtcaccctgaactgcctgtatgaaacaagttggtggtcatattata





SEQ ID NO: 1417
TRDV1*01-3′
attctgtcaacttcaagaaagcagcgaaatccgtcgccttaaccatttcagccttacagctagaagattcagcaaagtactttgtgctcttggggaact





SEQ ID NO: 1418
TRDV2*01-5′
gccattgagttggtgcctgaacaccaaacagtgcctgtgtcaataggggtccctgccaccctcaggtgctccatgaaggagaagcgatcggtaactact





SEQ ID NO: 1419
TRDV2*01-3′
tttccaaggtgacattgatattgcaaagaacctggctgtacttaagatacttgcaccatcagagagagatgaagggtcttactactgtgcctgtgacacc





SEQ ID NO: 1420
TRDV2*02-5′
attgagttggtgcctgaacaccaaacagtgcctgtgtcaatagggatccctgccaccctcaggtgctccatgaaaggagaagcgatcggtaactactata





SEQ ID NO: 1421
TRDV2*02-3′
aatttccaaggtgacattgatattgcaaagaacctggctgacttaagatacttgcaccatcagagagagatgaagggtcttactactgtgcctgtgaca





SEQ ID NO: 1422
TRDV2*03-5′
gccattgagttggtgcctgaacaccaaacagtgcctgtgtcaataggggtccctgccaccctcaggtgctccatgaaggagaagcgatcggtaactact





SEQ ID NO: 1423
TRDV2*03-3′
tttccaaggtgacattgatattgcaaagaacctggctgtacttaagatacttgcaccatcagagagagatgaagggtcttactactgtgcctgtgacacc





SEQ ID NO: 1424
TRDV3*01-5′
tgtgacaaagtaacccagagttccccggaccagacggtggcgagtggcagtgaggtggtactgctctgcacttacgacactgtatattcaaatccagatt





SEQ ID NO: 1425
TRDV3*01-3′
gacggttttctgtgaaacacattctgacccagaaagcctttcacttggtgatctctccagtaaggactgaagacagtgccacttactactgtgcctttag





SEQ ID NO: 1426
TRDV3*02-5′
tgtgacaaagtaacccagagttccccggaccagacggtggcgagtggcagtgaggtggtactgctctgcacttacgacactgtatattcaaatccagatt





SEQ ID NO: 1427
TRDV3*02-3′
gacggttttctgtgaaacacattctgacccagaaagcctttcacttggtgatctctccagtaaggactgaagacagtgccacttactactgtgcctttag





SEQ ID NO: 1428
TRGV1*01-5′
tcttccaacttggaagggagaacgaagtcagtcaccaggctgactgggtcatctgctgaaatcacctgtgatcttcctggagcaagtaccttatacatcc





SEQ ID NO: 1429
TRGV1*01-3′
aaagtatgacactggaagcacaaggagcaattggaatttgagactgcaaaatctaattaaaaatgattctgggttctattactgtgccacctgggacagg





SEQ ID NO: 1430
TRGV10*01-5′
ttatcaaaagtggagcagttccagctatccatttccacggaagtcaagaaaagtattgacataccttgcaagatatcgagcacaaggtttgaaacagatg





SEQ ID NO: 1431
TRGV10*01-3′
aggcaagaaagaattctcaaactctcacttcaatccttaccatcaagtccgtagagaaagaagacatggccgtttactactgtgctgcgtggtgggtggc





SEQ ID NO: 1432
TRGV10*02-5′
ttatcaaaagtggagcagttccagctatccatttccacggaagtcaagaaaagtattgacataccttgcaagatatcgagcacaaggtttgaaacagatg





SEQ ID NO: 1433
TRGV10*02-3′
tggaggcaagaaagaattctcaaactctcacttcaatccttaccatcaagtccgtagagaaagaagacatggccgtttactactgtgctgcgtgggatta





SEQ ID NO: 1434
TRGV11*01-5′
cttgggcagttggaacaacctgaaatatctatttccagaccagcaaataagagtgcccacatatcttggaaggcatccatccaaggctttagcagtaaaa





SEQ ID NO: 1435
TRGV11*01-3′
ggtaagtaaaaatgctcacacttccacttccactttgaaaataaagttcttagagaaagaagatgaggtggtgtaccactgtgcctgctggattaggcac





SEQ ID NO: 1436
TRGV11*02-5′
cttgggcagttggaacaacctgaaatatctatttccagaccagcaaataagagtgcccacatatcttggaaggcatccaatccaaggctttagcagtaaaa





SEQ ID NO: 1437
TRGV11*02-3′
gataagtaaaaatgctcacacttccacttccactttgaaaataaagttcttagagaaagaagatgaggtggtgtaccactgtgcctgctggattaggcac





SEQ ID NO: 1438
TRGV2*01-5′
tcttccaacttggaagggagaacgaagtcagtcatcaggcagactgggtcatctgctgaaatcacttgtgatcttgctgaaggaagtaacggctacatcc





SEQ ID NO: 1439
TRGV2*01-3′
gtattatacttacgcaagcacaaggaacaacttgagattgatactgcgaaatctaattgaaaatgactctggggtctattactgtgccacctgggacggg





SEQ ID NO: 1440
TRGV2*02-5′
tcttccaacttggaagggagaacgaagtcagtcatcaggcagactgggtcatctgctgaaatcacttgtgatcttgctgaaggaagtaacggctacatcc





SEQ ID NO: 1441
TRGV2*02-3′
gaagtattatacttacgcaagcacaaggaacaacttgagattgatactgcaaaatctaattgaaaatgactctggggtctattactgtgccacctgggac





SEQ ID NO: 1442
TRGV3*01-5′
tcttccaacttggaagggagaacgaagtcagtcaccaggcagactgggtcatctgctgaaatcacttgcgatcttactgtaacaaataccttctacatcc





SEQ ID NO: 1443
TRGV3*01-3′
gtattatactcatacacccaggaggtggagctggatattgagactgcaaaatctaattgaaatgattctggggtctattactgtgccacctgggacagg





SEQ ID NO: 1444
TRGV3*02-5′
tcttccaacttggaagggagaacgaagtcagtcaccaggcagactgggtcatctgctgaaatcaccttgcgatcttactgtaacaaataccttctacatcc





SEQ ID NO: 1445
TRGV3*02-3′
agtattatactcatacacccaggaggtggagctggatattgagactgcaaaatctaattgaaaatgattctggggtctattactgtgccacctgggacag





SEQ ID NO: 1446
TRGV4*01-5′
tcttccaacttggaagggagaacgaagtcagtcatcaggcagactgggtcatctgctgaaatcacttgtgatcttgctgaaggaagtaccggctacatcc





SEQ ID NO: 1447
TRGV4*01-3′
gtatgatacttatggaagcacaaggaagaacttgagaatgatactgcgaaatcttattgaaaatgactctggagtctattactgtgccacctgggatggg





SEQ ID NO: 1448
TRGV4*02-5′
tcttccaacttggaagggagaacgaagtcagtcatcaggcagactgggtcatctgctgaaatcacttgtgatcttgctgaaggaagtaccggctacatcc





SEQ ID NO: 1449
TRGV4*02-3′
gtatgatacttacggaagcacaaggaagaacttgagaatgatactgcgaaatcttattgaaaatgactctggagtctattactgtgccacctgggatggg





SEQ ID NO: 1450
TRGV5*01-5′
tcttccaacttggaagggggaacgaagtcagtcatgaggccgactaggtcatctgctgaaatcacttgtgaccttactgtaataaatgccttctacatcc





SEQ ID NO: 1451
TRGV5*01-3′
gtattatactcatacacccaggaggtggagctggatattgatactacgaaatctaattgaaaatgattctggggctattactgtgccacctgggacagg





SEQ ID NO: 1452
TRGV5P*01-5′
tcttccaacttggaagggagaatgaagtcagtcaccaggccgactgggtcatctgctgaaatcacttgtgaccttactgtaataaatgccgtctacatcc





SEQ ID NO: 1453
TRGV5P*01-3′
gtattatactcatacaccgaggaggtggagctggaatttgagactgcaaaatctaattgaaaatgattctggggtctattactgtgccacctggggcagg





SEQ ID NO: 1454
TRGV5P*02-5′
tcttccaacttggaagggagaatgaagtcagtcaccaggccgactgggtcatctgctgaaatcacttgtgaccttactgtaataaatgccgtctacatcc





SEQ ID NO: 1455
TRGV5P*02-3′
gtattatactcatacaccgaggaggtggagctggaatttgagactgcaaaatctattgaaaatgattctggggtctattactgtgccacctggggcagg





SEQ ID NO: 1456
TRGV6*01-5′
tctactaacttggaagcgaaaataaagtcaggcaccaggcagatggggtcatctgctgtaatcacctgtgatcttcctgtagaaaatgccttctacatcc





SEQ ID NO: 1457
TRGV6*01-3′
gcatgatacttatggaagtagaaggataagctggaaatttatacctccaaactaaatgaaaatgcctctggggttattactgtgccacctaggacagg





SEQ ID NO: 1458
TRGV6*02-5′
tctactaacttggaagcgaaaataaagtcaggcaccaggcagatggggtcatctgctgtaatcacctgtgatcttcctgtagaaaatgccttctacatcc





SEQ ID NO: 1459
TRGV6*02-3′
gcatgatacttatggaagtagaaggataagctggaaatttatacctccaaaacctaaatgaaaatgcctctggggtctattactgtgccacctaggacagg





SEQ ID NO: 1460
TRGV7*01-5′
tcttccaacttgcaagggagaaggaagtcagtcaccaggccagctgggtcatctgctgtaatcacttgtgatcttactgtaataaatacfcttctacatcc





SEQ ID NO: 1461
TRGV7*01-3′
atattttacttatgcaagcatgaggaggagctggaaaattgatactgcaaaatctaattgaaaatgattctggatctattactgtgtccacctgggacagg





SEQ ID NO: 1462
TRGV8*01-5′
tcttccaacttggaagggagaacaaagtcagtcaccaggccaactgggtcatcagctgtaatcacttgtgatcttcctgtagaaaatgccgtctacaccc





SEQ ID NO: 1463
TRGV8*01-3′
gtatcatacttatgcaagcacagggaagagccttaaatttatactggaaaatctaattgaacgtgactctggggtctattactgtgccacctgggatagg





SEQ ID NO: 1464
TRGV9*01-5′
gcaggtcacctagagcaacctcaaatttccagtactaaaacgctgtcaaaaacagcccgcctggaatgtgtggtgtctggaataacaatttctgcaacat





SEQ ID NO: 1465
TRGV9*01-3′
tgaggtggataggatacctgaaacgtctacatccactctcaccattcacaatgtagagaaacaggacatagctacctactactgtgccttgtgggaggtg





SEQ ID NO: 1466
TRGV9*02-5′
gcaggtcacctagagcaacctcaaatttccagtactaaaacgctgtcaaaaaccagcccgcctggaatgtgtggtgtctggaataaaaatttctgcaacat





SEQ ID NO: 1467
TRGV9*02-3′
tgaggtggataggatacctgaaacgtctacatccactctcaccattcacaatgtagagaaacaggacatagctacctactactgtgccttgtgggaggtg





SEQ ID NO: 1468
TRGVA*01-5′
ctcatcaggccggagcagctggcccatgtcctggggcactagggaagcttggtcatcctgcagtgcgtggtccgcaccaggatcagctacacccactggt





SEQ ID NO: 1469
TRGVA*01-3′
agataaaatcatagccaaggatggcagcagctctatcttggcagtactgaagttggagacaggcatcgagggcatgaactactgcacaacctgggccctg





SEQ ID NO: 1470
TRGVB*01-5′
tttaaagcaataaaaaatgtcaactacatttttgtcaacagagcaacagataaaaagtgtctaggtatcttgtgtggtgtccactgaagactttgtaaata





SEQ ID NO: 1471
TRGVB*01-3′
cttgaggcaagaacaattttcaaatgtctacttcagtctttaccataaacttcataggaaaggaagatgaggccatttactactgcactgcttaggacc





SEQ ID NO: 1472
TRAJ1*01
aatagagacacggggcatggtatgaaagtattacctcccagttgcaatttggcaaaggaaccagagtttccacttctccccgtacgtctgcccatgccca





SEQ ID NO: 1473
TRAJ10*01
gaggcatcaaacactgtgatactcacgggaggaggaaacaaactcacctttgggacaggcactcagctaaaagtggaactcagtaagtatgagattctat





SEQ ID NO: 1474
TRAJ11*01
tatggggatttgctatagtgtgaattcaggatacagcaccctcacctttgggaaggggactatgcttctagtctctccaggtacatgttgaccccatccc





SEQ ID NO: 1475
TRAJ12*01
actgactaagaaacactgtgggatggatagcagctataaattgatcttcgggagtgggaccagactgctggtcaggcctggtaagtaaggtgtcagagag





SEQ ID NO: 1476
TRAJ13*01
aagcaggcattacagtgtgaattctgggggttaccagaaagttacctttggaattggaacaaagctccaagtcatcccaagtgagtccaatttcctatg





SEQ ID NO: 1477
TRAJ13*02
aaaggcaggcattacagtgtgaattctgggggttaccagaaagttacctttggaactggaacaaagctccaagtcatcccaagtgagtccaatttcctat





SEQ ID NO: 1478
TRAJ14*01
tttgtcaggcagcacagtgctgtgatttatagcacattcatctttgggagtgggacaagattatcagtaaaacctggtaagtaggcaatatgtcactaaa





SEQ ID NO: 1479
TRAJ15*01
cagggcctcatttcactgtgccaaccaggcaggaactgctctgatctttgggaagggaaccaccttatcagtgagttccagtaagtacctgataattatt





SEQ ID NO: 1480
TRAJ15*02
cagggcctcatttcactgtgccaaccaggcaggaactgctctgatctttgggaagggaacccacctatcagtgagttccagtaagtaccgataattatt





SEQ ID NO: 1481
TRAJ16*01
tggtacaatagatcactgtgggttttcagatggccagaagctgctctttgcaaggggaaccatgttaaaggtggatcttagtaagtattattactaatga





SEQ ID NO: 1482
TRAJ17*01
cctgtggtttttgctgggccttaaatcattgtgtgatcaaagctgcaggcaacaagctaactttggaggaggaaccagggtgctagttaaaccaagtga





SEQ ID NO: 1483
TRAJ18*01
aggggaccagcattgtgccgacagaggctcaaccctggggaggctatactttggaagaggaactcagttgactgtctggcctggtgagtgagtcgctttc





SEQ ID NO: 1484
TRAJ19*01
ttttgcagaggacagatgtggctatcaaagattttacaatttcacctttggaaagggatccaaacataatgtcactccaagtaagtgagcagccttttgt





SEQ ID NO: 1485
TRAJ2*01
tggtgtcacctacggtatgaatactggaggaacaattgataaactcacatttgggaaagggacccatgtattcattatatctggtgagtcatcccaggtg





SEQ ID NO: 1486
TRAJ20*01
tgtaggcgacctcgcactgtggttctaacgactacaagctcagctttggagccggaaccacagtaactgtaagagcaagtaagtaagaaagaaaagtcca





SEQ ID NO: 1487
TRAJ21*01
tgtaatgccaataaacatggtgtacaacttcaacaaattttactttggatctgggaccaaactcaatgtaaaaccaagtaagttatagttgcctagaaga





SEQ ID NO: 1488
TRAJ22*01
gttgagcaaatcatagtgtttcttctggttctgcaaggcaactgacctttggatctgggacacaattgactgttttacctggtaggctgcctcaattaaa





SEQ ID NO: 1489
TRAJ23*01
aggatatgtaacacagtgtgatttataaccagggaggaaagcttatcttcggacagggaacggagttatctgtgaaacccagtaagtataaaattgtatc





SEQ ID NO: 1490
TRAJ23*02
gactggatgtgtttttgacaggatatgtaacacagtgtgatttataaccagggaggaaagcttatcttcggacagggaacggagctatctgtgaaaccca





SEQ ID NO: 1491
TRAJ24*01
gaggtgtttgtcacagtgtgacaactgacagctgggggaaattcgagtttggagcagggacccaggttgtggtcaccccaggtaagcccattcctggagc





SEQ ID NO: 1492
TRAJ24*02
gaggtgtttgtcacagtgtgacaactgacagctgggggaaattgcagtttggagcagggacccaggttgtggtcaccccaggtaagccccattccctgga





SEQ ID NO: 1493
TRAJ25*01
atgctgagataatcactatgcagaaggacaaggcttctcctttatctttgggaaggggacaaggctgcttgtcaagccaagtaagtgacatataatttat





SEQ ID NO: 1494
TRAJ26*01
ctgagcccagaaacacftgtggggataactatggtcagaattttgtctttggtcccggaaccagattgtccgtgctgccctgtaagtacagttaagtggag





SEQ ID NO: 1495
TRAJ27*01
caatagcactaaagactgtgtaacaccaatgcaggcaaatcaacctttggggatgggactacgctcactgtgaagccaagtaagttgtgttcttctttgc





SEQ ID NO: 1496
TRAJ28*01
agaaaggaaactctgtgcatactctggggctgggagttaccaactcactttcgggaaggggaccaaactctcggtcataccaagtaagttcttctttctg





SEQ ID NO: 1497
TRAJ29*01
ttatggaggaaatcactgtgggaattcaggaaacacacctcttgtctttggaaagggcacaagactttctgtgattgcaagtaagtgtttctagccatcc





SEQ ID NO: 1498
TRAJ3*01
aaagaccttacccacagtgggggtacagcagtgcttccaagataatctttggatcagggaccagactcagcatccggccaagtaagtagaatgaagcagg





SEQ ID NO: 1499
TRAJ30*01
gttatggtcccaatcacagtgtgaacagagatgacaagatcatctttggaaaagggacacgacttcatattctccccagtaagtgctgtttatgtgattt





SEQ ID NO: 1500
TRAJ31*01
agtaaaggcaggaagtgctgtggaataacaatgccagactcatgtttggagatggaactcagctggtggtgaagcccagtaagtggccatgttttattga





SEQ ID NO: 1501
TRAJ32*01
ggctctgaaggactgtgtgaattatggcggtgctacaaacaagctcatctttggaactggcactctgcttgctgtccagccaagtacgtaagtagtggca





SEQ ID NO: 1502
TRAJ32*02
gtgattcagccacctacctctgtgccgatggtggtgctacaaacaagctcatctttggaactggcactctgcttgctgtccagccaaatatccagaaccc





SEQ ID NO: 1503
TRAJ33*01
gttaaggtttttgtgtctgtgtggatagcaactatcagttaatctggggcgctgggaccaagctaattataaagccaggtaagtctcagagatgtgactg





SEQ ID NO: 1504
TRAJ34*01
aggtttttgtagatctcagtatcactgtgtcttataacaccgacaagctcatctttgggactgggaccagattacaagtctttccaagt





SEQ ID NO: 1505
TRAJ35*01
taaaagaatgagccattgtggataggctttgggaatgtgctgcattgcgggtccggcactcaagtgattgtttaccacgtaagtatatcttttctcatt





SEQ ID NO: 1506
TRAJ36*01
tactgggcagaaacactgtgtcaaactggggcaaacaacctcttctttgggactggaacgagactcaccgttattccctgtaagtccttacctcttgaca





SEQ ID NO: 1507
TRAJ37*01
aaagtacagcattagagtgtggctctggcaacacaggcaaactaatctttgggcaagggacaactttacaagtaaaaccaggtaggtctggatgtttcca





SEQ ID NO: 1508
TRAJ37*02
ctcagcggtgtacttctgtgctcttcatggctctagcaacacaggcaaactaatctttgggcaagggacaactttacaagtaaaaccagatatccagaac





SEQ ID NO: 1509
TRAJ38*01
aaagctttctatgactgtgtaatgctggcaacaaccgtaagctgatttggggattgggaacaagcctggcagtaaatccgagtgagtcttcgtgttaact





SEQ ID NO: 1510
TRAJ39*01
cagccgaagatcactgtgtgaataataatgcaggcaacatgctcacctttggagggggaacaaggttaatggtcaaaccccgtgagtatctctgctgaat





SEQ ID NO: 1511
TRAJ4*01
aagcaccatctgattgtgtgttttctggtggctacaataagctgatttttggagcagggaccaggctggctgtacacccatgtgagtatgaccctgcaag





SEQ ID NO: 1512
TRAJ40*01
tatgttggtttatgtagagacacataacactgtgactacctcaggaacctacaaatacatctttggaacaggcaccaggctgaaggttttagcaagt





SEQ ID NO: 1513
TRAJ41*01
ttagggagaacgcactgtggaactcaaattccgggtatgcactcaacttcggcaaaggcacctcgctgttggtcacaccccgtgagtttttgtggtttac





SEQ ID NO: 1514
TRAJ42*01
agccccataggactgtgtgaattatggaggaagccaaggaaatctcatctttggaaaaaggcactaaactctctgttaaaccaagtaagtgttggggattc





SEQ ID NO: 1515
TRAJ43*01
ttgttagagcatgtattactgtgacaataacaatgacatgcgctttggagcagggaccagactgacagtaaaaccaagtaagttgggggaatgggtcaat





SEQ ID NO: 1516
TRAJ44*01
aggtttctgttatgaagcatctcacagtgtaaataccggcactgccagtaaactcacctttgggactggaacaagacttcaggtcacgctcggt





SEQ ID NO: 1517
TRAJ45*01
agggttggcccagagtgtgtattcaggaggaggtgctgacggactcacctttggcaaagggactcatccaatcatccagccctgtaagtgctttgcctg





SEQ ID NO: 1518
TRAJ46*01
aagctgctgacagccgtgagaagaaaagcagcggagacaagctgacttttgggaccgggactcgtttagcagttaggcccagtaagtctgagcagaaagt





SEQ ID NO: 1519
TRAJ47*01
gtagaggagtttgacgctgtgtggaatatggaaacaaattggtctttggcgcaggaaccattctgagagtcaagtcctgtgagtataaaacacactcaag





SEQ ID NO: 1520
TRAJ47*01
gtgtactattgcatctcggccctggaatatggaaacaagctggtctttggcgcaggaaccattctgagagtcaagtcctatatccagaaccctgaccctg





SEQ ID NO: 1521
TRAJ48*01
atgacttagaacactgtgtatctaactttggaaatgagaaattaacctttgggactggaacaagacftcaccatcatacccagtaagttcttcatccttgg





SEQ ID NO: 1522
TRAJ48*01
tgttgagcttcctatcacagtggaacaccggtaaccagttctattttgggacagggacaagtttgacggtcattccaagtaagtcaaagaaaattttcca





SEQ ID NO: 1523
TRAJ5*01
tactgtgatgtaccagggtgtggacacgggcaggagagcatttacttttgggagtggaacaagactccaagtgcaaccaagtaagtacccaaacttaggc





SEQ ID NO: 1524
TRAJ50*01
taaaggtttggatggctgtgtgaaaacctcctacgacaaggtgatatttgggccagggacaagcttatcagtcattccaagtaagtgtccctggggtgct





SEQ ID NO: 1525
TRAJ51*01
aaactccctgaagcagggagatgcgtgacagctatgagaagctgatatttggaaaggagacatgactaactgtgaagccaagcaagctggaaagacctaa





SEQ ID NO: 1526
TRAJ52*01
gcctccagtgcagtgctaatgctggtggtactagctatggaaagctgacatttggacaagggaccatcttgactgtccatccaagtaagtgtaacaagac





SEQ ID NO: 1527
TRAJ53*01
agccttctgtggctgtgagaatagtggaggtagcaactataaactgacatttggaaaaggaactctcttaaccgtgaatccaagtaagtttgaagggagt





SEQ ID NO: 1528
TRAJ54*01
taaagcctcgtgctgtggtgtaattcagggagcccagaagctggtatttggccaaggaaccaggctgactatcaacccaagtaagtatgacagggtgaag





SEQ ID NO: 1529
TRAJ55*01
gaggatggatccctgttagtgacaagtgctggtaatgctcctgttggggaaaggggatgagtacaaaaataaatccaagtaagtgtggagggacaagaag





SEQ ID NO: 1530
TRAJ56*01
agatcctcgtgtcattgtgttatactggagccaatagtaagctgacatttggaaaaggaataactctgagtgttagaccaggtatgttttaatgaatgtt





SEQ ID NO: 1531
TRAJ57*01
aagcagtctgtgggggtgtaactcagggcggatctgaaaagctggtctttggaaagggaacgaaactgacagtaaacccatgtaagtctgaataatgctt





SEQ ID NO: 1532
TRAJ58*01
aagcccctcagcacagtgtttaagaaaccagtggctctaggttgacctttggggaaggaacacagctcacagtgaatcctggtaagtggaggggagcatt





SEQ ID NO: 1533
TRAJ59*01
atgtaaaggcagcagctcctgtgggaaggaaggaaacaggaaatttacatttggaatggggacgcaagtgagagtgaagctatctttaaaccaaaggtgt





SEQ ID NO: 1534
TRAJ6*01
caggttttatcaaaggctgtcctcactgtgtgcatcaggaggaagctacatacctacatttggaagaggaaccagccttattgttcatccgtgtaagt





SEQ ID NO: 1535
TRAJ60*01
gtaaagggcctgggcactatgtgaagatcacctagatgctcaactttgggaaggggactgagttaattgtgagcctgggtgagtacctcaactccagagg





SEQ ID NO: 1536
TRAJ61*01
taaaggtgcccactcctgtgggtaccgggttaataggaaactgacatttggagccaacactagaggaatcatgaaactcagcaagtaatatttggcagaa





SEQ ID NO: 1537
TRAJ7*01
tgtaatacacttacacagtgtgactatgggaacaacagactcgcttttgggaaggggaaccaagtggtggtcataccaagtaagtgagctgggatcctcc





SEQ ID NO: 1538
TRAJ8*01
tacagagttatgtcagagtgtgaacacaggctttcagaaacttgtatttggaactggcacccgacttctggtcagtccaagtaagtcaaatctgcagaaa





SEQ ID NO: 1539
TRAJ9*01
cgcagtgcaaatcactgtgggaaatactggaggcttcaaaactatctttggagcaggaacaagactatttgttaaagcaagtaagttccatgaaataacc





SEQ ID NO: 1540
TRBJ1-1*01
ttttcaccttgacccctgtcactgtgtgaacactgaagctttctttggacaaggcaccagactcacagttgtaggtaagacatttttcaggttcttttgc





SEQ ID NO: 1541
TRBJ1-2*01
ttttagagtggctatattcttatgtgctaactatggctacaccttcggttcggggaccaggttaaccgttgtaggtaaggctgggggtctctaggagggg





SEQ ID NO: 1542
TRBJ1-3*01
tttgaagtggccctgggaggctgtgctctggaaacaccatatattttggagagggaagttggctcactgttgtaggtgagtaagtcaaggctggacagct





SEQ ID NO: 1543
TRBJ1-4*01
ttccttccagtctttaatgttgtgcaactaatgaaaaactgttttttggcagtggaacccagctctctgtcttgggtatgtaaaagacttctttcgggat





SEQ ID NO: 1544
TRBJ1-5*01
tttgccacactcatgatgcactgtgtagcaatcagccccagcattttggtgatgggactcgactctccatcctaggtaagttggcagaatcagggtggta





SEQ ID NO: 1545
TRBJ1-6*01
ttatctaagcctctgcagctgtgctcctataattcacccctccactttgggaatgggaccaggctcactgtgacaggtatgggggctccactcttgactc





SEQ ID NO: 1546
TRBJ1-6*02
ttatctaagcctctgcagctgtgctcctataattcacccctccactttgggaacgggaccaggctcactgtgacaggtatgggggctccactcttgactc





SEQ ID NO: 1547
TRBJ2-1*01
ttctgggcagccccttcccactgtgctcctacaatgagcagttcttcgggccagggacacggctcaccgtgctaggtaagaagggggctccaggtgggag





SEQ ID NO: 1548
TRBJ2-2*01
tgcgccagggtccccagggctgtgcgaacaccggggagctgttttttggagaaggctctaggctgaccgtactgggtaaggaggcggctggggctccgga





SEQ ID NO: 1549
TRBJ2-2P*01
agctgccccactctgagaggggctgtgctgagaggcgctgctgggcgtctgggcggaggactcctggttctgggtgctgggagagcgatggggctctcag





SEQ ID NO: 1550
TRBJ2-3*01
ttttgtcctgggcctccaggctgtgagcacagatacgcagtattttggcccaggcacccggctgacagtgctcggtaagcgggggctcccgctgagccc





SEQ ID NO: 1551
TRBJ2-4*01
ttctgtgccgcgtctcggggctgtgagccaaaaacattcagtacttcggcgccgggacccggctctcagtgctgggtaagctggggccgccgggggaccg





SEQ ID NO: 1552
TRBJ2-5*01
tttttgtgcggggctcgggggccgtgaccaagagacccagtacttcgggccaggcacgcggctcctggtgctcggtgagcgcgggctgctggggcgcggg





SEQ ID NO: 1553
TRBJ2-6*01
ttgcggggagtccccgggctgtgctctggggccaacgtcctgactttcggggccggcagcaggctgaccgtgctgggtgagttttcgcgggaccacccgg





SEQ ID NO: 1554
TRBJ2-7*01
tttgcatgcgggggtgcacctccgtgctcctacgagcagtacttcgggccgggcaccaggctcacggtcacaggtgagattcgggcgtctccccaccttc





SEQ ID NO: 1555
TRBJ2-7*02
tttgcatgcggggatgcacctccgtgctcctacgagcagtacgtcgggccgggcaccaggctcacggtcacaggtgagattcgggcgtctccccaccttc





SEQ ID NO: 1556
TRDJ1*01
ttttggaacgtcctcaagtgctgtgacaccgataaactcatctttggaaaaggaacccgtgtgactgtggaaccaagtaagtaactcattatttatctga





SEQ ID NO: 1557
TRDJ2*01
tttttcgtaatgacgcctgtggtagtgctttgatagcacaactcttctttggaaagggaacacaactcatcgtggaaccaggtaagttatgcattttact





SEQ ID NO: 1558
TRDJ3*01
tgaggcactgtcataatgtgctcctgggacacccgacagatgtttttcggaactggcatcaaactcttcgtggagcccgtgagttgatctttttcctat





SEQ ID NO: 1559
TRDJ4*01
atgagacatacaaaaaggtaatgccgccccagacccctgatctttggcaaaggaacctatctggaggtacaacaac





SEQ ID NO: 1560
TRGJ1*01
tttttgatatggactgaatcactgtggaattattataagaaactctttggcagtggaacaacactggttgtcacaggtaagtatcggaagaatacaacatt





SEQ ID NO: 1561
TRGJ1*02
tactgtgccttgtgggaggtgcttattataagaaactctttggcagtggaacaacacttgttgtcacaggt





SEQ ID NO: 1562
TRGJ2*01
ttttgatatggactgaatcactgtggaattattataagaaactctttggcagtggaacaacacttgttgtcacaggtaagtatcggaagaatacaacatt





SEQ ID NO: 1563
TRGJP*01
ataaaggcttctcaggtggtgggcaagagttgggcaaaaaaatcaaggtatttggtcccggaacaaagcttatcattacaggtaagttttctttaaattt





SEQ ID NO: 1564
TRGJP1*01
gatttttctagaagcttagaccggtgtgataccactggttggttcaagatatttgctgaagggactaagctcatagtaacttcacctggtaagt





SEQ ID NO: 1565
TRGJP2*01
gatttttgtagaagcttagaccagtgtgatagtagtgattggatcaagacgtttgcaaaagggactaggctcatagtaacttcgcctggtaagt
















TABLE 2.3







Dilution Series Design
















Total
Desired cell
Number


Equivalent

Theoretical



desired
fraction of
of


polyclonal

final



number
Jurkat-
desired
Required
Equivalent
(A037) DNA

dilution DNA



of cells
configuration
Jurkat
polyclonal
Jurkat DNA required
required
Water
concentration


Dilution
in 50 μL
lymphocytes
cells
cells
(μL)
(μL)
(μL)
(ng/μL)


















1
2.00E+05
1
2.00E+05
0
13.21
0.00
36.79
2.80


2
2.00E+05
0.1
2.00E+04
1.80E+05
13.21 of 1 in 10
2.79
34.00
2.80







dilution of Dilution 1





3
2.00E+05
0.01
2.00E+03
1.98E+05
13.21 of 1 in 10
3.07
33.72
2.80







dilution of Dilution 2





4
2.00E+05
0.001
2.00E+02
2.00E+05
13.21 of 1 in 10
3.09
33.70
2.80







dilution of Dilution 3





5
2.00E+05
0.0001
2.00E+01
2.00E+05
13.21 of 1 in 10
3.10
33.69
2.80







dilution of Dilution 4





6
2.00E+05
0.00001
2.00E+00
2.00E+05
13.21 of 1 in 10
3.10
33.69
2.80







dilutiono f Dilution 5






Assumptions of note: Stock Jurkat Cell Line DNA Concentration: 10.6 ng/μL; Presumes lymphocyte DNA content: 0.0007 ng/cell














TABLE 2.4







Clinical, Pathology & Outcome Data Parameters










Clinical Data

Treatment Data
Outcome Data


Parameters
Pathology Data Parameters
Parameters
Parameters





Age at Diagnosis
Morphology (small cell, large cell
First-line therapy
Birthdate



anaplastic)




Gender
Background (mixed or uniform
Transplant (Yes/No)
Diagnosis Date



inflammatory infiltrates)




Primary Site of
Bone Marrow Status of Diagnosis
Second-line or
Date of Last


involvement
(% of involvement by tumor, if
subsequent additional
Follow-up



applicable)
therapies



Performance
Primary Specimen

Disposition


Status
immunohistochemistry

(0 = Alive;



(positive/negative)

1 = Deceased)











B symptoms

CD2




International

CD3




Prognostic Index






Stage

CD4




CBC at diagnosis

CD5















Hb

CD7





MCV

CD8





Plt

CD10





Neut

CD21





Mono

CD23





Eo

CD30





Lymph

CD56





Other

CD57













Chemistry

BCL6















LDH

KI67





Uric Acid

EBER





Albumin

ALK





Alk-Phos

PD1





ALT

CXCL-13














AST
Primary Speciment Flow Cytometry






(positive/negative)















BUN

CD45





Calciura

CD2





Chloride

CD3





CO2

CD5





Creatinine

CD4





Glucose

CD7





Potassium

CD8





Sodium

CD10





Total Bilirubin

CD19





Total protein

CD20















CD30






TCR alpha/beta






TCR gamma/delta






Molecular













Clonality (clonal/polyclonal)















Other













Cytogenetics (normal/abnormal)















Classical






FISH













Serology (positive/negative)















HIV






HTLV-1
















TABLE 2.5







Sample descriptions and flow cytometry data of the


6 actual patient lymphocyte specimens used for analytical validation













Flow-cytometry
Number of Cells





Features (if
Input for DNA
“Clonal/Oligoclonal” vs


Sample Name
Description
available)
Isolation
“Polyclonal”





A037
Healthy Donor
N/A
10,000,000
Polyclonal



Patient Peripheral






Blood






Mononuclear Cells





OV7
Mixed Ovarian
90% CD3+
10,000,000
Polyclonal



Tumour-
10% CD4+





Infiltrating
70% CD8+





Lymphocytes






expanded with IL-






2 treatment





EZM
Cell suspension of
N/A
10,000,000
Uncertain



melanoma tumour

(possible admixed




with brisk CD3

tumour cells)




infiltration





TIL2
Melanoma
97% CD8+
10,000,000
Oligoclonal



tumour-infiltrating






lymphocytes






expanded in IL-2





STIM1
MART1-specific
99% CD8+
10,000,000
Clonal/Oligoclonal



cell line made






from peptide






stimulation of






healthy donor






PBMCs, FACS






sorting and






expansion of






tetramer+ cells





L2D8
gp100-specific
~100% CD8+
10,000,000
Clonal/Oligoclonal



tumour-infiltrating






lymphocyte clone
















TABLE 2.6







Cell lines used for analytical validation










Reference
Previously Documented/


Cell Line
Collection #
Known TRGR Configurations





CEM
ATCC CCL-119
TRBV3-1*01-TRBD1*01-


(CCRF-CEM)

TRBJ2-3*01




TRBJ1-5-TRBJ2-1 (partial




rearrangement)




TRBV9-TRBD2 (partial




rearrangement)




TRGV3-TRGJ1/TRGJ2




TRGV4-TRGJ1/TRGJ2


Jurkat
DSMZ ACC-282
TRAV8-4-TRAJ3




TRBV12-3-TRBJ1-2 (partial




rearrangement)


MOLT4
ATCC CRL-1582
TRBV20-1*01-TRBD2*01-




TRBJ2-1*01




TRBV10-3-TRBD1*01-TRBJ2-5




TRGV2-TRGJP1




TRGV2-TRGJP2


SUPT1
ATCC CRL-1942
TRBV9*01-TRBD2*01-TRBJ2-1*01




TRGV3-TRGJ1/TRGJ2




TRGV4-TRGJ1/TRGJ2
















TABLE 1.1







Capture Sample Method Data










Sample
Sample
Protocol Type
Library input (ng)













A037 healthy reference





Sample_A037_PBMC_TCR_A_all
A037_PBMC
CapSeq_One-Step_V
100


Sample_A037_PBMC_TCR_B_all
A037_PBMC
CapSeq_One-Step_V
200


Sample_A037_PBMC_TCR_D_all
A037_PBMC
CapSeq_One-Step_V
600


Sample_A037_PBMC_TCR_E_all
A037_PBMC
CapSeq_One-Step_V
800


Sample_A037_PBMC_TCR_F_all
A037_PBMC
CapSeq_One-Step_V
1000


Sample_A037_PBMC_TCR_G_all
A037_PBMC
CapSeq_One-Step_V
200


Sample_A037_PBMC_TCR_H_all
A037_PBMC
CapSeq_One-Step_V
600


Sample_A037_PBMC_TCR_J_all
A037_PBMC
CapSeq_One-Step_V
200


Sample_A037_PBMC_TCR_K_all
A037_PBMC
CapSeq_One-Step_V
600


Sample_A037_PBMC_TCR_L_all
A037_PBMC
CapSeq_One-Step_V
1000


Sample_16_01_A037_PBMC_TCR_F_all
A037_PBMC
CapSeq_One-Step_V
500


Sample_16_01_A037_PBMC_TCR_H_all
A037_PBMC
CapSeq_One-Step_V
250


Sample_A037_S1_all
A037_PBMC
CapSeq_One-Step_VI
100


Sample_A037_PBMC_1S_all
A037_PBMC
CapSeq_One-Step_VI
100


Sample_16_11_A037_PBMC_TCR_VI_all
A037_PBMC
CapSeq_One-Step_VI
100


Sample_A037_CD3_1S_all
A037_CD3
CapSeq_One-Step_VI
100


Cell lines and flow sorted





M36_EZM
flow_sorted
CapSeq_One-Step_VI
100


M36_TIL2
flow_sorted
CapSeq_One-Step_VI
100


DV7-TIL2
flow_sorted
CapSeq_One-Step_VI
100


SE14-2005
cell_line
CapSeq_One-Step_VI
100


SE14-2033
cell_line
CapSeq_One-Step_VI
100


SE14-2034
cell_line
CapSeq_One-Step_VI
100


SE14-2035
cell_line
CapSeq_One-Step_VI
100


STIM1
flow_sorted
CapSeq_One-Step_VI
100


L2D8
flow_sorted
CapSeq_One-Step_VI
100


Patient samples





M14-10124
patient_tumor
CapSeq_One-Step_VI
100


M14-11153
patient_tumor
CapSeq_One-Step_VI
100


M14-11567
patient_tumor
CapSeq_One-Step_VI
100


M14-11587
patient_tumor
CapSeq_One-Step_VI
100


M14-11721
patient_tumor
CapSeq_One-Step_VI
100


M14-11770
patient_tumor
CapSeq_One-Step_VI
100


M14-12217
patient_tumor
CapSeq_One-Step_VI
100


M14-12649
patient_tumor
CapSeq_One-Step_VI
100


M14-12728
patient_tumor
CapSeq_One-Step_VI
100


M14-12753
patient_tumor
CapSeq_One-Step_VI
100


M14-13167
patient_tumor
CapSeq_One-Step_VI
100


M14-13300
patient_tumor
CapSeq_One-Step_VI
100


M14-13750
patient_tumor
CapSeq_One-Step_VI
100


M14-14570
patient_tumor
CapSeq_One-Step_VI
100


M14-14625
patient_tumor
CapSeq_One-Step_VI
100


M14-14907
patient_tumor
CapSeq_One-Step_VI
100


M14-14951
patient_tumor
CapSeq_One-Step_VI
100


M14-14962
patient_tumor
CapSeq_One-Step_VI
100


M14-1508
patient_tumor
CapSeq_One-Step_VI
100


M14-15119
patient_tumor
CapSeq_One-Step_VI
100


M14-3271
patient_tumor
CapSeq_One-Step_VI
100


M14-4454
patient_tumor
CapSeq_One-Step_VI
100


M14-5819
patient_tumor
CapSeq_One-Step_VI
100


M14-5875
patient_tumor
CapSeq_One-Step_VI
100


M14-6143
patient_tumor
CapSeq_One-Step_VI
100


M14-6430
patient_tumor
CapSeq_One-Step_VI
100


M14-6443
patient_tumor
CapSeq_One-Step_VI
100


M14-6502
patient_tumor
CapSeq_One-Step_VI
100


M14-6885
patient_tumor
CapSeq_One-Step_VI
100


M14-7046
patient_tumor
CapSeq_One-Step_VI
100


M14-7049
patient_tumor
CapSeq_One-Step_VI
100


M14-7053
patient_tumor
CapSeq_One-Step_VI
100


M14-7107
patient_tumor
CapSeq_One-Step_VI
100


M14-7554
patient_tumor
CapSeq_One-Step_VI
100


M14-7568
patient_tumor
CapSeq_One-Step_VI
100


M14-7691
patient_tumor
CapSeq_One-Step_VI
100


M14-7700
patient_tumor
CapSeq_One-Step_VI
100


M14-7782
patient_tumor
CapSeq_One-Step_VI
100


M14-7862
patient_tumor
CapSeq_One-Step_VI
100


M14-7884
patient_tumor
CapSeq_One-Step_VI
100


M14-7992
patient_tumor
CapSeq_One-Step_VI
100


M14-8132
patient_tumor
CapSeq_One-Step_VI
100


M14-8272
patient_tumor
CapSeq_One-Step_VI
100


M14-8639
patient_tumor
CapSeq_One-Step_VI
100


M14-8668
patient_tumor
CapSeq_One-Step_VI
100


M14-8740
patient_tumor
CapSeq_One-Step_VI
100


M14-8913
patient_tumor
CapSeq_One-Step_VI
100


M14-8914
patient_tumor
CapSeq_One-Step_VI
100


M14-9212
patient_tumor
CapSeq_One-Step_VI
100


M14-9801
patient_tumor
CapSeq_One-Step_VI
100


M15-1195
patient_tumor
CapSeq_One-Step_VI
100


M15-1330
patient_tumor
CapSeq_One-Step_VI
100


M15-1470
patient_tumor
CapSeq_One-Step_VI
100


M15-1556
patient_tumor
CapSeq_One-Step_VI
100


M15-1825
patient_tumor
CapSeq_One-Step_VI
100


M15-1867
patient_tumor
CapSeq_One-Step_VI
100


M15-1883
patient_tumor
CapSeq_One-Step_VI
100


M15-237
patient_tumor
CapSeq_One-Step_VI
100


M15-2603
patient_tumor
CapSeq_One-Step_VI
100


M15-2779
patient_tumor
CapSeq_One-Step_VI
100


M15-3091
patient_tumor
CapSeq_One-Step_VI
100


M15-587
patient_tumor
CapSeq_One-Step_VI
100


M15-795
patient_tumor
CapSeq_One-Step_VI
100


M15-933
patient_tumor
CapSeq_One-Step_VI
100
















TABLE 1.2







Capture Sample Read Counts















on-target
off-target
on-target
merged
reads after


Sample
total reads
reads
reads
ratio
reads
threshold
















A037 healthy reference








Sample_A037_PBMC_TCR_A_all
1961529
96884
1864620
0.049392081
1961504
1900159


Sample_A037_PBMC_TCR_B_all
9915634
865444
9050165
0.087280753
9915609
9488814


Sample_A037_PBMC_TCR_D_all
11554469
359807
11194637
0.031140072
11554444
10839947


Sample_A037_PBMC_TCR_E_all
8208382
4019972
4188385
0.489739878
8208357
8069762


Sample_A037_PBMC_TCR_F_all
13434420
3925996
9508399
0.292234127
13434395
13076224


Sample_A037_PBMC_TCR_G_all
11585206
217323
11367558
0.018758665
11585181
11162632


Sample_A037_PBMC_TCR_H_all
8680363
1631345
7048993
0.187935113
8680338
8302862


Sample_A037_PBMC_TCR_J_all
17147171
504177
16642969
0.029402926
17147146
14908072


Sample_A037_PBMC_TCR_K_all
8812446
518449
8293972
0.055831453
8812421
7851064


Sample_A037_PBMC_TCR_L_all
21053845
429885
20623935
0.020418361
21053820
17568322


Sample_16_01_A037_PBMC_
4457394
958772
3498597
0.215096983
4457369
4389100


TCR_F_all








Sample_16_01_A037_PBMC_
6835579
1719308
5116246
0.25152339
6835554
6750376


TCR_H_all








Sample_A037_S1_all
1920124
1082540
837559
0.563786505
1920099
1867339


Sample_A037_PBMC_15_all
4368959
2120537
2748397
0.435521638
4768430
4706036


Sample_16_11_A037_PBMC_
1433221
413057
1020139
0.288201889
1433196
1427599


TOR_VJ_all








Sample_A037_CD3_15_all
4701054
2361517
2339512
0.502337774
4701029
4651006


Cell lines and flow sorted








M36_EZM
2318060
1380043
937992
0.595349951
2318035
2255858


M36_TIL2
1569122
769525
799572
0.490417571
1569097
1518502


OV7-TIL2
2392656
1271622
1121009
0.531468795
2392631
2320790


SE14-2005
1291244
476090
815129
0.368706457
1291219
1216685


SE14-2033
1339529
662257
677247
0.494395418
1339504
1293618


SE14-2034
1278441
564484
713932
0.441540908
1278416
1240462


SE14-2035
1678562
743158
935379
0.442734912
1678537
1611636


STIM1
1880814
900492
980297
0.478777806
1580789
1827853


L2D8
1651306
910355
740926
0.551293946
1651281
1603088


Patient samples








M14-10124
3874239
1363917
2510297
0.352047718
3874214
1641564


M14-11153
4921789
1618479
3303285
0.328839574
4921764
4871138


M14-11567
4961317
1742809
3218483
0.351279509
4961292
4808248


M14-11587
4284116
1363269
2920822
0.318214773
4284091
4230674


M14-11721
5480831
1885151
8595655
0.343953499
5480806
5423859


M14-11770
5405827
415885
4989917
0.076932725
5405802
5177500


M14-12217
5135793
1690789
3444979
0.329216734
5135768
5098364


M14-12649
7798007
2759564
5038418
0.353880677
7797982
7715502


M14-12728
5006452
739003
4267424
0.147610124
5006427
4799839


M14-12753
5044768
1512141
3532602
0.299744408
5044743
4998359


M14-13167
2912824
980216
1932583
0.336517414
2912799
2891403


M14-13300
6403753
976423
5427305
0.15247668
6403728
6226299


M14-13750
6648103
894302
5753776
0.134519877
6648078
6520478


M14-14570
4577658
964191
3613442
0.210629759
4577633
4516409


M14-14625
4919394
671943
4247426
0.136590604
4919369
4678232


M14-14907
6045676
1996999
4048652
0.330318562
6045651
5967138


M14-14951
4339950
334232
4005693
0.077012869
4339925
4253000


M14-14962
2621464
397567
2223872
0.151658386
5799400
5552790


M14-1508
6616839
3224927
3391887
0.487381815
6616814
6538041


M14-15119
4825285
658203
4167057
0.136407072
4825260
4721235


M14-3271
7352598
3438740
3913833
0.467690468
7352573
7230944


M14-4454
7015117
3588858
3426234
0.511589187
7015092
6912945


M14-5819
6427168
2297299
4129844
0.357435654
6427143
6377748


M14-5875
6466993
2244807
4222166
0.347117318
6466973
6357148


M14-6143
5149354
740986
4408343
0.143898827
5149329
4979117


M14-6430
7717729
4019388
3698316
0.520799318
7717704
7610950


M14-6443
5310114
1719071
3591018
0.323735234
5310089
5258149


M14-6502
6854324
449983
6404316
0.065649505
6854299
6571525


M14-6885
4473140
636717
3836398
0.142342292
4473115
4255663


M14-7046
2901414
389561
2511828
0.134265913
2901389
2690711


M14-7049
4194422
328956
3866041
0.078283969
4194397
4104557


M14-7053
4534911
634273
3900613
0.139864487
4534886
4132215


M14-7107
3653179
489927
3163227
0.134109771
3653154
3443643


M14-7554
6905643
3346628
3558990
0.484622214
6905618
6814973


M14-7568
5989679
2953254
3036400
0.49305714
5989654
5933921


M14-7691
4715544
2109689
2605830
0.447390375
4715519
4633852


M14-7700
6664469
2293770
4370674
0.344178959
6664444
6605136


M14-7782
6155725
3173681
2982019
0.515565754
6155700
6034814


M14-7862
5025139
361053
4664061
0.071849356
5025114
4886216


M14-7884
5190944
361315
4829604
0.069604873
5190919
5085124


M14-7992
5745439
2514128
2931286
0.489802055
5745414
5649598


M14-8132
5328896
1787753
3541118
0.335482809
5328871
5288026


M14-8272
6030251
3161144
2869082
0.524214332
6030226
5874655


M14-8639
7376555
3887519
3489011
0.527010102
7376530
7249500


M14-8668
5401734
2916998
2484711
0.540011411
5401709
5338260


M14-8740
5346366
233692
5112649
0.043710438
5346341
5202430


M14-8913
6495674
3372030
3123619
0.51911934
6495649
6455304


M14-8914
6562054
3324004
3238025
0.506549321
6562029
6458959


M14-3212
4503869
1426322
3077522
0.316688163
4503844
4452847


M14-9801
5502711
387341
5115345
0.07039094
5502686
5398233


M15-1195
6305701
392089
5913587
0.062180081
6305676
6065963


M15-1330
8302037
2704496
5597516
0.325762942
8302012
8107829


M15-1470
3834967
292000
3542942
0.076141464
3834942
3767575


M15-1556
6935912
3615566
3320321
0.521281989
6935887
6892616


M15-1825
6078396
1963007
4115364
0.322948192
6078371
6014071


M15-1867
6865892
3557974
3307893
0.518210016
6865867
6816073


M15-1883
6227227
3087220
3139982
0.495761597
6227202
6169114


M15-237
6215041
2213245
4001771
0.356111086
6215016
6155386


M15-2603
5639514
2766020
2873469
0.490471342
5639489
5564062


M15-2779
5680891
2792325
2888541
0.49152941
5680866
5628837


M15-3091
6906018
3575635
3330358
0.517756397
6905993
6843330


M15-587
3920359
589850
3330484
0.15045816
3920334
3808959


M15-795
4275264
769512
3505727
0.179991692
4275239
4205077


M15-933
6551470
3277319
3274126
0.500241778
6551445
6481344
















TABLE 1.3







Capture Sample V and J Calls















alpha
beta
gamma
delta
unmatched
single
absent


Sample
VJ calls
VJ calls
VJ calls
VJ calls
VJ calls
V or J
V and J

















A037 healthy reference









Sample_A037_PBMC_TCR_A_all
30
111
46
0
0
171866
1728107


Sample_A037_PBMC_TCR_B_all
473
806
538
0
0
1634949
7852049


Sample_A037_PBMC_TCR_D_all
298
244
127
1
0
583395
10255883


Sample_A037_PBMC_TCR_E_all
4470
1956
2916
82
5
5486404
2573930


Sample_A037_PBMC_TCR_F_all
3932
1815
3169
84
6
5949549
7117670


Sample_A037_PBMC_TCR_G_all
101
186
78
15
0
420033
10742220


Sample_A037_PBMC_TCR_H_all
1607
1125
252
12
4
2160797
6139066


Sample_A037_PBMC_TCR_J_all
323
139
135
4
2
1112523
13794947


Sample_A037_PBMC_TCR_K_all
352
169
200
6
0
1027278
6823060


Sample_A037_PBMC_TCR_L_all
259
111
136
8
3
1057487
16510319


Sample_16_01_4037_PBMC_
325
363
628
25
1
3437777
949382


TCR_F_all









Sample_16_01_A037_PBMC_
1397
763
1015
21
2
4575171
2172015


TCR_H_all









Sample_A037_S1_all
1052
606
734
12
2
1255308
609626


Sample_A037_PBMC_15_all
1008
599
834
26
1
2536312
2167257


Sample_16_11_A037_PBMC_
340
161
329
11
0
934369
492390


TCR_VJ_all









Sample_A037_CD3_15_all
6368
3264
4805
123
7
2753833
1882607


Cell lines and flow sorted









M36_EZM
138
94
94
0
0
1521931
733602


M36_TIL2
2136
1579
1963
4
7
1015956
496858


OV7-TIL2
2619
1879
1918
52
1
1515855
798467


SE14-2005
2450
1293
2070
0
0
818261
392612


SE14-2033
1389
924
1344
0
0
895089
394873


SE14-2034
1910
2833
1377
0
0
856362
377981


SE14-2035
3031
2017
2157
0
0
1020846
583586


STIM1
3068
1524
2503
0
0
1192227
628532


L2D8
2074
962
948
0
0
1060361
538744


Patient samples









M14-10124
1971
1098
1674
48
0
2380500
1256274


M14-11153
585
283
623
9
0
2811142
2058492


M14-11567
1423
001
1278
8
6
2599812
2204821


M14-11587
182
251
142
0
2
2473198
1756900


M14-11721
210
65
192
0
3
3272558
2150832


M14-11770
17
36
25
0
0
768985
4408438


M14-12217
343
141
2481
643
0
2982597
2112155


M14-12649
1267
857
1327
4
3
4868928
2843117


M14-12728
986
607
967
14
0
1069367
3727899


M14-12753
1600
960
2053
40
1
2485050
2508656


M14-13167
215
87
248
22
0
1710714
1180118


M14-13300
1620
688
2344
13
1
1571492
4650142


M14-13750
1995
1039
2144
108
7
1527402
4987784


M14-14570
155
163
290
45
0
1742539
2773218


M14-14625
1083
562
967
7
1
1084783
3590830


M14-14907
981
247
494
15
0
3030809
2934593


M14-14951
166
84
174
4
3
613083
3639487


M14-14962
623
332
545
7
0
1160605
4390679


M14-1508
3489
2654
3136
19
1
4047376
2481367


M14-15119
4218
1546
1551
0
3
986010
3727908


M14-3271
4607
2563
3523
64
6
4297650
2922532


M14-4454
197
904
1199
11
6
4479570
2429285


M14-5819
186
86
271
2
1
2435125
3942078


M14-5875
484
371
533
12
0
3411599
2944150


M14-6143
575
241
481
1
0
1235788
3742032


M14-6430
863
471
705
39
0
4942133
2666740


M14-6443
0
0
0
0
0
2721814
2536336


M14-6502
119
77
140
0
0
913846
5657347


M14-6885
1274
727
888
4
3
985106
3267662


M14-7046
497
190
442
5
4
615177
2074397


M14-7049
5
2
396
61
0
630487
3473057


M14-7053
40
228
420
23
0
936724
3194412


M14-7107
1122
577
915
2
1
797093
2643934


M14-7554
901
469
861
24
1
1741112
5071606


M14-7568
2181
861
1674
141
2
3472975
2456088


M14-7691
5077
4087
4193
0
0
2889813
1730683


M14-7700
536
342
860
6
0
4144765
2458628


M14-7782
682
417
223
21
0
3850370
2182602


M14-7862
264
104
232
0
2
735636
4149979


M14-7854
340
228
434
0
0
739308
4344815


M14-7992
1987
1338
1755
12
0
3223885
2420622


M14-8132
229
150
287
3
0
3138235
2149123


M14-8272
273
223
299
0
0
3574689
2299172


M14-8639
638
335
605
29
0
4327667
2920227


M14-8668
140
107
117
0
2
3224632
2113263


M14-8740
741
374
842
0
0
643355
4557119


M14-8913
451
268
447
12
0
3838965
2615162


M14-8914
868
350
718
1
1
4020234
2436788


M14-9212
1208
712
1318
7
0
2691103
1758500


M14-9801
407
183
387
2
0
779518
4617737


M15-1195
119
84
83
0
0
767911
5297767


M15-1330
8600
3192
5559
101
7
5264470
2825901


M15-1470
327
203
562
0
1
561308
3205175


M15-1556
446
253
453
6
2
3805780
3085647


M15-1825
969
508
1009
13
0
3034468
2977105


M15-1567
269
127
256
34
0
2887666
3927692


M15-1883
2011
885
1324
82
4
3843001
2321808


M15-237
276
191
275
0
1
3558414
2596230


M15-2603
1559
821
1398
24
0
3448607
2111654


M15-2779
1475
761
1463
41
3
3503916
2121179


M15-3091
200
34
143
9
0
3519287
3323608


M15-587
547
375
627
11
2
931289
2876009


M15-795
360
159
355
7
3
1064180
3140014


M15-933
1187
596
1118
13
3
2942292
3536136
















TABLE 1.4







Capture Sample Unique V and J Calls



















Unique VJ



alpha unique
beta unique
gamma unique
delta unique
total
normalized


Sample
VJ counts
VJ counts
VJ counts
VJ counts
unique VJ
to input
















A037 healthy reference








Sample_A037_PBMC_TCR_A_all
11
20
6
0
37
0.37


Sample_A037_PBMC_TCR_B_all
44
65
18
0
127
0.64


Sample_A037_PBMC_TCR_D_all
213
158
25
1
397
0.66


Sample_A037_PBMC_TCR_E_all
955
405
49
3
1412
1.77


Sample_A037_PBMC_TCR_F_all
1343
527
49
6
1925
1.93


Sample_A037_PBMC_TCR_G_all
8
18
5
1
32
0.16


Sample_A037_PBMC_TCR_H_all
502
305
24
2
833
1.39


Sample_A037_PBMC_TCR_J_all
192
90
21
3
306
1.53


Sample_A037_PBMC_TCR_K_all
268
122
32
4
426
0.71


Sample_A037_PBMC_TCR_L_all
220
85
24
3
332
0.33


Sample_16_01_A037_PBMC_
414
175
41
2
632
1.26


TCR_F_all








Sample_16_01_A037_PBMC_
463
235
34
3
735
2.94


TCR_H_all








Sample_A037_S1_all
446
22
36
3
712
7.12


Sample_A037_PBMC_15_all
466
253
36

759
7.59


Sample_16_11_A037_PBMC_
263
125
36
3
427
4.27


TCR_VJ_all








Sample_A037_CD3_15_all
1704
710
54
7
2475
24.75


Cell lines and flow sorted








M36_EZM
67
41
15
0
123
1.23


M36_TIL2
244
163
38
1
445
4.46


OV7-TIL2
143
114
49
5
311
3.11


SE14-2005
6
13
5
0
24
0.24


SE14-2033
14
3
5
0
22
0.22


SE14-2034
5
16
7
0
28
0.28


SE14-2035
9
9
6
0
24
0.24


STIM1
101
71
23
0
195
1.95


L2D8
6
3
3
0
12
0.12


Patient samples








M14-10124
225
142
33
2
402
4.02


M14-11153
137
63
28
2
230
2.30


M14-11567
242
147
39
1
429
4.29


M14-11587
37
39
15
0
91
0.91


M14-11721
35
14
21
0
70
0.70


M14-11770
14
16
8
0
38
0.38


M14-12217
59
32
15
1
107
1.07


M14-12649
174
132
34
1
341
3.41


M14-12728
433
229
47
4
713
7.13


M14-12753
178
104
25
4
311
3.11


M14-13167
44
19
21
2
85
0.86


M14-13300
221
146
33
2
402
4.02


M14-13750
410
20
46
5
662
6.62


M14-14570
34
33
18
5
88
0.38


M14-14625
485
242
50
2
779
7.79


M14-14907
227
62
26
2
317
3.17


M14-14951
73
43
24
1
141
1.41


M14-14962
327
173
41
3
544
5.44


M14-1508
352
208
46
5
606
6.06


M14-15119
19
18
7
0
44
0.44


M14-3271
798
405
53
4
1260
12.60


M14-4454
260
132
31
2
425
4.25


M14-5819
53
23
24
1
101
1.01


M14-5875
99
79
32
1
211
2.11


M14-6143
278
113
40
1
432
4.32


M14-6430
173
112
29
3
317
3.17


M14-6443
0
0
0
0
0
0.00


M14-6502
66
37
27
0
130
1.30


M14-6885
513
262
32
3
810
8.10


M14-7046
157
70
23
1
251
2.51


M14-7049
3
1
3
3
10
0.10


M14-7053
148
89
35
4
276
2.76


M14-7107
456
205
45
1
707
7.07


M14-7554
164
103
29
5
301
3.01


M14-7568
480
8
39
5
710
7.10


M14-7691
237
146
43
0
426
4.26


M14-7700
105
64
26
1
196
1.96


M14-7782
150
99
34
2
285
2.85


M14-7862
76
32
22
0
130
1.30


M14-7884
171
106
39
0
316
3.16


M14-7992
258
160
34
2
454
4.54


M14-8132
34
25
23
1
54
0.84


M14-8272
73
60
29
0
161
1.61


M14-8639
25
77
27
3
237
2.32


M14-8668
44
32
19
0
95
0.95


M14-8740
17
9
13
0
39
0.39


M14-8913
90
61
30
2
183
1.83


M14-8914
177
75
29
1
282
2.83


M14-9212
190
128
27
3
348
3.48


M14-9801
85
41
29
1
156
1.56


M15-1195
45
32
24
0
101
1.01


M15-1330
1019
362
55
0
1442
14.42


M15-1470
50
353
28
0
118
1.16


M15-1556
120
59
24
1
204
2.04


M15-1825
214
121
30
1
366
3.66


M15-1867
90
46
32
2
170
1.70


M15-1883
435
194
33
6
668
6.68


M15-237
51
36
21
0
105
1.08


M15-2603
294
169
57
3
523
5.23


M15-2779
349
185
31
5
570
5.70


M15-3091
44
25
15
1
85
0.85


M15-587
309
159
39
4
511
5.11


M15-795
174
73
38
2
287
2.87


M15-933
353
170
57
1
581
5.81
















TABLE 1.5







Capture Sample Unique CDR3 Calls














alpha total
beta total
gamma
delta total
total
Unique CDR3



unique
unique
total unique
unique
unique
normalized


Sample
CDR3
CDR3
CDR3
CDR3
CDR3
to input
















A037 healthy reference








Sample_A037_PBMC_TCR_A_all
12
27
9
0
48
0.48


Sample_A037_PBMC_TCR_B_all
63
104
31
0
198
0.99


Sample_A037_PBMC_TCR_D_all
229
188
65
2
484
0.81


Sample_A037_PBMC_TCR_E_all
1367
778
348
21
2514
3.14


Sample_A037_PBMC_TCR_F_all
2066
1100
540
24
3730
3.73


Sample_A037_PBMC_TCR_G_all
11
23
11
3
48
0.24


Sample_A037_PBMC_TCR_H_all
633
482
62
3
1180
1.97


Sample_A037_PBMC_TCR_J_all
216
104
48
4
372
1.86


Sample_A037_PBMC_TCR_K_all
297
14
82
5
532
0.89


Sample_A037_PBMC_TCR_L_all
242
99
63
8
412
0.41


Sample_16_01_A037_PBMC_
482
229
155
14
880
1.76


TCR_F_all








Sample_16_01_A037_PBMC_
555
330
158
4
1047
4.19


TCR_H_all








Sample_A037_S1_all
509
303
141
5
958
9.58


Sample_A037_PBMC_15_all
533
34
157
13
1053
10.53


Sample_16_11_A037_PBMC_
293
142
114
8
557
5.57


TCR_VJ_all








Sample_A037_CD3_15_all
2840
1672
691
47
5250
52.50


Cell lines and flow sorted








M36_EZM
70
48
26
0
144
1.44


M36_TIL2
310
25
101
2
435
4.38


OV7-TIL2
219
92
83
9
503
5.03


SE14-2005
32
29
21
0
82
0.82


SE14-2033
32
21
10
0
63
0.63


SE14-2034
10
66
8
0
84
0.84


SE14-2035
33
39
23
0
95
0.95


STIM1
160
36
55
0
351
3.51


L2D8
14
21
10
0
45
0.45


Patient samples








M14-10124
279
201
101
3
584
5.84


M14-11153
151
80
54
2
287
2.87


M14-11567
287
193
97
1
578
5.78


M14-11587
41
57
30
0
128
1.28


M14-11721
39
17
28
0
84
0.84


M14-11770
14
16
11
0
41
0.41


M14-12217
66
43
52
18
179
1.79


M14-12649
206
185
89
1
481
4.81


M14-12728
494
323
183
7
1007
10.07


M14-12753
223
164
79
10
476
4.76


M14-13167
55
23
32
6
116
1.16


M14-13300
253
216
102
6
577
5.77


M14-13750
516
313
167
20
1016
10.16


M14-14570
35
40
34
8
117
1.17


M14-14625
56
321
193
3
1079
10.79


M14-14907
255
75
66
3
399
3.99


M14-14951
76
47
42
2
167
1.67


M14-14962
371
224
140
5
740
7.40


M14-1508
448
314
163
8
933
3.33


M14-15119
83
67
10
0
16
1.60


M14-3271
1084
714
275
12
2085
20.85


M14-4454
303
17
84
4
561
5.61


M14-5819
57
31
40
1
129
1.29


M14-5875
114
101
68
3
286
2.86


M14-6143
308
14
108
1
557
5.57


M14-6430
202
139
71
5
417
4.17


M14-6443
0
0
0
0
0
0.00


M14-6502
69
38
50
0
157
1.57


M14-6885
613
381
164
3
1161
11.61


M14-7046
177
78
72
3
330
3.30


M14-7049
3
1
13
11
28
0.28


M14-7053
162
109
79
10
360
3.60


M14-7107
532
290
158
1
981
9.81


M14-7554
189
129
78
13
409
4.09


M14-7568
583
252
138
10
983
9.83


M14-7691
317
301
99
0
717
7.17


M14-7700
123
82
74
1
280
2.80


M14-7782
166
125
75
4
370
3.70


M14-7862
82
38
37
0
157
1.57


M14-7884
181
125
102
0
408
4.08


M14-7992
306
231
118
3
658
6.58


M14-8132
37
34
33
3
105
1.05


M14-8272
77
73
50
0
200
2.00


M14-8639
140
99
65
8
312
3.12


M14-8668
45
35
26
0
106
1.06


M14-8740
31
21
16
0
68
0.68


M14-8913
114
78
53
5
250
2.50


M14-8914
212
100
78
1
391
3.91


M14-9212
224
168
85
3
480
4.80


M14-9801
104
52
42
1
199
1.99


M15-1195
48
36
32
0
116
1.16


M15-1330
1469
619
279
15
2382
23.82


M15-1470
57
44
50
0
151
1.51


M15-1556
127
71
56
1
255
2.55


M15-1825
259
147
108
2
516
5.16


M15-1867
96
54
59
4
213
2.13


M15-1883
520
284
120
11
935
9.35


M15-237
58
45
32
0
135
1.35


M15-2603
351
220
123
4
698
6.98


M15-2779
408
247
123
7
785
7.85


M15-3091
47
29
25
2
103
1.03


M15-587
346
214
113
6
679
6.79


M15-795
188
85
87
3
363
3.63


M15-933
418
242
162
3
825
8.25
















TABLE 2





Cell Line Identified VJ Rearrangements





















Cell

Reference
Alpha
Beta
Gamma
Delta










Line
Internal
Collection #
Previously Documented/Known TCR Configurations
















CEM
SE14-2035
ATCC CCL-119
NA
TRBV3-1*01-TRBD1*01-TRBJ2-3*01
TRGV3 TRG1/TRG2
NA






TRBJ1-5-TRBJ2-1
TRGV4 TRG1/TRG2







(partial rearrangement)








TRBV9-TRBO2








(partial rearrangement)
















Observed
















Alpha (Counts)
Beta (Counts)
Gamma (Counts)
Delta








TRAV27#1TRU40#1
TRBV3 1#1TRB7 3#1
TRGV4#2TRGJ2#1
ND





(987)
(1087)
(809)






TRAV29_DVS#1TRAJ4#1
TRAV3-2#3TRBJ2-3#1
TRGV3#2TRGJ2#1






(765)
(512)
(604)






TRAV29_DVS#3TRAJ4#1
TRAV3-2#3TRBJ2-4#1
TRGV3#1TRGJ2#1






(45)
(45)
(228)






TRAV27#3TRAJ40#1
TRBV3-1#1TRBJ2-5#J
TRGVS#2TRGJ2#1






(3)
(8)
(106)






TRAV27#2TRAJ40#1
TRBV3-1#1TRBJ2-4#1
TRGV4#1TRGJ2#






(1)
(4)







TRAV8-G#2TRAJ20#1
TR8V3-1#1TRBJ2-6#1







(2)
(2)








TRBV3-2#3TRBJ2-6#1








(2)








TRBV9#2TRBJ2-1#1








(2)
















Previously Documented/Known TCR Configurations

















TRBV12-3 TRBJ1-2




Jurkat
SE14-2033
DSMZ ACC-282
TRAV8-4 TRAJ3
(partial rearrangement)
TRGV8-TRG2
NA










TRGV-1 TRGJ
















Observed



















TRAV8-4#6TRAJ3#1
TRBV12-4#1TRBJ3-2#1
TRGVB#1TRGJ2#3
ND





(1000)
(608)







TRAV8-4#2TRAJ3#2
TRBV12-4#2TRBJ2-2#1
TRGV11#1TRGJ1#1






(118)
(137)
(272)






TRAV12-3#2TRAJ26#1
TRBV12-3#1TRB8J1-2#1
TRGV11#2TRGJ1#1






(16)
(16)
(202)






TRAV17#1TRAJ24#2

TRGV11#1TRGJ2#1






(7)

(12)






TRAV17#1TRAJ16#1

TRGV11#2TRGJ2#1






(4)

(1)






TRAV17#1TRAJ29#1








(3)








TRAV14_DV4#2TRAJ224#2








(2)








TRAV26#2TRAJ29#1








(1)








TRAV17#1TRAJ32#1








(1)








TRAV29_DV5#1TRAJ4#1








(1)








TRAV9-2#1TRAJ29#1








(1)
















Previously Documented/Known TCR Configurations

















TRBV20-1*01-TRBD2*01-
TRGV2-TRGIP1



MCLT4
SE14-2034
ATCC CRB-1582
NA
TRBJ2-1*01
TRGV2 TRGIP2
NA









TRBV10-3-TRBD1*01-TRBJ2-5















Observed



















TRAV1-1#1TRAJ33#1
TRBY20-1#1TRBJ2-1#1
TRGV2#1 TRGJP2#1
ND





(799)
(937)
(524)






TRAV1-1#1TRAJ23#2
TRBV10-3#2TRBJ2-5#1
TRGV2#2TRGIP1#1






(621)
(724)
(496)






TRAV1-1#2TRAJ24#2
TRBV20_DR9-283TR8J2-1#1
TRGV8#2TRGIP1#1






(79)
(384)
(1)






TRAV1-1#2TRAJ33#1
TRBV10-3#2TRBJ2-6#1







(1)
(91)








TR5V20-1#7TRBJ2-1#1








(8)








TR8V20_OR9-2#8THBJ2-2#2








(2)








TR8V20-1#1TRBJ2-2#1








(1)








TRBV20-1#3TR8J2-1#1








(1)
















Previously Documented/Known TCR Configurations













SUPT2
SE14-2005
ATCC CRL-1942
NA
TRBV9*01-TRBD2*01-TRVJ-1*01
TRGV3 TRGJ1/TRGBJ2
NA










TRGV11-TRGJ1/TRG2

















Observed
















TRAV1-1#3TRAJ12#1
TRBV9#2TRBJ2-1#1
TRGV3#2TRGJ2#1
ND





(1120)
(971)
(683)






TRAV2-1#2TRAJ8#1
TRBV9#1TRBJ2-1#1
TRGV4#1TRGJ2#1






(836)
(137)
(449)






TRAV2-1#2TRAJ8#1
TRBV9#2TRBJ2-2#2
TRGV4#2TRGJ2#1






(263)
(9)
(367)






TRAV2-1#2TRAJ8#1
TRBV9#2TRBJ2-2#2
TRGV3#1TRGJ2#1






(263)
(9)
(198)






TRAV2-1#2TRAJ8#1
TRBV9#2TRBJ2-2#2
TRBV9#2TRBJ2-2#2






(263)
(9)
(9)






TRAV2-1#2TRAJ8#1
TRBV9#2TRBJ2-2#2







(263)
(9)








TRBV9#2TRBJ2-2#2








(9)








TRBV9#2TRBJ2-2#2








(9)








TRBV9#2TRBJ2-2#2








(9)








TRBV9#2TRBJ2-2#2








(9)





Unique VJ TCR configurations correspond tosequences recorded at the following IMGT location:


www.imgt.org/IMGTrepertoire/Probes/Rearrangements%20and%20junctions/human/Hu_TRrea.html













TABLE 3





Sanger Sequencing Results



























Expected













PCR


Total




Total





Product
PCR &
Reads with
Number of

Total
PCR &
Reads with
Number of

Total



Size
Electro-
Detected
Rearranged
Reads
Number
Electro-
Detected
Rearranged
Reads
Number



When
phoresis
Primer
Reads
on
of Input
phoresis
Primer
Reads
on
of Input


Primer
Present
Result †
Combination
Detected
Target
Reads
Result †
Combination
Detected
Target
Reads










Combination
(bp) ¥
A037
L2D8





















TRAV1-1 & TRAJ12
275
Negative
0
877
1155401
1370124
Weak
0
1384
985843
1182258


TRAV1-1 & TRAJ33
282
Weak
0
877
1155401
1370124
Weak
0
1384
985843
1182258


TRAV1-1 & TRAJ49
278
Weak
0
877
1155401
1370124
Weak
0
1334
985843
1182258


TRAV12-2 & TRAJ45
285
Weak
0
877
1155401
1370124
Negative
0
1384
985843
1182258


TRAV17 & TRAJ52
103
Negative
1
877
1155401
1370124
Positive
425
1384
985843
1182258


TRAV27 & TRAJ17
326
Negative
0
877
1155401
1370124
Negative
0
1384
985843
1182258


TRAV27 & TRAJ40
327
Weak
0
877
1155401
1370124
Weak
0
1334
985843
1182258


TRAV29/DV5 &
327
Negative
0
877
1155401
1370124
Negative
0
1384
985843
1182258


TRAJ26













TRAV29/DV5 &
315
Weak
0
877
1155401
1370124
Negative
0
1384
985843
1182258


TRAJ4













TRAV35 & TRAJ48
333
Negative
0
877
1155401
1370124
Positive
316
1384
985843
1182258


TRAV8-3 & TRAJ42
333
Negative
0
877
1155401
1370124
Negative
0
1384
985843
1182258


TRBV10-3 & TRBJ2-5
296
Negative
0
877
1155401
1370124
Weak
0
1384
985843
1182258


TRBV12-3 & TRBJ1-2
103
Weak
0
877
1155401
1370124
Negative
0
1384
985843
1182258


TRBV18 & TRBJ2-2
264
Negative
0
877
1155401
1370124
Negative
0
1384
985843
1182258


TRBV20-1 & TRBJ2-1
349
Positive
6
877
1155401
1370124
Negative
0
1384
985843
1182258


TRBV5-7 & TRBJ2-2
133
Weak
0
877
1155401
1370124
Negative
0
1384
985843
1182258


TRBV7-8 & TRBJ1-6
257
Negative
0
877
1155401
1370124
Positive
315
1384
985843
1182258


TRBV7-8 & TRBJ2-5
240
Weak
2
877
1155401
1370124
Negative
0
1384
985843
1182258


TRBV9 & TRBJ2-1
336
Positive
2
877
1155401
1370124
Weak
0
1384
985843
1182258


TRGV11 & TRGJ1
297
Negative
8
877
1155401
1370124
Negative
0
1384
985843
1182258


TRGV2 & TRGJP2
325
Positive
13
877
1155401
1370124
Negative
0
1384
985843
1182258


TRGV3 & TRGJ1
241
Weak
3
877
1155401
1370124
Positive
0
1384
985843
1182258


TRGV4 & TRGJ1
254
Positive
17
877
1155401
1370124
Positive
161
1384
985843
1182258


TRGV8 & TRGJ1
263
Positive
8
877
1155401
1370124
Negative
4
1384
985843
1182258


TRGV8 & TRGJP1
266
Positive
2
877
1155401
1370124
Negative
0
1334
985843
1182258


TRGV9 & TRGJ1
182
Positive
9
877
1155401
1370124
Negative
0
1384
985843
1182258






Expected













PCR


Total




Total





Product
PCR &
Reads with
Number of

Total
PCR &
Reads with
Number of

Total



Size
Electro-
Detected
Rearranged
Reads
Number
Electro-
Detected
Rearranged
Reads
Number



When
phoresis
Primer
Reads
on
of Input
phoresis
Primer
Reads
on
of Input


Primer
Present
Result †
Combination
Detected
Target
Reads
Result †
Combination
Detected
Target
Reads










Combination
(bp) ¥
EZM
TIL2





















TRAV1-1 & TRAJ12
275
Negative
0
115
1377194
1595646
Negative
0
2095
926207
1145281


TRAV1-1 & TRAJ33
282
Negative
0
115
1377194
1595646
Weak
0
2095
926207
1145281


TRAV1-1 & TRAJ49
278
Negative
0
115
1377194
1595646
Weak
0
2095
926207
1145281


TRAV12-2 & TRAJ45
285
Negative
1
115
1377194
1595646
Weak
0
2095
926207
1145281


TRAV17 & TRAJ52
103
Negative
0
115
1377194
1595646
Negative
0
2095
926207
1145281


TRAV27 & TRAJ17
326
Negative
0
115
1377194
1595646
Weak
0
2095
926207
1145281


TRAV27 & TRA140
327
Weak
0
115
1377194
1595646
Weak
0
2095
926207
1145281


TRAV29/DV5 &
327
Negative
0
115
1377194
1595646
Positive
37
2095
926207
1145281


TRAJ26













TRAV29/DV5 &
315
Negative
0
115
1377194
1595646
Negative
0
2095
926207
1145281


TRAJ4













TRAV35 & TRAJ48
333
Negative
0
115
1377194
1595646
Negative
0
2095
926207
1145281


TRAV8-3 & TRAJ42
333
Negative
0
115
1377194
1595646
Negative
0
2095
926207
1145281


TRBV10-3 & TRBJ2-5
296
Negative
0
115
1377194
1595646
Weak
0
2095
926207
1145281


TRBV12-3 & TRBJ1-2
103
Negative
0
115
1377194
1595646
Negative
0
2095
926207
1145281


TRBV18 & TRBJ2-2
264
Negative
0
115
1377194
1595646
Negative
0
2095
926207
1145281


TRBV20-1 & TRBJ2-1
349
Negative
0
115
1377194
1595646
Weak
8
2095
926207
1145281


TRBV5-7 & TRBJ2-2
133
Weak
0
115
1377194
1595646
Negative
0
2095
926207
1145281


TRBV7-8 & TRBJ1-6
257
Negative
0
115
1377194
1595646
Negative
0
2095
926207
1145281


TRBV7-5 & TRBJ2-5
240
Negative
0
115
1377194
1595646
Weak
0
2095
926207
1145281


TRBV9 & TRBJ2-1
336
Weak
0
115
1377194
1595646
Weak
6
2095
926207
1145281


TRGV11 & TRGJ1
297
Negative
0
115
1377194
1595646
Negative
3
2095
926207
1145281


TRGV2 & TRGJP2
325
Positive
6
115
1377194
1595646
Positive
10
2095
926207
1145281


TRGV3 & TRGJ1
241
Positive
0
115
1377194
1595646
Positive
17
2095
926207
1145281


TRGV4 & TRGJ1
254
Positive
3
115
1377194
1595646
Positive
56
2095
926207
1145281


TRGV8 & TRGJ1
263
Positive
4
115
1377194
1595646
Positive
63
2095
926207
1145281


TRGV8 & TRGJP1
266
Weak
0
115
1377194
1595646
Positive
0
2095
926207
1145281


TRGV9 & TRGJ1
182
Weak
0
115
1377194
1595646
Positive
11
2095
926207
1145281






Expected













PCR


Total




Total





Product
PCR &
Reads with
Number of

Total
PCR &
Reads with
Number of

Total



Size
Electro-
Detected
Rearranged
Reads
Number
Electro-
Detected
Rearranged
Reads
Number



When
phoresis
Primer
Reads
on
of Input
phoresis
Primer
Reads
on
of Input


Primer
Present
Result †
Combination
Detected
Target
Reads
Result †
Combination
Detected
Target
Reads










Combination
(bp) ¥
OV7
STIM1





















TRAV1-1 & TRAJ12
275
Negative
4
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRAV1-1 & TRAJ33
282
Weak
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRAV1-1 & TRAJ49
278
Weak
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRAV12-2 & TRAJ45
285
Negative
0
2074
1379128
1675034
Weak
238
2796
1066413
1315476


TRAV17 & TRAJ52
103
Weak
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRAV27 & TRAJ17
326
Negative
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRAV27 & TRAJ40
327
Negative
0
2074
1379128
1675034
Weak
0
2796
1066413
1315476


TRAV29/DV5 &
327
Positive
298
2074
1379128
1675034
Negative
2
2796
1066413
1315476


TRAJ26













TRAV29/DV5 &
315
Negative
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRAJ4













TRAV35 & TRAJ48
333
Negative
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRAV8-3 & TRAJ42
333
Negative
0
2074
1379128
1675034
Weak
185
2796
1066413
1315476


TRBV10-3 & TRBJ2-5
296
Negative
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRBV12-3 & TRBJ1-2
103
Weak
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRBV18 & TRBJ2-2
264
Negative
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRBV20-1 & TRBJ2-1
349
Negative
1
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRBV5-7 & TRBJ2-2
133
Negative
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRBV7-8 & TRBJ1-6
257
Negative
0
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRBV7-8 & TRBJ2-5
240
Weak
85
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRBV9 & TRBJ2-1
336
Positive
0
2074
1379128
1675034
Weak
0
2796
1066413
1315476


TRGV11 & TRGJ1
297
Negative
0
2074
1379128
1675034
Negative
23
2796
1066413
1315476


TRGV2 & TRGJP2
325
Weak
0
2074
1379128
1675034
Positive
11
2796
1066413
1315476


TRGV3 & TRGJ1
241
Negative
7
2074
1379128
1675034
Positive
13
2796
1066413
1315476


TRGV4 & TRGJ1
254
Weak
5
2074
1379128
1675034
Positive
40
2796
1066413
1315476


TRGV8 & TRGJ1
263
Positive
14
2074
1379128
1675034
Positive
24
2796
1066413
1315476


TRGV8 & TRGJP1
266
Positive
197
2074
1379128
1675034
Negative
0
2796
1066413
1315476


TRGV9 & TRGJ1
182
Negative
15
2074
1379128
1675034
Positive
120
2796
1066413
1315476






Expected













PCR


Total




Total





Product
PCR &
Reads with
Number of

Total
PCR &
Reads with
Number of

Total



Size
Electro-
Detected
Rearranged
Reads
Number
Electro-
Detected
Rearranged
Reads
Number



When
phoresis
Primer
Reads
on
of Input
phoresis
Primer
Reads
on
of Input


Primer
Present
Result †
Combination
Detected
Target
Reads
Result †
Combination
Detected
Target
Reads










Combination
(bp) ¥
SE14-2005 (SUPT1)
SE14-2033 (Jurkat)





















TRAV1-1 & TRAJ12
275
Positive
460
2371
837044
1096080
Negative
0
1554
817921
995632


TRAV1-1 & TRAJ33
287
Negative
0
2371
837044
1096080
Weak
0
1554
817921
995632


TRAV1-1 & TRAJ49
278
Weak
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRAV12-2 & TRAJ45
285
Negative
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRAV17 & TRAJ52
103
Negative
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRAV27 & TRAJ17
326
Negative
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRAV27 & TRAJ40
327
Weak
0
2371
837044
1096080
Weak
0
1554
817921
995632


TRAV29/DV5 &
327
Weak
0
2371
837044
1096080
Weak
0
1554
817921
995632


TRAJ26













TRAV29/DV5 &
315
Weak
0
2371
837044
1096080
Negative
1
1554
817921
995632


TRAJ4













TRAV35 & TRAJ48
333
Negative
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRAV8-3 & TRAJ42
333
Negative
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRBV10-3 & TRBJ2-5
296
Negative
0
2371
837044
1096080
Weak
0
1554
817921
995632


TRBV12-3 & TRBJ1-2
103
Weak
0
2371
837044
1096080
Positive
138
1554
817921
995632


TRBV18 & TRBJ2-2
264
Negative
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRBV20-1 & TRBJ2-1
349
Negative
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRBV5-7 & TRBJ2-2
133
Weak
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRBV7-8 & TRBJ1-6
257
Negative
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRBV7-8 & TRBJ2-5
240
Negative
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRBV9 & TRBJ2-1
336
Positive
538
2371
837044
1096080
Negative
0
1554
817921
995632


TRGV11 & TRGJ1
297
Negative
0
2371
837044
1096080
Weak
242
1554
817921
995632


TRGV2 & TRGJP2
325
Weak
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRGV3 & TRGJ1
241
Positive
22
2371
837044
1096080
Negative
0
1554
817921
995632


TRGV4 & TRGJ1
254
Positive
25
2371
837044
1096080
Negative
0
1554
817921
995632


TRGV8 & TRGJ1
263
Negative
0
2371
837044
1096080
Weak
146
1554
817921
995632


TRGV8 & TRGJP1
266
Negative
0
2371
837044
1096080
Negative
0
1554
817921
995632


TRGV9 & TRGJ1
182
Weak
0
2371
837044
1096080
Negative
0
1554
817921
995632






Expected













PCR


Total




Total





Product
PCR &
Reads with
Number of

Total
PCR &
Reads with
Number of

Total



Size
Electro-
Detected
Rearranged
Reads
Number
Electro-
Detected
Rearranged
Reads
Number



When
phoresis
Primer
Reads
on
of Input
phoresis
Primer
Reads
on
of Input


Primer
Present
Result †
Combination
Detected
Target
Reads
Result †
Combination
Detected
Target
Reads










Combination
(bp) ¥
SE14-2034 (MOLT4)
SE14-2035 (CEM)





















TRAV1-1 & TRAJ12
275
Negative
0
1723
741549
906513
Negative
0
1744
981779
1283677


TRAV1-1 & TRAJ33
282
Positive
347
1723
741549
906513
Weak
0
1744
931779
1289677


TRAV1-1 & TRAJ49
278
Negative
0
1723
741549
906513
Negative
0
1744
981779
1289677


TRAV12-2 & TRAJ45
285
Negative
0
1723
741549
906513
Negative
0
1744
981779
1289677


TRAV17 & TRAJ52
103
Negative
0
1723
741549
906513
Positive
0
1744
981779
1289677


TRAV27 & TRAJ17
326
Negative
0
1723
741549
906513
Negative
0
1744
981779
1289677


TRAV27 & TRAJ40
327
Negative
0
1723
741549
906513
Positive
506
1744
981779
1289677


TRAV29/DV5 &
327
Negative
0
1723
741549
906513
Negative
0
1744
981779
1289677


TRAJ26













TRAV29/DV5 &
315
Negative
0
1723
741549
906513
Positive
751
1744
981779
1289677


TRAJ4













TRAV35 & TRAJ48
333
Negative
0
1723
741549
906513
Negative
0
1744
981779
1283677


TRAV8-3 & TRAJ42
333
Negative
0
1723
741549
906513
Weak
0
1744
981773
1289677


TRBV10-3 & TRBJ2-5
298
Positive
379
1723
741549
906513
Negative
0
1744
981779
1289677


TRBV12-3 & TRBJ1-2
103
Negative
0
1723
741549
906513
Negative
0
1744
981779
1289677


TRBV18 & TRBJ2-2
264
Negative
0
1723
741549
906513
Negative
0
1744
981779
1289677


TRBV20-1 & TRBJ2-1
349
Positive
551
1723
741549
906513
Negative
0
1744
981779
1289677


TRBV5-7 & TRBJ2-2
133
Negative
0
1723
741549
906513
Weak
0
1744
981779
1289677


TRBV7-8 & TRBJ1-6
257
Negative
0
1723
741549
906513
Negative
0
1744
981779
1289677


TRBV7-8 & TRBJ2-5
240
Negative
0
1723
741549
906513
Negative
0
1744
981779
1289677


TRBV9 & TRBJ2-1
336
Negative
0
1723
741549
906513
Positive
1
1744
981779
1283677


TRGV11 & TRGJ1
297
Negative
0
1723
741549
906513
Weak
0
1744
981779
1289677


TRGV2 & TRGJP2
325
Positive
275
1723
741549
906513
Weak
0
1744
981779
1289677


TRGV3 & TRGJ1
241
Negative
0
1723
741549
906513
Positive
222
1744
981779
1289677


TRGV4 & TRGJ1
254
Negative
0
1723
741549
906513
Positive
0
1744
981779
1289677


TRGV8 & TRGJ1
263
Negative
0
1723
741549
906513
Negative
0
1744
981779
1289677


TRGV8 & TRGJP1
266
Negative
0
1723
741549
906513
Negative
0
1744
981779
1289677


TRGV9 & TRGJ1
182
Negative
0
1723
741549
906513
Weak
0
1744
981779
1289677


















TABLE 4





SEQ ID NO
Name
Sequence







SEQ ID NO: 1566
TRAV102*02-RIGHT
caggtcgtttttcttcattccttagtcgctctgatagttatggttacctccttctacaggagctccagatgaaagactctgcctcttacttctgcgct




gt





SEQ ID NO: 1567
TRAV1-2*02-RIGHT
catctgggttcaacgggctgttctggtaccagcaacatgctggcgaagcacccacatttctgtcttacaatgttctggatggtctggaggagaa




aggtcg





SEQ ID NO: 1568
TRAV12-1*02-RIGHT
acagcacacgtcaatagagccagccagtatatttccctgctcatcagagactccaagctcagtgattcagccacctacctctgtgtggtgaaca




ttcgcc





SEQ ID NO: 1569
TRAV12-2*02-RIGHT
gtttacagcacagctcaataaagccagccagtatgtttctctgctcatcagagactcccagcccagtgattcagccacctacctctgtgccgtgt




accac





SEQ ID NO: 1570
TRAV12-2*03-RIGHT
aaggtttacagcacagctcaataaagccagccagtatgtttctctgctcatcagagactcccagcccagtgattcagccacctacctctgtgcc




gtgaac





SEQ ID NO: 1571
TRAV12-3*02-RIGHT
aggtttacagcacaggtcgataaatccagcaagtatatctccttgttcatcagagactcacagcccagtgattcagccacctacctctgtgcaat




gagcg





SEQ ID NO: 1572
TRAV13-1*02-RIGHT
tgttacattgaacaagacagccaaacatttctccctgcacatcacagagacccaacctgaagactcggctgtctacttctgtgcagcaagtagg




aaggac





SEQ ID NO: 1573
TRAV1301*03-RIGHT
gcttattatagacattcgttcaaatgtgggcgaaaagaaagaccaacgaattgctgttacattgaacaagacagccaaacatttctcccctgcag




atcaca





SEQ ID NO: 1574
TRAV13-2*02-RIGHT
caaagagtcaccgtttattgaataagacagtgaaacatctctctctgcaaattgcagctactcaacctggagactcagctgtctacttttgtgc




agaga





SEQ ID NO: 1575
TRAV14/DV4*03-RIGHT
aggtcgctactcattgaatttccagaaggcaagaaaatccgccaaccttgtcatctccgcttcacaactgggggactcagcaatgtatttctgtg




caatg





SEQ ID NO: 1576
TRAV14/DR4*04-RIGHT
gcaacagaaggtcgctactcfattgaattccagaaggcaagaaaatccgccaaccttgtcatctccgcttcacaactgggggactcagcaatg




tacttct





SEQ ID NO: 1577
TRAV2*02-RIGHT
gggacgatacaacatgacctatgaacggttctcttcatcgctgctcatcctccaggtgcgggaggcagatgctgctgtttactactgtgctgtgg




cctgg





SEQ ID NO: 1578
TRAV20*02-RIGHT
aaaggagaaagaaaggctaaaagccacattaacaaagaaggaaagctttctgcacatcacagcccctaaacctgaagactcagccacttat




ctctgtgct





SEQ ID NO: 1579
TRAV20*03-RIGHT
agaaaaggagaagaaggctaaaagccacattaacaaagaaggaaagctttctgcacatcacagcccctaaacctgaagactcagccac




ttatctctgt





SEQ ID NO: 1580
TRAV20*04-RIGHT
aaaggagaaagaaaggctaaaagccacattaacaaagaaggaaagctttctgcacatcacagcccctaaacctgaagactcagccacttat




ctctgtgct





SEQ ID NO: 1581
TRAV21*02-RIGHT
aagtggaagacttaatgcctcgctggataaatcatcaggacgtagtactttatacattgcagcttctcagcctggtgactcagccacctacctct




gtgct





SEQ ID NO: 1582
TRAV23/DV6*02-RIGHT
agattcacaatctccttcaataaaagtgccaagcagttctcattgcatatcatggattcccagcctggagactcagccacctacttctgtgcagc




aagcg





SEQ ID NO: 1583
TRAV23/DV6*03-RIGHT
agattcacaatctccttcaataaaagtgccaagcagttctcattgcatatcatggattcccagcctggagactcagccacctacttctgtgcagc




aagca





SEQ ID NO: 1584
TRAV23/DV6*04-RIGHT
gaaagaaggaagattcacaatctccttcaataaaagtgccaagcagttctcattgcatatcatggattcccagcctggagactcagccaccta




cttctgt





SEQ ID NO: 1585
TRAV24*02-RIGHT
ggacgaataagtgccactcttaataccaaggagggttacagctatttgtacatcaaaggatcccagcctgaagattcagccacatacctcgtg




ccttta





SEQ ID NO: 1586
TRAV26-1*02-RIGHT
ctctgatcatcacagaagacagaaagtccagcaccttgatcctgccccacgctacgctgagagacactgctgtgtactattgcatcgtcagaga




ttgggt





SEQ ID NO: 1587
TRAV26-1*03-RIGHT
caatgaaatggcctctctgatcatcacagaagacagaaagtccagcaccttgatcctgccccacgctacgctgagagacactgctgtgtactat




tgcatc





SEQ ID NO: 1588
TRAV26-2*02-RIGHT
ccctcccagggtccagagtacgtgattcatggtcttacaagcaatgtgaacaacagaatggcctgtgtggcaatcgctgaagacagaaagtcc




agtacct





SEQ ID NO: 1589
TRAV27*02-RIGHT
tgaagagactaacctttcagtttggtgatgcaagaaaggacagttctctccacatcactgcggcccagcctggtgatacaggccactacctcg




tgcagg





SEQ ID NO: 1590
TRAV27*03-RIGHT
gctgaagagactaacctttcagtttggtgatgcaagaaaggacagttctctccacatcactgcagcccagactggtgatacaggcctctacctc




tgtgca





SEQ ID NO: 1591
TRAV29/DV5*02-RIGHT
aagattcactgttttcttaaacaaaagtgccaagcacctctctctcgacattgtgccctcccagcctggagactctgcagtgtacttctgtgcagc




aagc





SEQ ID NO: 1592
TRAV29/DV5*03-RIGHT
agattcactgttttcttaaacaaaagtgccaagcacctctctctgcacattgtgccctcccagcctggagactctgcagtgtacttctgtgcagta




agcg





SEQ ID NO: 1593
TRAV3*02-RIGHT
ctttgaagctgaatttaacaagagccaaacctccttccacctgaagaaaccatctgcccttgtgagcgactccgctttgtacttctgtgctgtgag




accc





SEQ ID NO: 1594
TRAV30*02-RIGHT
tcgtgaaaaaatatctgcttcatttaatgaaaaaaagcagcaaagctccctgtaccttacggcctcccagctcagttactcaggaacctacttct




gcggg





SEQ ID NO: 1595
TRAV30*03-RIGHT
tcatgaaaaaatatctgcttcattaatgaaaaaaagcggcaaagctccctgtaccttacggcctcccagctcagttactcaggaacctacttct




gcggc





SEQ ID NO: 1596
TRAV30*04-RIGHT
tcctgatgatattactgaagggtggagaacagaagcgtcatgaaaaaatatctgcttcatttaatgaaaaaaagcagcaaagctccctgtacc




ttacggc





SEQ ID NO: 1597
TRAV35*02-RIGHT
aaatggaagactgactgctcagtttggtataaccagaaaggacagcttcctgaatatctcagcatccatacctagtgatgtaggcatctacttct




gtgct





SEQ ID NO: 1598
TRAV36/DV7*02-RIGHT
ggaagactaagtagcatattagataagaaagaacttttcagcatcctgaacatcacagccacccagaccggagactcggccgtctacctctgt




gctgtgg





SEQ ID NO: 1599
TRAV36/DV7*03-RIGHT
gtcaggaagactaagtagcatattagataagaaagaacttttcagcatcctgaacatcacagccacccagaccggagactcggccgtctacct




ctgtgct





SEQ ID NO: 1600
TRAV36/DV7*04-RIGHT
tcaggaagactaagtagcatattagataagaaagaacttttcagcatcctgaacatcacagccacccagaccggagactcggccgtctacctc




tgtgctg





SEQ ID NO: 1601
TRAV38-1*02-RIGHT
gagaatcgtttctctgtgaacttccagaaagcagccaaatccttcagtctcaagatctcagactcacagctgggggacactgcgatgtatttctg




tgctt





SEQ ID NO: 1602
TRAV38-1*03-RIGHT
aatcgtttctctgtgaacttccagaaagcagccaaatccttcagtctcaagatctcagactcacagctgggggacactgcgatgtatttctgtgc




tttca





SEQ ID NO: 1603
TRAV38-1*04-RIGHT
ggagaatcgtttctctgtgaacttccagaaagcagccaaatccttcagtctcaagatctcagactcacagctgggggacactgcgatgtatttct




gtgca





SEQ ID NO: 1604
TRAV6*02-RIGHT
gaaagaaagactgaaggtcacctttgataccacccttaaacagagtttgtttcatatcacagcctcccagcctgcagactcagctacctacctct




gtgct





SEQ ID NO: 1605
TRAV6*03-RIGHT
gaaagaaagactgaaggtcacctttgataccacccttaaacagagtttgtttcatatcacagcctcccagcctgcagactcagctacctacctct




gtgct





SEQ ID NO: 1606
TRAV6*04-RIGHT
gaaagaaagactgaaggtcacctttgataccacccttaaacagaagtttgtttcatgtcacagcctcccagcctgcagacttagctacctacctct




gtgct





SEQ ID NO: 1607
TRAV6*05-RIGHT
gaaagaaagactgaaggtcacctttgataccacccttaaacagagtttgtttcatatcacagcctcccagcctgcagactcagctacctacctct




gtgct





SEQ ID NO: 1608
TRAV6*06-RIGHT
ccaggaagaggccctgttttcttgctactcatacgtgaaaatgagaaagaaaaaaggaaagaaagactgaaggtcacctttgataccaccctt




aaccaga





SEQ ID NO: 1609
TRAV8-1*02-RIGHT
ttttcaggggaatccactggttaaaggcatcaagggcgttgaggctgaatttataaagagtaaattctcctttaatctgaggaaaccctctgtgca




gtgga





SEQ ID NO: 1610
TRAV8-2*02-RIGHT
tttaagaagagtgaaacctccttccacctgacgaaaccctcagcccatatgagcgacgcggctgagtacttctgtgttgtgacccgtcacgagc




tttcag





SEQ ID NO: 1611
TRAV8-3*02-RIGHT
aggctttgaggctgaatttaagaggagtcaatcttccttcaacctgaggaaaccctctgtgcattggagtgatgctgctgagtacttctgtgctgt




ggtt





SEQ ID NO: 1612
TRAV8-3*03-RIGHT
tattaaaggctttgaggctgaatttaagaggagtcaatcttccttcaatctgaggaaaccctctgtgcattggagtgatgcgtctgagtacttctg




tgct





SEQ ID NO: 1613
TRAV8-4*02-RIGHT
gaatttaagaagagtgaaacctccttccacctgacaaaaccctcagcccatatgagcgacgcggctgagtacttctgtgctgtgagtgatctcg




aaccga





SEQ ID NO: 1614
TRAV8-4*03-RIGHT
catcaacggttttgaggctgaatttaagaagagtgaaacctccttccacctgacgaaaccctcagcccatatgagcgacgcggctgagtacttc




tgtgct





SEQ ID NO: 1615
TRAV8-4*04-RIGHT
aggcatcaacggttttgaggctgaatttaagaagagtgaaacctccttccacctgacgaaaccctcagcccatatgagcgacgcggctgagta




cttctgt





SEQ ID NO: 1616
TRAV8-4*05-RIGHT
ggctgaatttaagaagagtgaaacctccttccacctgacgaaaccctcagcccatatgagcgacgcggctgagtacttctgtgctgtgagtga




gtctcca





SEQ ID NO: 1617
TRAV8-4*06-RIGHT
gaatttaagaagagtgaaacctccttccacctgacgaaacccgcagcccatatgagcgacgcggctgagtacttctgtgctgtgagtgatctcg




aaccga





SEQ ID NO: 1618
TRAV8-4*07-RIGHT
acggttttgaggctgaatttaaaaagagtgaaacctccttccacctgacgaaaccctcagcccatatgaccgacccggctgagtacttctgtgc




tgtgag





SEQ ID NO: 1619
TRAV9-2*02-RIGHT
caacaaaggttttgaagccacataccgtaaagaaaccacttctttccacttggagaaaggctcagttcaagtgtcagactcagcggtgtacttc




tgtgct





SEQ ID NO: 1620
TRAV9-2*03-RIGHT
caacaaaggttttgaagccacatccgtaaggaaaccacttctttccacttggagaaggctcagttcaagtgtcagactcagcggtgtacttc




tgtgct





SEQ ID NO: 1621
TRAV9-2*04-RIGHT
caacaaaggttttgaagccacataccgtaaggaaaccacttctttccacttggagaasaaggctcagttcaagtgtcagactcagcggtgtacttc




tgtgct





SEQ ID NO: 1622
TRBV10-1*03-RIGHT
ctaacaaaggagaagtctcagatggctacagtgtctctagatcaaacacagaggacctccccctcactctgtagtctgctgcctcctcccagac




atctgt





SEQ ID NO: 1623
TRBV10-2*02-RIGHT
agataaaggagaagtccccgatggctacgttgtctccagatccaagacagagaatttccccctcactctggagtcagctacccgctcccagac




atctgtg





SEQ ID NO: 1624
TRBV10-3*03-RIGHT
agaagtctcagatggctatagtgtctctagatcaaagacagaggatttcctcctcactctggagtccgctaccagctcccagacatctgtgtact




tctgt





SEQ ID NO: 1625
TRBV10-3*04-RIGHT
agaagtctcagatggctatagtgtctctagatcaaagacagaggatttcctcctcactctggagtccgctaccagctcccagacatctgtgtact




tctgt





SEQ ID NO: 1626
TRBV11-2*02-RIGHT
ggatcgattttctgcagagaggctcaaaggagtagactccactctcaagatccagcctgcaaagcttgagaactcggccgtgtatctctgtgcc




agcagt





SEQ ID NO: 1627
TRBV11-2*03-RIGHT
ggatcgattttctgcagagaggctcaaaggagtagactccactctcaagatccaacctgcaaagcttgaggactggccgtgtatctctgtgcc




agcagc





SEQ ID NO: 1628
TRBV11-3*02-RIGHT
ggatcgattttctgcagagaggctcaaaggagtagactccactctcaagatccagtctgcagagcttggggactcggccgtgtatctctgtgcc




agcagc





SEQ ID NO: 1629
TRBV11-3*03-RIGHT
ggatcgattttctgcagagaggctcaaaggagtagactccactctcaagatccagccagtagagcttggggactcggccatgtatctctgtgcc




agcagc





SEQ ID NO: 1630
TRVV12-4*02-RIGHT
tcgattctcagctaagatgcctaatgcatcattctccactctgaggatccagccctcagaacccagggactcagctgtgtacttctgtgccagca




gttta





SEQ ID NO: 1631
TRBV13*02-RIGHT
tgatcgattctcagctcaacagttcagtgactatcattctgaactgaacatgagctccttggagctgggggactcagccctgtacttctgtgcca




gcagt





SEQ ID NO: 1632
TRBV14*02-RIGHT
caatcgattcttagctgaaaggactggagggacgtattctactctgaaggtgcagcctgcagaactggaggattctggagtttatttctgtgcca




gcagc





SEQ ID NO: 1633
TRBV15*02-RIGHT
tgataacttccaatccaggaggccgaacacttctttctgctttcttgacatccgctcaccaggcctgggggacgcagccatgtacctgtgtgcca




ccagc





SEQ ID NO: 1634
TRBV15*03-RIGHT
tgataacttccaatccaggaggccgaacacttctttctgctttctagacatccgctcaccaggcctgggggacgcagccatgtaccagtgtgcc




accagc





SEQ ID NO: 1635
TRBV16*03-RIGHT
ggaaagattttcagctaagtgcctcccaaattcaccctgtagccttgagatccaggctacgaagcttgaggattcagcagtgtatttttgtgcca




gcagc





SEQ ID NO: 1636
TRBV19*03-RIGHT
tgaagggtacagcgtctctcgggagaagaaggaatcctttcctctcactgtgacatcggcccaaaagaacccgacagctttctatctctgtgcc




agtagc





SEQ ID NO: 1637
TRBV2*02-RIGHT
tgatcaattctcagttgaaaggcctgatggatcaaatttcactctgaagatccggtccacaaagctggaggactcagccatgtacttctgtgcca




gcagt





SEQ ID NO: 1638
TRBV2*03-RIGHT
tcaattctcagttgagaggcctgatggatcaaatttcactctgaagatccggtccacaaagctggaggactcagccatgtacttctgtgccagc




agtgaa





SEQ ID NO: 1639
TRBV20-1*02-RIGHT
gaaggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgc




agtgct





SEQ ID NO: 1640
TRBV20-1*04-RIGHT
ggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagt




gctagt





SEQ ID NO: 1641
TRBV20-1*05-RIGHT
ggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagt




gctaga





SEQ ID NO: 1642
TRBV20-1*06-RIGHT
gaaggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgc




agtgct





SEQ ID NO: 1643
TRBV20-1*07-RIGHT
ggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgatagtgaccagtgcccatcctgaagacagcagcttctacatctgcagt




gctaga





SEQ ID NO: 1644
TRBV20/OR9-2*02-RIGHT
gaaggacaagtttcccatcaaccatccaaacctgaccttctccgctctgacagtgacctgtgcccatcctgaagacagcagcttctacatctgc




agtgct





SEQ ID NO: 1645
TRBV23/OR9-2*02-RIGHT
gtttttgatttcctttcagaatgaacaagttcttcaagaaatggagatgcacaagaagcgattctcatctcaatgccccaagaacgcaccctgc




agcctg





SEQ ID NO: 1646
TRBV24/OR9-2*02-RIGHT
cagttgatctattgctcctttgatgtcaaaatatataaacaaaagagagatctctgatggatacagtgtctcttgacaggaacaggctaaattct




ccctg





SEQ ID NO: 1647
TRBV25/OR9-2*02-RIGHT
gagttaattccacagagaagggagatctttgctctgagtcaacagtctccagaataaggatagagcgttttcccctgaccctggagtctgccag




cccctc





SEQ ID NO: 1648
TRBV29-1*02-RIGHT
tgacaagtttcccatcagccgcccaaacctaacattctcaagtctgactgtgagcaacatgagccctgaagacagcagcatatatctctgcagc




gttgaa





SEQ ID NO: 1649
TRBV29-1*03-RIGHT
tgacaagtttcccatcagccgcccaaacctaacattctcaactctgactgtgagcaacatgagccctgaagacagcagcatatatctctgcagc




gcgggc





SEQ ID NO: 1650
TRBV3-1*02-RIGHT
tccaaatcgattctcacctaaatctccagacaaagctaaattaaatcttcacatcaattccctggagcttggtgactctgctgtgtatttctgtgcc




agc





SEQ ID NO: 1651
TRBV3-2*03-RIGHT
tcgcttctcacctgactctccagacaaagttcatttaaatcttcacatcaattccctggagcttggtgactctgctgtgtatttctgtgccagcagc




caa





SEQ ID NO: 1652
TRBV30*02-RIGHT
agaatctctcagcctccagaccccaggaccggcagttcatcctgagttctaagaagctcctcctcagtgactctggcttctatctctgtgcctgga




gtgt





SEQ ID NO: 1653
TRBV30*04-RIGHT
ccagaatctctcagcctccagaccccaggaccggcagttcattctgagttctaagaagctcctcctcagtgactctggcttctatctctgtgcctg




gagt





SEQ ID NO: 1654
TRBV30*05-RIGHT
ccagaatctctcagcctccagaccccaggaccggcagttcatcctgagttctaagaagctccttctcagtgactcggcttctatctctgtgcctg




ggga





SEQ ID NO: 1655
TRBV4-1*02-RIGHT
tcgcttctcacctgaatgccccaacagctctctcttaaaccttcacctacacgccctgcagccagaagactcagccctgtatctctgcgccagca




gccaa





SEQ ID NO: 1656
TRBV4-2*02-RIGHT
aagtcgcttctcacctgaatgccccaacagctctcacttatgccttcacctacacaccctgcagccagaagactcggccctgtatctctgtgcca




gcacc





SEQ ID NO: 1657
TRBV4-3*02-RIGHT
aagtcgcttctcacctgaatgccccaacagctctcacttatcccttcacctacacaccctgcagccagaagactcggccctgtatctctgcgcca




gcagc





SEQ ID NO: 1658
TRBV4-3*03-RIGHT
aagtcgcttctcacctgaatgccccaacagctctcacttattccttcacctacacaccctgcagccagaagactcggccctgtatctctgcgcca




gcagc





SEQ ID NO: 1659
TRBV4-3*04-RIGHT
aagtcgcttctcacctgaatgccccaacagctctcacttattcttcacctacacaccctgcagccagaagactcggccctgtatctctgcgcca




gcagc





SEQ ID NO: 1660
TRBV5-1*02-RIGHT
tcgattctcagggcgccagttctctaactctcgctctgagatgaatgtgagcaccttggagctgggggactcggccctttatctttgcgccagcgc




ttgc





SEQ ID NO: 1661
TRBV5-4*02-RIGHT
tcctagattctcaggtctccagttccctaattataactctgagctgaatgtgaacgccttggagctggacgactggccctgtatctctgtgccag




cagc





SEQ ID NO: 1662
TRBV5-4*03-RIGHT
tcctagattctcaggtctccagttccctaattatagctctgagctgaatgtgaacgccttggagctggacgactcggccctgtatctctgtgccag




cagc





SEQ ID NO: 1663
TRBV5-4*04-RIGHT
tcctagattctcaggtctccagttccctaattatagctctgagctgaatgtgaacgccttggagctggacgactcggccctgtatctctgtgccag




cagc





SEQ ID NO: 1664
TRBV-5*03-RIGHT
tgatcgattctcagctcgccagttccctaactatagctctgagctgaatgtgaacgccttgttgctgggggactcggccctgtatctctgtgccag




cagc





SEQ ID NO: 1665
TRBV-5*03-RIGHT
tgatcgattctcagctcgccagttccctaactatagctctgagctgaatgtgaacgccttgttgctgggggactcggccctgtatctctgtgccag




cagc





SEQ ID NO: 1666
TRBV5-8*02-RIGHT
tcctagattttcaggtcgccagttccctaattatagctcgagctgaatgtgaacgccttggagctggaggactcggccctgtatctctgtgccag




cagc





SEQ ID NO: 1667
TRBV6-2*02-RIGHT
tggctacaatgtctccagattaaaaaaacagaatttcctgctggggttggagtcggctgctccctcccaaacatctgtgtacttctgtgccagca




gccct





SEQ ID NO: 1668
TRBV6-6*03-RIGHT
gaatggctacaacgtctccagatcaaccacagaggatttcccgctcaggctggagttggctgctccctcccagacatctgtgtacttctgtgcca




gcagt





SEQ ID NO: 1669
TRBV6-6*04-RIGHT
tggctacaatgtctccagatcaaccacagaggatttcccgctcaggctggagttggctgctccctcccagacatctgtgtacttctgtgccagca




gtcga





SEQ ID NO: 1670
TRBV6-6*05-RIGHT
gaatggctacaacgtctccagatcaaccacagaggatttcccgctcaggctggagttggctgctgcctcccagacatctgtgtacttctgtgcca




gcagc





SEQ ID NO: 1671
TRBV7-2*03-RIGHT
gcttctctgcagagaggactggggaatccgtctccactctgacgatccagcgcacacagcaggaggactcggccgtgtatctctgtaccagca




gcttagc





SEQ ID NO: 1672
TRBV7-2*04-RIGHT
tcgcttctctgcagagaggactgggggatccgtctccactctgacgatccagcgcacacagcaggaggactcggccgtgtatctctgtgccagc




agctta





SEQ ID NO: 1673
TRBV7-3*04-RIGHT
cgatcggttctttgcagtcaggcctgagggatccgtctctactctgaagatccagcgtacagagcggggggactctgccgtgtatctctgtgcca




gcagc





SEQ ID NO: 1674
TRBV7-3*05-RIGHT
cgatcggttctttgcagtcaggcctgagggatccgtctctactccgaagatccagcgcacagagcggggggactcagccgtgtatctctgtgcc




agcagt





SEQ ID NO: 1675
TRBV7-4*02-RIGHT
aacgagacaaatcagggcggcccagtggtcggttctctgcagagaggcctgagagatcgtctccactccgaagatccagcgcacagagcag




ggggactca





SEQ ID NO: 1676
TRBV7-6*02-RIGHT
tgatcggttctctgcagagaggcctgagggatccatctccactctgacgatccagcgcacagagcagcgggactcggccatgtatcgctgtgcc




agcagc





SEQ ID NO: 1677
TRBV7-7*02-RIGHT
tgatcggttctctgcagagagaggcctgagggatccatctccactctgacgattcagcgcacagagcagcgggacttcagccatgtatcgctgtgcc




agcagt





SEQ ID NO: 1678
TRBV7-8*03-RIGHT
tcgcttctttgcagaaaggcctgagggatccgtctccactctgaagatccagcgcacacagcaggaggactccgccgtgtatctctgtgccagc




agccga





SEQ ID NO: 1679
TRBV7-9*02-RIGHT
tcggttctctgcagagaggcctaagggatctttctccaccttggagatccagcgcacagagcagggggactcggccatgtatctctgtgccagc




agctta





SEQ ID NO: 1680
TRBV7-9*04-RIGHT
tcggatctctgcagagaggcctaagggatctttctccaccttggagatccagcgcacagagcagggggactcggccatgtatctctgtgccagc




agctct





SEQ ID NO: 1681
TRBV7-9*05-RIGHT
tcggttctctgcagagaggcctaagggatctctctccaccttggagatccagcgcacagagcagggggactcggccatgtatctctgtgccagc




accaaa





SEQ ID NO: 1682
TRBV7-9*06-RIGHT
tcggttctctgcagagaggcctaagggatctctttccaccttggagatccagcgcacagagcagggggactcggccatgtatctctgtgccagc




acgttg





SEQ ID NO: 1683
TRBV7-9*07-RIGHT
gttctctgcagaggcctaagggatctttctccaccttggagatccagcgcacagaggagggggactcggccatgtatctctgtgccagcagc




agcagt





SEQ ID NO: 1684
TRBV9*03-RIGHT
tgaacgattctccgcacaacagttccctgacttgcactctgaactaaacctgagctctctggagctgggggactcagctttgtatttctgtgccag




cagc





SEQ ID NO: 1685
TRGV2*02-RIGHT
gaagtattatacttacgcaagcacaaggaacaacttgagattgatactgcaaaatctaattgaaaatgactctggggtctattactgtgccacc




tgggac





SEQ ID NO: 1686
TRBV20-1*03-RIGHT
gaaggacaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgc




agtgct





SEQ ID NO: 1687
TRGV6*01-RIGHT
gcatgatacttatggaagtagaaggataagctggaaatttatacctccaaaactaaatgaaaatgcctctggggtctattactgtgccacctag




gacagg





SEQ ID NO: 1688
TRGV4*02-RIGHT
gtatgatacttacggaagcacaaggaagaacttgagaatgatactgcgaaatcttattgaaaatgactctggagtctattactgtgccacctgg




gatggg





SEQ ID NO: 1689
TRGV5P*01-RIGHT
gtattatactcatacaccgaggaggtggagctggaatttgagactgcaaaatctaattgaaaatgattctggggtctattactgtgccacctgg




ggcagg





SEQ ID NO: 1690
TRBV10-3*02-RIGHT
gctatagtgtctctagatcaaagacagaggatttcctcctcactctggagtccgctaccagctcccagacatctgtgtacttctgtgccatcagtg




agtc





SEQ ID NO: 1691
TRBV24/OR9-2*01-RIGHT
atacagtgtctctcgacaggcacaggctaaattctccctgtccctagagtctgccatccccaaccagacagctctttacttctgtgccaccagtg




atttg





SEQ ID NO: 1692
TRBV20/OR9-2*01-RIGHT
acaagtttcccatcaaccatccaaacctgaccttctccgctctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgct




agaga





SEQ ID NO: 1693
TRGV11*01-RIGHT
ggtaagtaaaaatgctcacacttccacttccactttgaaaaataaagttcttagagaaagaagatgaggtggtgtaccactgtgcctgctggatt




aggcac





SEQ ID NO: 1694
TRBV7-8*02-RIGHT
gcttctttgcagaaaggcctgagggatccgtctccactctgaagatccagcgcacacagaaggaggactccgccgtgtatctctgtgccagca




gcttagc





SEQ ID NO: 1695
TRBV7-3*02-RIGHT
ggttcttgcagtcaggcctgagggatccgtctctactctgaagatccagcgcacagagcagggggactcagccgtgtatctccgtgccagcag




cttaac





SEQ ID NO: 1696
TRGV10*01-RIGHT
aggcaagaaagaattctcaaactctcacttcaatccttaccatcaagtccgtagagaaagaagacatggccgtttactacctgtgctgcgtggtg




ggtggc





SEQ ID NO: 1697
TRGV9*02-RIGHT
tgaggtggataggatacctgaaacgtctacatccactctcaccattcacaatgtagagaaacaggacatagctacctactactgtgccttgtgg




gaggtg





SEQ ID NO: 1698
TRDV3*02-RIGHT
gacggttttctgtgaaacacattctgacccagaagcctttcacttggtgatctctccagtaaggactgaagacagtgccacttactactgtgcc




tttag





SEQ ID NO: 1699
TRDV2*02-RIGHT
aatttccaaggtgacattgatattgcaaagaacctggctgtacttaagatacttgcaccatcagagagagatgaagggtcttactactgtgcct




gtgaca





SEQ ID NO: 1700
TRGV3*02-RIGHT
agtattatactcatacacccaggaggtggagctggatattgagactgcaaaatctaattgaaaatgattctggggtctattactgtgccacctg




ggacag





SEQ ID NO: 1701
TRDV2*01-RIGHT
tttccaaggtgacattgatattgcaaagaacctggctgtacttaagatacttgcaccatcagagagagatgaagggtcttactactgtgcctgtg




acacc





SEQ ID NO: 1702
TRBV19*02-RIGHT
ggtacagcgtctctcgggagaagaaggaatcctttcctctcactgtgacatcggcccaaaagaacccgacagcttctatctctgtgccagtag




tataga





SEQ ID NO: 1703
TRAV14/DV4*01-RIGHT
actcattgaatttccagaaggcaagaaaatccgccaaccttgtcatctccgcttcacaactgggggactcagcaatgtacttctgtgcaatgag




agaggg





SEQ ID NO: 1704
TRBV3-2*02-RIGHT
gcttctcacctgactctccagacaagttcatttaaatcttcacatcaattccctggagcttggtgactctgctgtgtatttctgtgccagcagcca




aga





SEQ ID NO: 1705
TRGV10*02-RIGHT
tggaggcaagaaagaattctcaaactctcacttcaatccttaccatcaagtccgtagagaaagaagacatggccgtttactactgtgctgcgtg




ggatta





SEQ ID NO: 1706
TRAV11*01-RIGHT
caaatattttaaagaactgctggaaaagaaaaattttatagtgtttggaatatcgcagcctctcatctgggagattcagccacctacttctgtg




ctttg





SEQ ID NO: 1707
TRBV5-2*01-RIGHT
aacttgcctaattgattctcagctcaccacgtccataactattactgagtcaaacacggagctaggggactcagccctgtatctctgtgccagca




acttg





SEQ ID NO: 1708
TRBV8-1*01-RIGHT
ggaagggtacaatgtctctggaaacaagctcaagcattttccctcaaccctggagtctactagcaccagccagacctctgtacctctgtggcag




tgcatc





SEQ ID NO: 1709
TRAV38-1*01-RIGHT
tctctgtgaacttccagaaagcagccaaatcccttcagtctcaagatctcagactcatagctgggggacactgcgatgtatttctgtgctttcatg




aagca





SEQ ID NO: 1710
TRBV22-1*01-RIGHT
aggctacgtgtctgccaagaggagaaggggctatttcttctcagggtgaagttggcccacaccagccaaacagctttgtacttctgtcctggga




gcgac





SEQ ID NO: 1711
TRBV16*01-RIGHT
gattttcagctaagtgcctcccaaattcaccctgtagccttgagatccaggctacgaagcttgaggattcagcagtgatttttgtgccagcagc




caatc





SEQ ID NO: 1712
TRBV30*01-RIGHT
agaatctctcagcctccagaccccaggaccggcagttcatcctgagttctaagaagctccttctcagtgactctggcttctatctctgtgcctgga




gtgt





SEQ ID NO: 1713
TRAV3*01-RIGHT
tttgaagctgatttaacaagagccaaacctccttccacctgaagaaaccatctgcccttgtgagcgactccgcttgtacttctgtgtgtgag




agaca





SEQ ID NO: 1714
TRAV26-1*01-RIGHT
gcctctctgatcatcacagaagacagaaagtccagcaccttgatcctgccccacgctacgctgagagacactgctgtgtactattgcatcgtca




gagttg





SEQ ID NO: 1715
TRAV32*01-RIGHT
aggctcactgtactgttgaataaaaatgctaaacatgtctccctgcatattacagccacccaaccaggagactcattcctgtacttctgtgcagt




gagaa





SEQ ID NO: 1716
TRAV33*01-RIGHT
gcaaagcctgtgaactttgaaaaaaagaaaaagttcatcaacctcaccatcaattccttaaaactgactcagccaagtacttcgtgctctcag




gaatcc





SEQ ID NO: 1717
TRBV13*801-RIGHT
gattctcagctcaacagttcagtgactatcattctgaactgaacatgagctccttggagctgggggactcagccctgtacttctgtgccagcagc




ttagg





SEQ ID NO: 1718
TRBV15*01-RIGHT
acttccaatccaggaggccgaacacttctttctgctttcttgacatccgctcaccaggcctgggggacacagccatgtacctgtgtgccaccagc




agaga





SEQ ID NO: 1719
TRAV2*01-RIGHT
agggacgatacaacatgacctatgaacggttctcttcatcgctgctcatcctccaggtgcgggaggcagatgctgtttactactgtgctgtg




gagga





SEQ ID NO: 1720
TRBV7-1*01-RIGHT
ggttctctgcacagaggtctgagggatccatctccactctgaagttccagcgcacacagcagggggacttggctgtgtatctctgtgccagcag




ctcagc





SEQ ID NO: 1721
TRBV23-1*01-RIGHT
gattctcatctcaatgccccaagaacgcaccctgcagcctggcaatcctgtcctcagaaccgggagacacggcactgtatctctgcgccagca




gtcaatc





SEQ ID NO: 1722
TRBV23/OR9-2*01-RIGHT
gatgcacaagaagcgattctcatctcaatgccccaagaacccaccctgcagcctggcaatcctgtcctcggaaccgggagacaccgcactgta




tctctgt





SEQ ID NO: 1723
TRBVA*01-RIGHT
tccctattgaaaatatttcctggcaaaaaatagaagttctctttggctctgaaatctgcaactccctttcaggtgtccctgtgtccttgtactgtca




ctc





SEQ ID NO: 1724
TRBVA/OR9-2*01-RIGHT
tccctgttgaaaatatttcccggcaaaaaacagaagttccctttggctctgaaatctgcaaagccctttcagatgtccctgtgccttgtgccgtc




actc





SEQ ID NO: 1725
TRBV12-1*01-RIGHT
gattctcagcacagatgcctgatgtatcattctccactctgaggatccagcccatggaacccagggacttgggcctatatttctgtgccagcagc




tttgc





SEQ ID NO: 1726
TRBV26/OR9-2*01-RIGHT
ggtatcatgtttcttgaaatactatagcatcttttctcctgaccctgaagtctgctagcaccaaccagacatgtgtgtatctctgcgccagcagttc




atc





SEQ ID NO: 1727
TRGV9*01-RIGHT
tgaggtggataggatacctgaaacgtctacatccactctcaccattcacaatgtagagaaacaggacatagctacctactactgtgccttgtgg




gaggtg





SEQ ID NO: 1728
TRGVB*01-RIGHT
cttgaggcaagaacaaattttcaaatgtctacttcagtctttaccataaacttcataggaaaggaagatgaggccatttactactgcactgctta




ggacc





SEQ ID NO: 1729
TRBV7-3*01-RIGHT
ggttctttgcagtcaggcctgagggatccgtctctactctgaagatccagcgcacagagcggggggactcagccgtgtatctctgtgccagcag




cttaac





SEQ ID NO: 1730
TRBV7-9*01-RIGHT
ggttctctgcagagaggcctaagggatctttctccaccttggagatccagcgacacgagcagggggactcggccatgtatctctgtgccagcag




cttagc





SEQ ID NO: 1731
TRBV7-2*01-RIGHT
gcttctctgcagagaggactgggggatccgtctccactctgacgatccagcgcacacagcaggaggactcggccgtgtatctctgtgccagca




gcttagc





SEQ ID NO: 1732
TRBV7-2*02-RIGHT
gcttctctgcagagaggactggggaatccgtctccactctgacgatccagcgcacacagcaggaggactcggccgtgtatctctgtgccagca




gcttagc





SEQ ID NO: 1733
TRBV7-7*01-RIGHT
ggttctctgcagagaggcctgagggatccatctccactctgacgattcagcgcacagagcagcgggactcagccatgtatcgctgtgccagca




gcttagc





SEQ ID NO: 1734
TRBV7-8*01-RIGHT
gcttctttgcagaaaggcctgagggatccgtctccactctgaagatccagcgcacatagcaggaggactccgccgtgtatctctgtgccagcag




cttagc





SEQ ID NO: 1735
TRBV17*01-RIGHT
aacgattcacagctgaaagacctaacggaacgtcttccacgctgaagatccatcccgcagagccgagggactcagccgtgatctctacagta




gcggtgg





SEQ ID NO: 1736
TRBV5-8*01-RIGHT
agattttcaggtcgccagttccctaattatagctctgagctgaatgtgaacgccttggagctggaggactcggccctgtatctctgtgccagcag




ttgg





SEQ ID NO: 1737
TRBV5-7*01-RIGHT
caattctcaggtcaccagttccctaactatagctctgagctgaatgtgaacgccttgttgctaggggactcggccctctatctctgtgccagcagc




ttgg





SEQ ID NO: 1738
TRBV5-6*01-RIGHT
cgattctcaggtcaccagttccctaactatagctctgagctgaatgtgaacgccttgttgctgggggactcggccctctatctctgtgccagcagc




ttgg





SEQ ID NO: 1739
TRBV5-5*01-RIGHT
cgattctcagctcgccagttccctaactatagctctgagctgaatgtgaacgccttgttgctgggggactcggccctgtatctctgtgccagcagc




ttgg





SEQ ID NO: 1740
TRBV5-4*01-RIGHT
agattctcaggtctccagttccctaattatagctctgagctgaatgtgaacgccttggagctggacgactcggccctgtatctctgtgccagcag




tttgg





SEQ ID NO: 1741
TRBV-1*01-RIGHT
cgattctcagggcgccagttctctaactctcgctctgagatgaatgtgagcaccttggagctgggggactcggccctttatctttgcgccagcag




cttgg





SEQ ID NO: 1742
TRBV3-1*01-RIGHT
gcttctcacctaaatctccagacaaagctcacttaaatcttcacatcaattccctggagcttggtgactctgctgtgtatttctgtgccagcagcc




aaga





SEQ ID NO: 1743
TRBV1*01-RIGHT
acttcacacctgaatgccctgacagctctcgcttataccttcatgtggtcgcactgcagcaagaagactcagctgcgtatctctgcaccagcagc




caaga





SEQ ID NO: 1744
TRBV5-3*01-RIGHT
cgattctcagggcgccagttccatgactgttgctctgagatgaatgtgagtgccttggagctgggggactcggccctgtatctctgtgccagaag




cttgg





SEQ ID NO: 1745
TRBV5-3*02-RIGHT
cgattctcagggcgccagttccatgactattgctctgagatgaatgtgagtgccttggagctgggggactcggccctgtatctctgtgccagaag




cttgg





SEQ ID NO: 1746
TRBV9*01-RIGHT
cgattctccgcacaacagttccctgacttgcactctgaactaaacctgagctctctggagctgggggactcagctttgtatttctgtgccagcagc




gtag





SEQ ID NO: 1747
TRBV3-2*01-RIGHT
gcttctcacctgactctccagacaaagctcatttaaatcttcacatcaattccctggagcttggtgactctgctgtgtatttctgtgccagcagcca




aga





SEQ ID NO: 1748
TRBV2*01-RIGHT
aattctcagttgaaaggcctgatggaccaaatttcactctgaagatccggtccacaaagctggaggactcagccatgtacttctgtgccagcag




tgaagc





SEQ ID NO: 1749
TRBV4-3*01-RIGHT
gcttctcacctgaatgccccaacagctctcacttattccttcacctacacaccctgcagccagaagactcggccctgtatctctgcgccagcagc




caaga





SEQ ID NO: 1750
TRBV4-1*01-RIGHT
gcttctcacctgaatgccccaacagctctctcttaaaccttcacctacacgccctgcagccagaagactcagccctgtatctctgcgccagcagc




caaga





SEQ ID NO: 1751
TRBV4-2*01-RIGHT
gcttctcacctgaatgcccaacagctctcacttattccttcacctacacaccctgcagccagaagactcggccctgtatctctgtgccagcagc




caaga





SEQ ID NO: 1752
TRAV34*01-RIGHT
aagataactgccaagttggatgagaaaaagcagcaaagttccctgcatatcacagcctcccagcccagccatgcaggcatctacctctgtgga




gcagaca





SEQ ID NO: 1753
TRBV28*01-RIGHT
ggtacagtgtctcagagagaagaaggagcgcttctccctgattctggagtccgccagcaccaaccagacatctatgtacctctgtgccagcag




tttatg





SEQ ID NO: 1754
TRBV20-1*01-RIGHT
acaagtttctcatcaaccatgcaagcctgaccttgtccactctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgct




agaga





SEQ ID NO: 1755
TRBV20/OR9-2*03-RIGHT
acaagtttcccatcaaccatccaaacctgaccttctccgctctgacagtgaccagtgcccatcctgaagacagcagcttctacatctgcagtgct




agaga





SEQ ID NO: 1756
TRBV6-6*02-RIGHT
gaatggctacaacgtctccagatcaaccacagaggatttcccgctcaggctggagttggctgctccctcccagacatctgtgacttctgtgcca




gcagt





SEQ ID NO: 1757
TRBV6-6*01-RIGHT
gctacaacgtctccagatcaaccacagaggatttcccgctcaggctggagttggctgctccctcccagacatctgtgtacttctgtgccagcagt




tactc





SEQ ID NO: 1758
TRBV6-5*01-RIGHT
gctacaatgtctccagatcaaccacagaggatttcccgctcaggctgctgcggctgctccctcccagacatctgtgtacttctgtgccagcagtt




actc





SEQ ID NO: 1759
TRBV6-8*01-RIGHT
gctacaatgtctctagattaaacacagaggatttcccactcaggctggtgtcggctgctccctcccagacatctgtgtacttgtgtgccagcagtt




actc





SEQ ID NO: 1760
TRBV6-9*01-RIGHT
gctacaatgtatccagatcaaacacagaggatttcccgctcaggctggagtcagctgctccctcccagacatctgtatacttctgtgccagcagt




tattc





SEQ ID NO: 1761
TRBV6-7*01-RIGHT
gctacaatgtcttcagatcaaacacagaggatttccccctcaagctggagtcagctgctccctctcagacttctgtttacttctgtgccagcagtt




actc





SEQ ID NO: 1762
TRBV12-3*01-RIGHT
gattctcagctaagatgcctaatgcatcattctccactctgaagatccagccctcagaacccagggactcagctgtgtacttctgtgccagcagt




ttagc





SEQ ID NO: 1763
TRBV12-4*01-RIGHT
gattctcagctaagatgcctaatgcatcattctccactctgaagatccagccctcagaacccagggactcagctgtgacttctgtgccagcagt




ttagc





SEQ ID NO: 1764
TRBV12-5*01-RIGHT
gattctcagcagagatgcctgatgcaactttagccactctgaagatccagccctcagaacccagggactcagctgtgtatttttgtgctagtggt




ttggt





SEQ ID NO: 1765
TRBV12-2*01-RIGHT
gattctcagctgagaggcctgatggatcattctctactctgaagatccagcctgcagagcagggggactcggccgtgtatgtctgtgcaagtcg




cttagc





SEQ ID NO: 1766
TRBV6-1*01-RIGHT
gctacaatgtctccagattaaacaaacgggagttctcgctcaggctggagtcggctgctccctcccagacatctgtgtacttctgtgccagcagt




gaagc





SEQ ID NO: 1767
TRBV7-4*01-RIGHT
ggttctctgcagagaggcctgagagatccgtctccactctgaagatccagcgcacagagcagggggactcagctgtgtatctctgtgccagca




gcttagc





SEQ ID NO: 1768
TRBV7-5*01-RIGHT
tcaattctccacagagaggtctgaggatctttctcccacctgaagatccagcgcacagagcaagggcgactcggctgtgtatctctgtgccagaa




gcttag





SEQ ID NO: 1769
TRAV20*01-RIGHT
aaagaaaggctaaaagccacattaacaaagaaggaaagctttctgcacatcacagcccctaaacctgaagactcagccacttatctctgtgct




gtgcagg





SEQ ID NO: 1770
TRBV11-1*01-RIGHT
gattttctgcagagaggctcaaaggagtagactccactctcaagatccagcctgcagagcttggggactcggccatgtatctctgtgccagcag




cttagc





SEQ ID NO: 1771
TRAV15*01-RIGHT
acattttaaagaagcgcttggaaaagagaagttttatagtgttttgaatatgctggtctctcatcctggagattcaggcacctacttctgtgcttt




gagg





SEQ ID NO: 1772
TRAV7*01-RIGHT
aaaggaagactaaatgctacattactgaagaatggaagcagcttgtacattacagccgtgcagcctgaagattcagccacctatttctgtgctg




tagatg





SEQ ID NO: 1773
TRAV16*01-RIGHT
gcttcactgctgaccttaacaaaggcgagacatctttccacctgaagaaaccatttgctcaagaggaagactcagccatgtattactgtgctct




aagtgg





SEQ ID NO: 1774
TRAV6*01-RIGHT
agactgaaggtcacctttgataccacccttaaacagagtttgtttcatatcacagcctcccagcctgcagactcagctacctacctctgtgctcta




gaga





SEQ ID NO: 1775
TRBV19*01-RIGHT
ggtacagcgtctctcgggagaagaaggaatcctttcctctcactgtgacatcggcccaaaagaacccgacagctttctatctctgtgccagtag




tataga





SEQ ID NO: 1776
TRAV14/DR4*02-RIGHT
actcattgaatttccagaaggcaagaaaatccgccaaccttgtcatctccgcttcacaactgggggactcagcaatgtatttctgtgcaatgag




agaggg





SEQ ID NO: 1777
TRAV9-1*01-RIGHT
gttttgaagccatgtaccgtaaagaaaccacttctttccacttggagaaagactcagttcaagagtcagactccgctgtgtacttctgtgctctg




agtga





SEQ ID NO: 1778
TRAV9-2*01-RIGHT
gtttgaagccacataccgtaaagaaaccacttctttccacttggagaaaggctcagttcaagtgtcagactcagcggtgtacttctgtgctctg




agtga





SEQ ID NO: 1779
TRAV1-1*01-RIGHT
gtttttcttcattccttagtcgctctgatagttatggttacctccttctacaggagctccagatgaaagactctgccccttacttctgcgctgtgaga




ga





SEQ ID NO: 1780
TRAV38-8*01-RIGHT
ttctctgtgaacttccagaaagcagccaaatccttcagtctcaagatctcagactcacagtgggggatgccgcgatgtatttctgtgcttatag




gagcg





SEQ ID NO: 1781
TRAV19*01-RIGHT
attcttggaacttccagaaatccaccagttccttcaacttcattatcacagcctcacaagtcgtggactcagcagtatacttctgtgctctgagtg




aggc





SEQ ID NO: 1782
TRAV30*01-RIGHT
aaaatatctgcttcatttaatgaaaaaaagcagcaaagctccctgtaccttacggcctcccagctcagttactcaggacctacttctgcggca




cagaga





SEQ ID NO: 1783
TRGV7*01-RIGHT
agtattttacttatgcaagcatgaggaggagctggaaattgatactgcaaaatctaattgaaaatgattctggatctattactgtgccacctggg




acagg





SEQ ID NO: 1784
TRGV1*01-RIGHT
aaagtatgacactggaagcacaaggagcaattggaatttgagactgcaaaatctaattaaaaatgattctgggttctattactgtgccacctgg




gacagg





SEQ ID NO: 1785
TRGV3*01-RIGHT
gtattatactcatacacccaggaggtggagctggatattgagactgcaaaatctaattgaaaatgattctggggtctattactgtgccacctgg




gacagg





SEQ ID NO: 1786
TRGV5*01-RIGHT
gtattatactcatacacccaggaggtggagctggatattgatactacgaaatctaattgaaaatgattctggggtctattactgtgccacctggg




acagg





SEQ ID NO: 1787
TRGV8*01-RIGHT
gtatcatacttatgcaagcacagggacgagccttaaatttatactggaaaatctaattgaacgtgactctggggtctattactgtgccacctggg




atagg





SEQ ID NO: 1788
TRGV4*01-RIGHT
gtatgatacttatggaagcacaaggaagaacttgagaatgatactgcgaaatcttattgaaaatgactctggagtctattacgtgccacctgg




gatggg





SEQ ID NO: 1789
TRGV2*01-RIGHT
gtattatacttacgcaagcacaaggaacaacttgagattgatactgcgaaatctaattgaaaatgactctggggtctattactgtgcacctgg




gacggg





SEQ ID NO: 1790
TRGV5P*02-RIGHT
gtattatactcatacaccgaggaggtggagctggaatttgagactgcaaaatctaattgaaaatgattctggggtttattactgtgccacctgg




ggcagg





SEQ ID NO: 1791
TRAV21*01-RIGHT
aagacttaatgcctcgctggataaatcatcaggacgtagtactttatacattgcagcttctcagcctggtgactcagccacctacctctgtgctgt




gagg





SEQ ID NO: 1792
TRBV29/OR9-2*01-RIGHT
acaagtttcccatcagccgcccaaacctaacattctcaactctgactgtgagcaacaggagacctgaagacagcagcatatacctctgcagcg




ttgaaga





SEQ ID NO: 1793
TRAV37*01-RIGHT
agattcacagccaggcttaaaaaaggagaccagcacatttccctgcacatacaggattcccagctccatgactcaaccacattcttctgcgca




gcaagca





SEQ ID NO: 1794
TRBV21/OR9-2*01-RIGHT
gattttcagcccaatgcccccaaaactcaccctgtaccttggagatccagtccacggagtcaggagacacagcacggtatttctgtgccaacag




caaagc





SEQ ID NO: 1795
TRBV21-1*01-RIGHT
gatttttagcccaatgctccaaaaactcatcctgtaccttggagatccagtccacggagtcaggggacacagcactgtatttctgtgccagcag




caaagc





SEQ ID NO: 1796
TRAVB-6*01-RIGHT
gttttgaggctgaatttaacaagagtcaaacttccttccacttgaggaaaccctcagtccatataagcgacacggctgagtacttctgtgctgtg




agtga





SEQ ID NO: 1797
TRAV8-3*01-RIGHT
gctttgaggctgaatttaagaggatcaatcttccttcaatctgaggaaaccctctgtgcattggagtgatgctgctgagtacttctgtgctgtgg




gtgc





SEQ ID NO: 1798
TRBV29-1*01-RIGHT
acaagtttcccatcagccgcccaaacctaacattctcaactctgactgtgagcaacatgagccctgaagacagtagcatatatctctgcagcgt




tgaaga





SEQ ID NO: 1799
TRBV25/OR9-2*01-RIGHT
agtcaacagtctccagaataaggatagagcgttttcccctgaccctggagtctgccagcccctcacatacctctcagtacctctgtgccagcagt




gaata





SEQ ID NO: 1800
TRBV25-1*01-RIGHT
agtcaacagtctccagaataaggacggagcattttcccctgaccctggagtctgccaggccctcacatacctctcagtacctctgtgccagcag




tgaata





SEQ ID NO: 1801
TRAV35*01-RIGHT
aagactgactgctcagtttggtataaccagaaaggacagcttcctgaatatctcagcatccatacctagtgatgaggcatctacttctgtgctg




ggcag





SEQ ID NO: 1802
TRAV25*01-RIGHT
gaaaagactgacatttcagtttggagaagcaaaaaagaacagctccctgcacatcacagccacccagactacagatgtaggaacctacttct




gtgcaggg





SEQ ID NO: 1803
TRAV12-2*01-RIGHT
aggtttacagcacagctcaataaagccagccagtatgtttctctgctcatcagagactccccagcccagtgattcagccacctacctctgtgccgt




gaaca





SEQ ID NO: 1804
TRAV12-1*01-RIGHT
aggtttacagcacagctcaatagagccagccagtatatttccctgctcatcagagactccaagctcagtgattcagccacctacctctgtgtggt




gaaca





SEQ ID NO: 1805
TRAV12-3*01-RIGHT
aggtttacagcacaggtcgataaatccagcaagtatatctccttgttcatcagagactcacagcccagtgattcagccacctacctctgtgcaat




gagcg





SEQ ID NO: 1806
TRAV23/DV6*01-RIGHT
agattcacaatctccttcaataaaagtgccaagcagttctcattgcatatcatggattcccagcctggagactcagccacctacttctgtgcagc




aagca





SEQ ID NO: 1807
TRAV22*01-RIGHT
agattaagcgccacgactgtcgctacggaacgctacagcttattgtacatttcctcttcccagaccacagactcaggcgtttatttctgtgctgtg




gagc





SEQ ID NO: 1808
TRAV41*01-RIGHT
aagattaattgccacaataaacatacaggaaaagcatagctccctgcacatcacagcctcccatcccagagactctgccgtctacatctgtgct




gtcaga





SEQ ID NO: 1809
TRAV39*01-RIGHT
cgattaatggcctcacttgataccaaagcccgtctcagcaccctccacatcacagctgccgtgcatgacctctctgccacctacttctgtgccgt




ggaca





SEQ ID NO: 1810
TRAV36/DV7*01-RIGHT
agactaagtagcatattagataagaaagaactttccagtatcctgaacatcacagccacccagaccggagactcggccatctacctctgtgct




gtggagg





SEQ ID NO: 1811
TRAV29/DV5*01-RIGHT
agattcactgtcttcttaaacaaaagtgccaagcacctctctctgcatattgtgccctcccagcctggagactctgcagtgtacttctgtgcagca




agcg





SEQ ID NO: 1812
TRAV27*01-RIGHT
aagagactaacctttcagtttggtgatgcaagaaaggacagttctctccacatcactgcagcccagcctggtgatataggcctctacctctgtg




caggag





SEQ ID NO: 1813
TRBV6-4*01-RIGHT
gttatagtgtctccagagcaaacacagatgatttccccctcacgttggcgtctgctgtaccctctcagacatgtgtacttctgtgccagcagtg




actc





SEQ ID NO: 1814
TRBV10-1*01-RIGHT
gctacagtgtctctagatcaaacacagaggacctccccctcactctggagtctgctgcctcctcccagacatctgtatatttctgcgccagcagt




gagtc





SEQ ID NO: 1815
TRBV10-2*01-RIGHT
gctatgttgtctccagatccaagacagagaatttccccctcactctggagtcagctaccgctcccagacatctgtgtatttctgcgccagcagt




gagtc





SEQ ID NO: 1816
TRBV6-2*01-RIGHT
gctacaatgtctccagattaaaaaaacagaatttcctgctggggttggagtcggctgctccctcccaaacatctgtgtacttctgtgccagcagt




tactc





SEQ ID NO: 1817
TRBV10-3*01-RIGHT
gctatagtgtctctagatcaaagacagaggatttcctcctcactctggagtccgctaccagctcccagacatctgtgtacttctgtgccatcagttg




agtc





SEQ ID NO: 1818
TRAV24*01-RIGHT
ggacgaataagtgccactcttaataccaaggagggttacagctatttgtacatcaaaggatcccagcctgaagactcagccacatcctctgt




gccttta





SEQ ID NO: 1819
TRBV14*01-RIGHT
gattcttagctgaaaggactggagggacgtattctactctgaaggtgcagcctgcagaactggaggattctggagtttatttctgtgccagcag




ccaaga





SEQ ID NO: 1820
TRBV24-1*01-RIGHT
atacagtgtctctcgacaggcacaggctaaattctccctgtccctagagtctgccatccccaaccagacagctctttacttctgtgccaccagtg




atttg





SEQ ID NO: 1821
TRBV24/OR9-2*03-RIGHT
agtgtctctgacaggaacaggctaaattctccctgtccctagagcctgccacccccaaccagacagcttctaggttacttcagtgccaccagtg




atttc





SEQ ID NO: 1822
TRAV8-2*01-RIGHT
gttttgaggctgaatttaagaagagtgaaacctccttccacctgacgaaaccctgacgaaaccctcagcccatatgagcgacgcggctgagtacttctgtgttgtg




agtga





SEQ ID NO: 1823
TRAV8-4*01-RIGHT
gttttgaggctgaatttaagaagagtgaaacctccttccacctgacgaaaccctcagcccatatgagcgacgcggctgagtacttctgtgctgt




gagtga





SEQ ID NO: 1824
TRBV22/OR9-2*01-RIGHT
ggctacggtgtctcccgagaggagaaggggctgtttcttctcatggtgaagctggcccacaccagccaaacagctctgtacttctgtcctggga




gtgcac





SEQ ID NO: 1825
TRAV26-2*01-RIGHT
ggcctctctggcaatcgctgaagacagaaagtccagtaccttgatcctgcaccgtgctaccttgagagatgctgctgtgtactactgcatcctga




gagac





SEQ ID NO: 1826
TRBV11-2*01-RIGHT
gattttctgcagagaggctcaaaggagtagactccactctcaagatccagcctgcaaagcttgaggactcggccgtgtatctctgtgccagcag




cttaga





SEQ ID NO: 1827
TRBV11-3*01-RIGHT
gattttctgcagagaggctcaaaggagtagactccactctcaagatccagcctgcagagcttggggactcggccgtgtatctctgtgccagcag




cttaga





SEQ ID NO: 1828
TRAV8-1*01-RIGHT
gctttgaggctgaatttataaagagtaaattctcctttaatctgaggaaaccctctgtgcagtggagtgacacagctgagtacttctgtgccgtg




aatgc





SEQ ID NO: 1829
TRBV7-5*02-RIGHT
caattctccacagagaggtctgaggatctttctccacctgaagatccagcgcacagagcaagggcgactcggctgtgtatctctgtgtcagaag




cttagc





SEQ ID NO: 1830
TRBV7-6*01-RIGHT
ggttctctgcagagaggcctgagggaatccatctccactctgacgatccagcgcacagagcagcgggactcggccatgtatcgctgtgccagca




gcttagc





SEQ ID NO: 1831
TRGV11*02-RIGHT
gataagtaaaaatgctcacacttccacttccactttgaaaataaagttcttagagaaagaagatgaggtggtgtaccactgtgcctgctggatt




aggcac





SEQ ID NO: 1832
TRAV17*01-RIGHT
agattaagagtcacgcttgacacttccaagaaaagcagttccttgttgatcacggcttcccgggcagcagacactgcttcttacttctgtgctac




ggacg





SEQ ID NO: 1833
TRBV27*01-RIGHT
ggtacaaagtctctcgaaaagagaagaggaatttccccctgatcctggagtcgcccagccccaaccagacctctctgtacttctgtgccagcag




tttatc





SEQ ID NO: 1834
TRDV1*01-RIGHT
attctgtcaacttcaagaaagcagcgaaatccgtcgccttaaccatttcagccttacagctagaagattcagcaaagtacttttgtgctcttggg




gaact





SEQ ID NO: 1835
TRBV18*01-RIGHT
gattttctgctgaatttcccaaagagggccccagcatcctgaggatccagcaggtagtgcgaggagattcggcagcttatttctgtgccagctc




accacc





SEQ ID NO: 1836
TRAV5*01-RIGHT
agactcactgttctattgaataaaaaggataaacatctgtctctgcgcattgcagacacccagactggggactcagctatctacttctgtgcag




agagta





SEQ ID NO: 1837
TRAV13-2*01-RIGHT
agagtcaccgttttattgaataagacagtgaaacatctctctctgcaaattgcagctactcaacctggagactcagcgtctacttttgtgcaga




gaata





SEQ ID NO: 1838
TRDV2*03-RIGHT
tttccaaggtgacattgatattgcaaagaacctggctgtacttaagatacttgcaccatcagagagagatgaagggtcttactactgtgccgtg




acacc





SEQ ID NO: 1839
TRAV1-2*01-RIGHT
gtttttcttcattccttagtcggtctaaagggtacagttacctccttttgaaggagctccagatgaaagactctgcctcttacctctgtgctgtgag




aga





SEQ ID NO: 1840
TRDV3*01-RIGHTS
gacggttttctgtgaaacacattctgacccagaaagcctttcacttggtgatctctccagtaaggactgaagacagtgccacttactactgtgcc




tttag





SEQ ID NO: 1841
TRAV31*01-RIGHT
tattctgtgagcttccagaaaacaactaaaactattcagcttatcatatcatcatcacagccagaagacctgcaacatatttctgttgtctcaaa




gagcc





SEQ ID NO: 1842
TRAV10*01-RIGHT
agatatacagcaactctggatgcagacacaaagcaaagctctctgcacatcacagcctcccagctcagcgattcagcctcctacatctgtgtg




gtgagcg





SEQ ID NO: 1843
TRAV28*01-RIGHT
gaagactaaaatccgcagtcaaagctgaggaactttatggccacctatacatcagattcccagcctgaggactcagctatttacttctgtgctgt




ggga





SEQ ID NO: 1844
TRAV40*01-RIGHT
aaaacttcggaggcggaaatattaaagacaaaaactcccccattgtgaaatattcagtccaggtatcagactcagccgtgtactacgtcttct




gggaga





SEQ ID NO: 1845
TRGV6*02-RIGHT
gcatgatacttatggaagtagaaggataagctggaaatttatacctccaaaactaaatgaaaatgcctctggggtctattactgtgccacctag




gacagg





SEQ ID NO: 1846
TRAV18*01-RIGHT
gttttcaggccagtcctatcaagagtgacagttccttccacctggagaagccctcggtgcagctgtcggactctgccgtgtactactgcgctctg




agaga





SEQ ID NO: 1847
TRBV26*01-RIGHT
ggtatcatgtttcttgaaatactatagcatcttttcccctgaccctgaagtctgccagcaccaaccagacatctgtgtatctctatgccagcagttc




atc





SEQ ID NO: 1848
TRBV8-2*01-RIGHT
agaggggtactgtgtttcttgaaacaagcttgagcatttccccaatcctggcatccaccagcaccagccagacctatctgtaccactgtggcag




cacatc





SEQ ID NO: 1849
TRGVA*01-RIGHT
agataaaatcatagccaaggatggcagcagctctatcttggcagtactgaagttggagacaggcatcgagggcatgaactactgcacaacct




gggccctg





SEQ ID NO: 1850
TRAV4*01-RIGHT
gcctccctgtttatccctgccgacagaaagtccagcactctgagcctgccccgggtttccctgagcgacactgctgtgtacctactgcctcgtgggt




gaca





SEQ ID NO: 1851
TRAV8-7*01-RIGHT
aggctgaatttaagaagagcgaaacctccttctacctgaggaaaccatcaacccatgtgagtgatgctgctgagtacttctgtgctgtgggtga




caggag





SEQ ID NO: 1852
TRAV13-1*01-RIGHT
cgaattgctgttacattgaacaagacagccaaacatttctccctgcacatcacagagacccaacctgaagactcggctgtctacttctgtgcag




caagta





SEQ ID NO: 1853
TRBVB*01-RIGHT
gactcgagaccctctgcagcagcagcctatcagtgcagccatatcctctctgagcggatatgacaaaccccagggttgaagcgacctaacct




atgagcc





SEQ ID NO: 1854
TRAV8-5*01-RIGHT
tggacacttatcacttccccaatcaatacccctgtgatttcctatgcctgtctttactttaatctcttaatcctgtcagctgaggaggatgtatgtca




cc





SEQ ID NO: 1855
TRBV16*02-RIGHT
gattttcagctaagtgcctcccaaattcaccctgtagccttgagatccaggctacgaagcttgaggattcagcagtgtatttttgtgccagcagc




caatc





SEQ ID NO: 1856
TRBV26/OR9-2*02-RIGHT
ggtatcatgtttcttgaaatactatagcatcttttctcctgaccctgaagtctgctagcaccaaccagacatgtgtgtatctctgcgccagcagttc




atc





SEQ ID NO: 1857
TRBV7-3*03-RIGHT
ggttctttgcagtcaggcctgagggatccgtctctactctgaagatccagcgcacagagcagggggactcagccgcgtatctccgtgccagca




gcttaac





SEQ ID NO: 1858
TRBV7-9*03-RIGHT
tgatcggttctctgcagagaggcctaagggatctttctccaccttggagatccagcgcacagagcagggggactggccatgtatctctgtgcc




agcagc





SEQ ID NO: 1859
TRBV9*02-RIGHT
cgattctccgcacaacagttccctgacttgcazctctgaactaaacctgagctctctggagctgggggactcagctttgtatttctgtgccagcagc




gtag





SEQ ID NO: 1860
TRBV29/OR9-2*02-RIGHT
acaagtttcccatcagccgcccaaacctaacattctcaactctgactgtgagcaacaggagacctgaagacagcagcatatacctctgcagcg




ttgaaga





SEQ ID NO: 1861
TRAV8-6*02-RIGHT
gttttgaggctgaatttaacaagagtcaaacttccttccacttgaggaaaccctcagtccatataagcgacacggctgagtacttctgtgctgtg




agtga





SEQ ID NO: 1862
TRBV6-4*02-RIGHT
gttatagtgtctccagagcaaacacagatgatttccccctcacgttggcgtctgctgtaccctctcagacatctgtgtacttctgtgccagcagtg




actc





SEQ ID NO: 1863
TRBV10-1*02-RIGHT
agatggctacagtgtctctagatcaaacacagaggacctccccctcactctggagtctgctgcctcctcccagacatctgtatatttctgcgcca




gcagt





SEQ ID NO: 1864
TRBV6-3*01-RIGHT
gctacaatgtctccagattaaaaaaacagaatttcctgctggggttggagtcggctgctccctcccaaacatctgtgtacttctgtgccagcagt




tactc





SEQ ID NO: 1865
TRAJ1*801
aatagagacacggggcatggtatgaaagtattacctcccagttgcaatttggcaaaggaaccagagtttccacttctccccgtacgtctgccca




tgccca





SEQ ID NO: 1866
TRAJ10*01
gaggcatcaaacactgtgatactcacgggaggaggaaacaaactcacctttgggacaggcactcagctaaaagtggaactcagtaagtatg




agattctat





SEQ ID NO: 1867
TRAJ11*01
tatggggatttgctatagtgtgaattcaggatacagcaccctcacctttgggaaggggactatgcttctagtctctccaggtacatgttgacccc




atccc





SEQ ID NO: 1868
TRAJ12*01
actgactaagaaacactgtgggatggatagcagctataaattgatcttcgggagtgggaccagactgctggtcaggcctggtaagtaaggtgt




cagagag





SEQ ID NO: 1869
TRAJ13*01
aaggcaggcattacagtgtgaattctgggggttaccagaaagttacctttggaattggaacaaagctccaagtcatcccaagtgagtccaattt




cctatg





SEQ ID NO: 1870
TRAJ13*02
aaaggcaggcattacagtgtgaattctgggggttaccagaaagttacctttggaactggaacaaagctccaagtcatcccaagtgagtccaat




ttcctat





SEQ ID NO: 1871
TRAJ14*01
tttgtcaggcagcacagtgctgtgatttatagcacattcatctttgggagtgggacaagattatcagtaaaacctggtaagtaggcaatatgtca




ctaaa





SEQ ID NO: 1872
TRAJ15*01
cagggcctcatttcacgtgccaaccaggcaggaactgctctgatctttgggaagggaaccaccttatcagtgagttccagtaagtacctgata




attatt





SEQ ID NO: 1873
TRAJ15*02
cagggcctcatttcactgtgccaaccaggcaggaactgctctgatctttgggaagggaacccacctatcagtgagttccagtaagtacctgata




attatt





SEQ ID NO: 1874
TRAJ16*01
tggtacaatagatcactgtgggttttcagatggccagaagctgctctttgcaaggggaaccatgttaaaggtggatcttagtaagtattattact




aatga





SEQ ID NO: 1875
TRAJ17*01
cctgtggtttttgctgggccttaaatcattgtgtgatcaaagctgcaggcaacaagctaacttttggaggaggaaccagggtgctagttaaacc




aagtga





SEQ ID NO: 1876
TRAJ18*01
aggggaccagcattgtgccgacagaggctcaaccctggggaggctatactttggaagaggaactcagttgactgtctggcctggtgagtgagt




cgctttc





SEQ ID NO: 1877
TRAJ19*01
ttttgcagaggacagatgtggctatcaaagattttacaatttcaccttggaaagggatccaaacataatgtcactccaagtaagtgagcagcc




ttttgt





SEQ ID NO: 1878
TRAJ2*01
tggtgtcacctacggtatgaatactggaggaacaattgataaactcacatttgggaaagggacccatgtatccattatatctggtgagtcatccc




aggtg





SEQ ID NO: 1879
TRAJ20*01
tgtaggcgacctcgcactgtggttctaacgactacaagctcagctttggagccggaaccacagtaactgtaagagcaagtaagtaagaaaga




aaagtcca





SEQ ID NO: 1880
TRAJ21*01
tgtaatgccaataaacatggtgtacaacttcaacaaattttactttggatctgggaccaaactcaatgtaaaaccaagtaagttatagttgccta




gaaga





SEQ ID NO: 1881
TRAJ22*01
gttgagcaaatcatagtgtttcttctggttctgcaaggcaactgacctttggatctgggacacaattgactgttttacctggtaggctgcctcaatt




aaa





SEQ ID NO: 1882
TRAJ23*01
aggatatgtaacacagtgtgatttataaccagggaggaaagcttatcttcggacagggaacggagttatctgtgaaacccagtaagtataa




attgtatc





SEQ ID NO: 1883
TRAJ23*02
gactggatgtgtttttgacaggatatgtaacacagtgtgatttataaccagggaggaaagcttatcttcggacagggaacggagctatctgtga




aaccca





SEQ ID NO: 1884
TRAJ24*01
gaggtgtttgtcacagtgtgacaattgacagctgggggaaattcgagtttggagcagggacccaggttgtggtcaccccaggtaagcccattc




ctggagc





SEQ ID NO: 1885
TRAJ24*02
gaggtgtttgtcacagtgtgacaactgacagctgggggaaattgcagtttggagcagggacccaggttgtggtcaccccaggtaagcccatt




ccctgga





SEQ ID NO: 1886
TRAJ25*01
atgctgagataatcactatgcagaaggacaaggcttctcctttatctttgggaaggggacaaggctgcttgtcaagccaagtaagtgacatata




atttat





SEQ ID NO: 1887
TRAJ26*01
ctgagcccagaaacactgtggggataactatggtcagaattttgtctttggtcccggaaccagattgtccgtgctgccctgtaagtacagttaag




tggag





SEQ ID NO: 1888
TRAJ27*01
caatagcactaaagactgtgtaacaccaatgcaggcaaatcaacctttggggatgggactacgctcactgtgaagccaagtaagttgtgttctt




ctttgc





SEQ ID NO: 1889
TRAJ28*01
agaaaggaaactctgtgcatactctggggctgggagttaccaactcactttcgggaaggggaccaaactctcggtcataccaagtaagttcttc




tttctg





SEQ ID NO: 1890
TRAJ29*01
ttatggaggaaatcactgtgggaattcaggaaacacacctcttgtctttggaaagggcacaagactttctgtgattgcaagtaagtgtttctagc




catcc





SEQ ID NO: 1891
TRAJ3*01
aaagaccttacccacagtgggggtacagcagtgcttccaagataatctttggatcagggaccagactcagcatccggccaagtaagtagaat




gaagcagg





SEQ ID NO: 1892
TRAJ30*01
gttatggtcccaatcacagtgtgaacagagatgacaagatcatctttggaaaagggacacgacttcatattctccccagtaagtgctgtttatgt




gattt





SEQ ID NO: 1893
TRAJ31*01
agtaaaggcaggaagtgctgtggaataacaatgccagactcatgtttggagatggaactcagctggtggtgaagcccagtaagtggccatgtt




ttattga





SEQ ID NO: 1894
TRAJ32*01
ggctctgaaggactgtgtgaattatggcggtgctacaaacaagctcatctttggaactggcactctgcttgctgtccagccaagtacgtaagta




gtggca





SEQ ID NO: 1895
TRAJ32*02
gtgattcagccacctacctctgtgccgatggtggtgctacaaacaagctcatctttggaactggcactctgcttgctgtccagccaaatatccag




aaccc





SEQ ID NO: 1896
TRAJ33*01
gttaaggtttttgtgtctgtgtggatagcaactatcagttaatctggggcgctgggaccaagctaattataaagccaggtaagtctcagagatgt




gactg





SEQ ID NO: 1897
TRAJ34*01
aggtttttgtagatctcagtatcactgtgtcttataacaccgacaagctcatctttgggactgggaccagattacaagtctttccaagt





SEQ ID NO: 1898
TRAJ35*01
taaaagaatgagccattgtggataggctttgggaatgtgctgcattgcgggtccggcactcaagtgattgttttaccacgtaagtatatcttttct




catt





SEQ ID NO: 1899
TRAJ36*01
tactgggcagaaacactgtgtcaaactggggcaaacaacctcttctttgggactggaacgagactcaccgttattccctgtaagtccttacctct




tgaca





SEQ ID NO: 1900
TRAJ37*01
aaagtacagcattagagtgtggctctggcaacacaggcaaactaatctttgggcaagggacaactttacaagtaaaaccaggtaggtctgga




tgtttcca





SEQ ID NO: 1901
TRAJ37*02
ctcagcggtgtacttctgtgctcttcatggctctagcaacacaggcaaactaatctttgggcaagggacaactttacaagtaaaaccagatatc




cagaac





SEQ ID NO: 1902
TRAJ38*01
aaagctttctatgactgtgtaatgctggcaacaaccgtaagctgatttggggattgggaacaagcctggcagtaaatccgagtgagtcttcgtg




ttaact





SEQ ID NO: 1903
TRAJ39*01
cagccgaagatcactgtgtgaataataatgcaggcaacatgctcacctttggagggggaacaaggttaatggtcaaaccccgtgagtatctct




gctgaat





SEQ ID NO: 1904
TRAJ4*01
aagcaccatctgattgtgtgttttctggtggctacaataagctgatttttggagcagggaccaggctggctgtacacccatgtgagtatgaccct




gcaag





SEQ ID NO: 1905
TRAJ40*01
tatgttggtttatgtagagacacataacactgtgactacctcaggaacctacaaatacatctttggaacaggcaccaggctgaaggttttagca




agt





SEQ ID NO: 1906
TRAJ41*01
ttagggagaacgcactgtggaactcaaattccgggtatgcactcaacttcggcaaaggcacctcgctgttggtcacaccccgtgagtttttgtg




gtttac





SEQ ID NO: 1907
TRAJ42*01
agccccataggactgtgtgaattatggaggaagccaaggaaatctcatctttggaaaaggcatctaaactctctgttaaaccaagtaagtgttg




gggattc





SEQ ID NO: 1908
TRAJ43*01
ttgttagagcatgtattactgtgacaataacaatgacatgcgctttggagcagggaccagactgacagtaaaaccaagtaagttgggggaatg




ggtcaat





SEQ ID NO: 1909
TRAJ44*01
aggtttctgttatgaagcatctcacagtgtaaataccggcactgccagtaaactcacctttgggactggaacaagacttcaggtcacgctcggt





SEQ ID NO: 1910
TRAJ45*01
agggttggcccagagtgtgtattcaggaggaggtgctgacggactcaccttggcaaagggactcatctaatcatccagccctgtaagtgcttt




tgcctg





SEQ ID NO: 1911
TRAJ46*01
aagctgctgacagccgtgagaagaaaagcagcggagacaagctgacttttgggaccgggactcgtttagcagttaggcccagtaagtctgag




cagaaagt





SEQ ID NO: 1912
TRAJ47*01
gtagaggagttgacgctgtgtggaatatggaaacaaactggtctttggcgcaggaaccattctgagagtcaagtcctgtgagtataaaacac




actcaag





SEQ ID NO: 1913
TRAJ47*02
gtgtactattgcatctcggccctggaatatggaaacaagctggtctttggcgcaggaaccattctgagagtcaagtcctatatccagaaccctg




accctg





SEQ ID NO: 1914
TRAJ48*01
atgacttagaacactgtgtatctaactttggaaatgagaaattaacctttgggactggaacaagactcaccatcatacccagtaagttcttcatc




cttgg





SEQ ID NO: 1915
TRAJ49*01
tgttgagcttcctatcacagtggaacaccggtaaccagttctatttgggacagggacaagtttgacggcattccaagtaagtcaaagaaaat




tttcca





SEQ ID NO: 1916
TRAJ5*01
tactgtgatgtaccagggtgtggacacgggcaggagagcacttacttttgggagtggaacaagactcccaagtgcaaccaagtaagtacccaa




acttaggc





SEQ ID NO: 1917
TRAJ50*01
taaaggtttggatggctgtgtgaaaacctcctacgacaaggtgatatttgggccagggacaagcttatcagtcattcccaagtaagtgtccctgg




ggtgct





SEQ ID NO: 1918
TRAJ51*01
aaactccctgaagcagggagatgcgtgacagctatgagaagctgatatttggaaaggagacatgacttaactgtgaagccaagcaagctgga




aagacctaa





SEQ ID NO: 1919
TRAJ52*01
gcctccagtgcagtgctaatgctggtggtactagctatggaaagctgacatttggacaagggaccatcttgactgtccatccaagtaagtgtaa




caagac





SEQ ID NO: 1920
TRAJ53*01
agccttctgtggctgtgagaatagtggaggtagcaactataaactgacatttggaaaaggaactctcttaacgtgaatccaagtaagtttgaa




gggagt





SEQ ID NO: 1921
TRAJ54*01
taaagcctcgtgctgtggtgtaattcagggagcccagaagctggtatttggccaaggaaccaggctgactatcaacccaagtaagtatgacag




ggtgaag





SEQ ID NO: 1922
TRAJ55*01
gaggatggatccctgttagtgacaagtgctggtaatgctcctgttggggaaaggggatgagtacaaaaataaatccaagtaagtgtggaggg




acaagaag





SEQ ID NO: 1923
TRAJ56*01
agatcctcgtgtcattgtgttatactggagccaatagtaagctgacatttggaaaaggaataactctgagtgttagaccaggtatgttttaatga




atgtt





SEQ ID NO: 1924
TRAJ57*01
aagcagtctgtgggggtgtaactcagggcggatctgaaaagctggtctttggaaagggaacgaaactgacagtaaacccatgtaagtctgaa




taatgctt





SEQ ID NO: 1925
TRAJ58*01
aagcccctcagcacagtgtttaagaaaccagtggctctaggttgacctttggggaaggaacacagctcacagtgaatcctggtaagtggagg




ggagcatt





SEQ ID NO: 1926
TRAJ59*01
atgtaaaggcagcagctcctgtgggaaggaaggaaacaggaaatttacatttggaatggggacgcaagtgagagtgaagctatctttaaacc




aaaggtgt





SEQ ID NO: 1927
TRAJ6*01
caggttttatcaaaggctgtcctcactgtgtgcatcaggaggaagctacatacctacatttggaagaggaaccagccttattgttcatccgtgta




agt





SEQ ID NO: 1928
TRAJ60*01
gtaaagggcctgggcactatgtgaagatcacctagatgctcaactttgggaaggggactgagttaattgtgagcctgggtgagtacctcaact




ccagagg





SEQ ID NO: 1929
TRAJ61*01
taaaggtgcccactcctgtgggtaccgggttaataggaaactgacatttggagccaacactagaggaatcatgaaactcagcaagtaatattt




ggcagaa





SEQ ID NO: 1930
TRAJ7*01
tgtaatacacttacacagtgtgactatgggaacaacagactcgcttttgggaaggggaaccaagtggtggtcataccaagtaagtgagctggg




atcctcc





SEQ ID NO: 1931
TRAJ8*01
tacagagttatgtcagagtgtgaacacaggctttcagaaacttgtatttggaactggcacccgacttctggtcagtccaagtaagtcaaatctg




cagaaa





SEQ ID NO: 1932
TRAJ9*01
cgcagtgcaaatcactgtgggaaatactggaggcttcaaaactatctttggagcaggaacaagactatttgttaaagcaagtaagttccatga




aataacc





SEQ ID NO: 1933
TRBJ1-1*01
ttttcaccttgacccctgtcactgtgtgaacactgaagctttcttggacaaggcaccagactcacagttgtaggtaagacatttttcaggttcttt




tgc





SEQ ID NO: 1934
TRBJ1-2*01
ttttagagtggctatattcttatgtgctaactatggctacaccttcggttcggggaccaggttaaccgttgtaggtaaggctgggggtctctagga




gggg





SEQ ID NO: 1935
TRBJ1-3*01
tttgaagtggccctgggaggctgtgctctggaaacaccatatattttggagagggaagttggctcactgttgtaggtgagtaagtcaaggctgg




atagct





SEQ ID NO: 1936
TRBJ1-4*01
ttccttccagtctttaatgttgtgcaactaatgaaaaactgttttttggcagtggaacccagctctctgtcttgggtatgtaaaagacttctttcgg




gat





SEQ ID NO: 1937
TRBJ1-5*01
tttgccacactcatgatgcactgtgtagcaatcagccccagcattttggtgatgggactcgactctccatcctaggtaagttggcagaatcaggg




tggta





SEQ ID NO: 1938
TRBJ1-6*01
ttatctaagcctctgcagctgtgctcctataattcacccctccactttgggaatgggaccaggctcactgtgacaggtatgggggctcccactcttg




actc





SEQ ID NO: 1939
TRBJ1-6*02
ttatctaagcctctgcagctgtgctcctataattcacccctccactttgggaacgggaccaggctcactgtgacaggtatgggggctccactcttg




actc





SEQ ID NO: 1940
TRBJ2-1*01
ttctgggcagcccctcccactgtgctcctacaatgagcagttcttcgggccagggacacggctcaccgtgctaggtaagaaagggggctccagg




tgggag





SEQ ID NO: 1941
TRBJ2-2*01
tgcgccagggtccccagggctgtgcgaacaccggggagctgttttttggagaaggctctaggctgaccgtactgggtaaggaggcggctggg




gctccgga





SEQ ID NO: 1942
TRBJ2-2P*01
agctgccccactctgagaggggctgtgctgagaggcgctgctgggcgtctgggcggaggactcctggttctgggtgctgggagagcgatgggg




ctctcag





SEQ ID NO: 1943
TRBJ2-3*01
ttttgtcctgggcctccaggctgtgagcacagatacgcagtattttggcccaggcacccggctgacagtgctcggtaagcgggggctcccgctg




aagccc





SEQ ID NO: 1944
TRBJ2-4*01
ttctgtgccgcgtctcggggctgtgagccaaaaacattcagtacttcggcgccgggacccggctctcagtgctgggaagctggggccgccggg




ggaccg





SEQ ID NO: 1945
TRBJ2-5*01
tttttgtgcggggctcgggggccgtgaccaagagacccagtacttcgggccaggcacgcggctcctggtgctcggtgagcgcgggctgctggg




gcgcggg





SEQ ID NO: 1946
TRBJ2-6*01
ttgcggggagtccccgggctgtgctctggggccaacgtcctgactttcggggccggcagcaggctgaccgtgctgggtgagttttcgcgggacc




acccgg





SEQ ID NO: 1947
TRBJ2-7*01
tttgcatgcgggggtgcacctccgtgctcctacgagcagtacttcgggccgggcaccaggctcacggtcacaggtgagattcggcgtctcccc




accttc





SEQ ID NO: 1948
TRBJ2-7*02
tttgcatgcggggatgcacctccgtgctcctacgagcagtacgtcgggccgggcaccaggctcacggtcacaggtgagattcgggcgtctcccc




accttc





SEQ ID NO: 1949
TRDJ1*01
ttttggaacgtcctcaagtgctgtgacatcgataaactcatctttggaaaaggaacccgtgtgactgtggaaccaagtaagtaactcattattta




tctga





SEQ ID NO: 1950
TRDJ2*01
tttttcgtaatgacgcctgtggtagtgctttgacagcacaactcttctttggaaagggaacacaactcatcgtggaaccaggtaagttatgcattt




tact





SEQ ID NO: 1951
TRDJ3*01
tgaggcactgtcataatgtgctcctgggacacccgacagatgttttcggaactggcatcaaactcttcgtggagccccgtgagttgatctttttc




ctat





SEQ ID NO: 1952
TRDJ4*01
atgagacatacaaaaaggtaatgccgccccagacccctgatctttggcaaaggaacctatctggaggtacaacaac





SEQ ID NO: 1953
TRGJ1*01
ttttgatatggactgaatcactgtggaattattataagaaactcttggcagtggaacaacactggttgtcacaggtaagtatcggaagaatac




aacatt





SEQ ID NO: 1954
TRGJ1*02
tactgtgccttgtgggaggtgcttattataagaaactctttggcagtggaacaacacttgttgtcacaggt





SEQ ID NO: 1955
TRGJ2*01
ttttgatatggactgaatcactgtggaattattataagaaactctttggcagtggaacaacacttgttgtcacaggtaagtatcggaagaataca




acatt





SEQ ID NO: 1956
TRGJP*01
ataaaggcttctcaggtggtgggcaagagttgggcaaaaaaatcaaggtatttggtcccggaacaaagcttatcattacaggtaagttttcttt




aaattt





SEQ ID NO: 1957
TRGJP1*01
gatttttctagaagcttagaccggtgtgataccactggttggttcaagatatttgctgaagggactaagctcatagtaacttcacctggtaagt





SEQ ID NO: 1958
TRGJP2*01
gatttttgtagaagcttagaccagtgtgatagtagtgattggatcaagacgtttgcaaaagggactaggctcatagtaacttcgcctggtaagt


















TABLE B1





SEQ ID NO
Name
Sequence







SEQ ID NO: 239
IGHV(II)-1-
CACACTTGAGCCCAGCCTTTCTGGGCCAACTCTCCATCTGTAGAGACACATCCAAGGCCCAGTTATCCCTGCAGCTGAGCTCCGTGAT



1*01
GGCCAAGGGCAGGGCCGCACATTCCCGTGGGA





SEQ ID NO: 240
IGHV(II)-20-
GCTTGTTGCTCATGTAGCTCAGCCATAGGAAGAGCTGCCCCGGCGGACATAGATCTGGAGGTGGCGACTGGACTCTTGAGGAGTG



1*01_IGHV(II)-
GGTTGGAATTTTTGCTGCCTTCATGACCTGTGCAC



20-1*02






SEQ ID NO: 241
IGHV(II)-22-
AATCCAACCCACTCCTCAAGAGTCCAGTCACCATCTCCAGATCCACATCCAAAAAACAGTTTCTCCTACAGCTGAGCTACCTTAACAA



1*01_IGHV(II)-
GGAGTACACAACCATGATTTTTATACAAAAGA



23-2*01






SEQ ID NO: 242
IGHV(II)-26-
CATCATGCACCCTCCACCCAGGTCCATGTCCCCATCAACAGTGACTCAACCAAGAGCCAGTTCTCTGTGAAGCTCAGCTCCATGACCA



2*01
CCTAGGACACGGCTGAGTATTACTGTGAAAGA





SEQ ID NO: 243
IGHV(II)-28-
GTGAAGGGAGCACAAATTACAACCCACTGCTCAAGAGTCCATATCCAGATCCAAGAAACAGTTCTTACAGCTGAGCTCTGTGCCCA



1*02_IGHV(II)-
GTGAACACACAACTACGCATTTTTAAGCAAAAGA



28-1*03






SEQ ID NO: 244
IGHV(II)-30-
TTACTCCCCTCTTCTCCAAGAGTCCAGTCACCATCTCCAGATCCATGTCCAAAAAGTAGTTCTTCTTACAGCTGAACTATGTGAGGAAC



1*01_IGHV(II)-
AAACACATAGCCATGTATTTTAGAGCAAAAGA



30-




1*02_IGHV(II)-




30-




32*01_IGHV(II)-




30-




51*01






SEQ ID NO: 245
IGHV(II)-30-
TTACAACCCACTTCTCAAGAGTCCATATCCGGATCCAAGAAACAGTTCTTACAGCTGAGCTCTGTGCCCAGTGAACACACAACTACG



21*01
CATTTTGAAGCAAAAGATGCAATGAAGGGCCTT





SEQ ID NO: 246
IGHV(II)-30-
TTACAACCCACTGCTCAAGAGTCCATAATCCAGATCCAAGAAACAGTTCTTACAGCTGAGCT CTGTGCCCAGTGAACACACAACTACG



41*01
CATTTTTAAGCAAAAGACGCAATGAAGGGCCTT





SEQ ID NO: 247
IGHV(II)-30-
TTACTCCCCTCTTCTCAAGAGTCCAGTCACCATCTCCAGATCCATGTCCAAAAAGTACTTCTTCTTACAGGTGAACTATGTGAGCAACA



51*02_IGHV(II)-
AACACATAGCCATGTATTTTAGAGCAAAAGA



33-1*-1






SEQ ID NO: 248
IGHV(II)-31-
TTACATCCCACTTCTCAAGAGTCCATATCCAGATCCAAGAAACAGTTCTTACAGCTGAGCTCTGTGCCCAGTGAACACACAACTACAC



1*01
ATTTTGAAGCAAAAGACGCAATGAAGGGCCTT





SEQ ID NO: 249
IGHV(II)-40-
AGCCTGGTGAAGCCCTTGCAAACCCCCTCACTCACCTGTGCTGCCTCTGGATTCTCTGTCACAATCAGTGCTTCCTG



1*01






SEQ ID NO: 250
IGHV(II)-43-
CATGAAGGGAGCACAAATTCTAACCCACTCCTCAAGAGTCCAGTCACCACCTCCAGATCTATGTCCAAAAACAGCTCTTCGTATGGC



1*01
TGAGTGACATTAGCAACAAGCACACAGCCATGT





SEQ ID NO: 251
IGHV(II)-43-
CATGAAGGGAGCACAAATTCTACCCACTCCTCAAGAGTCCAGTCACCACCTCCAGATCTATGTCCAAAAACAGCTCTTCGTATGGC



1D*01
TGAGTGACATTAGCAACAAGCACACAACCATGT





SEQ ID NO: 252
(IGHV(II)-44-
ACGATGATCCATCTCTGCAGAGCCAACTCTCCTTCTCCAGAGATTCATCCAAGAAACAATTTTGACTATACCTGAGCTCTGTGACATC



2*01
TGAGGACATGGTTTGTATTACTGTGCAAGACA





SEQ ID NO: 253
IGHV(II)-46-
GACCTGAATAGCACACACTTACCCTCTGCCTCACCTACACTGTTACTGGCCACTCCGTCACAACCAGTCCTTACTAGTGGACCTGGAT



1*01
CTGCCGGCTCTCAGGGAGGGGCTGCAATGGAT





SEQ ID NO: 254
IGHV(II)-49-
ACGCAACCCACGCCTCAAGAGTCCAGTCACCATCTCFAGATCCACATCCAAAACACAGTTTCTTCTACAGCTGAGCTACCTGAGCAAC



1*01
GAGTACACAACCATGAATTTTTACACAAAAGA





SEQ ID NO: 255
IGHV(II)-51
AATTCTAACCCACTCCTCATGAGCTCAGTCACCATCTCCAGATCCACGTCCAAGAACCAAATTTTCTTTTAGCTGAGTTCTGTGACCAA



2*01
CAATGCCACAACCTTGTATTACTGTGAGAGG





SEQ ID NO: 256
IGHV(II)-53-
ATTCCAACCCACTCCTCAAGAGTCCAGTCACCATCTCCAGATCCATGTCCAAAAAGCAGTTCTTCCTACAGCCGAGCTAAGTGAGTCA



1*01
CAAGCACACAGCCATGTATTTTTAACAAAAGA





SEQ ID NO: 257
IGHV(II)-60-
AAATTCCCACCCACTCCTTATGAATCCAGTCACCATCTCCAAATTCGGGTCCAAAAAACACTTGTTTTTACAGTGGAGCTATGTGAGC



1*-1
AACAAGCTCACAGCCATGTTTTAAAGAAGAGA





SEQ ID NO: 258
IGHV(II)-62-
ATTACTCCCCTTTCCTCAAGAGTCCAGTCACCATCCCCAGATCCATGTCCAAAAACAGTTCTTCCTACAGCTGAGCTACATGAGCAAC



1*-01
AATCACATAGCCATATATTTTTCAGCAATAGA





SEQ ID NO: 259
IGHV(II)-65-
TTCCAACCCACTCCTCAAGAGTCCAGTCACTATCTCCAGATCCACATCCAAAAAACAGTGTTTCCTGTAGCTGAGCTACCTGAGCAAC



1*01
AAGTACACAACCATGAATTTTAATACAAAAGA





SEQ ID NO: 260
IGHV(II)-67-
ATGCCTAGGTGTGAAGATCACACACTGACCTCACCCATGCTGTCTCTGGCCACTTCATCACAACCAATGCTTAATATTGGACGTGGAT



1*-1
CTGCCAGTCCCCGGGGAATGGGTTGAATGGAT





SEQ ID NO: 261
IGHV(III)-11-
GGCAGCAACAGGGAGAAATTCAAGAGGAAGTTCTTACATGCACCCTTACGTGCACGGTCTCACTGAGATCTTTACTTCCTTTATCAC



1*01
GTTTGTTCTGTAAATCACAACGAATGGTGCATT





SEQ ID NO: 262
IGHV(III)-13-
TGGGACTCTCCTTGAGTAAAAAGATGATTAACAATCCTCAAATACACTCAGTTCAGGAGATTCTCTTTAAGATGATTAACCTGAGA



1*01
GCTCAGGAAAAGTCCGTGTATTACTTTGAGGGA





SEQ ID NO: 263
IGHV(III)-16-
TCAGAGTTACTCTCCATGAGTACAAATAAATTAACAGTCCCAAGCGACACCTTTTCATGTGCAGTCTACCTTAAAGGGACCAAACTG



1*01
AAAGTCAAGGACAAGGCCTTGTAATACTGTGAG





SEQ ID NO: 264
IGHV(III)-20-
ACCAGAAGAATGCTATCATCATCTTTTCTGTTCTTTTGGAAGGAATGCCCCCTCTACTCACCTCCACTTGCCTGCATATATTTCTATTTG



2*01
TCTTTGCTTTTCAGCAGTTTTAATAAGATT





SEQ ID NO: 265
IGHV(III)-2-
GGGTTACTTTCCATGAGTACAAATAAATTAACAATCTCAAGCAACACCCTTTTAAGTGCAGTCTGCCTTACAATGACCAATCTGAAAG



1*01
CCAAGGACAAGGTCATGTATTACTGTGAGTGA





SEQ ID NO: 266
IGHV(III)-25-
GCAAGCTCCAGGACCAGGGTTGATGTGGGCAGCAACAGGGAGAAATTGAAGAGGAAGCTCTCAGTGGTGCCCTCCATGAATACAA



1*01
AGAATCTTCACAGTCCCCAGGACACCCTTACGTGC





SEQ ID NO: 267
IGHV(III)-25-
AGAGGAGCTCTCAGTGGTGCCCTCCATGAATACAAAGAATCTTCACAGTCCCCAGGACACCCTTACGTGCATGGTCTCACTGATAT



1*02
CTTTACTTCCTTTATCACTTTTGTTTGTAAAT





SEQ ID NO: 268
IGHV(III)-25-
GGGTTACTCTCCATGAGTACAGATAAATCAACATTCCCAAGTGACACCCTTTCAQAGTGCAGTCTACCTTACAAGGACCAACCTGAAA



1*01_IGHV(III)-
GCCAAGGGCAAGGCCGTATATTACAGTGAGGGA



26-1*02






SEQ ID NO: 269
IGHV(III)-38-
AATGGGACTCGCCTTCAGTACAAAGAAGATTAACAGTCCTCAGAGACACTGTTCAGAAGATTCTCTTTTAAGATAATAAAACTGAGA



1*01
GCCCAAGACAAGTCTGTGTATTACTGTGAGGGA





SEQ ID NO: 270
IGHV(III)-38-
AATGGGACTCGCCTTCAGTACAAAGAAGATTAACAGTCCTCAGAGACACTGTTCAGAAGATTCTCTTTTAAGATAATAAAACTGAGA



1*02
GCCCAAGACAAGTCTGTGTATTACTGTGAGGGA





SEQ ID NO: 271
IGHV(III)-38-
AGTGGGACTCTCCTTCAGTACAAAGAAGATTAACAGTCCTCAGAGACACTGTTCAGAAGATTCTCTTTAAGATAATTAAACCAAGA



1D*01
GCCCAGGACAAGTCTGTGTATTACTGTGAGGGA





SEQ ID NO: 272
IGHV(III)-
TTTAGGAAGAATGCCCCCTCAACTCATCTCCACTTGTCTGCATGTATTTCTATTTGTCTTGGACGTTCCCAACAGCCTCNCGAACACTC



44*01
ACCTCACCCTACAATGCTGCTCGAGGGGGTC





SEQ ID NO: 273
IGHV(III)-
ATTTTCCTCTTGCTTATAAGGTTTTAACCAGAAGAATGCTGTCATCATCTTTCCTGTTCTTTTAGAAGGAATGCCCCCTCAACTCATCTC



44D*01
CACTTGTCTGCATGTATTTCTATTTGTCTT





SEQ ID NO: 274
IGHV(III)-5-
GATTTATCATCTCAAGAGACAATGTCAAGAAGATGCTGTTTCTGCAAATGGGCAATCTGCAAACCAAGGACACGTCACTACATTACT



1*01
GTGCAAGAGAAG





SEQ ID NO: 275
IGHV(III)-51-
CAATGCAGACTATGTTAGGGGCAGACTCACCACTTCCAGAGACAACACCAAGTACATGCTGTACATGCAAATGAACAGCCTGAGAA



1*01
CCCAGAACATGGCAGCATTTAACTGTGCAGGAAA





SEQ ID NO: 276
IGHV(III)-5-
GGTGCTCTGCTCCAGCACAAAGAAGATTCACAGTTCCTGGGGACAACACTTAACATCACAATCTCCCTTAAAATTATCTACTGGAAA



2*01
GCTGAGGAGTAGGCAGTGTATTACTGTGAGAGA





SEQ ID NO: 277
IGHV(III)-67-
GATTTATTGTCTCCAGAGACAATGTCAAGAATATGCTATATCTGCAATGGGCGATCTGTAAACCAAGAACACATCAGTATATCACT



2*01
GTGCAAGAGGAG





SEQ ID NO: 278
IGHV(III)-67-
AGCATAATGAAGATTCACAATTCCCAGGGACACCAATTACCAGCACAGTCTCCCTTAAAATAATCTACTTGGAAGCTGAGGGGGCTC



3*01
TCACAGGGGTAGGCAGTGTATTACTGTGAGAGA





SEQ ID NO: 279
IGHV(III)-67-
AGGTTTACTCTTCATGAGTACAAATAAATTAACTGGTCCAGCGACACCCTTTCACGTGCACTCTACCTTACAATGACTAACCTGAAAG



4*-1
CCAAGGACAAGGTTGTGTAATACTGTGAGCTT





SEQ ID NO: 280
IGHV(III)-76-
TGGTACCCTCCATCAATACAAAGAAAAATCATAATCCTCAGGGACACCCTTGTCAGCACAGTCTCCCTCAAAATGACCACCTGAGA



1*01
GCCGAGGAGAAGGCCATGTATTACTGTGAGAGA





SEQ ID NO: 281
IGHV(III)-
GGGTTACTCTCCATGAGTACAAGTAAATTAACAGTCCCAAGCAACACCCTTTCAAGTGCAGTCTACCTTAAAATGACCAATGTGAAA



82*01
GCCAAGGACAAGACCTTGTATTACTGTGAGTGA





SEQ ID NO: 282
IGHV(IV)-44-
CTAAGCCCCAACCTTCAGGGCAGAGCTAGCATCTCCAGAAACACATAGTAAAAAACAAGAAAACTTACAGCTGAGAAGTGTGATGG



1*01
CTGGGGATGCAGGCGTGTATTACTGTGCTCAAGG





SEQ ID NO: 283
IGHV1/OR15-
AACTATGCACAGAAGTTTCAGGGCAGAGTCACCATGACCAGGGACACGTCCATCAGCACAGCCTACACGGAGCTGAGCAGCCTGA



1*01
GATCTGAGGACACGGCCACGTATTACTGTGCGAGA





SEQ ID NO: 284
IGHV1/OR15-
CTATGCACAGAAGTTTCAGGGCAGAGTCACCATGACCAGGGACACGTCCATCAGCACAGCCTGCACGGAGCTGAGCAGCCTGAGA



1*02
TCTGAGGACACGGCCACGTATTACTGTGCGAGAGA





SEQ ID NO: 285
IGHV1/OR15-
CTATGCACAGAAGTTTCAGGGCAGAGTCACCATGACCAGGGACACGTCCATCAGCACAGCCTACACGGAGCTGAGCAGCCTGAGA



1*03
TCTGAGGACACAGCCACGTATTACTGTGCGAGAGA





SEQ ID NO: 286
IGHV1/OR15-
CTATGCACAGAAGTTTCAGGGCAGAGTCACCATGACCAGGGACACGTCCATCAGCACAGCCTACATGGAGCTGAGCAGCCTGAGAT



1*04
CTGAGGACACGGCCACGTATTACTGTGCGAGAGA





SEQ ID NO: 287
IGHV1/OR15-
AACTACCCACAGAAGCTCCAGGGCAGAGTCACCATGACCAGAGACACATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGA



2*01
GATCTGACGACATGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 288
IGHV1/OR15-
CTACCCACAGAAGCTCCAGGGCAGAGTCACCATGACCAGAGACACATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGA



2*02_IGHV1/
TCTGACGACATGGCCGTGTATTACTGTGCGAGAGA



OR15-2*03






SEQ ID NO: 289
IGHV1/OR15-
AAATATTCACAGAAGCTCCAGGGCAGAGTCACCATTACCAGGGACACATCTTCGAGCACAGCCTACATGCAGCTGAGCAGCCTGAG



3*01
ATCTGAGGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 290
IGHV1/OR15-
ATATTCACAGAAGCTCCAGGGCAGAGTCACCATTACCAGGGACACATCTGCGAGCACAGCCTACATGCAGCTGAGCAGCCTGAGAT



3*02
CTGAGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 291
IGHV1/OR15-
AAGTATTCACAGAAGCTCCAGGGCAGAGTCACCATTACCAGGGACACATCTGCGAGCACAGCCTACATGCAGCTGAGCAGCCTGAG



3*03
ATCTGAGGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 292
IGHV1/OR15-
CGTTTCTCTGGCTCCAGGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGGCTGAGGACGAGGGAGATTATTACTGCAGT



4*01
TCATATACAGCCACTCCTCATATTCCTGTGATT





SEQ ID NO: 293
IGHV1/OR15-
AGCTATGCACAAAAGTTCCAGGCCAGAGTCACCATAACCAGGGACACATCCATGAGCACAGCCTACATGGAGCTAAGCAGTCTGAG



5*02
ATCTGAGGACACGGCCATGTATTACTGTGTGAGA





SEQ ID NO: 294
IGHV1/OR15-
TATATGCACAGAATTCCAGGGCAGAGTCACCACGACCTGGGACACGTCTACAGACACAGCCTACATGGAGCTGAGCAGCCTGAGAT



6*01
CTGAGGACACAGCCGTATATTAATGTGCAAGACA





SEQ ID NO: 295
IGHV1/OR15-
CTATGCACAGAAGTTCCAGGGCAGAGTCACCATAACCAGGGACACATCCATGGGCACAGCCTACATGGAGCTAAGCAGCCTGAGA



9*01
TCTGAGGACACGGCCATGTATTACTGTGTGAGAGA





SEQ ID NO: 296
IGHV1/OR16-
CTATGCACAGAAGTTTCAGGGCAGAGTCACCATGACCAGGGACATGTCCACGAGCACAGCCTACATGGAGCTGAGCAGTCAGAGA



2*01
TCTGAGGACATAGATGTGTACTACTGTGCGAGACA





SEQ ID NO: 297
IGHV1/OR21-
CTATGCACAGAAGTTCCAGGCCAGAGTCACCATAACCAGGGACACATCCATGAGCACAGCCTACATGGAGCTAAGCAGTCTGAGAT



1*01
CTGAGGACACGGCCATGTATTACTGTGTGAGAGA





SEQ ID NO: 298
IGHV1-12*01
GTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAACCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGTAGAGGCTGATTAT




TACTGTGCAGCATGGGATGACAGCCTGAGTGGT





SEQ ID NO: 299
IGHV1-12*02
GTGAAGAAGCCTGGGGCCTCAGTGAAGGTCTCCTGCAAGGCTTCTGGATACACCTTCACCTACTGCTACTTGCACTGGGTATGACA




GGCCCCTGGACAAGGGCTTGAATGGACAGGATTT





SEQ ID NO: 300
IGHV1-14*01
CTATGCACAGAAGTTTCAGGGCAGAGTCACCATGACCAGGGACACGTCCACGAGCACAGCCTACATGGAGCTGAGCAGTCAGAGA




TCTGAGGACATAGATGTGTACTACTGTGCGAGACA





SEQ ID NO: 301
IGHV1-17*02
CTACGCACAGAAGTTCCGGGGCAGAGTCACCATTACCAGTGACAGGTCCGTGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGA




TCTGAAGACATGGTCGTGTATTCCTGTGTGAGAGA





SEQ ID NO: 302
IGHV1-18*01
CACTGCACTGAACCTCCGGGGCAGAGTCTCCATGACCACAGACACATCCACAAACACAGTCTACATGGAGGTGAAGAGCCTAAGAT




CTGACGACACGGCCATATATTTCTGTGCGCGAGA





SEQ ID NO: 303
IGHV1-18*03
CTATGCACAGAAGCTCCAGGGCAGAGTCACCATGACCACAGACACATCCACGAGCACAGCCTACATGGAGCTGAGGAGCCTGAGA




TCTGACGACATGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 304
IGHV1-18*04
CTATGCACAGAAGCTCCAGGGCAGAGTCACCATGACCACAGACACATCCACGAGCACAGCCTACATGGAGCTGAGGAGCCTGAGA




TCTGACGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 305
IGHV1-2*01
CCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGACGATGAGGCAGATTATTAC




TGCCAGTCCTATGACAGGGGTCTGAGTGGTCTC





SEQ ID NO: 306
IGHV1-2*02
AACTATGCACAGAAGTTTCAGGGCAGGGTCACCACGACCAGGGACACGTCCATCAGCACAGCCTACATGGAGCTGAGCAGGCTGA




GATCTGACGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 307
IGHV1-2*03
CTATGCACAGAAGTTTCAGGGCAGGGTCACCGTGACCAGGGACACGTCCATCAACACAGTCTACATGGAGCTGAGCAGACTGAGA




TCTGACGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 308
IGHV1-2*04
CTATGCACAGAAGTTTCAGGGCTGGGTCACCATGACCAGGGACACGTCCATCAGCACAGCCTACATGGAGCTGAGCAGGCTGAGA




TCTGACGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 309
IGHV1-2*05
ATCCCTGAGCGATTCTCTGGCTCCAGCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGACGAGGTTGACTA




TTACTGTCAATCAGCAGACAGCAGTGGTACTCCG





SEQ ID NO: 310
IGHV1-24*01
GTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCGAGGACACATCTACAGACACAGCCTACATGGAGCCGGTCAGCCTGAGA




TCTGACGACACGGCCGTCTATTACTGTGCAACAGA





SEQ ID NO: 311
IGHV1-3*01
AAGTATTCACAGAAGTTTCAGGGGAGAGTCACCATTACCAGGGACACATCGGCGAACACAGCCTACATGGAGCTGAGTAGCCTAA




GATCTGAAGACACGGCTGTGTATTACTGTGCGAGA





SEQ ID NO: 312
IGHV1-3*02
ATATTCACAGGAGTTCCAGGGCAGAGTCACCATTACCAGGGACACATCCGCGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGAT




CTGAGGACATGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 313
IGHV1-38-
CGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCGGGCACAGATTTTACACTGAAGATCAGCAGAGTGGAGCCTGAGGACATTGGG



4*01
GTTTATTACTGTATGCAGTCTCTCCAAACTCCTCA





SEQ ID NO: 314
IGHV1-45*01
CTACGCAGAAATTCCAGGACAGAGTCACCATTACTAGGGACAGGTCTATGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGAT




CTGAGGACACAGCCATGTATTACTGTGCAAGANA





SEQ ID NO: 315
IGHV1-45*02
CCAACTACGCACAGAAATTCCAGGACAGAGTCACCATTACCAGGGACAGGTCTATGAGCACAGCCTACATGGAGCTGAGCAGCCTG




AGATCTGAGGACACAGCCATGTATTACTGTGCAA





SEQ ID NO: 316
IGHV1-46*01
GCTACGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAGGGACACGTTCCACGAGCACAGTCTACATGGAGCTGAGCAGCCTGAG




ATCTGAGGACACGGCCGTGTATTACTGTGCGAGAG





SEQ ID NO: 317
IGHV1-46*02
ATCCCTGAGAGATTCTCTGGCTCCAGCTCAGGGACAATGGCCACCTTGACCATTAGTGGGGCCCAGGTGGAGGATGAAGCTGACTA




CTACTGTTACTCAACAGACACTAATGATAATCGG





SEQ ID NO: 318
IGHV1-46*03
AAGTTCGCACAGAAATTCCAGGGCAGGGTCACCATTACGAGGGACACGTCCACGAGCACAGTCTACATGAAGCTGAGCAGCTTAA




GATCTGAGGACACGGCCGTGTATTACTGTGCGACA





SEQ ID NO: 319
IGHV1-58*01
CTACGCACAGAAGTTCCAGGAAAGAGTCACCATTACCAGGGACATGTCCACAAGTACAGCCTACATGGAGCTGAGCAGCCTGAGAT




CCGAGGACACGGCCGTGTATTACTGTGCGGCAGA





SEQ ID NO: 320
IGHV1-58*02
CTACGCACAGAAGTTCCAGGAAAGAGTCACCATTACCAGGGACATGTCCACAAGCACAGCCTACATGGAGCTGAGCAGCCTGAGAT




CCGAGGACACGGCCGTGTATTACTGTGCGGCAGA





SEQ ID NO: 321
IGHV1-
AGCTACGCAGAGAAGTTCCAGGGCAGAGTCACCATGACCAGGGACACATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGA



67*01_IGHV1-
GATCTGAAGACACGGCCATGTATTACTGTGGGAGA



67*02






SEQ ID NO: 322
IGHV1-68*01
CTATGCAAAGAAGTTCCAGGGCAGAGTCACCATTACCAGGGACATGTCCCTGAGGACAGCCTACATAGAGCTGAGCAGCCTGAGAT




CTGAGGACTCGGCTGTGTATTACTGGGCAAGATA





SEQ ID NO: 323
IGHV1-69*01
ATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGGAGCCTGAAGATTTTGCAGTTTAT




TACTGTCAGCACCGGAGCAACTGGCTAATCGCC





SEQ ID NO: 324
IGHV1-
TCCGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGTAGAGTGGAGGCTGAGGATGTTG



69*02_IGLV3-
GGGTTTATTATTGCATGCAAGCTCTACAAAGGGGA



2*02






SEQ ID NO: 325
IGHV1-69*04
AATACCGCACAGAGGTTCGAGGACAGAGTCACGATTACCGCGGACACATCGACGAGCACAGTCTTCATGGAACTGAGCAGCCTGA




GATCTGAAGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 326
IGHV1-69*05
AGACTACGCACAGAAATTCCAGGGCAGAGTCACGATTGTCACGGACGAATCGACGAGCACATCCTACATGGAAGTGAAGAGCCTG




AGATCTGAAGACACGGCCGTGTATTATTGTGCGAG





SEQ ID NO: 327
IGHV1-69*06
ACTACGCACAGAAGTTCCAGGGCAGAGTCACGATTACCGCGGACAAATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGAG




ATCTGAGGACACGGCCGTGTATTACTGTGCGAGAG





SEQ ID NO: 328
IGHV1-69*07
GACTACGCACAGAAGTTTCAGGCCAGAGTCACAATAAGCGCGCACGAATTCACGCCCATAGTTTATATGGAGTTGAGAAGCCTGAG




ATCCGACCAGCACGCCACATATTACTGTGCGACA





SEQ ID NO: 329
IGHV1-69*08
AGACTACGCACAGAACTTCCAGGATAGAGTCAACATTAATGCGGACCAATCTACGAACACAGTCTACATGGAACTGAGCAGGCTGA




CATCTGACGACACGGCCGTCTATTACTGTGCGAG





SEQ ID NO: 330
IGHV1-69*09
CTCCGCTCAGAAGTTCCAAGACCGAGTCACCATTAGTGTCGACGAGTCCGCGGGCACAGTATACATGGACCTGGACAGCCTGACCT




CTGAAGACACGGCCATGTATTACTGTGCGAAAGA





SEQ ID NO: 331
IGHV1-69*10
AACTACGCACCGAAGTTCCAGGGCAGAGTCACGATTACCGCGGACAAAACCACTAGTACTGCTTACATGGAGCTGAGCAGCCTGAG




ATCTGAGGACACGCTCGTGTATTACTGTGCGAGA





SEQ ID NO: 332
IGHV1-
CTACGCACAGAAGTTCCAGGGCAGAGTCACGATTACCGCGGACGAATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGA



69*11_IGHV1-
TCTGAGGACACGGCCGTGTATTACTGTGCGAGAGA



69*12_IGHV1-




69D*01






SEQ ID NO: 333
IGHV1-69*13
ACTACGCACAGAAGTTCCAGGGCAGAGTCACGATTACCGCGGACGAATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGAG




ATCTGAGGACACGGCCGTGTATTACTGTGCGAGAG





SEQ ID NO: 334
IGHV1-69*14
CTACGCACAGAAGTTCCAGGGCAGAGTCACGATTACCGCGGACAAATCCACGAGCACAGCCTACATGGAGCTGAGCAGCCTGAGA




TCTGAGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 335
IGHV1-69-
TGCTCGCACAGAAATTCCGGGGCAGAATCTCCATAACCGCGGACACGTCCACAGACACAACTTACATGGCGCTGAGCAGCCTGACC



2*01
TCTGATGACACGGCCGTCTATTACTGTTCAACAG





SEQ ID NO: 336
IGHV1-8*01
GGCTATGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAGGAACACTCCATAAGCACAGCCTACATGGAGCTGAGCAGCCTGA




GATCTGAGGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 337
IGHV1-8*02
CTATGCACAGAAGTTCCAGGGCAGAGTCACCATGACCAGGAACACCTCCATAAGCACAGCCTACATGGAGCTGAGCAGCCTGAGAT




CTGAGGACACGGCCGTGTATTACTGTGCGAGAGG





SEQ ID NO: 338
IGHV2/OR16-
ACAGCACGTCTCTGAAGAACAGGCTCATCATCTCCAAGGACACCTCCAAAAGCCAGGTGGTCCTTACCATGACCAACATGGACCCTG



5*01
TGGACACAGCCACGTATTACTGTGCATGGAGAG





SEQ ID NO: 339
IGHV2-10*01
ACAGCCCATCTCTGAAGAGTAGGCTCATTATCTCCAAGGACACCTCCAAGAATGAAGTGGTTCTAACAGTGATCAACATGGACATTG




TGGACACAGCCACACATTACTGTGCAAGGAGAC





SEQ ID NO: 340
IGHV2-25*01
TACAGGACATCTCTGAAGAGCAGGCTCTCCATCTCCAAGGACACCTCCAAAAGCCTGGTGGCCTTACCATGACCAACATGGACCCT




GTGGACACAGCCACGTATTATTGTGCACGGATA





SEQ ID NO: 341
IGHV2-
TCCGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGTAGAGTGGAGGCTGAGGATGTTG



5*01_IGHV3-
GGATTTATTACTGCATGCAAGCTCTACAAACCCCA



30*13_IGHV4-




30-4*01






SEQ ID NO: 342
IGHV2-
ACAGCCCATCTCTGAAGAGCAGGCTCACCATCACCAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCAACATGGACCCTG



5*02_IGHV2-
TGGACACAGCCACATATTACTGTGCACACAGAC



5*03






SEQ ID NO: 343
IGHV2-
ACGGCCCATCTCTGAAGAGCAGGCTCACCATCACCAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCAACATGGACCT



5*05_IGHV2-
GTGGACAGAGCCACATATTACTGTGCACACAGAT



5*09






SEQ ID NO: 344
IGHV2-5*06
TACGGCCCATCTCTGAAGAGCAGGCTCACCATCACCAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCAACATGGACCCT




GTGGACACAGCCACATATTACTGTGCACACAGA





SEQ ID NO: 345
IGHV2-5*07
AGGCGCTACAGACCCTCTCTGAAGACCAGACTCACCATTCACCCAGGACATGTCCAGGAACCAGGTGGTCCTTAGACTGACCAACTT




GGACCCACTGGACACAGGCACATATTTTTGTGCA





SEQ ID NO: 346
IGHV2-5*10
AGCGCTACAGCCCATCTCTGAAGAGCAGGCTCACCATCACCAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCAACGTG




GACCCTGTGGACACAGCCACATATTACTGTGCAC





SEQ ID NO: 347
IGHV2-70*01
CTACAGCACATCTCTGAAGACCAGGCTCACCATCTCCAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCAACATGGACCC




TGTGGACACAGCCACGTATTACTGTGCACGGAT





SEQ ID NO: 348
IGHV2-70*04
TACAGCACATCTCTGAAGACCAGGCTCACCATCTCCAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCAACATGGACCCT




GTGGACACAGCCACGTATTACTGTGCACGGATA





SEQ ID NO: 349
IGHV2-70*06
TGATAAATTCTACAGCACATCCCTGAAGACCAGGCTCACCATCTCCAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCAA




CATGGACCCTGTGGACACGGCCGTGTATTACTG





SEQ ID NO: 350
IGHV2-
ACAGCACATCTCTGAAGACCAGGCTCACCATCTCCAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCAACATGGACCCTG



70*10_IGHV2-
TGGACACAGCCACGTATTACTGTGCACGGATAC



70*11_IGHV2-




70D*04_IGHV2-




70D*14






SEQ ID NO: 351
IGHV2-70*12
ACAGCACATCTCTGAAGACCAGGCTCACCATCTCCAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCAACATGGACCCTG




TGGACACAGCCACATATTACTGTGCACACAGAC





SEQ ID NO: 352
IGHV2-70*13
ACAGCACATCTCTGAAGACCAGGCTCACCATCTCCAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCAACATGGACCCTG




TGGACACAGCCACGTATTATTGTGCACGGATAC





SEQ ID NO: 353
IGHV3/OR15-
GAATATGCTGCGTCTGTGAAAGGCAGACTTACCATCTCAAGAGAGGATTCAAAGAACACGATGTATCTGCAAATGAGCAACCTGAA



7*01
AACCGAGGACTTGGCCGTGTATTACTGTGCTAGA





SEQ ID NO: 354
IGHV3/OR15-
GAATATGCTGCGTCTGTGAAAGGCAGACTTACCATCTCAAGAGAGGATTCAAAGAACACGCTGTATCTGCAAATGAGCAGCCTGAA



7*02_IGHV3/
AACCGAGGACTTGGCCGTGTATTACTGTGCTAGA



OR15-7*03






SEQ ID NO: 355
IGHV3/OR15-
TATGCTGCGTCTGTGAAAGGCCAGACTTACCATCTCAAGAGAGGATTCAAAGAACACGCTGTATCTCAAATGAGACAGCCTGAAAA



7*04
CCGAGGACTTGGCCGTGTATTACTGTGCTAGAGA





SEQ ID NO: 356
IGHV3/OR15-
ATATGCTGCGTCTGTGAAAGGCAGACTTACCATCTCAAGAGAGGATTCAAAGAACACGCTGTATCTGCAAATGAGCAACCTGAAAA



7*05
CCGAGGACTTGGCCGTGTATTACTGTGCTAGAGA





SEQ ID NO: 357
IGHVE/OR16-
CTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAAGAACTCCTTGTATCTTCAAATGAACAGCCTGAGAGC



10*01_IGHV3/
CGAGGACATGGCTGTGTATTACTGTGCAAGAGA



OR16-




10*03_IGHV3/




OR16-




11*01






SEQ ID NO: 358
IGHV3/OR16-
TACTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAAGAACTCCTTGTATCTTCAAATGAACAGCCTGAGA



10*02
GCCGAGGACATGGCTGTGTATTACTGTGCAAGA





SEQ ID NO: 359
IGHV3/OR16-
AACTACGCAGACTCTGTGAAGGGCAGATTCACCATCTCCACAGACAACTCAAAGAACACGCTCTACCTGCAAATGAACAGCCTGAG



12*01
AGTGGAGGACACGGCCGTGTATTACTGTGCAAGA





SEQ ID NO: 360
IGHV3/OR16-
AGCTACGCAGACTCCATGAAGGGCCAATTCACCATCTCCAGAGACAATGCTAAGAACACGCTGTATCTGCAAATGAACAGTCTGAG



13*01
AGCTGAGGACATGGCTGTGTATTACTGTACTAGA





SEQ ID NO: 361
IGHV3/OR16-
AGCTACGCAGACTCCTTGAAGGGCCAATTCACCATCTCCAGAGACAATGCTAAGAACACGCTGTATCTGCAAATGAACAGTCTGAG



14*01
AGCTGAGGACTATGGCTGTGTATTACTGTACTAGA





SEQ ID NO: 362
IGHV3/OR16-
CTATGTGGACTCCGTGAAGGGCCAATTTTCCATCTCCAGAGACAATTCCAGCAAGTCCCTGTATCTGCAAAAGAACAGACAGAGAG



15*01
CCAAGGACATGGCCGTGTATTACTGTGTGAGAAA





SEQ ID NO: 363
IGHV3/OR16-
CACTATGTGGACTCCGTGAAGGGCCAATTTACCATCTCAGAGACAATTCCAGCAAGTCCCTGTATCTGCAAAAGAACAGACAGAG



15*02
AGCCAAAGACATGGCCGTGTATTACTGTGTGAGA





SEQ ID NO: 364
IGHV3/OR16-
CACTATGTGGACTCCGTGAAGGGCCAATTTACCATCTCCAGAGACAATTCCAGCAAGTCCCTGTATCTGCAAAAGAACAGACAGAG



16*01
AGCCAAGGACATGGCCGTGTATTACTGTGTGAGA





SEQ ID NO: 365
IGHV3/OR16-
CTACGCTGCACCTGTGAAAGGCAGATTCACCATCTCAAGAGTTGATTCAAAAAACACGCTGTATCTGCAAATGAACAGCCTGAAAAC



7*01
CGAGGACACGGCCGTGTATTACTGTACCACAGA





SEQ ID NO: 366
IGHV3/OR16-
GACTACGCTGCACCTGTGAAAGGCAGATTCACCATCTCAAGAGTTGATTCAAAAAACACGCTGTATCTGCAAATGAACAGCCTGAA



7*02
AACCGAGGACACGGCCGTGTATTACTGTACCACA





SEQ ID NO: 367
IGHV3/OR16-
AACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGGGACAACGCCAATAACTCACCGTATCTGCAAATGAACAGCCTGAGA



8*01
AGCTGAGGACACGGCTGTGTATTACTGTGTGAAA





SEQ ID NO: 368
IGHV3/OR16-
CTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGGGACAACGCCAATAACTCACCGTATCTGCAAATGAACAGCTTGAGAG



8*02
CTGAGGACACGGCTGTGTATTACTGTGTGAAACA





SEQ ID NO: 369
IGHV3/OR16-
GGGGTCCCATCAAGGTTCACCGCCAGTGGATCTGGGACAGAATTCACTCTCAATATCAGCAGCCTGCACCCTGACGATTTTGCAACT



9*01
TATTACTGCCAGCAATATGAGCCTTATACCCCC





SEQ ID NO: 370
IGHV3-11*01
GTATGGAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACGCCCTGTATTTACAGATGAACAGCCTGAGAG




CCGAGGACACGGCTGTCTATTACTGTGCGACAGA





SEQ ID NO: 371
IGHV3-11*02
GGGATCCCTGATCGCTTCTCAGGCTCCAGCTCTGGGGCTGAGCTCTACCCTCACCATCTCGAGCCTCCAGTCTGAGGATGAGGCTGAC




TATTACTGTCAGACCTGGGGCACTGACATTCAG





SEQ ID NO: 372
IGHV3-11*03
AACTACGCAGACTCTGTGAAGGGCCGCTTCACCATCTCCAGAGACAACGCCAACAACTCACTGTTTCTGCAAATGAACAGCCTGAGA




GCCGAGGACGCGGCCGTGTATGACTGTGCGAGA





SEQ ID NO: 373
IGHV3-11*04
CCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGCCTCCAGTCTGAGGATGAGGCTGATTATTACT




GTGCACCATGGGATGACAGCCTGAATGGTCCG





SEQ ID NO: 374
IGHV3-11*05
CTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 375
IGHV3-11*06
CTACGCAGTCTCTGTGAAGGGCCGATTCACCATCTCCAGAGACGACGCCGCTAACTCAGTGTATCTGCAAATGAACAGCCTGCGAGA




CCGAGGACACGGCTGTGTATTTCTGTGCGAGAGA





SEQ ID NO: 376
IGHV3-13*01
ACTATCCAGGCTCCGTGAAGGGCCGATTCACCATCTCCAGAGAAAATGCCAAGAACTCCTTGTATCTTCAAATGAACAGCCTGAGAG




CCGGGGACACGGCTGTGTATTACTGTGCAAGAG





SEQ ID NO: 377
IGHV3-13*02
CTATCCAGGCTCCGTGAAGGGGCGATTCACCATCTCCAGAGAAAATGCCAAGAACTCCTTGTATCTTCAAATGAACAGCCTGAGAGC




CGGGGACACGGCTGTGTATTACTGTGCAAGAGA





SEQ ID NO: 378
IGHV3-13*03
TACTATCCAGGCTCCGTGAAGGGCCAATTCACCATCTCCAGAGAAAATGCCAAGAACTCCTTGTATCTTCAAATGAACAGCCTGAGA




GCCGGGGACACGGCTGTGTATTACTGTGCAAGA





SEQ ID NO: 379
IGHV3-13*04
CTATCCAGGCTCCGTGAAGGGCCGATTCACATCTCCAGAGAAAATGCCAAGAACTCCTTGTATCTTCAAATGAACAGCCTGAGAGC




CGGGGACACGGCTGTGTATTACTGTGCAAGAGA





SEQ ID NO: 380
IGHV3-13*05
ACTATCCAGACTCCGTGAAGGGCCGATTCACTATCTCCAGAGAAAATGCCAAGAACTCCTTGTATCTGCAAATGAACAGCCTGAGAG




TCGGGGACACGGCTGTATATTACTGTGCAAGAG





SEQ ID NO: 381
IGHV3-15*01
GACTACGCTGCATCCGTGAAAGACAGATTCACCATCTCAAGAGATGATTCAAAAAATACGGTGTTTCTGCAACTGAACAGCCTGAAA




ACCGAGGACACAGCCGTCTATTACTGTACCACA





SEQ ID NO: 382
IGHV3-15*02
ACTACGCTGCACCCATTAAAGGCAGATTCACCATCTCAAGAGATGATTCAAGAAACACACTGTTTCTGCAAATGAACAGCCTGAAAA




ACGAAGACACAGCCATGTATTTTTGTACCACAG





SEQ ID NO: 383
IGHV3-15*03
CTACGCTGCACCTGTGAAAGGCAGATTCACCATCTCAAGAGTTGATTCAAAAAACACGCTGTATCTGCAAATGAACAGCCTGAAAAC




CGAGGACACAGCCGTGTATTACTGTACCACAGA





SEQ ID NO: 384
IGHV3-
CTACGCTGCACCCGTGAAAGGCAGATTCACCATCTCAAGAGATGATTCAAAAAACACGCTGTATCTGCAAATGAACAGCCTGAAAA



15*04_IGHV3-
CCGAGGACACAGCCGTGTATTACTGTACCACAGA



15*06






SEQ ID NO: 385
IGHV3-15*05
ATAGACTATGCTGCACCCGTGAAAGGCAGATTCATCATTTCAAGAGATGATTCAAAAAGTACGGTGTATTTACAAATGAACAGACTG




AAAATTGAGGACACAGCCGTATATTATTGTGTC





SEQ ID NO: 386
IGHV3-15*07
ACTACGCTGCACCCGTGGAAGGCAGATTCACCATCCTAAGAGATGATTCAAAGAACACGCTGTATTTAACAATGAACAGCCTGAAA




ACCGAGGACACAGGCGTGTATTATTGTCTTTCAG





SEQ ID NO: 387
IGHV3-
CTACGCTGCACCTGTGAAAGGCAGATTCACCATCTCAAGAGATGATTCAAAAAACACGCTGTATCTGCAAATGATCAGCCTGAAAAC



15*08_IGHV3/
CGAGGACACGGCCGTGTATTACTGTACCACAGG



OR16-




6*01_IGHV3/




OR16-6*02






SEQ ID NO: 388
IGHV3-
CTATGTGGACTCCGTGAAGCGCCGATTCATCATCTCCAGAGACAATTCCAGGAACTCCCTGTATCTGCAAAAGAACAGACGGAGAG



16*01_IGHV3-
CCGAGGACATGGCTGTGTATTACTGTGTGAGAAA



16*02






SEQ ID NO: 389
IGHV3-19*01
CTATGCAGACTCTGTGAAGGGCCGATTCATCATCTCCAGAGACAATTCCAGGAACTTCCTGTATCAGCAAATGAACAGCCTGAGGCC




CGAGGACATGGCTGTGTATTACTGTGTGAGAAA





SEQ ID NO: 390
IGHV3-20*01
TTATGCAGACTCTGTGCAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCCCTATATCTGCAAATGAACAGTCTGAGAGC




CGAGGACACGGCCTTGTATTACTGTGCGAGAGA





SEQ ID NO: 391
IGHVE-20*02
TTATGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCCCTGTATCTGCAAATGAACAGTCTGAGAGC




CGAGGACACGGCCTTGTATCACTGTGCGAGAGA





SEQ ID NO: 392
IGHV3-21*01
ATTACGCAGACTCAGCGAAGGGGCGATTCACCATCTCCAGAGACAACGCCAAGAACTCAATGTATCTGCAAATGAACAGCCTGAGA




GCCGAGGACACGGCTATGTATTACTGTGCGACCG





SEQ ID NO: 393
IGHV3-21*02
TATACTATGCAGACTCACTGAGGGGCCGATTCACCATCTCCAGAGACAACGCCAGAAATTCACTGTCTCTGCAAATCAACGACCTGC




GACCCGACGACACGGCTATATATTATTGTGCGA





SEQ ID NO: 394
IGHV3-21*03
CTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACACAGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 395
IGHV3-21*04
CTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 396
IGHV3-22*02
ATAGACCACGTCTGTGAAAGGCAGATTCACAATCTCAAGAGATGATTCCAAAAGCATCACCTATCTGCAAATGAAGAGCCTGAAAA




CCGAGGACACGGCCGTGTATTACTGTTCCAGAGA





SEQ ID NO: 397
IGHV3-23*01
ATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGA




GAGCCGAGGACACGGCCGTATATTACTGTGCGAA





SEQ ID NO: 398
IGHV3-23*02
CTACGGAGACTCCGTGAAGGGCCGGTTCACCATCTCAAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACACGGCCGTATATTACTGTGCGAAAGA





SEQ ID NO: 399
IGHV3-
ATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGGAGCCTGAAGATTTTGCAGTTTAT



23*03_IGKV1/
TACTGTCAGCAGCGTAGCAACTGGCTAATCGCC



OR-4*01






SEQ ID NO: 400
IGHV3-23*04
ACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGA




GCCGAGGACACGGCCGTGTATTACTGTGCGAAAG





SEQ ID NO: 401:
IGHV3-23*05
TATTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCAAGAGACAATTCCAGGAACACACTGTTTGTGCAATTGAATAGCCTGAGA




GTCGAGGACACGGCCATATATTATTGTGCGAAA





SEQ ID NO: 402
IGHV3-
CTACGCAGACTCCGTGAAGGGCCGGTTCACATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAG



23D*01_IHGV3-
CCGAGGACACGGCCGTATATTACTGTGCGAAAGA



23D*02






SEQ ID NO: 403
IGHV3-
CCTCATAGACTCCGGTAAGGACCGATTCAATACCTCCAGAGATAACGCCAAGAACACACTTCATCTGCAAATGAACAGCCTGAAAAC



25*01_IGHV3-
CGAGGACACGGCCCTCTATTAGTGTACCAGAGA



25*02_IGHV3-




25*05






SEQ ID NO: 404
IGHV3-25*03
CCTCATAGACTCCGGTAAGGACCGATTCAATACCTCCAGAGATAACGCCAAGAACACACTTCATCTGCAAATGAACAGCCTGAAAAC




CGAGGACACGGCCCTGTATTAGTGTACCAGAGA





SEQ ID NO: 405
IGHV3-25*04
ACTGGTATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGTCTGAAGATTTTGC




AGTTTATTACTGTCAGCAGTATAATAACTGGCAG





SEQ ID NO: 406
IGHV3-
ATGCAGACTCTGTGAAGGGCAGATTCTCCATCTCCAAAGACAATGCTAAGAACTCTCTGTATCTGCAAATGAACAGTCAGAGAACTG



29*01_IGHV3-
AGGACATGGCTGTGTATGGCTGTACATAAGGTT



30-42*01






SEQ ID NO: 407
IGHV3-30*01
CTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAGGAACACACTGTATCTGGCAATGAACAGCCTGAGAG




TTGAGGACACGGCTGTGTATTACTGTGTGAGAGA





SEQ ID NO: 408
IGHV3-30*02
CTACGCAGAGTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACCCTGTATCTTCAACTGAACAGCCTGAGAGC




TGAGGACACGGCTGTGTATTATTGTGCGAAAGA





SEQ ID NO: 409
IGHV3-30*03
CTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAG




CTGAGGACACGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 410
IGHV3-
TCCGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAAATCAGTAGAGTGGAGGCTGAGGATGTTG



30*04_IGHV3-
GGGTTTATTACTGCATGCAAGCTCTACAAACCCCA



30*07






SEQ ID NO: 411
IGHV3-30*08
CCTGAGCGATTCTCTGGCTCCAACTCTGGCAACACAGCCACTCTGACCATCAGCGGGACCCAGGCTATGGATGAGGCTGACTATTAC




TGTCAGGCGTGGGACAGCAGCACTGCCGATGTG





SEQ ID NO: 412
IGHV3-30*09
ACACTATGCAGACTCCGTTCAGGGCCGATTCGGCGTCTCCAGAGACAATTCCAACTACACGGCGTACGTGCAACTGAACAGCCTGA




GACCAGACGACACGGCTGTTTATTTTTGTGCGAG





SEQ ID NO: 413
IGHV3-30*10
TCTACACAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACAGTGGATTTGCAGATGACTAACCTGAGC




GATGACGACACGGCTGTGTACTTCTGTGCGAAAG





SEQ ID NO: 414
IGHV3-30*12
CTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACACGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 415
IGHV3-30*14
TTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACATTGTTCCTCCAAATGAACAGCCTGAGAGT




AGAGGACACGGCTCTCTATTACTGTGCGAAAGA





SEQ ID NO: 416
IGHV3-30*15
CTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAGCAGCCTGAGAG




CTGAGGACACGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 417
IGHV3-30*16
TTTACGCAGACTCCATGAAGGGCCGCTTCACCATCTCCAGAGAGAACTCCAAGAACACGCTGCATCTGCACATGAACAGCCTGAGA




CCTGAGGACACGGCTGTCTATTACTGTGCGAGAG





SEQ ID NO: 418
IGHVE-30*19
TTTTACTCAGACTCCATGAAGGGGCGGTGCACCATTTCCAGAGACAACTCCAAGCAGACAGTGTATTTGGAAATAGACACCCTGGA




AACTGAAGACACGGCGGTATTCCTGTGTGAAA





SEQ ID NO: 419
IGHV3-30-
TTATGCATAATCTTTGAAGAGCAAATTCACCATCTCCAAAGAAAATGCCAAGAACTCACTGTATTTGCTAATGAACAGTCTGAGAGC



2*01_IGHV3-
AGCGGGCACAGCTGTGTGTTACTGTATGTGAGG



30-52*01






SEQ ID NO: 420
IGHV3-30-
ATGCAGACTCTGTGAAGGGCAGATTCTCCATCTCCAAAGACAATGCTAAGAACTCTCTGTATCTGCAAATGAACAGTCAGAGAGCTG



22*01
AGGACATGGACGTGTATGGCTGTACATAAGGTC





SEQ ID NO: 421
IGHV3-30
CTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAG



3*01_IGHV3-
CTGAGGACACGGCTGTGTATTACTGTGCGAGAGA



30-




3*03_IGHV3-




30*06_IGHV3-




30*11_IGHV3-




30*17






SEQ ID NO: 422
IGHV3-30-
GGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAAATTTTGCAACT



3*02
TACTACTGTCAACAGAGTTACAGTACCCCTTGG





SEQ ID NO: 423
IGHV3-30-
TTATGCATAATCTTTGAAGAGCAAATTCACCATCTCCAAAGAAAATGCCAAGAACTCACTGTATTTGCTAATGAACAGTCTGAGAGC



33*01
AGAGGGCACAGCTGTGTGTTACTGTATGTGAGG





SEQ ID NO: 424
IGHV3-30-
CTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAG



5*01_IGHV3-
CTGAGGACACGGCTGTGTATTACTGTGCGAAAGA



30-




5*02_IGHV3-




30*18_IGHV3-




NL1*01






SEQ ID NO: 425
IGHV3-32*01
ATGCAGACTCTGTGAAGGGCAGATTCTCCATCTCCAAAGACAATGCTAAGAACTCTCTGTATCTGCAAATGAACACTCAGAGAGCTG




AGGACGTGGCCGTGTATGGCTATACATAAGGTC





SEQ ID NO: 426
IGHV3-33*01
CTATGCAGACTCCGTGAAGGGCCGATTCACCATCCCCAGAGGCAATTTCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGTG




CCGAGGACGCGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 427
IGHV3-33*02
CTATGCAGACTCCGCGAAGGGCCGATTCACCATCTCCAGAGACAATTCCACGAACACGCTGTTTCTGCAAATGAACAGCCTGAGAG




CCGAGGACACGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 428
IGHV3-33*03
ATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTA




TTACTGTCAACACTATCGTAGTTCACCTCGGAAG





SEQ ID NO: 429
IGHV3-33*04
CTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACACGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 430
IGHV3-33*05
TTACGCAGACTCCGTGAAGGGCCGATTCATCGTCTCCAGAGACAATTCCAGGGACACGGTGTTTCTGCAGATGAGCAGCCTGAGAC




TCGAGGACACGGCTGTCTATTACTGTGCGACAGA





SEQ ID NO: 431
IGHV3-33*06
CTATGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACACGGCTGTGTATTACTGTGCGAAAGA





SEQ ID NO: 432
IGHV3-33
TTATGCCCAATCTGTGAAGAGCAAATTCACCATCTCCAAAGAAAATGCCAAGAACTCACTGTATTTGCAAATGAACAGTCTGAGAGC



2*01
AGAGGGCACAGCTGTGTGTTACTGTATGTGAGG





SEQ ID NO: 433
IGHV3-35*01
CACTATGCAGACTCTGTGAAGGGCCGATTCATCATCTCCAGAGACAATTCCAGGAACACCCTGTATCTGCAAACGAATAGCCTGAGG




GCGAGGACACGGCTGTGTATTACTGTGTGAGA





SEQ ID NO: 434
IGHV3-
AGCTATGCAGACTCTGTGAAGGGTCGATTCACCCTCTCCAGAGATGATGCCAAGAAATCACTGTATCTGCAAATGAACAGCGTCAG



36*01_IGHV3-
AGCCGAGGATAGGTCTGTGTATTACTGTGGTGGC



3-




36*02_IGHV3-




36*03






SEQ ID NO: 435
IGHV3-37*01
GGTAGTCTATACTATGCAGACACTGAAGGGTAGATTCACCATCTCTAGAGACAATGGCAAGAACATGCTGTTCTTGCAAATGAACA




GTCTGAGAGATGAGGACTCGGTTGTGTTGAGAGA





SEQ ID NO: 436
IGHV3-37*02
TGGTAGCCTATACTATGCAGACACTGAAGGGTAGATTCACATCTCTAGAGACAATGGCAAGAACATGCTGTACTTGCAAATGAAC




AGTCTGAGAGATGAGGACTCGGCTGTGTGAGAGA





SEQ ID NO: 437
IGHV3-38*01
ACGCAGACTCCAGGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAACCTGAGAGCT




GAGGGCACGGCCGCGTATTACTGTGCCAGATATA





SEQ ID NO: 438
IGHV3-
ACGCAGACTCCAGGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAACCTGAGAGCT



38*02_IGHV3-
GAGGGCACGGCCGTGTATTACTGTGCCAGATATA



3-38*03






SEQ ID NO: 439
IGHV3-380
CTACGCAGACTCCAGGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGCATCTTCAAATGAACAGCCTGAGAG



3*01
CTGAGGACACGGCTGTGTATTACTGTAAGAAAGA





SEQ ID NO: 440
IGHV3-41*01
ATACTATGCAGACTCTGTGAAGGGCCGATTCACAATCTCCGAGACAATTCTAAGAGCATGCTCTATCTGCAAATGGACAGTCTGAAA




GCTAAGGACACGGCCATGTATTACTGTACCAGA





SEQ ID NO: 441
IGHV3-
ATGCGCTGCATCTGTGAAAGGCAGGTTCACCATCTCAAGAGATGATTCAAAGAACACQACTGTATATGCAAATGAATACCCTGAAAA



42*02_IGHV3-
CCAAGTACACGGCCATCTATTACTGTACTAGAGA



42D*01






SEQ ID NO: 442
IGHV3-42*03
ATGCGCTGCATCTGTGAAAGGCAGGTTCACCATCTCAAGAGATGATTCAAAGAACACACTGTATCTGCAAGTGAATACCCTGAAAA




CCGAGTACACGGCCATCTATTACTGTACTAGAGA





SEQ ID NO: 443
IGHV3-43*01
ATTATGCAGCCTCTGTGAAGGGTCGATTCACCATCTCCAGAGACAACTCCAAAAACTCCCTGTTTTTGCCAAATGAACAGTCTGAGAG




TTGAAGATTCCGCCTTCTATTACTGTGGAAAAG





SEQ ID NO: 444
IGHV3-43*02
TACTATGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACAGCAAAAACTCCCTGTATCTGCAAATGAACAGTCTGAGA




ACTGAGGACACCGCCTTGTATTACTGTGCAAAA





SEQ ID NO: 445
IGHV3-
ATGCAGACTCTGTGAAGGGTCGATTCACCATCTCCAGAGACAACAGCAAAAACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCT



43D*01
GAGGACACCGCCTTGTATTACTGTGCAAAAGATA





SEQ ID NO: 446
IGHV3-47*01
TACTATGCAGACTCCGTGATGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAAGTCCTTGTATCTTCATATGAACAGCCTGATA




GCTGAGGACATGGCTGTGTATTATTGTGCAAGA





SEQ ID NO: 447
IGHV3-47*02
TACTATGCAGACTCCGTGATGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAAGTCCTTGTATCTTCAAATGAACAGCCTGATA




GCTGAGGACATGGCTGTGTATTATTGTGCAAGA





SEQ ID NO: 448
IGHV3-48*01
TACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAG




AGCCGAGGACACGGCTGTGTATTACTGTGCGAGA





SEQ ID NO: 449
IGHV3-48*02
TACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAGGAGTCACTGTATCTGCAAATGACCAGCCTGAG




AGTCGAGGACACGGCTGTATATCACTGTGCGAGG





SEQ ID NO: 450
IGHV3-48*03
TACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAGTGCCAAGAATTCACTGTATCTGCACATGCACAGCCTGAGA




GCCGAGGACACGGCTGTTTATTACTGTGCGAGA





SEQ ID NO: 451
IGHV3-48*04
CTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACACGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 452
IGHV3-49*01
ATACACCGCGTCTGTGAAAGGCAGATTCACCATCTCAAGAGATGGTTCCAAAAGCATCGCCTATCTGCAAATGAACAGCCTGAAAA




CCGAGGACACAGCCGTGTATTACTGTACTAGAGA





SEQ ID NO: 453
IGHV3-
ATACGCCGCGTCTGTGAAAGGCAGATTCACCATCTCAAGAGATGATTCCAAAAGCATCGCCTATCTGCAAATGAACAGCCTGAAAA



49*02_IGHV3-
CCGAGGACACAGCCGTGTATTACTGTACTAGAGA



49*03






SEQ ID NO: 454
IGHV3-49*04
AAATACGCCGCGTCTGTGAAAGGCAGATTCACCATCTCAAGAGATGATTACAAAAGCGTCGTCTATCTGCAAATGAACAGCCTGAG




AAGCGAGGACACGCCGTATACTACTGTACTAGA





SEQ ID NO: 455
IGHV3-49*05
GAATACGCCGCGTCTGTGAAAGGCAGATTCACCATCTCAAGAGATGATTCCAAAAGCATCGCCTATCTGCAAATGAACAGCCTGAA




AACCGAGGACACAGCCGTGTATTACTGTACTAGA





SEQ ID NO: 456
IGHV3-50*01
ATGCAGACTCTGTGAAGGTCAGATTCACCATCTCCAAAGACAATGCCAAGCACAGGTTGTATCTGCAAATGAACAGTCTGAGAGCT




GAGAATATGGCTCTGTATTATTGAGTCAAAGGTA





SEQ ID NO: 457
IGHV3-52*01
CTATGTAGACTCTGTGAAGGGCCGATTGACCATCTCCAGAGACAATGCCAAGAACTCCCTCTATCTGCAAGTGAACAGCCTGAGAG




CTGAGGACATGACCGTGTATTACTGTGTGAGAGG





SEQ ID NO: 458
IGHV3-52*03
TACTATGTAGACTCTGTGAAGGGCCGATTGACCATCTCCAGAGACAATGCCAAGAACTCCCTCTATCTGCAAGTGAACAGCCTGAGA




GCTGAGGACATGACCGTGTATTACTGTGTGAGA





SEQ ID NO: 459
IGHV3-53*01
CTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAG




CCGAGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 460
IGHV3-53*02
TACTATGCAGACTCTGTGAAGGGCGATTCACCATCTCCAGAGACAACAGCAAAAACTCCCTGTATCTGCAAATGAACAGTCTGAAA




ACTGAGGACACCGCCTTGTATTACTGTGTGAAA





SEQ ID NO: 461
IGHV3-53*03
CTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAGC




CGAGGACACGGCCGTGTATTACTGTGCTAGGGA





SEQ ID NO: 462
IGHV3-53*04
GTTTCTCATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCGGGCTGAGGACGAGGGTGATTAT




TACTGCACCTCATATACAATCAATAGCGATTTT





SEQ ID NO: 463
IGHV3-54*02
TTATGCACAATCTGTGAAGAGCAGATTCACCATCTCCAAAGAAAATGCCAAGAACTCACTCCGTTTGCAAATGAACAGTCTGAGAGC




AGAGGGCACGGCCGTGTATTACTGTATGTGAGG





SEQ ID NO: 464
IGHV3-54*04
TTATGCACAATCTGTGAAGAGCAGATTCACCATCTCCAAAGAAAATGCCAAGAACTCACTCTGTTTGCAAATGAACAGTCTGAGAGA




AGAGGGCACGGCCGTGTATTACTGTATGTGAGT





SEQ ID NO: 465
IGHV3-57*01
GAACAGCCTGAGAGCCGAGGGCACAAATTAACAGTCCCAAGCGACACCTTTTCATGTGCAGTCTACCTTACAATGACCAACCTGAA




AGCCAAGGAACAAGGCTGTGTATTACTGTGAGGGA





SEQ ID NO: 466
IGHV3-57*02
GAGTTACTCTCCATGAGTACAAATAAATTAACAGTCCCAAGCGACACCTTTTTCATGTGCAGTCTACCTTACAATGACCAACCTGAAAG




CCAAGGACAAGGCTGTGTATTACTGTGAGGGA





SEQ ID NO: 467
IGHV3-6*01
CTACGCAGACTCTGTGAAGGGCCGATTCACCATTTCCAGAGACAATACCAAAAACTCACTGTATCTGAAATGAACAGACTGAGGG




CAGAGGATGCAGCTGCATATGACTCTGTGAGAGA





SEQ ID NO: 468
IGHV3-60*01
CTACACAGACTCTGTGAAGGGCTGATTCACCATCTCTAGAGACAATGCCCAGAATTCACTGTATCTGCAAATGAACAGCCTGAGAGC




CGACGACATGGCTGTGTATTACTGTGTGAAAGA





SEQ ID NO: 469
IGHV3-62*01
CTACACAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAATGCCCAGAATTCACTGTCTCTGCAAATGAACAGCCTGAGAGC




CGAGGGCACAGTTGTGTACTACTGTGTGAAAGA





SEQ ID NO: 470
IGHV3-63*01
ATGCAGACTCTGTGAAGGGCAGATTCACCATCTCCAAAGACAATGCTAAGAACTCACCGTATCTCCAAACGAACAGTCTGAGAGCT




GAGGACATGACCATGCATGGCTGTACATAAGGTT





SEQ ID NO: 471
IGHV3-64*01
ATTTCATGCAAACTCTGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACACTGTATCTTCAAATGGGCAGCCTGAG




AGCTGAGGACATGGCTGTGTATTACTGTGCGAG





SEQ ID NO: 472
IGHV3-64*02
TTATGCAGACTCTGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGGGCAGCCTGAGAG




CTGAGGACATGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 473
IGHV3-64*03
CTACGCAGACTCAGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATGTCCAAATGAGCAGTCTGAGAG




CTGAGGACACGGCTGTGTATTACTGTGTGAAAGA





SEQ ID NO: 474
IGHV3-64*04
CATTCTACGCAGACTCCGCGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACTCTGCATCTTCAAATGAACAGTCTGA




GACCTGAGGACTCGGCTGTCTATTACTGTGTGA





SEQ ID NO: 475
IGHV3-64*05
ACTACGCAGACTCCGTGAAGGGCAGATTCACCGTCTCCAGAGACGATGCCACGAAGACCCTCTTTCTTCAAGTGAGCGGTCTGCGA




GCTGAGGACACGGCTGTCTATTACTGCGTGAAAG





SEQ ID NO: 476
IGHV3-
AAGTACGCGGACTCCGTGAAGGGCAGATTCATTACCTCCAGAGACAATTCCAAGAACACGTTGTATCTTCAAATGAGCAGTCTGAG



64D*06
ACCTGAGGACACGGCTATTTATTATTGTGTGAAA





SEQ ID NO: 477
IGHV3-65*01
CTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGGGGCTGATTATT




TCTGCAGCTCATATACAACCAACAACAAGGGG





SEQ ID NO: 478
IGHV3-65*01
ATACGCCGCGTCTGTGAAAGGCAGATTCACCATCTCAAGCGATGATTCCAAAAGCATCGCCTATCTGCAAATGAACAGCCTGAAAAC




CGAGGACACGGCCGTGTATTACTATACCAGAGA





SEQ ID NO: 479
IGHV3-66*01
CTACGCAGACTCCGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAG




CCGAGGACACGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 480
IGHV3-66*02
TATTACACAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGA




GCTGAGGACACGGCTGTGTATTACTGTGCGAGA





SEQ ID NO: 481
IGHV3-66*03
CTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAG




CTGAGGACACGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 482
IGHV3-66*04
CTACGCAGACTCCGTGAAGGGCAGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGAG




CCGAGGACACGGCTGTGTATTACTGTGCGAGACA





SEQ ID NO: 483
IGHV3-69
GGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGCCAACACGGCCTCCCTGACAATCTCTGGACTCCAGGCTGAGGACGAGGCTGAT



1*01
TATTACTGCTGCTCATATGCAGGAAGTAAGACT





SEQ ID NO: 484
IGHV3-69
CATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCAGCATCAGCAGGCTGGAGCCTGAAGACTTTGCAGTGT



1*02
ATTACTGTCAGCAGTATGGTAGCTCACCTCCGGA





SEQ ID NO: 485
IGHV3-7*01
CTATGTGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACACGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 486
IGHV3-7*02
ATACTATATGGACTCTCTGAAGGGCCGATTCACCATCTCCAGAGACAACGCAAGAACTCAGTGAATCTCCAAATCAACAGCCTGAG




AGGCGAGGACACGGCTGTCTATTACTGTGCGAG





SEQ ID NO: 487
IGHV3-7*03
CTATGTGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAGGG




CCGAGGACACGGCCGTGTATCACTGTGCGAGAGA





SEQ ID NO: 488
IGHV3-71*01
GAATAGACCACGTCTGTGAAAGGCAGATTCACAATCTCAAGAGATGATTCCAAAAGCATCACCTATCTGCAAATGAACAGCCTGAG




AGCCGAGGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 489
IGHV3-71*02
ATAGACCACGTCTGTGAAAGGCAGATTCACAATCTCAAGAGATGATTCCAAAAGCATCACCTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACATGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 490
IGHV3-71803
ATAGACCACGTCTGTGAAAGGCAGATTCACAATCTCAAGAGATGATTCCAAAAGCATCACCTATCTGCAAATGAACAGCCTGAGAG




CCGAGGACACGGCTGTGTATTACTGTGCGAGAGA





SEQ ID NO: 491
IGHV3-72*01
AATACGCCGCGTCTGTGAAAGGCAGATTCATCATCTCAAGAGATGATTCAAAGAACTCACTATATCTGGAAATGAACAGCCTGAAA




ACGAGGACACGGCCGAGTATTACTGTGCTAGAG





SEQ ID NO: 492
IGHV3-73*01
ACATCTTACGCTCCGTCGATAAAAGGCAAGTTCATCATTTCCAGAGATGATTCCAGCAATATGTTGTATCTTCAAATGAACAACCTGA




AAACCGAGGACACGGCCGTCTATTTTTGTACT





SEQ ID NO: 493
IGHV3-73*02
GCATATACTGCGTCGGTGAGAGGCAGGTTCACCATCTCCAGAGATGATTCAAAGAACACGGCGTGGCTGCAAATGAGCAGCCTGG




AAACCGAGGACACGGCCGTATATTACTGTATTAGA





SEQ ID NO: 494
IGHV3-74*01
CTACGCGGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACACGCTGTATCTGCAAATGAACAGTCTGAGAG




CCGAGGACACGGCTTTGTATTACTGTGTAAGAGA





SEQ ID NO: 495
IGHV3-74*02
AACTACGCGGACTCCGTGAAGGGCCGATTCACCATCTACAGAGACGACGCCAAGAACACACTGAATCTGCAAATGAACAGTCTGAG




AGTCGAGGACACGGCAGTGTATTATTGTGTAAGA





SEQ ID NO: 496
IGHV3-74*03
AACTTACGCGGACTCCATGAAGGGCCGATTCACCATCTCCAGAGACAATGCCAAAAACACGCTGGATCTGCAAATGAACAGCCTGA




GAGTCGAGGACACGGCTGTGTATTACTGTGTAAG





SEQ ID NO: 497
IGHV3-75*01
TCCTACTAGCCTGTGGCAAATGGAAGCATCTCTTTTTTATCAGACTGAATAATATTGTAGTGTTTTCTTATACCACATTTACTTCATCCC




TTTGTGCATTAACACTTAGGTTGTTTTTAT





SEQ ID NO: 498
IGHV3-76*01
TACTACTCAGACTCTGTGAAGGGCCGGTTGACCATCTCCAGAGAAAACACCAAGAACTCACTGTATCTGCAAATAAACAGTTTCATT




GCTGACACCATGGCCGTCTATTACTGTAAGAGA





SEQ ID NO: 499
IGHV3-79*01
TACCACCCACTCCTCAAGTGTCCAGTCACCATCCCCAGATCCGTGTCCAAAAAAGCAGTTCTTCCTACAGCTGAGCTACATGAGCAAC




AAGCACATAGCCATGTATTTTTAAGCCAAAGA





SEQ ID NO: 500
IGHV3-9*01
TAGGCTATGTGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCCCTGTATCTGCAAATGAATAGTCTGA




GAGCTGAGGACACGGCCTTATATTACTGTGCAA





SEQ ID NO: 501
IGHV3-9*02
ATGCGGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCT




GAGGACACGGCCTTGTATTACTGTGCAAAAGATA





SEQ ID NO: 502
IGHV3-9*03
ATGCGGACTCTGTGAAGGGCCGATTCACCATCGCCAGAGACAACGCCAAGAACTCCCTGTATCTGCAAATGAACAGTCTGAGAGCT




GAGGACATGGCCTTGTATTACTGTGCAAAAGATA





SEQ ID NO: 503
IGHV4/OR15-
CTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACAAGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC



8*01
CGCGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 504
IGHV4/OR15-
TACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGGGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAG



8*02
AGCCGAGGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 505
IGHV4/OR15-
CTACAACCCATCCCTCAAGAGTCGAGTCACCATATCAGTAGACAAGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC



8*03
CGCGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 506
IGHV4-28*01
TACTACAACCCGTCCCTCAAGAGTCGAGTCACCATGTCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACC




GCGTGGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 507
IGHV4-
CTACAACCCGTCCCTCAAGAGTCGAGTCACCATGTCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC



28*02_IGHV4-
CGTGGACACGGCCGTGTATTACTGTGCGAGAAA



28*05_IGHV4-




28*07






SEQ ID NO: 508
IGHV4-28*03
CTACAACCCGTCCCTCAAGAGTCGAGTCACCATGTCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC




CGTGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 509
IGHV4-28*04
TACTACAACCCGTCCCTCAAGAGTCGAGTCACCATGTCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACC




GCCGTGGACACCGGCGTGTATTACTGTGCGAGA





SEQ ID NO: 510
IGHV4-28*06
CTACAACCCGTCCCTCAAGAGTCGAGTCACCATGTCAGTAGACACGTCCAAGAACCAGTTCTCCCFTGAAGCTGAGCTCTGTGACCGC




CTTGGACACGGCCGTGTATTACTGTGCGAGAAA





SEQ ID NO: 511
IGHV4-30-
ACTTCAACCCGTCCCTCAAGAGTCGAGTCACCCTATCAGTTGACAGGTCCGAGAACCAGTTCTCCCTGAAGCTCAGCTCTGTGACCG



2*01
CCGCGGACACGGCCGTGTATTACTGTGCCAGAG





SEQ ID NO: 512
IGHV4-30-
CTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC



2*03
TGCAGACACGGCTGTGTATTACTGTGCGAGACA





SEQ ID NO: 513
IGHV4-30-
CTACAACCCGTCCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGC



2*05
CGCAGACACGGCCGTGTATTACTGTGCCAGAG





SEQ ID NO: 514
IGHV4-30-
CTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACAGGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC



2*06
CGCGGACACGGCCGTGTATTACTGTGCCAGAGA





SEQ ID NO: 515
IGHV4-30
CTACAACCCGTCCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGC



4*02
AGCAGACACGGCCGTGTATTACTGTGCCAGAGA





SEQ ID NO: 516
IGHV4-30
ATTATAACCCGCCCCTCAGGAGTCGAGTAACCATATCAGCAGACACGTCCAAGAATCAGGTCTCCCTGGAGCTGAGTCCTATGACTG



4*03
CCGCGGACACGGCCGTGTATTACTGTGCCAGAG





SEQ ID NO: 517
IGHV4-30
CTACAACCCGTCCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC



4*07
CGCGGACACGGCCGTGTATTACTGTGCCAGAGA





SEQ ID NO: 518
IGHV4-31*01
CCTACTACAACCCGTCCCTCAAGAGTCTAGTTACCATATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGAC




TGCTGCGGACACGGCCGTGTATTACTGTGCGA





SEQ ID NO: 519
IGHV4-31*02
CTACAACCCGTCCCTCAAGAGTCGAGTTAACCATATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGC




CGCGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 520
IGHV4-31*03
TTACTACAACCCCTCCCTCAAGGGGCGAGTTACCATATCAGTAGACACGTCTGAGAACCAGTTCTCCCTGAGGCTGAGCTCTGTGAC




TGCCGCGGACACGTCCGTGTATTACTGTGCGAG





SEQ ID NO: 521
IGHV4-31*04
ACCGACTACACCCGTCCCTCAGGAGTCGAGTTACCATATCAGTAGACATGTCTAAGAACCAGTTCTCCCTGAAACTGAGGTCTGTG




ACTGCCGCGGACGCGGCCGTCTATTATTGTGCG





SEQ ID NO: 522
IGHV4-31*06
ACTACAACCCGTCCCTCAAGAGTCGAGTTACCATATCAGTAGACACGCCTAAGAACCAGTTCTCTCTGGAGTTGAGCTCTGTGACTG




CCGCGGACACGGCCATATATTACTGTGCAAGAG





SEQ ID NO: 523
IGHV4-31*07
ACTATAACCCGGCTCTCAAGAGTCGAGCCTCCATCTCACAAGACACGTCTGAGAACCGGTTTTCCCTGAGGCTGACCTCTGTGACTG




CCGCGGACACGGCCGTGTATTTCTGTGCGAGAG





SEQ ID NO: 524
IGHV4-31*08
ACTACAACTCGTCCCTCAAGAGTCGACTTACCATATCCGTAGACACGTCCGAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCG




CTGCGGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 525
IGHV4-31*10
CTACAACCCGTCCCTCAAGAGTCGAGTTACCATATCAGTAGACCCGTCCAAGAACCAGTTCTCCCTGAAGCCGAGCTCTGTGACTGC




CGCGGACACGGCCGTGGATTACTGTGCGAGAGA





SEQ ID NO: 526
IGHV4-34*01
ACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCG




CCGCGGACACGGCTGTGTATTACTGTGCGAGAG





SEQ ID NO: 527
IGHV4-34*02
GACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTGGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACC




GCCGCGGACACGGCTGTGTATTACTGTGCGAGA





SEQ ID NO: 528
IGHV4-34*03
ACTACACCCGTCCCTCAAGAGTCGAGTTACCATATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACTG




CCGCGGACACGGCCGTGTATTACTGTGCGAGAG





SEQ ID NO: 529
IGHV4-34*04
GAGTTCCTGATCGCTTCTCAGGCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTCTGAGGATGAGGCTGATT




ATTACTGTGAGACCTGCGACAGTAACACTCATG





SEQ ID NO: 530
IGHV4-34*05
CAACACCCGTCCCTCAAGAGTCGAGCCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC




CGCGGACACGGCTGTGTATTACTGTGCGAGAGG





SEQ ID NO: 531
IGHV4-34*08
ACCAACTACAAAGTTTCCCTCGAGAGTCGAGTCACCATATACATTGACACGTCTAAGAACCGATTCTCCCTGAGGGTGAGGGCCGTG




ACCGCCGCGGACACGGCTAAATACTTCTGTGCG





SEQ ID NO: 532
IGHV4-34*09
AAGTACAACCCGTCGCTCGAGAGTCGGGTCACCATATCAATAGACACGTCCAGGAACCACTTCTCCCTGAACCTGAGCTCAGTGACC




GCCGCGGACACAGCTGTCTATTACTGTGCGAGA





SEQ ID NO: 533
IGHV4-34*10
AACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAATAGACACGTCCAAGAGGCAATTCTCCCTGAGGCTGACTTCTATGACC




GCCGCGGACACGGCTGCATATTTCTGTGCGAGA





SEQ ID NO: 534
IGHV4-34*11
ATCCCAGCCAGGCTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGGAGCCTGAAGATTTTTGCAGTTTAT




TACTGTCAGCAGCGTAGCAACTGGCTAATCGCC





SEQ ID NO: 535
IGHV4-34*12
TTACAACCCGTCCCTCGAGAGTCGAGTCACCATATCAATAGACACGTCCAAGCACCAATTCTCCCTGAGGGTGATTTCTTTGACCGCC




GCGGACACGGCTAGATATTTCTGTGCGAGAGG





SEQ ID NO: 536
IGHV4-34*13
ACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAAACAGCTCTCCCTGAAGTTGAGCTCTGTGAACG




CCGCGGACACGGCTGTGTATTACTGTGCGAGAG





SEQ ID NO: 537
IGHV4-38
CACTACAACCCGTCCCTCAAGAGTCGAGTCTCCATATCAGTTGTCACGTCCAAGAACCAGCTCTCCCTGAGGCTGAGGTTTGTGACT



2*01
GCCGCAGACACGGCCGTCTATTACTGTGCGAGA





SEQ ID NO: 538
IGHV4-38-
TACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACC



2*02
GCCGCAGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 539
IGHV4-39*01
AGTGGGGTCCCATCAAGGTTCAGTGCCGGTGTGTCTGGGACAGATTTCACCCTCACCATCAGCAGTCTGCAATCTGAAGATTTTGCA




ACTTACTATCTGTCAACAGAGTTATAGTCCCCCG





SEQ ID NO: 540
IGHV4-39*02
TACTACAATCCCTCCCTCAAGAGCCGAGTCACCATATCCGTAGACACGTTGAAGAATAACTTCTCCCTGAAGCTGAGTTCTGTGACCG




CCGCAGACACGGCTGTTTATTACTGTACGAGA





SEQ ID NO: 541
IGHV4-39*03
GTCTACAATCCGTCCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCCAAGAACCTGTTCTCCCTGAAACTGACCTCTGTGACCG




CCGCAGACAGGCTGGTATATTTCTGTGCGAGA





SEQ ID NO: 542
IGHV4-39*05
CACCTTCTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCCGTGGACACGTCCAAAAACCAGATCTCCCTGAGGCTGAACTCTGT




GACCGCCGCAGACGGCTGTGTATTATTGTGC





SEQ ID NO: 543
IGHV4-39*06
CTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCCCCCTGAAGCTGAGCTCTGTGACCGC




CGCGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 544
IGHV4-39*07
ACTATAACCCGTCTCTCATGAGTCGAGTCGCCATATCAGTAGACACGTCCAGGAACCAGTTCTTCCTGAAGCTGAACTCTGTGACCG




CCGCGGACACGGCCGTTTATTACTGTGCGAGAG





SEQ ID NO: 545
IGHV4-4*01
GGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACT




TACTACTGTCCAACAGAGTTACAGTACCCCCCCG





SEQ ID NO: 546
IGHV4-4*02
ACTACAACCCGTCCCTCAAGAGTCGAGTCACCATATCAGTAGACAAGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCG




CCGCGGACACGGCCGTGTATTACTGTGCGAGAG





SEQ ID NO: 547
IGHV4-4*03
CTACAACCCCTCCCTCAAGAGTCGAGTCACCATGTCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC




CGCGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 548
IGHV4-4*07
ACTACAACCCCTCCCTCAAGAGTCGAGTCACCATGTCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCG




CCGCGGACACGGCCGTGTATTACTGTGCGAGAG





SEQ ID NO: 549
IGHV4-4*08
CTACACCCCTCCCTCAAGAGTCGAGTCACCATATCCGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC




CGCAGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 550
IGHV4-55*01
CTACAACCCGTCCCTCAAGAGTCGAATCACCATGTCCGTAGACACGTCCAAGAACCAGTTCTACCTGAAGCTGAGCTCTGTGACCGC




CGCGGACACGGCCGTGTATTACTGTGCGAGATA





SEQ ID NO: 551
IGHV4-55*02
CTACAACCCGTCCCTCAAGAGTCGAATCACCATGTCAGTAGACACGTCCAAGAACCAGTTCTACCTGAAGCTGAGCTCTGTGACCGC




CGCGGACACGGCCGTGTATTACTGTGCGAGATA





SEQ ID NO: 552
IGHV4-55*08
CTACAACCCGTCCCTCAAGAGTCGAAT6CACCATGTCAGTAGACACGTCCAAGAACCAGTTCTACCTGAAGCTGAGCTCTGTGAACCGC




CGCGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 553
IGHV4-55*09
CTACAACCCGTCCCTCAAGAGTCGAATCACCATGTCCGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC




CGTGGACACGGCCGTGTATTACTGTGCGAGAAA





SEQ ID NO: 554
IGHV4-
AACTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACC



59*01_IGHV4-
GCTGCGGACACGGCCGTGTATTACTGTGCGAGA



59*07






SEQ ID NO: 555
IGHV4-59*02
AGTATAACCCCTCCCTCAAGAATCGAGTCACCATATCATTAGACACGTCCGAGAACCAGTTCTCCCTGAAACTCAGCTCTGTGACCGC




CGCGGACACGGCCGTATTACTGTGCCAGAG





SEQ ID NO: 556
IGHV4-59*03
ACTACAACCCCTCCGTCAAGAGTCGGGTCACCATATCAGCGCACACGTCCACGAATCAATTCTCCCTGAACCTGTTCTCTGTGACCGC




TGCGGACACGGCCGTGTATTACTGTCGAGAG





SEQ ID NO: 557
IGHV4-59*04
AAGTATAACCCGTCCCTCAAGAGTCGACTCACCCTGTCCATTGACACGTCCAAGAGCCAGTTCTCCCTGAAGTTGAGGTCTGTGACC




GCCGCCGACACGGCCGTCTATTACTGTGCGCGA





SEQ ID NO: 558
IGHV4-59*08
CTTTATAATCCCTCCCTCGAGAGTCGAGTCACCATGTCAGTAGACACATCCAAGGACCAGTTCTCCATGAAGCTGACCTCTGTGACCG




CCGCAGACACGGCCATATATTACTGTGCGAGA





SEQ ID NO: 559
IGHV4-59*10
CAGTTCTCCCTCCCTCAGGAGGCGAGTCACCATGTCAACAGACACGTCCAGAAATCAGTTCTCCCTCAATTTGACTTCTGTGACCGCT




GCGGACACGGCCGTCTATTACTGTGCGAGAGA





SEQ ID NO: 560
IGHV4-61*01
CTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGC




TGCGGACACGGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 561
IGHV4-61*02
CAACTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGAC




CGCCGCAGACACGGCCGTGTATTACTGTGCGAG





SEQ ID NO: 562
IGHV4-61*03
AACTACAACCCCTCCCTCAAGAGTCGAGTCACCATGTCAGTAGACACGTCCAGGAACCACTTCTCCCTGAACCTGAACTCTGTGACC




GCCGCAGACACGGCCGTCTATTACTGTGCGAGA





SEQ ID NO: 563
IGHV4-61*04
GGGTACACCAGGTACACCCCTCCCTCAAGAGTCGAGTCACCATATCAATAGACTCGTCCAAGAACCAGTTGTCCCTGAATCTGAAC




TCTGTGACCGCCGCCGACACGGCCGTCTACTAC





SEQ ID NO: 564
IGHV4-61*05
AACTACAACCCCTCCCTCAAGAGTCGAGTCACCATATCAGTAGACAAGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACC




GCCGCGGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 565
IGHV4-61*08
AACTACAACCCCTCCCTCAAGAGTCGAGTCAGCATATCAGTAGACGCGTCTAAGAACCAATTCTCCCTGAAGCTGACCTCTGTGACC




GCTGCGGACACGGCCGTCTATTACTGTGCGAGA





SEQ ID NO: 566
IGHV4-80*01
ATTGGATACATCTATTATAGTGGGAGGAGCTACTACACCCCGTCCCTCAGGAGTTGAGTCACCATGTCAATGAAACGTCCAAGAAC




CAGTTTTCCCTGAAGCTGAGCTCTGTGACCGCA





SEQ ID NO: 567
IGHV4-10
AACTACAGCCCGTCCTTCCAAGGCCACGTCACCATCTCAACTGACAAGTCCATCAACACTGCCTACCTGCAGTGGAACAGCCTGAAG



1*01
GCCTCGGACACCGCCATCTATTATTGTGCGAGA





SEQ ID NO: 568
IGHV5-10
CAATACAGCCCGTCCTTTCAAGGCCACGTCACCATCTCAGCTGACAAGTCCATCACAACTGCCTACTTGCAGTGGAGCAGCCTGAAG



1*02
GCCTCGGACACCGCCATATATTATTGTGCGAGA





SEQ ID NO: 569
IGHV4-10
AACTACAGCCCGTCCTTCCAAGGCCACGTCAGCATCTCAGCTGACAAGTCCATCAGCACTGCCTACCTGCAGTGGAGCAGCCTGAAG



1*03
GCCTCGGACACCGCCATGTATTACTGTGCGAGA





SEQ ID NO: 570
IGHV5-10
TACAGCCCATCTCTGGAGGGTAGACTCACCATCACTAAGGACACCTCCAAAAACCAGGTGGTCCTTACAATGACCGACATGGACCCT



1*04
GTGGACACAGGCACATATTACTGTGCACACAGA





SEQ ID NO: 571
IGHV5-51*01
ATATAGCCCGTCCTTCCAAGGCCAGGTCACCATGTCAGCCGACAAGTCCATCAGCACCGCCTACCTACAGTGGAGCAGCCTGCGGG




CCTCGGACACCGCCATGTATTACTGTGCGAGACA





SEQ ID NO: 572
IGHV5-51*02
GATACAGCCCGTCCTTCGAAGGCCAGGTCACCATGTCAGCCGACGAGTCCCTTCAGCACCGTCTACCTCCAATGGAGCAGCCTGAAG




CCCTCGGACAGCGCCATGTATTTCTGTGCGCGGC





SEQ ID NO: 573
IGHV5-51*03
AGATACAGCCCGTCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGTCCATCAGCACCGCCTACCTGCAGTGGAGCAGCCTGAA




GGCCTCGGACACCGCCATGTATTTCTGTGCGAGA





SEQ ID NO: 574
IGHV5-51*04
AGATATAGCCCGTCCTTCCAAGGCCAGGTCACCATCTCAGCCGACAAGCCCATCAGTACCGCCTACCTGCAGTGGAACAGCCTGAG




GGCCTCGGACACCGCATTTATTACTGTGCGAGA





SEQ ID NO: 575
IGHV5-78*01
ATACAGCCCATCCTTCCAAGGCCACGTCACCATCTCAGCCGACAGCTCCAGCAGCACCGCCTACCTGCAGTGGAGCAGCCTGAAGG




CCTCGGACGCCGCCATGTATTATTGTGTGAGAGG





SEQ ID NO: 576
IGHV5-78*02
CAGATACAGCCCACCTTCCAAGGCCACGTCACCATCTCAGCCGACAGCTCCAGCAGCACCGCCTACCTGCAGTGGAGCAGCCTGAA




GGCCTCGGACGCCGCCATGTATTATTGTGTGAGA





SEQ ID NO: 577
IGHV6-1*01
ATTATGCAATATCTGTGAAAAGTCGAATAGCCATCAACCCAGACACATCCAAGAACCAGTTCTCCCTGCAGCTGAACTCTGTGACTC




CCGAGGACACGGCTGTGTATTACTGTGCAAGAG





SEQ ID NO: 578
IGHV6-1*02
ATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAGTGTA




TTACTGTCAGCAGTGTAGTAGCTCACCCTGGATG





SEQ ID NO: 579
IGHV7-27*01
ACTGGGAACCTAACGTATGCCCAGGGCTTCACAGGACGGTTTGTCTTCTCCATGGACACCTCCGTCAGCATGGCATATCTTCATATC




AGCAGCCTAAAGGCTGAGGACACGTGCAAGAGG





SEQ ID NO: 580
IGHV7-34-
GTATACCCACGGCTTCACAGGATGGTTTGTCTTCTCCATGGACACGTCTGTCAGCACGGCGTGTCTTCAGATCAGCAGCCTAAAGGC



1*01_IGHV70
TGAGGACACGGCCGAGTATTACTGTGCGAAGTA



34-1*02






SEQ ID NO: 581
IGHV7-40*01
CCTGACCGCTTCTCTGGCTCCAAGTCTGGCACGTCTGCCACCCTGGGCATCACTGGACTCCAGACTGGAGACGAGGCCCATTATTAC




TGCGCCACATGGGATAGTGGCCTGAGTGCCGGA





SEQ ID NO: 582
IGHV47-40*03
ATATACCACGGCTTCACAGGACGGTTTCTATTCTCCATGGACACCTCTGTCAGCATGGCGTATCTGCAGATCAGCAGCCTAAAGGC




TGAGGACACGGCCGTGTATGACTGTATGAGAGA





SEQ ID NO: 583
IGHV47-40*04
ATATACCACGGCTTCACAGGACGGTTTCTATTCTCCATGGACACCTCTGTCAGCATGGCGTATCTGAAGATCAGCAGCCTAAAGGC




TGAGGACACGGCCGTGTATGACTGTATGAGAGA





SEQ ID NO: 584
IGHV7-
GTATACCCACGGCTTCACAGGACGGTTTGTCTTCTCCATGGACACCTCTGTCAGCATGGCGTATCTGCAGATCAGCAGCCTAAAGGC



40D*01
TGAGGACACGGCCGTGTATGACTCTATGAGAGA





SEQ ID NO: 585
IGHV7-4-
ACGTATGCCCAGGGCTTCACAGGACGGTTTGTCTTCTCCTTGGACACCTCTGTCAGCACGGCATATCTGCAGATCTGCAGCCTAAAG



1*01
GCTGAGGACACTGCCGTGTATTACTGTCGAGA





SEQ ID NO: 586
IGHV7-4-
CAACATATGCCCAAGACTTCACAGGGCGATTTGTCTTCTCCCTGGACACCTCTGTCAACACGGCATTTCTGCAGATCAGCAGCCTACA



1*02
GGCTGAAGACACTGCCGTCTATTACTGTGCA





SEQ ID NO: 587
IGHV7-4-
GTATGCCCAGGGCTTCACAGGACCGGTTTGTCTTCTCCTTGGACACCTCTGTCAGCATGGCATATCTGCAGATCAGCAGCCTAAAGGC



1*04
TGAGGACACTGCCGTGTATTACTGTGCGAGAGA





SEQ ID NO: 588
IGHV7-4-
GTATGCCCAGGGCTTCACAGGACGGTTTGTCTTCTCCTTGGACACCTCTGTCAGCATGGCATATCTGCAGATCAGCAGCCTAAAGGC



1*05
TGAGGACACTGCCGTGTGTTACTGTGCGAGAGA





SEQ ID NO: 589
IGHV7-56*02
TGTATGCCCACAGATTCACACACGGTTTGTCTTCTCCATGGACACCTCTGTCAGCACGGCGGATCTGCAGACTAGCTGCCTAAAGAC




TGAGGATGCAGCCATTTATTACTGTGTGAGGTA





SEQ ID NO: 590
IGHV7-81*-01
ATATGCCCAGGGCTTCACAGGACGGTTTGTCTTCTCCATGGACACCTCTGCCAGCACAGCATACCTGCAGATCAGCAGCCTAAAGGC




TGAGGACATGGCCATGTATTACTGTGCGAGATA





SEQ ID NO: 591
IGK1/OR10-
TGGGATTCCCTCTCGGTTCAGTGACAGTGGATCTGGGACAGATTACACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC



1*01_IGKV1/
TTATTACTGTCAACAGAGTGACAGTACCTCTCC



OR10-1*01






SEQ ID NO: 592
IGKV1/OR1-
TGGGATTCCCTCTCGGTTCAGTGACAGTGGATCTGGGGCAGACTACACTCTCACCATCCGCAGCCTGCAGCCTGAAGATTTTGCAAG



1*01
TTATTACTGTCAACAGAGTGACAGTACCCCTCC





SEQ ID NO: 593
IGKV1/OR15-
TGGGATTCCCTCTCGGTTCAGTGACAGTGGATCTGGGGCAGATTACACTCTCACCATCCGCAGCCTGCAGCCTGAAGATTTTGCAAC



118*01
TTATTAGTGTCAACAGAGTGACAGTACCCCTCC





SEQ ID NO: 594
IGKV1/OR-
TGGGATTCCCTCTCGGTTCAGTGACAGTGGATCTGGGACAGATTACACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC



2*01
TTATTACTGTCAACAGAGTGACAGTAACCCTCC





SEQ ID NO: 595
IGKV1/O42-
TGGGATTCCCTCTCGGTTCAGTGACAGTGGATCTGGGGCAGATTAACTCTCACCATCCGCAGCCTGCAGCCTGAAGATTTTGCAAC



0*01
TTATTACTGTCAACAGAGTGACAGTACCCCTCC





SEQ ID NO: 596
IGKV1/OR2-
TGGGATTCCCTCTCGGTTCAGTGACAGTGGATCTGGGGCAGATTACACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAGC



1*01_IGKV1/
TTATTACTGTCAACAGAGTGACAGTACCCCTCC



OR2-2*01






SEQ ID NO: 597
IGKV1/OR2-
GGGGGTCCCATCTCGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATGTTGCAA



108*01
CTTATTACTGTCTACAGGATTATACTACCCCATT





SEQ ID NO: 598
IGKV1/OR2-
GGCGATGCCATCTCAGTTCAGTGGCAGCGGATATGGAAGAGATTTCACTCTCACCGTCAGCAGCCTGCAGCCTGAAGATTTTGCAA



11*01_IGKV1/
CTTATTAATGTCAACAAGAGAGCATTTTCCCTCC



OR2-9*01






SEQ ID NO: 599
IGKV1/OR2-
TGGGATTCCCTCTCGGTTCAGTGACAGTGGATCTGGGGCAGATTACACTCTCACCATCCGCAGCCTGCAGCCTGAAGATTTTGCAAA



118*01
TTATTACTGTCAACAGAGTGACAGTACCCCTCC





SEQ ID NO: 600
IGKV1/OR22-
CCATCCTGGTTCAGTAGCAGTCAATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGCAGCGTGATGATTTGGCCAC



1*01
TTATTACTATCAACAGCATTACAGTTACCCTCC





SEQ ID NO: 601
IGKV1/OR22-
TGGGATTCCCTCTCAGTTCAGTGACAGTGGATCTGGGACAGATTAGACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC



5*01
TTATTACTGTCCAACAGAGTTACAGTACCCCTCC





SEQ ID NO: 602
IGKV1/OR22-
TGGGATTCCCTCTCAGTTCAGTGACAGTGGATCTGGGACAGATTAGACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTACAAC



5*02
TTATTACTGTCAACAGAGTTACAGTACCCCTCC





SEQ ID NO: 603
IGKV1/OR2-
GGGGATGCCATCTCAGTTCAGTGGCAGCGGATATGGAAGAGATTTCACTCTCACTGTCAGCAGCCTGCAGCCTGAAGATTTTGCAA



3*01
CTTATTAATGTCAACAAGAGAGCATTTTCCCTCT





SEQ ID NO: 604
IGKV1/OR2-
GTTTGCAAACGGGGGTTCCATCTCTGTTCAGTGGTAGTGAATCTGGGACAGATTTCACTCTAACCATCAGCAGCCTGCAGCCTGATG



6*01
ATGATGCAACTTACTACTGTCAACAGTAACTCC





SEQ ID NO: 605
IGKV1/OR-
TGGGATTCCCTCTCGGTTCAGTGACAGTGGATCTGGGACAGATTACACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAGC



3*01
TTATTACTGTCAACAGAGTGACAGTACCCCTCC





SEQ ID NO: 606
IGKV1/OR9-
TGGGATTCCCTCTCGGTTCAGTGACAGTGGATCTGGGACAGATTACACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC



1*01_IGKV1/
CTATTACTGTCAACAGAGTGACAGTAACCCTCC



OR9-2*01






SEQ ID NO: 607
IGKV1/ORY-
TGGGATTCCCACTCGGTTCAGTGACAGTGGATCTGGGACAGATTACACTCCCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC



1*01
TTACTACTGTCAACAGAGTGACAGTACCCCTCC





SEQ ID NO: 608
IGKV1-12*01
TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC




TTACTATTGTCAACAGGCTAACAGTTTCCCTCC





SEQ ID NO: 609
IGKV1-12*02
TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC




TTACTATTGTCAACAGGCTAACAGTTTCCCTTC





SEQ ID NO: 610
IGKV1-
TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC



13*01_IGKV1D-
TTATTACTGTCAACAGTTTAATAATTACCCTA



13*01






SEQ ID NO: 611
IGKV1-
TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC



13*02_IGKV1D-
TTATTACTGTCAACAGTTTATAGTTACCCTCA



13*02






SEQ ID NO: 612
IGKV1-16*01
AGTGGGGTCCCATCCAGGTTCAGTGGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGC




AACTTATTACTGTCAACAGTATTATAGTACCTCT





SEQ ID NO: 613
IGKV1-16*02
AAGTGGGGTCCCATCAAAGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTG




CAACTTATTACTGCCAACAGTATAATAGTTACCC





SEQ ID NO: 614
IGKV1-17*01
AGGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTG




CAACTTATTACTGTCTACAGCATAATAGTTACCC





SEQ ID NO: 615
IGKV1-17*02
TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAACCTGCAGCCTGAAGATTTTGCAA




CTTATTACTGTCTACAGCATAATAGTTACCCTCC





SEQ ID NO: 616
IGKV1-
TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAA



17*03_IGKV1D-
CTTATTACTGTCTACAGCATAATAGTTACCCTCC



17*01






SEQ ID NO: 617
IGKV1-22*01
GGGTCCCGTCACGGTTCAGTGGCAGTAGGTCTGGGACACATTTCACACATTCTCACCATCAGGAGCCTGCAACCTGAAGATGTTATA




ACTTATTGCTGTCTATAGACTTACAGCAGCCAT





SEQ ID NO: 618
IGKV1-27*01
ATCAGGGGTCCCATCTCGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATGTTGC




AACTTATTACTGTCAAAAATATAACAGTGTCCC





SEQ ID NO: 619
IGKV1-32*01
GGGGTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAGGATGAGGCTGA




TTACTACTGCAGTTCATATGCTGGCGACAACATT





SEQ ID NO: 620
IGKV1-33*01
TGAAAACAGGGGTCCCATCAAGGTTCAATGGAAGTGGATCTGGGACAGATTTTACTTTCACCATCAGCAGCCTGCAGCCTGAAGAT




ATTGCAACATATTACTGTCAACAGTATGATAATC





SEQ ID NO: 621
IGKV1-
TGGGGCTCCTTCGCGGTTCGGTGGCAGTGGATCTGGGACAGATTTTACTCTCACCATCAGAATCCTGCAGCCTAAAGATGTTGCAAC



35*01_IGKV1D-
TTATTACTGTCAACAGTATAAAAATTACCCTAT



35*01






SEQ ID NO: 622
IGKV1-
TGGAGTCCCATCTCGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGCCTGAAGATGTTGCAAC



37*01_IGKV1D-
TTATTACGGTCAACGGACTTACAATGCCCCTCC



37*01






SEQ ID NO: 623
IGKV1-39*01
TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAAC




TTACTACTGTCAACAGAGTTACAGTACCCCTCC





SEQ ID NO: 624
IGKV1-39*02
TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAAC




TTATTACTGTCAGTGTGGTTACAGTACACCTCC





SEQ ID NO: 625
IGKV1-5*01
TGGGGTCCCACCAACCTTCAGCGGCAGTGGATCTGGGACAGAATTCGCTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAA




CTTATTACTGCCAACAGTATGATAGTTATTCGAC





SEQ ID NO: 626
IGKV1-5*02
TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACCATCAGCAGCCTGCAGCCTGATGATTTTGCAAC




TTATTACTGCCAACAGTATAATAGTTATTCTCC





SEQ ID NO: 627
IGKV1-5*03
GTCCCTGATCGCTTCTCTGGCTCCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGATGATGATTCTGACTAT




TACTGTGTACTATATATGGGTGATGCCTGGGCG





SEQ ID NO: 628
IGKV1-6*01
GTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATTTGGCACAGATTTCACTCTCACCATCAGCAGCCTACAGCCTGAAGATTTTGCAA




CTTATTACTGTCTACAAGATTACAGTTACCCTC





SEQ ID NO: 629
IGKV1-6*02
TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGCACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC




TTATTACTGTCTACAAGATTACAATTACCCTCC





SEQ ID NO: 630
IGKV1-8*01
GTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCGGCCTGCAGTCTGAAGATTTTGCA




ACTTATTACTGTCGACAGTATTATAGTTACCCTC





SEQ ID NO: 631
IGKV19*01
TTGGGTCCCATCAAGGTTCAGCGGCCGTGGATCTGGGACCGAATTCACCCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC




TTATTACTGTCAACAGCTTAATCGTTACCCTCC





SEQ ID NO: 632
IGKV1D-
AAGTGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACTATCAGCAGCCTGCAGCCTGAAGATTTTG



12*01
CAACTTACTATTGTCAACAGGCTAACAGTTTCCC





SEQ ID NO: 633
IGKV1D-
AAGTGGGGTCCCGTCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAGGATTTTG



16*01
CGACTTATTACTGCCAACAGTATAATAGTTACCC





SEQ ID NO: 634
IGKV1D-
TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAAC



16*02
TTATTACTGCCAACAGTATAATAGTTACCCTCC





SEQ ID NO: 635
IGKV1D-
AAGTGGGGTCCCATCGAGGTTCAGCGGCAGTGGATCTGGGACAGAATTCACTCTCACAATCAGCAGCCTGCAGCCTGAAGATTTTG



17*02
CAACTTATTACTGTCTACATCATAATAATTACCC





SEQ ID NO: 636
IGKV1D-
GGGTCCCGTCACGGTTCAGTGGCAGTAGGTCTGGGACACATTTCACACATTCTCACCATCAGGAGCCTGCAACCTGAAGATGTTATA



22*01
ACTTATTACTGTCTATAGACTTACAGCAGCCAT





SEQ ID NO: 637
IGKV1D-
GGGGGTCCCATCTCGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATGTTGCAA



27*01
CTTATTACTGTCAAAAGTATAACAGTGCCCCTCC





SEQ ID NO: 638
IGKV1D-
GTCCCATTGCAGTTATGTGGCATTGGATCCAGGACAGATTTGATTCTCACCATTAGCATCCTCCAGTCTGAAGTTGCTGCAACTTCTT



32*01
ATTATTGGTCAACAGTATAAAAGTGACCCTCT





SEQ ID NO: 639
IGKV1D-
AGCAGGGGTCCCATCAAGGTTCAGTGGAAATAGATCTGGGACAGATTTTACTTTCACCATCAACAGCCTGCAGTCTGGAGATATCG



33*01
CAACATATTACTGTCAACAGTATGATGATCTCCC





SEQ ID NO: 640
IGKV1D-
AGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCCTCACCATCAACAGTCTGCAACCTGAAGATTTTGCA



39*01
ACTTACTACTGTCAACAGAGTTACAGTACCCCC





SEQ ID NO: 641
IGKV1D-
TGGGGTCTCATCGAGGTTCAGTGGCAGGGGATCTGGGACGGATTTCACTCTCACCATCATCAGCCTGAAGCCTGAAGATTTTGCAG



42*01_IGKV1D-
CTTATTACTGTAAACAGGACTTCAGTTACCCTCC



42*02






SEQ ID NO: 642
IGKV1D-
TGGGGTCCCATCAAGGTTCAGCGGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAA



43*01
CTTATTACTGTCAACAGTATTATAGTACCCCTCC





SEQ ID NO: 643
IGKV1D-8*01
AGTGGGGTCCCATCAAGATTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATTAGTTGCCTGCAATCTGAAGATTTTGCA




ACTTATTACTGTCAACAATATTATAATTTCCCT





SEQ ID NO: 644
IGKV1D-
TGGGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCTGCCTGCAGTCTGAAGATTTTGCAAC



8*02_IGKV1D-
TTATTACTGTCAACAGTATTATAGTTTCCCTCC



8*03






SEQ ID NO: 645
IGKV1-
TGGGGTCCCATCCAGGTTCAGTGGCAGTGGATCTGGGACGGATTACACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAA



NL1*01
CTTATTACTGTCAACAGTATTATAGTACCCCTCC





SEQ ID NO: 646
IGKV2/OR2-
GGGTCCCAGACAGGTTCAGTGGCAGTGGGTCAGGCATTGATTTCACACTGAAAATCAGCCCGGTGGAGGCTGAGGATGTTGGGGT



1*01
TTATATTACTGCATGCAAGCTACACACTGGCCCCC





SEQ ID NO: 647
IGKV2/OR2-
CTGGAGTCCCAGACAGGTTCAATGGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCCGGGTGGAGCTGAAGATGTTGGG



10*01_IGKV2/
GTTTATTACTGCATGCAGGCTCTGCAGCTTCCTCC



OR2-




2*01_IGKV2/




OR2-8*02









SEQ ID NO: 648
IGKV2/OR22-
TGCAGTCCCAGACAGGCTCAGTGGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCCGGGTGGAGGCTGAAGATGTTGGG



3*01
GTTTATCACTGCATGCAAGCTCTACAAACTCCTCC





SEQ ID NO: 649
IGKV2/OR22-
TGGAGTTCCAGACAGGTTCAGTGGCAGTGGGTCAGGCACTGATTTCACTCTGAAAATCAGTAGGGTGGAGGCTTAGGATGTTGGG



4*01
GTTTATTACTGCATGCAAGCTCTACAAACTCCGCC


SEQ ID NO: 650
IGKV2/OR2-
GGGTCCCAGACAGGTTCAGTGGCAGTGGGTCGGGCATTGATTTCACACTGAAAATCAGCCCGGTGGAGGCTGCGGATGTTGGGGT



4*01_IGKV2/
TTATATTACTGCATGCAAGCTACACACTGGTCCCC



OR2-




7*01_IGKV2/




OR2-7D*01






SEQ ID NO: 651
IGKV2-10*01
CTGGAGTCCCAGACAGGTTCAGTGGCAGTGGGTTGGGGACAGATTTCATGCTGAAATCAGGAGGATGGATGCTGAGGATGTTGGG




GTTTATTGCTGCCAGCAAAGTACACATTATCCTCC





SEQ ID NO: 652
IGKV2-
TGGAGTCCCAGACAGGTTCAGTGGCAGTGGGTCGGGGACAGATTTCATGTTTAAAATAAGGAGGATGGATGCTGAGGATGTTGGG



14*01_IGKV2D-
GTTTATTGCTGCCAGCAAAGTACACATTATTCTCC



14*01






SEQ ID NO: 653
IGKV2-18*01
AATCCCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATTACTGC




GCCTATATACAAGCAGCAGCACTCTTTATATC





SEQ ID NO: 654
IGKV2-19*01
TCTGGGGTCTCGGGCAGGTTCAGCAGCAGTGGTTCAGGGACAGATTTCATATTGAAAATCAGCAGGGTAGAGGCTGAGGACGTTG




GGGTTTATTACTGCCTGCAAGGTACACAAGTGCCT





SEQ ID NO: 655
IGKV2-23*01
TGGTAATGGATACACCTATTTGTATTAGTTCCTGCAGAAGCCAGGCCACTCTCCACAGCTCCTGATCTGTAGGACTTCCATCAGTTT




TCTGCCTTCCCACACAGGTTCTCCCCAGTGGG





SEQ ID NO: 656
IGKV2-24*01
CTCTGGGGTCCCAGACAGATTCAGTGGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAGCTGAGGATGTC




GGGGTTTATTACTGCATGCAAGCTACACAATTCCC





SEQ ID NO: 657
IGKV2-26*01
TGGAGTGCCAGATAGGTTCAGTGGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGGCTGAGGATGTTGG




AGTTTATTACTGCATGCAAGATGCACAAGATCCTCC





SEQ ID NO: 658
IGKV2-28*01
CGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTGGG




GTTTATTACTGCATGCAAGCTCTACAAACTCCTCC





SEQ ID NO: 659
IGKV2-29*01
TGGAGTGCCAGATAGGTTCAGTGGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGGCTGAGGATGTTGG




GGTTTATTACTGAATGCAAGGTATACACCTTCCTCC





SEQ ID NO: 660
IGKV2-
TGGAGTGCCAGATAGGTTCAGTGGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGGCTGAGGATGTTGG



29*02_IGKV2-
GGTTTATTACTGCATGCAAGGTATACACCTTCCTCC



29*03






SEQ ID NO: 661
IGKV2-30*01
CTCTGGGGTCCCAGACAGATTCACCGGCAGTGGGTCAGGCACTGATTTCACACTGGAAATCAGCAGGGTGGAGGCTGAGGATGTT




GGGGTTTATTACTGCATGCAAGGTACACACTGGCC





SEQ ID NO: 662
IGKV2-
CTCTGGGGTCCCAGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGGCTGAGGATGTT



30*02_IGLV7-
GGGGTTTATTACTGCATGCAAGGTACACACTGGCC



46*01






SEQ ID NO: 663
IGKV2-36*01
ATTTATGAGGTTTCCAACCAAGCCTCCGAATTCTCAGACAGGTTCAGGGGTAATGGGTCAGGTACTGAGTTTACACTGAAAGTCAGT




AGGACGGAGACCAAGGATGTTGGAGTTTATTAG





SEQ ID NO: 664
IGKV2-38*01
TCTGGAGTCCCAGACAGGTTCAATAGCAGTGGGTCAGGCACATATTTTAAACTCAAAATTAGCAGGGTGGAGGCTGAGGATATTCG




ACTTTATTAATACATGCAAGCTACATAATATCCT





SEQ ID NO: 665
IGKV2-4*01
TGGAGTCCCAAACAAGTTCAGTGGCAGCAGGTCAGGGACAGGTTTCACACTTAAATTCAGCAAAGTGGAGGCTGAGGATGTTGGG




GTTTATTGCTGTGAACAGGGTCTGCAAGGTCCTCA





SEQ ID NO: 666
IGKV2-40*01
CCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCTGGCTGAAGATGAGGCTGATTATCACT




GCTGCTCATATGCGGGCAGCTTCACTGTGATC





SEQ ID NO: 667
IGKV2D-
CTGGAGTCCCAGACAAGTTCAGTGGCAGTGGGTCGGGGACAGATTTCATGCTAAAATCAGGAGGATGGATGCTGAGGATGTTGGG



10*01
GTTTATTGCTGCCAGCAAAGTACACATTATCCTCC





SEQ ID NO: 668
IGKV2D-
TCTGGGGTCCCAGACAGGTTTAGTGGCAGTGGGTCAGGCAGTGATTTCACACTGAAAATCAGCTGGGTGGAGGCTGAGGATGTTG



18*01
GGGTTTATTACTGCATGCAAGCTACACAGTTTCCT





SEQ ID NO: 669
IGKV2D-
GGGGTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGCTCCAGGCTGAGGACGAGGCTGAT



19*01
TATTACTGCTGCTCATATGCAAACAGCGACTCC





SEQ ID NO: 670
IGKV2D-
ACCACATAACCGTGAGTTTGCAGTGGTTGCAGGTCAGGGACAGATTTTATGCTTAAGATCAGTAGGGTGGAGGCTGAGGATCTTGG



23*01
CTATTACAACTGCCACCACACTCTACAATATCCT





SEQ ID NO: 671
IGKV2D-
TGGGGTCCCAGACAGATTCAGTGGCAGTGGGGCAGGGACAGATTTCACACTGAAAATCAGCAGGGTGGAAGCTGAGGATGTCGG



24*01
GGTTTATTACTGCACGCAAGCTACACAATTTCCTCA





SEQ ID NO: 672
IGKV2D-
TGGAGTGCCAGATAGGTTCAGTGGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGGCTGAGGATTTTGGA



26*01_IGKV2D-
GTTTATTACTGCATGCAAGATGCACAAGATCCTCC



26*03






SEQ ID NO: 673
IGKV2D-
TCTGGAGTGCCAGATAGGTTCAGTGGCAGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGGCTGAGGATTTTG



26*02
GAGTTTATTACTGCATGCAAGATGCACAAGATCCT





SEQ ID NO: 674
IGKV2D-
TCCGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGGCTGAGGATGTTG



28*01
GGGTTTATTACTGCATGCAAGCTCTACAAACTCCT





SEQ ID NO: 675
IGKV2D-
CTCTGGAGTGCCAGATAGGTTCAGTGGCGGCGGGTCAGGGACAGATTTCACACTGAAAATCAGCCGGGTGGAGGCTGAGGATGCT



29*01
GGGGTTTATTACTGCATGCAAAGTATACAGCTTCC





SEQ ID NO: 676
IGKV2D-
ACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAAGAACACTCTGTATCTGCAAATGAACAGCCTGAGA



29*02
GTCGAGGACACGGCCGTATATTACTGTGCGAAAG





SEQ ID NO: 677
IGKV2D-
CTGGGGTCCCAGACAGATTCAGCGGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGGCTGAGGATGTTGG



30*01
GGTTTATTACTGCATGCCAAGGTACATACTGGCCTC





SEQ ID NO: 678
IGKV2D-
TCTTACGCTCCGTCGATAAAAGGCAAGTTCATCATTTCCAGAGATGATTCCAGCAATATGTTGTATCTTCAAATGAACAACCTGAAAA



38*01
CCGAGGACACGGCCGTCTATTTTTGTACTCGC





SEQ ID NO: 679
IGKV2D-
TGGAGTCCCAGACAGGTTCAGTGGCAGTGGGTCAGGCACTGATTTCACACTGAAAATCAGCAGGGTGGAGGCTGAGGATGTTGGA



40*01
GTTTATTACTGCATGCAACGTATAGAGTTTCCTTC





SEQ ID NO: 680
IGKV3/OR22-
CCTGGAAAAGCTCCCTGGTTCCTCATCTAAGGCACATCCAACAGGGCCACTAGCATCCTGGGGTTTAGTGGTCATGGATTGGAGAC



2*01
AGACTTTACTATCACCATCAGCTGCCTGAAGCCT





SEQ ID NO: 681
IGKV3/OR2-
TGGCATCCCAGCCAGGTTCAGTGGTAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAGT



268*01
TTATTACTGTCAGCAGGATTATAACTTACCTCC





SEQ ID NO: 682
IGKV3/OR2-
TGACATCCCAGTGGGGCTCAGTAGCTGTGAATCTGGGATGTACTTTACTCTCACCAACAGTAACCTGGAACCTGAAGATTTTGCACT



5*01
TGATTACTCTTATCTGTATAGTAGTTGGAATTT





SEQ ID NO: 683
IGKV3-11*01
CCGCTGGCGTCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCACCCTAGAACCTGAAGATTTTG




CAGTTTATTACTGTCAACACTGTAGGAACTGGC





SEQ ID NO: 684
IGKV3-11*02
TACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGACACAATTCCAAGAACACGCTGTATCTTCAAATGAACAGCCTGAGA




GCTGAGGACACGGCCGTGTATTACTGTGCGAGA





SEQ ID NO: 685
IGKV3-15*01
GGTATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGTCTGAAGATTTTGCAGT




TTATTACTGTCAGCAGTATAATAACTGGCCTCCG





SEQ ID NO: 686
IGKV3-20*01
CACTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTCAAGATTTTG




CAGTGTATTACTGTCAGCACTATGGTAGGTCACC





SEQ ID NO: 687
IGKV3-20*02
GTGCATCCAGCAGGGCCACTGGCATCCCAGCAAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTG




GAGCCTGAAGATTTTGCAGTTTATTACTGTCAGC





SEQ ID NO: 688
IGKV3-25*01
TACAGCCCTGATTTGTGATAGTGGGTCGGGGACAGGGCTTACTCTCACCATCGGCAGCCTGGAGCCTGGAGCCTGGAGATTTGCAC




TTCATCACTGTTATCAGCATAGTAGTTGGTGTCC





SEQ ID NO: 689
IGKV3-31*01
ATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGGAGCCTGAAGATTTTGCAGTTTAT




TACTGTCAGCACCGTAGCAACTGGCTAATCGCC





SEQ ID NO: 690
IGKV3-
AGCATCCCAGCCCGGTTCAGTGGTGGTGGGCCTGAGGCAGACTTTACCCCAACCATCAACAGCCTAGACCCTGAAGATGTCACAAT



34*01_IGKV3D-
TTTATTACCCTCATCAGTACAGCAGTGGGTGTCC



34*01






SEQ ID NO: 691
IGKV3-7*01
TAGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAGT




TTATTACTGTCAGCAGGATCATAACTTACCTCC





SEQ ID NO: 692
IGKV3-
TGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAG



7*02_IGKV3/
TTTATTACTGTCAGCAGGATTATAACTTACCTCC



OR2-




268*02_IGKV3D-




7*01






SEQ ID NO: 693
IGKV3-7*03
TAGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGAGAGACTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAG




TTTATTACTGTCAGCAGGATCATAACTTACCTCC





SEQ ID NO: 694
IGKV3-7*04
TAGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGCCTGCAGCCTGAAGATTTTGCAGT




TTATTACTGTCAGCAGGATTATAACTTACCTCC





SEQ ID NO: 695
IGKV3D-
TGGCATCCCAGCCAGGTTCAGTGGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAG



11*01_IGKV3D-
TTTATTACTGTCAGCAGCGTAGCAACTGGCATCC



11*02






SEQ ID NO: 696
IGKV3D-
TGGCATCCCAGCCAGGTTCAGTGGCAGTGGGCCTGGGACAGACTTCACTCTCACCATCAGCAGCCTAGAGCCTGAAGATTTTGCAG



11*03
TGTATTACTGTCAGCAGCGTAGCAACTGGCATCC





SEQ ID NO: 697
IGKV3D-
TATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGTAGCCTGCAGTCTGAAGATTTTGCAGTTTA



15*01
TTACTGTCAGCAGTATAATAACTGGCCTCAGAG





SEQ ID NO: 698
IGKV3D-
TGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCAGCCTGCAGTCTGAAGATTTTGCAG



15*02
TTTATTACTGTCAGCAGTATAATAACTGACCTCC





SEQ ID NO: 699
IGKV3D-
TGGCATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACCATCAGCATCCTGCAGTCTGAAGATTTTGCAGT



15*03
TTATTACTGTCAGCAGTATAATAACTGGCCTCC





SEQ ID NO: 700
IGKV3D-
ACTGGCATCTCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGAAGCCTGAAGATTCTGC



20*D1
AGTGTATTTCTGTCAGCAATATGGATCATCCCCT





SEQ ID NO: 701
IGKV3D-
TGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCAG



20*02
TCTATTACTGTCAGCAGCGTAGCAACTGGCATCC





SEQ ID NO: 702
IGKV3D-
ATCTATGGTACAGCCCTGATTTGTGATAGTGGGTCAGGACAGGGCTTACTCTCACCATCGGCAGGCTGGAGCCTGAAGATTTGCAC



25*01
TTCATCACTGTTATCAGCATAGTAGTTGGTGTCC





SEQ ID NO: 703
IGKV3D-
CAATGTCCCAGCCTGGTGGAGTGGCAGTGGGTTCGGGGAAAGCTTCAGTCTCATTATCAGCAGGCTGGAGCATGAAGATTTTGCAC



31*01
TTTAACACTGTTATCAGCATAGTGGTGGGTATTC





SEQ ID NO: 704
IGKV4-1*01
ATCCGGGGTCCCTGACCGATTCAGTGGCAGCGGGTCTGGGACAGATTTCACTCTCACCATTAGTAGCCTGCAGACTGAAGATGTGG




CAGTTTATTCTTGTCAGCAATTTCATAGTTTTCC





SEQ ID NO: 705
IGKV5-2*01
CCTGGAATCTCACCTCGATTCAGTGGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAATCTGAGGATGCTGCA




TATTACTTCTGTCTACAACATGATAATTTCCCG





SEQ ID NO: 706
IGKV6-
AGGGGTCCCCTCGAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACCCTCACCATCAATAGCCTGGAAGCTGAAGATGCTGCAA



21*01_IGKV6-
CGTATTACTGTCATCAGAGTAGTAGTTTACCTCA



6-




21*02-IGKV6D-




21*01






SEQ ID NO: 707
IGKV6D-
AGGGGTCCCCTCGAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACCCTCACCATCAATAGCCTGGAAGCTGAAGATGCTGCAG



21*02
CGTATTACTGTCATCAGAGTAGTAGTTTACCTCA





SEQ ID NO: 708
IGKV6D-
TCAGGGGTCCCCTCGAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACCTTTACCATCAGTAGCCTGGAAGCTGAAGATGCTGC



41*01
AACATATTACTGTCAGCAGGGCAATAAGCACCCT





SEQ ID NO: 709
IGKV7-3*01
TGGAATCCCACCTCGATTCAGTGGCAGCGGGTATGGAACAGATTTTACCCTCACAATTAATAACATAGAATCTGAGGATGCTGCATA




TTACTTCTGTCTACAACATGATAATTTCCCTCT





SEQ ID NO: 710
IGLV(I)-
GTCCCTGATGGCTTCTCTGGCTCCAAGTCTGGAAACACAGCCTCCATGACCATCTCTGGGTTCCAGGCTGAGGATGAGGCTGATTAT



20*01
TACTGCAACTCACATAGGAGAGGTGGCACTTTC





SEQ ID NO: 711
IGLV(I)-
TCCAGAACTGATTCTTGAGTGATCAGTCTGGCAAGGAGGCCTTCCTGAGCATATCTGGGCTCCAGGCTGAGGACAAGGCTGATCAC



38*01
TAACGTTGGATTTGGACAGTTCTCTGGAGGCCCC





SEQ ID NO: 712
IGLV(I)-
TTCAGGACAGACGCTCAGGCTACCAGTCTTGCATGAAGCCCTTCCTAAGCATCTCTGGGCTTTAGGCTGAGGACAAGGCTGATCACT



42*01
CCTGTTGGCTTCAGACAGCCCCCTGGAGGTCCA





SEQ ID NO: 713
IGLV(I)-
CCTCAGGGAATTTCCCAGCCCCATGTTAGGCAGTTTGGCCTCCCTGGCCATCTCTGGGCTCCAGGCTGGCGACGGTGCTGATTTTCA



56*01
CTATTTAGCACAGAATGGCAGCCTCGCTGATTA





SEQ ID NO: 714
IGLV(I)-
TCCCTGACAATTCTCTGGCTTCAAGTCTGGCAACTCCATTTTCGTGACCATCACTGTGCTACAGCCTGAAGATGAGGCTGATTATCAC



63*01
TGCCAATTCTACAAAAACAGCCTGAGTGCTTT





SEQ ID NO: 715
IGLV(I)-
CATAGGCCCAATGCTGAGGCTCCAGGTTGGAGAACATGGCCTCTCTGAGCATCTCTGGACTCCAGGCAGAGGAAAAGGCTGATTTT



68*01
TATTCTCAGCTTGGGACACAAGCACCAAGGCTCA





SEQ ID NO: 716
IGLV(I)-
CCCTGACCGCTTCTCTGGCTCAAAGTCTGGGACCACAGCCTCCCTGACTATCTCGGGCCTCTAGCCTGAGGACGAGGCTGATTATTA



70*01
CTGTTCAACATGGGACTACAGCCTCAGTGCTCA





SEQ ID NO: 717
IGLV(IV)-
CAGACAATTCTCTGGGTTGAGAGGCTCCTCCAGAGTCTCAAGTTATTTGGTCGTCTCTGGCCTTCACCTTGAGGATGGAGCAGATCA



53*01
TCTCTCTCAGATGGGCTGACAGGGCATGGCTTA





SEQ ID NO: 718
IGLV(IV)-
CTAAATCCAAAGATGCCTTGGCCAGTGCAGGCAATTTGCTCATCTCTGGGGTCCAGCCAGAGGACAAGACTATCTGTTCTATCTATT



59*01
ACTGTCAGACCTGGGATATTGATACTTCAGTTA





SEQ ID NO: 719
IGLV(IV)-
TCTGGATTAATGGAAGGCCGGTCCATAAAGGGCTCTTGCTCATATCTGATCTCCAGTCTGAGGATGAGGCTTACTATTACTGTATG



64*01
ATCGAGCACAGCAGAGCTTCTCATGCTGACACA





SEQ ID NO: 720
IGLV(IV)-
GTTCCCATCCACTTCTCTGGATCCAATGATACATTAGCCAATGCAGGGATTCTGTACATTCCTGGGCTGAAGCCTGAGGGTGAGGCT



65*01
ATTACTGTTGTACGTGTCACAGCAGCTCCAAGT





SEQ ID NO: 721
IGLV(IV)-66-
GTCACTTCTGTGAATCCAAAGATCCCTCGGGCAATGTGCAGGGATTCTGCACATTTCTGAGCAGCCTGAGATCAAGTCCGACTATTA



1*01
CTATTTTACATATCACAGCAACAGTGGCACTTT





SEQ ID NO: 722
IGLV(V)-
TACAGTTCTCAGGATCCAGCTATGGGGCTGATCGGTAGGTCACCATCTCCAACATCCAGTTTGAGGATGAAGCTGATTGTATCTGTG



58*01
GTGCAGATCATAGCATTGGTGTACATATGGGT





SEQ ID NO: 723
IGLV(V)-
ATTCCCAGTCACTAGTTCTCAGTCTCCAGGACTGGAGCTGACCACTATAGTGTCATTTCTACAATCCCGTCTGAGGATGGAGCTGACT



66*01
ATATCTGTGGTACAGATTGTAGCATTGGTGTG





SEQ ID NO: 724
IGLV(VI)-22-
AGAGACATAAGACTCATTCTCAGGCTCCAAGTCTGGCCAGTGAGCTTCTTTGAGACTCCCTGGGATCCCAGCAGTGACACTGATCAC



1*01
TATTGCTGTCCCACACATCCCAAGTGATGAGGA





SEQ ID NO: 725
IGLV(VI)-25-
AGAGACATAAGATTGATTCTCAGGCTCCAAGTCTGACAAGTGAGCTTCTTTGAGACTCCCTGGGATCCCAGCAGTGACACTGATCAC



1*01
TGTTGCTGTTCCACACATCCCAAGTGATGAGGA





SEQ ID NO: 726
IGLV10-
CTCAGAGAGATTATCTGCATCCATATCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGACGAGGCTGACTATTA



54*01
CTGCTCAGCATGGGACAGCAGCCTCAGTGCTCA





SEQ ID NO: 727
IGLV10-
ATCTCAGAGAGAATCTCTGCATCCAGGTCAGGAAACACAGCCTCCCTGACCATTACTGGACTCCAGCCTGAGGACGAGGCTGACTA



54*02
TTACTGCTCAGCATGGGACAGCAGCCTCAGTGCT





SEQ ID NO: 728
IGLV10-
AAAGAAAAAGGAGATATTCCTGAGGGGTACAGTGTCTCTAGAGAGAAGAAGGAGCGCTTCTCCCTGATTCTGGAGTCCGCCAGCA



54*03
CCAACCAGACATCTATGTACCTCTGTGCCAGCAGC





SEQ ID NO: 729
IGLV10-
GCTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTTCAGGCTGAGAACGAGGCTGATTATT



67*01
ACTGCAGTTCATATACAAGCACCACCACTCTC





SEQ ID NO: 730
IGLV10-
TCTCAGAGAGATTCCCTGGCTCCCGGTTAGGAACATGGCATCTCTGACCATCTCTGGCCTCCAGACCAAGGACAAGCCTGCCTATTA



67*02
CTGCTCAGCCTGGGACAGCAGCCTCAGTGCTCA





SEQ ID NO: 731
IGLV110
CCCAGTCGAGTCTCTGGCTCCAAGGAGACCTCAAGTAACACAGCGTTTTTGCTCATCTCTGGGCTCCAGCCTGAGGACGAGGCCGAT



55*01_IGLV11-
TATTACTGCCAGGTGTACGAAAGTAGTGCTAAT



1-55*02






SEQ ID NO: 732
IGLV1-36*01
CTCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCTGATTATTA




CTGTGCAGCATGGGATGACAGCCTGAATGGTCC





SEQ ID NO: 733
IGLV1-40*01
CCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGGCTGAGGATGAGGCTGATTATTA




CTGCCAGTCCTATGACAGCAGCCTGAGTGGTTC





SEQ ID NO: 734
IGLV1-40*02
GTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTGATTAT




TACTGCCAGTCCTATGACAGCAGCCTGAGTGGT





SEQ ID NO: 735
IGLV1-40*03
GTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCGCCTCAGCCTCCCTGGCCATCACTGGGCTCCAGGCTGAGGATGAGGCTGATTAT




TACTGCCAGTCCTATGACAGCAGCCTGAGTGGT





SEQ ID NO: 736
IGLV1-41*01
ATTCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCACCCTGGGCATCACTGGCCTCTGGCCTGAGGACGAGGCCGATTAT




TACTGCTTAGCATGGGATACCAGCCCGAGAGCT





SEQ ID NO: 737
IGLV1-41*02
TCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCACCCTGGGCATCACTGGCCTCTGGCCTGAGGACTAGGCCGATTATTA




CTGCTTAGCATGGGATACCAGCCTGAGAGCTTG





SEQ ID NO: 738
IGLV1-44*01
CCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCAGTCTGAGGATGAGGCTGATTATTA




CTGTGCAGCATGGGATGACAGCCTGAATGGTCC





SEQ ID NO: 739
IGLV1-44-01
GTCCCTGCCCGATTCTCTGGCTCCAGGTCTGGCACCTCAGCCTCCCTGGCCATCCGTGGGCTCCAGTCTGACGATGAGGGTGATTAT




TTCTGTTCGGCATGGGATGACAGCCTGAATCAT





SEQ ID NO: 740
IGLV1-47*01
GGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAAGATGAGGCTGTTT




ATTACTGTGGAGCGTGGGATGGCGGCCTGAGTG





SEQ ID NO: 741
IGLV1-47*02
CCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTGATTATTA




CTGTGCAGCATGGGATGACAGCCTGAGTGGTCC





SEQ ID NO: 742
IGLV1-50*01
CCCTGACCATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCACTGGACTCCAGTCTGAGGATGAGGCTGATTATTAC




TGCAAAGCATGGGATAACAGCCTGAATGCTCA





SEQ ID NO: 743
IGLV1-51*01
ATTCCTGACCGATTCTCTGGCTCCAAGTCGGCACGTCAGCCACCCTGGGCATCACCGGACTCCAGACTGGGGACGAGGCCGATTAT




TACTGCGGAACATGGGATAGCAGCCTGAGTGCT





SEQ ID NO: 744
IGLV1-51*02
TCCTGACCGATTCTCTGGCTCCAAGTCTGGCACGTCTGCCACCCTGGGCATCACCGGACTCCAGACTGGGGACGAGGCCGATTATTAz




TTGCGGAACATGGGATAACAATCTGCGTGCGGG





SEQ ID NO: 745
IGLV1-62*01
TATCTGACCAATTCTCTGGTTCCAAGTCTGGCAGCTTGGCCTCCCTGGGCACCACTGGGCTCTGGGCTGAGGACAAGACTGATTATC




ACTGCCAGTCCCGTGACATCTGCTGAGTGCTTG





SEQ ID NO: 746
IGLV2-11*01
GGGTCCCTGATCGTCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGATGAGGCTGATT




ATTACTGCTGCTCATATGCAGGCAGCTACACTT





SEQ ID NO: 747
IGLV2-11*02
GTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGATGAGGCTGATTAT




TACTGCTGCTCATATGCAGGCAGCTACACTTTC





SEQ ID NO: 748
IGLV2-14*01
GTCTCTAATCGCTTCTCTGGTTCCAAGTCTGGCAACACGGCCTCCCTGACCAATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTAT




TACTGCAACTCATATCAACCAGCGACACTCTC





SEQ ID NO: 749
IGLV2-14*02
GTTTCTAATCGCTTCTCTGGCTCCAAGTCTGCCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATT




ACTGCAGCTCATATACAAGCAGCAGCACTCTC





SEQ ID NO: 750
IGLV2-18*01
AAGTACGCGGACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAGGAACACGCTGTATCTGCAGATGAACAGTCTGAG




AGCCGAGGACACGGCTGTGTATTATTGTGCAAGA





SEQ ID NO: 751
IGLV2-18*02
TCTTGGACCCCTGCCCGGTTCTCAGGCTCCCTCCTCGGGGGCAAAGCTGTCCTGACACTGTCAGGTGTGCAGCCTGAGGACGAGGC




TGAGTATTACTGCATGCTCTACTCTAGTGGTCCT





SEQ ID NO: 752
IGLV2-18*03
GTCCCTGATCGCTTCTCTGGGTCCAAGTCTGGCAACACGGCCTCCCTGACCACCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTAT




TACTGCAGCTCATATACAAGCAGCAGCACTTTC





SEQ ID NO: 753
IGLV2-18*04
GTCCCTGATCGCTCCTCTGGGTCCAAGTCCGGCAACACGGCCTCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTAT




TACTGCAGCTCATATACAAGCAGCAGCACTTTC





SEQ ID NO: 754
IGLV2-23*01
TTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTATT




ACTGCTGCTCATATGCAGGTAGTAGCACTTTAC





SEQ ID NO: 755
IGLV2-23*02
GTTTCTAATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACAATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTAT




TACTGCTGCTCATATGCAGGTAGTAGCACTTTC





SEQ ID NO: 756
IGLV2-23*03
GGGTTTCTGATCGCTTCTCTGGCTCCAAGTCTGGCAGCACGGCCTCCCTGACAATTTCTGGGCTCCAGGCTGAGGATGAGGCTGATT




ATTACTGCTGCTCATATGTTGGCAGTCACACTT





SEQ ID NO: 757
IGLV2-28*01
TCTCTGATCACTTCTCTGGCTCCCAGCTCTGGCAACATGGCCTCCATGACCATCTCTGGGCTTCCAGGCTGAGGACGAGGCTGATTATT




ACTGCAGTTCATATACAAGCAGCAACATTTTC





SEQ ID NO: 758
IGLV2-
ATCTCTGACCTCTTCTCAGGCTCCAAGTCTGGCAACATGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAGGTTGAGGCTAATTATC



33*01_IGLV2-
ACTGCAGCTTATATTCAAGTAGTTACACTTTC



33*02






SEQ ID NO: 759
IGLV2-33*03
ATCTCTGACCTCTTCTCAGGCTCCAAGTCTGGCAACGTGGCTTCCCTGACCATCTCTGGGCTCAAGTCCGAGGTTGAGGCTAATTATC




ACTGCAGCTTATATTCAAGTAGTTACACTTTC





SEQ ID NO: 760
IGLV2-
GCCCCTGGTTGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCATCTCTGGGCTCCAGGCTGAGGACGAGGCTGATTAT



34*01_IGLV2-
TACTGCAGCTCATATGCAGGCAGCTACAATTTC



NL1*01






SEQ ID NO: 761
IGLV2-5*01
GTCCCTGATCGTTTCTCTGGCTCCAAGTCTGGCAATACGGCCTCCATGACCATCTCTGGACTCCAGGCTGAGGACGAGGCTGATTAT




TAGTGCTGCTCATATACAAGCAGTGCCACTTAA





SEQ ID NO: 762
IGLV2-5*02
TCCCTGATCGTTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCATGACCATCTCTGGACTCCAGGCTGAGGACGGCTGATTATT




AGTGCTGCTCATATACAAGCAGTGCCACTTAAC





SEQ ID NO: 763
IGLV2-8*01
GGTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTGTGGGCTCCAGGCTGAGGACGAGGCTGATTA




TTACTGCAGCTCATATGCAGGCAGCAACAATTT





SEQ ID NO: 764
IGLV2-8*02
GTCCCTGATCGCTTCTCTGGCTCCAAGTCTGGCAACACGGCCTCCCTGACCGTCTCTGGGCTCCAGGCTGAGGATGAGGCTGATTAT




TACTGCAGCTCATATGCAGGCAGCAACAATTTC





SEQ ID NO: 765
IGLV3-1*01
AGGGATCCCTGAGCGAATCTCTGGCTCCAAGTCTGGGAACACAGCCACTCTGACCATCAGCGGGACCCAGGCTATGGATGAGGCTG




ACTATTACTGTCAGGCGTGGGACAGCAGGGCTGC





SEQ ID NO: 766
IGLV3-10*01
CCCTGAGAGATTCTCTGGCTCCAGCTCAGGGACAATGGCCACCTTGACTATCAGTGGGGCCCAGGTGGAGGATGAAGCTGACTACT




ACTGTTACTCAACAGACAGCAGTGGTAATCATTG





SEQ ID NO: 767
IGLV3-12*01
CCCTGAGCGATTCTCTGGCTCCAACCCAGGGAACACCACCACCCTAACCATCAGCAGGATCGAGGCTGGGGATGAGGCTGACTATT




ACTGTCAGGTGTGGGACAGTAGTAGTGATCCCCC





SEQ ID NO: 768
IGLV3-12*02
CCCTGAGCGATTCTCTGGCTCCAACCCAGGGAACACCGCCACCCTAACCATCAGCAGGATCGAGGCTGGGGATGAGGCTGACTATT




ACTGTCAGGTGTGGGACAGTAGTAGTGATCATCC





SEQ ID NO: 769
IGLV3-13*01
TGGAATCCCTGAGCGATTCTCTGGGTCCACCTCAGGGAACACAACCGCCCTGACCATTAGCAGGGTCCTGACCAAAGGCGGGGCTG




ACTATTACTGTTTTTCTGGTGATTAGAACAATCT





SEQ ID NO: 770
IGLV3-15*01
GGATCTCTGAGAGATTCTCTGGCTCCAACTTGGGGAACGTGGCCACCCTGACCATCAACAGGACCCAGGGTGGGGACAAGGCTATT




ACTGTAAGATGTGGGACATTAGCACTCCTCATCC





SEQ ID NO: 771
IGLV3-16*01
ATCCCTGAGCGATTCTCTGGCTCCAGCTCAGGGACAATAGTCACATTGACCATCAGTGGAGTCCAGGCAGAAGACGAGGCTGACTA




TTACTGTCTATCAGCAGACAGCAGTGGTACTTAT





SEQ ID NO: 772
IGLV3-17*01
TCCCAGACCGATTCTCTGGCTCCAAGTCAGGAACACAGCCACCCTGACCATCACTGGGGCTCAGGTTGAACATGAAGCTGACTATTA




CCGTCACTCATGGGACAACAGTGGTACTCATCT





SEQ ID NO: 773
IGLV3-19*01
CGGGCCTCCGGGGTCCCTGACAGGTTCAGTGGCAGTGGATCAGGCACAGATTTTACACTGAAAATCAGCAGAGTGGAGGCTGAGG




ATGTTGGGGTTTATTACTGCATGCAAGCTCTACAT





SEQ ID NO: 774
IGLV3-2*01
AGTGATTCCTGAGCAATTTTCTGACTGCATATCAGAGGACATGGCCACCTTGATTATTAATGGGGCACAGGATGGAAACAAGGCTA




TTACTGTCGCTCGGAACAGCACTGCTTCTCATCT





SEQ ID NO: 775
IGLV3-21*01
GGATCCCTGACCGATTCTCTGGCTCCAATTCTGGGAACACGGCCACCCCGACCATCAGCAGGGTCGAAGCCGGGGATGAGGCCGAC




TATTACTGTCAGGTGTGGGATGTGAATAGTGATC





SEQ ID NO: 776
IGLV3-21*02
ATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAGGCCGACTA




TTACTGTCAGGTGTGGGATAGTAGTAGTGATCAT





SEQ ID NO: 777
IGLV3-21*03
CCCTGAGCGTTTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAGGCCGACTATT




ACTGTCAGGTGTGGGAGAGTAGTAGTGAACCACC





SEQ ID NO: 778
IGLV3-22*01
TGGAATCCCTGAACGATTCTCTGGGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGACCGAAGACGAGGCTG




ACTATTACTGTTTGTCTGGGGATGAGGACAATCC





SEQ ID NO: 779
IGLV3-22*02
TGGAATCCCTGAACGATTCTCTGGGTCCACCTCAGGGAACACGACCACCCTGACCATCAGCAGGGTCCTGACCGAAGACGAGGCTG




ACTATTACTGTTTGTCTGGGAATGAGGATAATCC





SEQ ID NO: 780
IGLV3-24*01
CAGGGATCTCTGAGATTCTCTGGCTCAAACTCAGGGAACAGGACCACCCTGGCCATCAACAGGGCCCAGGCTGGGACGAGGCTATT




ACTGTAAGATGTGGGACATTAGGACTCCTCATCC





SEQ ID NO: 781
IGLV3-24*02
AGGGATCTCTGAGATTCTCTGGCTCAAACTCAGGGAACAGGACCACCCTGGCCATCAACAGGGCCCAGGCTGGGGACCAGGCTATT




ACTGTAAGATGTGGGACATTAGGACTCCTCATCC





SEQ ID NO: 782
IGLV3-25*01
CCCTGAGCGATTCTCTGGCTCCAGCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGATGAGGCTGACTATT




ACTGTCAATCAGCAGACAGCAGTGGTACTTATCC





SEQ ID NO: 783
IGLV3-25*02
GCGACAATATATCGTGCGTCGGTGAAAGGCAGATTCACCATCTCCAGAGATGATTCAAAAACATGGCGTTTCTGCAAATGGACAG




CCTGAGACCCGACGACACGGCCCTGTATTACTGT





SEQ ID NO: 784
IGLV3-25*03
CTCAGGGATCCCTGAGCGATTCTATGGCTCCACCTCAGGGACAACAGTCACGTTGACCATCAGTGGAGTCCAGGCAGAAGACGAGG




CTGACTATTACTGTCAATCAATTGACAAAAGTGG





SEQ ID NO: 785
IGLV3-26*01
TCCCAGACCAATTCTCTGGCTCCAAGTCAGGAACACAGCCACCCTGACCATCACTGGGGCTCAGGTTGAACATGAAGCTGACTATTA




CCATCACTCATGGGACAGCAGTGCTACTCACCT





SEQ ID NO: 786
IGLV3-27*01
AGGGATCCCTGAGCGATTCTCCGGCTCCAGCTCAGGGACCACAGTCACCTTGACCATCAGCGGGGCCCAGGTTGAGGATGAGGCT




GACTATTACTGTTACTCTGCGGCTGACAACAATCT





SEQ ID NO: 787
IGLV3-29*01
CTTCAGGGATCTCTAAGTGATTCTCCAGCTCCAACTCGGGGAACATGGTCACCCTGACCATCAGTGGAGCCCAGGCTGGGGACGAG




GCTTTCCTCTCAGGTGTGGGGCAGTGGCACTGCA





SEQ ID NO: 788
IGLV3-30*01
AGTGATTCTCTGGCTCCAACTTGTGGAACACAGCCACTCTGACCATTAGTGGGGCCCAGGCCAGGGACGAGGCTATTACTGTAGCA




CCTATGATGGCTGAGGGAGCAGCAGCCAGTGGCT





SEQ ID NO: 789
IGLV3-30*02
AGTGATTCTCTGGCTCCAACTTGTGGAACACAGCCACTCTGACCATTAGTGGGGCCCAGGCCAGGGACGAGGCTATTACTGTAGCA




CCTATGATGGCTGAGGGAGCAGCAGGCAGTGGCT





SEQ ID NO: 790
IGLV3-
TCCTAAGAAATTCTCTGGCTCCAGCTCAGGGAACATGGCCACCCTGACCATCACTGGGATTCAGGTTGAAGACAAGGCTGACTATTA



31*01_IGLV3-
CTGTCAGTCATGGGACAGCAGTCGTACTCATTC



31*02






SEQ ID NO: 791
IGLV3-32*01
AAGGATCCCTGAGCGATTCTCTGGCTCCAAATCAGGCAACACAACCACCCTGACCATCACTGGGGCCCAGGCTGAGGATGAGGCTG




ATTATTACTATCAGTTGATAGACAACCATGCTAC





SEQ ID NO: 792
IGLV3-4*01
GCTCAGAGATCACTGAGCGATTCTCTGGTTCCTGCTCAGGGGGAACAGCCACACTGACCATTACTGGGGCTCACGTTGAAGACGAG




GCTATTTTTGTTTTTCTGGAGATAAAAACACATT





SEQ ID NO: 793
IGLV3-6*01
GAATTTCTGATTTTCTGAGTCCAGCTCAGGGAACATGGCCACCCTGACCATCAGCAGGGCTCAGACTGAGGACGAGGCTGACTATT




ACTGTCACAGGTACAATAGAAACAGTGATGAGCC





SEQ ID NO: 794
IGLV3-6*02
GAATTTCTGATTTTCTGAGTCCAGCTCAGGGAACATGGCCACCCTGACCATCATCAGGGCTCAGACTGAGGACGAGGCTGACTATTA




CTGTCACAGGTACAACAGAAACAGTGATGAGCC





SEQ ID NO: 795
IGLV3-7*01
TGATTCCTGAACAACTCTCTGACTCCATATCAGAGAACATGGCCACCCTGATAATCAATGGGCCCCAGGCTGGAAACAAGGCTATTA




CTGTCAATCATGAGACAGCACTGATACTCATCT





SEQ ID NO: 796
IGLV3-
GGGATCCCTGAGCGATTCTCTGGCTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCCGGGGATGAGGCTG



9*01_IGLV3-
ACTATTACTGTCAGGTGTGGGACAGCAGCACTGCA



9*03






SEQ ID NO: 797
IGLV3-9*02
CCCTGAGCGATTCTCTGGCTCCAACTCGGGGAACACGGCCACCCTGACCATCAGCAGAGCCCAAGCCGGGGATGAGGCTGACTATT




ACTGTCAGGTGTGGGACAGCAGCACTGCACACCC





SEQ ID NO: 798
IGLV4-3*01
TACTACGCAGACTCAGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAAGAACTCACTGTATCTGCAAATGAACAGCCTGAG




AGCCGAGGACACGGCTGTGTATTACTGTGCGAGA





SEQ ID NO: 799
IGLV4-60*01
AGCGGAGTTCCTGATCGCTTCTCAGGCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTTAGAGGATGAGGCT




GATTATTACTGTGAGACCTGGGACAGTAACACT





SEQ ID NO: 800
IGLV4-60*02
GGAGCGGAGTTCCTGATCGCTTCTCAGGCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTTTGAGGATGAGG




GTGATTATTACTGTGAGACCTGGGACACTAACA





SEQ ID NO: 801
IGLV4-60*03
GGCGGAGATCCGAATCGCTTCTCAGGCTCCAGCTCTGGGGCTGACCGCTACCTCACCATCTCCAACCTCCAGTCTGACGATCAGGCT




GATTATTACTGTGAGACCTGGGACAGTGACACT





SEQ ID NO: 802
IGLV4-69*01
GAGACGGGATCCCTGATCGCTTCTCAGGCTCCAGTTCTGGGGCTGAGCGCTACCTCACCATCTCCAGCCTCCAGTCTGAAGATGAGG




CTGAGTATTACTGTCAGACCTGGGGCCCTGGCA





SEQ ID NO: 803
IGLV4-69*02
GGGTCCCATCAAGGTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGCAACTT




ACTACTGTCAACAGAGTTACAGTACCCCTGGAT





SEQ ID NO: 804
IGLV5-37*01
CCCAGCCGCTTCTCTGGATCCAAAGATGCTTCAGCCAATACAGGGATTTTACTCATCTCCGGGCTCCAGTCTGAGGATGAGGCTGAC




TATTACTGTATGATTTGGCCAAGCCAATGCTTCT





SEQ ID NO: 805
IGLV5-39*01
TCCCCAGCCGCTTCTCTGGATCCAAAGATGTTTCAACCAATGCAGGCCTGTTACTCATCTCTGGGCTCCAGTCTGAAGATGAGGCTG




ACTATTACTGTGCCATTTGGTACAGCAGCTCTT





SEQ ID NO: 806
IGLV5-39*02
CCCAGCCGCTTCTCTGGATCCAAAGATGCTTCAACCAATGCAGGCCTTTTACTCATCTCTGGGCTCCAGTCTGAAGATGAGGCTGACT




ATTACTGTGCCATTTGGTACAGCAGCACTTCT





SEQ ID NO: 807
IGLV5-45*01
CTGGCATCCCAGACAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGCCTGAAGATTTTGCA




GTGTATTACTGTCAGCAGTATGGTGACTCACCTC





SEQ ID NO: 808
IGLV5-45*02
TCCCCAGCCGCTTCTCTGGATCCAAAGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCTGAGGATGAGGCTG




ACTATTACTGTATGATTTGGCACAGCAGCGCTT





SEQ ID NO: 809
IGLV5-45*03
AGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATAAGCAGTCTGCAACCTGAAGATTTTGC




AACTTACTACTGTCAACAGACTTATCGAAGCCGG





SEQ ID NO: 810
IGLV5-45*04
CCCAGCCGCTTCTCTGGATCCAAAGATGCTTCGGCCAATGCAGGGATTTTACTCATCTCTGGGCTCCAGTCTGAGGATGAGGCTGAC




TATTACTGTATGATTTGGCACAGCAGCGCTTCT





SEQ ID NO: 811
IGLV5-48*01
CCCAGCCGCTTCTCTGGATCCAAAGATGCTTCGAGCAATGCAGGGATTTTAGTCATCTCTGGGCTCCAGTCTGAGGATGAGGCTGAC




TATTACTGTATGATTTGGCACAGCAGTGCTTCT





SEQ ID NO: 812
IGLV5-48*02
CCCAGCCGCTTCTCTGGATCCAAAGATGCTTCGACCAATGCAGGGATTTTATTCATCTCTGGGCTCTAGTCTGAGGATGAGGCTGAC




TATTACTGTATGATTTGGCACAGCAGTGCTTCT





SEQ ID NO: 813
IGLV5-52*01
CGCTTCTCTGGATCCAACGATGCATCAGCCAATGCAGGGATTCTGCGTATCTCTGGGCTCCAGCCTGAGGATGAGGCTGACTATTAC




TGTGGTACATGGCACAGCAACTCTAAGACCCCT





SEQ ID NO: 814
IGLV6-
CCCTGATCGGTTCTCGGCTCCATCGACAGCTCCTCCAACTCTGCCTCCCTCACCATCTCTGGACTGAAGACTGAGGACGAGGCTGAC



57*01_IGLV6-
TACTACTGTCAGTCTTATGATAGCAGCAATCA



57*02






SEQ ID NO: 815
IGLV7-35*01
GGACCCCTGCCCAGTTCTCAGGCTCAGTCCTTGGGAGCAAAGCTGCCCAGACACTCTTGGGTGTGCAGCCCGAGAGGTGAAGCTGA




GTACTACTGCTTACTGCACCATAGTCGTGCTTGG





SEQ ID NO: 816
IGLV7-43801
TGGACCCCTGCCCGGTTCTCAGGCTCCCTCCTTGGGGGCAAAGCTGCCCTGACACTGTCAGGTGTGCAGCCTGAGGACGAGGCTGA




GTATTACTGCCTGCTCTACTATGGTGGTGCTCAG





SEQ ID NO: 817
IGLV7-46*02
TGGACACCTGCCCGGTTCTCAGGCTCCCTCCTTGGGGGCAAAGCTGCCCTGACCCTTTTGGGTGCGCAGCCTGAGGATGAGGCTGA




GTATTACTGCTTGCTCCTATAGTGGTGCTCGG





SEQ ID NO: 818
IGLV7-46*03
CTGGACACCTGCCCGGTTCTCAGGCTCCCTCCTTGGGGGCAAAGCTGCCCTGACCTTTTCGGGTGCGCAGCCTGAGGATGAGGCTGA




GTATTACTGCTTGCTCTCCTATAGTGGTGCTCGG





SEQ ID NO: 819
IGLV8/OR8-
CCTGGTCGCTTCTCTGGCTCCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGACTCAGTAGATGATGACTCTGATCATTACT



1*01
GTGTGCTGTACATGGGTAGTGGCAATTCCACAG





SEQ ID NO: 820
IGLV8/OR8-
GGGGTCCCTGGTCGCTTCTCTGGCTCCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGACTCAGGTAGATGATGACTCTGAT



1*02
CATTACTGTGTGCTGTACATGGGTAGTGGCAAT





SEQ ID NO: 821
IGLV8-61*01
CTTCTGGGGTCCCTGATCGCTTCTCTGGCTCCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGATGATGAAT




CTGATTATTACTGTGTGCTGTATATGGGTGGTG





SEQ ID NO: 822
IGLV8-61*02
GGTCCCTGATTGCTTCTCTGGCTCCATCCTTGGGAACAAAGCTGCCCTCACCATCACGGGGGCCCAGGCAGATGATGAATCTGATTA




TTACTGTGTGCTGTATATGGGTAGTGGCATTTC





SEQ ID NO: 823
IGLV9-49*01
TGATCGCTTCTCAGTCTTGGGCTCAGGCCTGAATCGGTACCTGACCATCGAGAACATCCAGGAAGAGGATGACAGTGACTTCCACT




GTGGGGCAGACCATGGCAGTGGGAGCAACTTCGT





SEQ ID NO: 824
IGLV9-49*02
CTTCTCAGTCTTGGGCTCAGGCCTGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAAGATGAGAGTGACTACCACTGTGGGG




CAGACCATGGCAGTGGGAGCAACTTCGTGTAACC





SEQ ID NO: 825
IGLV9-49*03
CTTCTCAGTCTTGGGCTCAGGCCTGAATCGGTACCTGACCATCAAGAACATCCAGGAAGAGGATGAGAGTGACTACCACTGTGGGG




CAGACCATGGCAGTGGGAGCAACTTCGTGTAACC





SEQ ID NO: 826
VPREB1*01
TCCAAAGATGTGGCCAGGAACAGGGGGTATTTGAGCATCTCTGAGCTGCAGCCTGAGGACGAGGCTATGTATTACTGTGCTATGG




GGGCCCGCAGCTCGGAGAAGGAGGAGAGGGAGAGG





















TABLE B2





SEQ ID NO



Name
Sequence







SEQ ID NO: 827

 89161040
89161073
IGKJxxx-211891
TACACTTTTGGCCAGGGGACCAAGCTGGAAATCAG







ACGTAAGTACTTTTTTCCACTGATTCTTCACTGTT







GCTAATTAGTTTACTTTGTGTTCCTTTGTGTGGAT







TTTCATTAGTCGG





SEQ ID NO: 828

 89160080
89160117
IGKJ5*01-X67858
GATCACCTTCGGCCAAGGGACACGACTGGAGATTA







AACGTAAGTAATTTTTCACTATTGTCTTCTGAAAT







TTGGGTCTGATGGCCAGTATTGACTTTTAGAGGCT







TAAATAGGAGTTTGG





SEQ ID NO: 829
 2
 89160398
89160435
IGKJ5*01-X67858
GCTCACTTTCGGCGGAGGGACCAAGGTGGAGATCA







AACGTAAGTGCACTTTCCTAATGCTTTTTCTTATA







AGGTTTTAAATTTGGAGCGTTTTTGTGTTTGAGAT







ATTAGCTCAGGTCAA





SEQ ID NO: 830
 2
 89160733
89160770
IGKJ3*01-X67858
ATTCACTTTCGGCCCTGGGACCAAAGTGGATATCA







AACGTAAGTACATCTGTCTCAATTATTCGTGAGAT







TTTAGTGCCATTGTATCATTTGTGCAAGTTTTGTG







ATATTTTGGTTGAAT





SEQ ID NO: 831
 2
 89161037
89161075
IGKJ2*01-X67858
TGTACACTTTTGGCCAGGGGACCAAGCTGGAGATC







AAACGTAAGTACTTTTTTCCACTGATTCTTCACTG







TTGCTAATTAGTTTACTTTGTGTTCCTTTGTGTGG







ATTTTCATTAGTCGG





SEQ ID NO: 832
 2
 89161398
89161435
IGKJ1*01-X67858
GTGGACGTTCGGCCAAGGGACCAAGGTGGAAATCA







AACGTGAGTAGAATTTAAACTTTGCTTCCTCAGTT







GTCTGTGTCTTCTGTTCCCTGTGTCTATGAAGTGA







TCTATAAGGTGACTC





SEQ ID NO: 833
 2
 89161398
89161433
IGKJ1*01-X63370
GGACGTTCGGCCAAGGGACCAAGGTGGAAATCAAA







CGTGAGTAGAATTTAAACTTTGCTTCCTCAGTTGT







CTGTGTCTTCTGTTCCCTGTGTCTATGAAGTGATC







TATAAGGTGACTCTG





SEQ ID NO: 834
 2
 23235961
23235998
IGLJ1*01-X51755
GGCTCCTGCTCCAGCCCAGCCCCCAGAGAGCAGAC







CCCAGGTGCTGGCCCCGGGGGTTTTGGTCTGAGCC







TCAGTCACTGTGTTATGTCTTCGGAACTGGGACCA







AGGTCACCGTCCTAG





SEQ ID NO: 835
 2
 23235961
23235998
IGLJ1*01-X51755
TTATGTCTTCGGAACTGGGACCAAGGTCACCGTCC






(2)
TAGGTAAGTGGCTCTCAACCTTTCCCAGCCTGTCT







CACCCTCTGCTGTCCCTGGAAAATCTGTTTTCTCT







CTCTGGGGCTTCCTC





SEQ ID NO: 836
22
 23241798
23241835
IGLJ2*01-X51755
CAGCTTCCTCCTTCACAGCTGCAGTGGGGGCTGGG







GCTGGGGCATCCCAGGGAGGGTTTTTGTATGAGCC







TGTGTCACAGTGTGTGGTATTCGGCGGAGGGACCA







AGCTGACCGTCCTAG





SEQ ID NO: 837
22
 23241798
23241835
IGLJ2*01-X51755
TGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCC






(2)
TAGGTGAGTCTCTTCTCCCCTCTCCTTCCCCACTC







TTGGGACAATTTCTGCTGTTTTTGTTTGTTTCTGT







ATCTTGTCTCAACTT





SEQ ID NO: 838
22
 23241801
23241835
IGLJ3*02-D87023
CAGCTTCCTCCTTCACAGCTGCAGTGGGGGCTGGG







GCTGGGGCATCCCAGGGAGGGTTTTTGTATGAGCC







TGTGTCACAGTGTTGGGTGTTCGGCGGAGGGACCA







AGCTGACCGTCCTAG





SEQ ID NO: 839
22
 23241801
23241835
IGLJ3*02-D87023
TTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCC






(2)
TAGGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTC







TTGGGACAATTTCTGCTGTTTTTGTTTGTTTCTGT







ATCTTGTCTCAACTT





SEQ ID NO: 840
22
 23247168
23247205
IGLJ3*02-D87023
AGCTTCCTCCTTCACAGCTGCAGTGGGGGCTGGGG







CTAGGGGCATCCCAGGGAGGGTTTTTGTATGAGCC







TGTGTCACAGTGTTGGGTGTTCGGCGGAGGGACCA







AGCTGACCGTCCTAG





SEQ ID NO: 841
22
 23247168
23247205
IGLJ3*02-D87023
TTGGGTGTTCGGCGGAGGGACCAAGCTGACCGTCC






(2)
TAGGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTC







TTGGGACAATTTCTGCTGTTTTTGTTTGTTTCTGT







ATCTTGTCTCAACTT





SEQ ID NO: 842
22
 23247171
23247205
IGLJ3*01-X51755
AGCTTCCTCCTTCACAGCTGCAGTGGGGGCTGGGG







CTAGGGGCATCCCAGGGAGGGTTTTTGTATGAGCC







TGTGTCACAGTGTGTGGTATTCGGCGGAGGGACCA







AGCTGACCGTCCTAG





SEQ ID NO: 843
22
 23247171
23247205
IGLJ3*01-X51755
TGTGGTATTCGGCGGAGGGACCAAGCTGACCGTCC






(2)
TAGGTGAGTCTCTTCTCCCCTCTCCTTCCCCGCTC







TTGGGACAATTTCTGCTGTTTTTGTTTGTTTCTGT







ATCTTGTCTCAACTT





SEQ ID NO: 844
22
 23252740
23252777
IGLJ4*01-X51755
GTATTTGGTGGAGGAACCCAGCTGATCATTTTAGA







TGAGTCTCTTCTTCCCTTTCTTTCCCTGCCAAGTT







GGTGACAATTTTATTCTGATTTCGATCTTTGTCTG







TGACTTGCCACAGCC





SEQ ID NO: 845
22
 23252740
23252777
IGLJ4*01-X51755
TTTTGTATTTGGTGGAGGAACCCAGCTGATCATTT






(2)
TAGATGAGTCTCTTCTTCCCTTTCTTTCCCTGCCA







AGTTGGTGACAATTTTATTCTGATTTCGATCTTTG







TCTGTGACTTGCCAC





SEQ ID NO: 846
22
 23256443
23256480
IGLJ5*02-D87017
CAGAGAGGGTTTTTGTATGAGCCTGTGTCACAGCA







CTGGGTGTTTGGTGAGGGGACGGAGCTGACCGTCC







TAGATGAGTCTTTTCCCCCTCCTTCCCTGGTCTCC







CCAAGGTACTGGGAA





SEQ ID NO: 847
22
 23256443
23256480
IGLJ5*02-D87017
CTGGGTGTTTGGTGAGGGGACGGAGCTGACCGTCC






(2)
TAGGATGAGTCTTTTCCCCCTCCTTCCCTGGTCTC







CCCAAGGTACTGGGAAATTTTCTGCTGCTTTTGTT







CTTTTCTGTATCTTG





SEQ ID NO: 848
22
 23260336
23260373
IGLJ6*01-X58181
GGAGGGTTTGTGTGCAGGGTTATATCACAGTGTAA







TGTGTTCGGCAGTGGCACCAAGGTGACCGTCCTCG







GTGAGTCCCCTTTTCTATTCTTTTGGGTCTAGGGT







GAGATCTGGGGAGAC





SEQ ID NO: 849
22
 23260336
23260373
IGLJ6*01-X58181
TAATGTGTTCGGCAGTGGCACCAAGGTGACCGTCC






(2)
TCGGTGAGTCCCCTTTTCTATTCTTTTGGGTCTAG







GGTGAGATCTGGGGAGACTTTTCTGTCCTTTCTGT







TCTCTCTAGGGTAGA





SEQ ID NO: 850
22
 23263570
23263607
IGLJ7*01-X57808
TCACTGTGTGCTGTGTTCGGAGGAGGCACCCAGCT







GACCGTCCTCGGTAAGTCTCCCCGCTTCTCTCCTC







TTTGAGATCCCAAGTTAAACACGGGGAGTTTTTCC







CTTTCCTGTCTGTCG





SEQ ID NO: 851
22
 23263570
23263607
IGLJ7*01-X57808
TGCTGTGTTCGGAGGAGGCACCCAGCTGACCGTCC






(2)
TCGGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGAT







CCCAAGTTAAACACGGGGAGTTTTTCCCTTTCCTG







TCTGTCGAAGGCTAA





SEQ ID NO: 852
22
 23263570
23263607
IGLJ7*02-D87017
TCACTGTGTGCTGTGTTCGGAGGAGGCACCCAGCT







GACCGCCCTCGGTAAGTCTCCCCGCTTCTCTCCTC







TTTGAGATCCCAAGTTAAACACGGGGAGTTTTTCC







CTTTCCTGTCTGTCG





SEQ ID NO: 853
22
 23263570
23263607
IGLJ7*02-D87017
TGCTGTGTTCGGAGGAGGCACCCAGCTGACCGCCC






(2)
TCGGTAAGTCTCCCCGCTTCTCTCCTCTTTGAGAT







CCCAAGTTAAACACGGGGAGTTTTTCCCTTTCCTG







TCTGTCGAAGGCTAA





SEQ ID NO: 854
22
106329408
1.06E+08
IGHJ6*03-M63030
TACTACTACTACTACTACATGGACGTCTGGGGCAA







AGGGACCACGGTCACCGTCTCCTCAGGTAAGAATG







GCCACTCTAGGGCCTTTGTTTTCTGCTACTGCCTG







TGGGGTTTCCTGAGC





SEQ ID NO: 855
22
106329408
1.06E+08
IGHJ6*03-M63030
ATTACTACTACTACTACTACATGGACGTCTGGGGC






(2)
AAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAA







TGGCCACTCTAGGGCCTTTGTTTTCTGCTACTGCC







TGTGGGGAATTC





SEQ ID NO: 856
14
106329408
1.06E+08
IGHJ6*04-AJ879487
ATTACTACTACTACTACGGTATGGACGTCTGGGGC







AAAGGGACCACGGTCACCGTCTCCTCAGGTAAGAA







TGGCCACTCTAGGGCCTTTGTTTTCTGCTACTGCC







TGTGGGGTTTCCTGA





SEQ ID NO: 857
14
106329409
1.06E+08
IGHJ6*03-X86359
TGATGCTTTTGATATCTGGGGCCAAGGGACAATGG







TCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTG







CCTCCTTTCTCTGGGCCCAGCGTCCTCTGTCCTGG







AGCTGGGAGATAATG





SEQ ID NO: 858
14
106329626
1.06E+08
IGHJ3P*02-X97051
CTTGCAGTTGGACTTCCCAGGCCGACAGTGGTCTG







GCTTCTGAGGGGTCAGGCCAGAATGTGGGGTACGT







GGGAGGCCAGCAGAGGGTTCCATGAGAAGGGCAGG







ACAGGGCCACGGACA





SEQ ID NO: 859
14
106330024
1.06E+08
IGHJ4-U42590
GACTATTGGGGCCAGGGAACCCTGGTCACCGTCTC







CTCAGGTGAGTCCTCACAAGCTCTCTCCTACTTTA







ACTCAGAAGACTCTCACTGCATTTTTGGGGGGAGA







TAAGGGTGCTGGGTC





SEQ ID NO: 860
14
106330024
1.06E+08
IGHJ4*02-X97051
ACTACTTTGACTACTGGGGCCAGGGAACCCTGGTC







ACCGTCTCCTCAGGTGAGTCCTCACAACCTCTCTC







CTGCTTTAACTCTGAAGGGTTTTGCTGCATTTTTG







GGGGGAAATAAGGGT





SEQ ID NO: 861
14
106330024
1.06E+08
IGHJ4-U42588
AACTGGTTCGACCCCTGGGGCCAGGGAACCCTGGT







CACCGTCTCCTCAGGTGAGTCCTCACCACCCCCTC







TCTGAGTCCACTTAGGGAGACTCAGCTTGCCAGGG







TCTCAGGGTCAGAGT





SEQ ID NO: 862
14
106330024
1.06E+08
IGHJ5-M18810
CAGTGCTTCGACCCCTGGGGCCAGGGAACCCTGGT







CACCGTCTCCTCAGGAGATTCCTCACCACCCCCTC







TCTGAGTCCTCTTAGTGAGACTCAGTTTGCCGGAC







TCTCAGGGTCAGAGT





SEQ ID NO: 863
14
106330024
1.06E+08
IGHJ5*02-X97051
ACAACTGGTTCGACCCCTGGGGCCAGGGAACCCTG







GTCACCGTCTCCTCAGGTGAGTCCTCACCACCCCC







TCTCTGAGTCCACTTAGGGAGACTCAGCTTGCCAG







GGTCTCAGGGTCAGA





SEQ ID NO: 864
14
106330425
1.06E+08
IGHJ5*02-X97051
TACTTTGACTACTGGGGCCAGGGAACCCTGGTCAC







CGTCTCCTCAGGTGAGTCCTCACAACCTCTCTCCT







GCTTTAACTCTGAAGGGTTTTGCTGCATTTCTGGG







GGGAAATAAGGGTGC





SEQ ID NO: 865
14
106330425
1.06E+08
IGHJ4-U42588
TTTGACTGCTGGGGCCAGGGAACCCTGGTCACCGT







CTCCTCAGGTGAGCCCTCACAACCTCTCTCCTGGG







TTAACTCTGAAGGGTTTTGCTGCATTTTTGGGGGG







AAATAAGGGTGCTGG





SEQ ID NO: 866
14
106330797
1.06E+08
IGHJ3*01-M25625
TGATGCTTTTGATGTCTGGGGCCAAGGGACAATGG







TCACCGTCTCTTCAGGTAAGATGGGCTTTCCTTCT







GCCTCCTTTCTCTGGCCCCAGCGTCCTCTGTCCTG







GAGCTGGGAGATAAT





SEQ ID NO: 867
14
106330797
1.06E+08
IGHJ3*02-X97051
TGATGCTTTTGATATCTGGGGCCAAGGGACAATGG







TCACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTG







CCTCCTTTCTCTGGGCCCAGCGTCCTCTGTCCTGG







AGCTGGGAGATAATG





SEQ ID NO: 868
14
106330797
1.06E+08
IGHJ3*02-X97051
GATGCTTTTGATATCTGGGGCCAAGGGACAATGGT






(2)
CACCGTCTCTTCAGGTAAGATGGCTTTCCTTCTGC







CTCCTTTCTCTGGGCCCAGCGTCCTCTGTCCTGGA







GCTGGGAGATAATGT





SEQ ID NO: 869
14
106331001
1.06E+08
IGHJ2P*01-X97051
GCTACAAGTGCTTGGAGCACTGGGGCCAGGGCAGC







CCGGCCACCGTCTCCCTGGGAACGTCACCCCTCCC







TGCCTGGGTCTCAGCCCGGGGGTCTGTGTGGCTGG







GGACAGGGACGCCGG





SEQ ID NO: 870
14
106331409
1.06E+08
IGHJ2*01-X97051
CTACTGGTACTTCGATCTCTGGGGCCGTGGCACCC







TGGTCACTGTCTCCTCAGGTGAGTCCCACTGCAGC







CCCCTCCCAGTCTTCTCTGTCCAGGCACCAGGCCA







GGTATCTGGGGTCTG





SEQ ID NO: 871
14
106331617
1.06E+08
IGHJ1*01-X97051
GCTGAATACTTCCAGCACTGGGGCCAGGGCACCCT







GGTCACCGTCTCCTCAGGTGAGTCTGCTGTCTGGG







GATAGCGGGGAGCCAGGTGTACTGGGCCAGGCAAG







GGCTTTGGCTTCAGA





SEQ ID NO: 872
14
106331834
1.06E+08
IGHJ1P*01-X97051
AAAGGTGCTGGGGGCCCCTGGACCCGACCCGCCCT







GGAGACCGCAGCCACATCAAGCCCCCAGCCCCACA







GGCCCCCTACCAGCCGCAGGGTTTTGGCTGAGCTG







AGAACCACTGTGCTA


















TABLE D





SEQ ID NO
Name
Sequence







SEQ ID NO: 1
IGKV1/OR2-3*01
cccagtgcgacaagtcataacatcaaccgctaggatagcagatgagtgaggccgggttgc




cctagatgctcctcctggtgcctcaatctgctgagttgttttccagatgcagccaagttt





SEQ ID NO: 2
IGKV1-22*01
cctagagtgttacaggtcataaaataaacccccagggaagcagaagtatgactcatggct




gccccaggtgcttccactggtgcctccatctgctgagagtgtttctcaggtgcagccaag





SEQ ID NO: 3
IGKV1-27*01
cactgtgatacaagcccgaacataaaccatggagggaagtagatgtgtgaggctgggctg




ccccagctgctcctcctggtgccgccctctgctgacagcagttctcagatgcagccaagg





SEQ ID NO: 4
IGKV1D-37*01
cacagtgttacaaggcataacataaaccccccaaggaagcagatgtatggggctggcctg




ccccagatactcctcctactgcctccagctgctcagagcgtttctcatattccagtcaag





SEQ ID NO: 5
IGKV1-39*01
cacagtgttacaagtcataacataaacctccaaggaagcagatgtgtgaggacgagccac




cccagatgctcctcctggtgcctccatctgctgagagcatttctcaaactcagtcaggtt





SEQ ID NO: 6
IGKV1-35*01
cacagtgttacaaaccataacaaaccccccccaggaaagcagacatgtgacgctgggctg




ccccacctgctcttctttgtgcagccatctggtgacaacacttctcagactcagcctgag





SEQ ID NO: 7
IGKV1-32*01
cacagtgttacaaacccaataagctccccaaggaagcagatatgtgagggtgggctgccc




cagctgcttctcctgtttcctccatctgctgagagtgtttctcagactcagccacactct





SEQ ID NO: 8
IGHV7-81*01
caccatgtggaaacccacatcctgagagtgtcagaaatcctgatgtgggaggcagctgtg




ctgagctgaggcagtgatgcagcagtttccttaacttccatcttatctcattttgcatcg





SEQ ID NO: 9
IGHV1-14*01
cacagtgtgaaaacccacatcctgagagagtcagaaatcctgagggaggtggcagcagtg




ctaggcttgagagatgacagggattttatttgctttaaaggctttttttagaaagcgagg





SEQ ID NO: 10
IGHC1-69*01
gacacagtgtgaaaacccacatcctgagagtgtcagaaaccctgagggagaaggcagctg




tgccgggctgaggagatgacagggtttattaggtttaaggctgtttacaaaatgggttat





SEQ ID NO: 11
IGHV1-67*01
cacagtgtgaaaactcatatcctgagagtgtcagtaaccctgagggaggaagcagctgtc




ccagttttcaggatatgacaggatttatggggtttaatgttgtttagaaaataggttata





SEQ ID NO: 12
IGHV1/OR21-1*01
cacaatgtgaaaacccacatcttgagagtttcagaaactgcagggaggaggcagctgtgt




tcctgcagaggagatgacagggaagatgaggtttaaagttgtttagaaaatgggtcaagt





SEQ ID NO: 13
IGHV1/OR15-3*03
gacacagagtgaaaacccacatcctgagagtgtcagaaaccccaaggaggagcagctgta




ctggagctgaggaaatggacaaagattattcagattgaagactttctacgaaaatgacct





SEQ ID NO: 14
IGHV1-3*02
cacagtgtgaaaacccacatcctgagagtgtcagaaaccccaggggggaagcagctgtgc




tggcatggaggaaatgacaaagattattagattgaagactttctcagaaaatgatattaa





SEQ ID NO: 15
IGHV1-17*01
gacacagtgcgaaaacccacatcctgagagtgtcagaaaccccaggaaggaggcacctgt




gctgacacagagggagatgacaaagattattagattaacgattttcttaga





SEQ ID NO: 16
IGHV1-17*02
cacagtgcgaaaacccacatcctgagagtgtcagaaaccccaggaaggaggcacctgtgc




tgacacagaggagatgacaaagattattagattaaagattttcttagaaaatgacactaa





SEQ ID NO: 17
IGHV1-38-4*01
cacagtgtgaaaacccacatcctgagagtgtcagaaagcctgaggaaggaggcagctgtg




ctggggctgaggagatgacagggattacttgattgaagactttcttagaaaacgaggtta





SEQ ID NO: 18
IGHV5-51*01
cacagtgagagaaaccagccccgagcccgtctaaaaccctccacaccgcaggtgcagaat




gagctgctagagactcactccccaggggcctctctattcatctggggaggaaacactggc





SEQ ID NO: 19
IGHV5-78*01
gaccatctaaaaccttccgcggtgcaggtgcagagtgagctgccagacacaccctcccca




ggggcctctctattcatccggggaggaaacactggctgtttgtgtcctcaggagcaaaaa





SEQ ID NO: 20
IGHV3-50*01
gcgaataatggagaacttgagatatggagtgtgagtggatatgagtgaaaaaacagtgat




tctgtgtggcaggttctgactcagatgtctctgtgcttgtaggtgtctagtgtggggtgc





SEQ ID NO: 21
IGHV(III)-76-1*01
cacaggagatatccgtgtggcaacctaacacaggggacacctgtatttgtgtctgagccc




agacacaaacctccctgcagggagacaggaggggaccgtgtgacagacactgctcagaac





SEQ ID NO: 22
IGHV3-30-22*01
ccaagtgagagctgaggacatggctgtgcatggctgtacataaggtcccaagtgagcaaa




catcggtgtgagtccagacacaacacttcctgcaaaaacaagaaaggagtctgggccgaa





SEQ ID NO: 23
IGHV(III)-22-2
acaagagtcagaaaagtgtgcaggaggccgggtgaggctgtagacactgtcagcccacta




tgccaatcccaccacgagtgctggagaaggtgggagtctgatgaagcttactaacaaacc





SEQ ID NO: 24
IGHV(II)-44-1D*01
gccgagattgcgccactgcactcagcctgggcgacagagcgagacttcgtctcaaaaaaa




caaaaaaaaaaatcaatcattggaatactgttgttcattacaattaatgaacgcttgata





SEQ ID NO: 25
IGLV(IV)-64*01
cacaggtggggaagtgggacaaaatctcagcctgctcagagtcttgttctctgatgaaat




ttagatcttaaaataacttatatcacttgtgtgggatgagtgagatatcccgagctcaca





SEQ ID NO: 26
IGHV(II)-23-2*01
cacagcgaggggaagccattgtgcgctcagaacactctacaaattttcctccctagtgtt




ttaccaaaactggtatatatttcagatactgaaatatttacaa





SEQ ID NO: 27
IGLV(VI)-22-1*01
agtaagaccaaaaccctcctgagattcctggcttgtgtcctgacactggggctgttggga




ttcctgtctttccttcaagattgttcaaataagcaccgacaatcacttccatgtgagata





SEQ ID NO: 28
IGLV(V)-58*01
aaggcaaagtgaccccagtgaatgaggaagcaggacaaaaactgttttctctgctccact




atgaaggctgccacgtggccctgagaaacagtgcctgttttccttactactcaagaaaga





SEQ ID NO: 29
IGLV(V)-66*01
ccgtttgggtaaagcacagataaatggggaaatgaggcaaaaactgtttttctactctgc




taccaaggttgaaaaatggctctcagaaccagtgtctgctgacctgcatactcaaatatg





SEQ ID NO: 30
IGHV(II)-20-3*01
taaaataaaataaaatgtaaaaaatgatcaataaatgaaattactatcagttgaaactca




ttaaatttaaagacattttctactcaagtaactataagaacatgaatgtcaagtttcaga





SEQ ID NO: 31
IGLV(IV)-59*01
cacaggcagatgagaaagtgagacgaaactcagcctactaagaatggaactatggctctt




tttccaattgtcaaataattttcacatacacaaactattttggaagtagctactgattca





SEQ ID NO: 32
IGLV7-46*02
cacagtgacagatccatgagaggaaccaagacataaacctccctcggcccttgtgatgtg




gagatcacatgatcagacatgccagatcccaagatagcctacatgtggaccagccataga





SEQ ID NO: 33
IGLV8-61*01
cacagtgatttaaacctatgaggaagtgcaactaaaacctctttatatactgagaacagt




tcagcccttacagacaggagggaaagtgagagggtggaaatggtcaacacggtgagtgag





SEQ ID NO: 34
IGLV8/OR8-1*01
tttaaacccatgaggaggtgcaactaaaacctctttacatactcagaaagattcagccct




tagaagcaagagagaagttgagagggtgggaatgtcaacaccatgagctgggaacctcct





SEQ ID NO: 35
IGLV(I)-56*01
ttctctgattatctggatgctctgtgactccttctgtgcatctctgggatcatcattcag




actcacctgcaccctgagcagtaacatcaatgttgtttgctatgacatttactggaaaca





SEQ ID NO: 36
IGKV3-31*01
cacagtgattccacaggaaaccaaacctccacaagacagctggtgttttttcctcaagcc




ttctgtttacttatgggaagctactatggtggctgcttagttattgagagaaaacaatgg





SEQ ID NO: 37
IGKV3-34*01
cacagtaattcaacatgaaacaaaaactttcacaaaaccattgattttttttttctaaaa




ccagcagctttatgggctgcagctatgatggctgcccagttttagcaactgtgcctctat





SEQ ID NO: 38
IGKV3D-25*01
catactgattcaacatgcaacaaaaacctccaggagacctaaggtgtttatttgattata




ccacctgcttcctttttagtcatctgatgtggtgctgctcagttttagcatctctgcttt





SEQ ID NO: 39
IGKV3-11*01
cacagtgattccacatgaaacaaaaaccccaacaagaccatcagtgtttactagattatt




ataccagctgcttcctttacagacagctagtggggtggccactcagtgttagcatctcag





SEQ ID NO: 40
IGHV2-70*13
cacagagacacagcccagggcgcttcctgtacaagaacccaggtgtttttcagtggtgct




ccctccccacttctgcagaacaggatagtgtggctgagatgccatttcctgcccagggcg





SEQ ID NO: 41
IGHV2-70D*04
cacagagacacagcccagggcgcctcctgtacaagaacccaggctgcttctcagtggtgc




tccctccccacctctgcagaacaggatagtgtggctgagatgccatttcctgccagggcc





SEQ ID NO: 42
IGLV(VI)-25-1*01
agtaagaccaaaaccctcctgagattcctgacttgtgtcctgacaccaggtctgttcttc




cctcccctagaataaaacatctcttaagcacaaggctgaagaaatgtggcctcctccttt





SEQ ID NO: 43
IGHV(II)-22-1*01
cacagcgaggggaagccattgtgcgctcagaacactctacaaattttcctccctagtgtt




ttaccaaaactggtatatatttcagatactgaaatatttacaacctacgttattatgcta





SEQ ID NO: 44
IGHV(II)-30-31*01
caaacaaaacgacacaaaaaattccaaagttgtgcaccctctaaaagcatatgtacttaa




ttctcatttttaatttattaaacagctctaataagttcaatgttcctgccttctcagttg





SEQ ID NO: 45
IGKV2D-36*01
aaaacttgaacttccatcaatgataaatattccttttgcctcaagcacatatttgaggaa




ttttccattgagtagatctaccgataaggtcacatttttctgtctgttttaatctgaata





SEQ ID NO: 46
IGHV1-12*02
tagttatttgagagatttttcatacaacatttattctgtaagcaaatttcagggattgtt




gaatgaatcatattaacaaatctgacacagaacttcctctgaatcaatctttgtaaacat





SEQ ID NO: 47
IGHV(II)-44-2D*01
tgcctggccgtaagttaccatgtgctttttaaaaaaatcatagcaaaggggtgtcttctg




gaaatgacattttgaaatggtgttattagaccacccctggaagggacacagtaaccacac





SEQ ID NO: 48
IGHV(II)-74-1
agtgatggtgggggtcctactagcctgtggcaaatggaagcatctcttttttatcagact




gaataatattgtagtgttttcttataccacatttacttcatccctttgtgcattaacact





SEQ ID NO: 49
IGHV(II)-46-1*01
aaaatccattgctagtggtggtgggagtccatttgtcttgtggaaaatggcagcatttcc




ttattttataaggcataataatgctatgttgtgtacacataccacattgtctttatccat





SEQ ID NO: 50
IGHV(II)-67-1*01
aaaatgcatggctagtgctgctggaaacccattcctactgtggcaaatggcagcatctct




tttaaaaggctaaataatattctattctgtatacataccacattgccattatcctttttg





SEQ ID NO: 51
IGHV(II)-23-1*01
atagatggataaactaacctaggcctttgaaaataaacccttatctgagagtgaaaagat




aagccatagatttggagagtttgcttgcaaatcaaatatttggaaaaggacttttattac





SEQ ID NO: 52
IGHV(II)-40-1*01
taggcactggatggaaagcacaggagtgggtcaggtgcatacgtgatgagtggaggatga




attccagcccacttatcatgaattcagacaagcccacatgttcccacatgcactatatct





SEQ ID NO: 53
IGHV(IV)-44-1*01
cactgtgactcgaatccagagtgaactcagacacaaacctgccctgcaggggttcttggg




accacaaggggaaggatcaggtcaccagggtgtacttaggaaccactgaactgggtcagg





SEQ ID NO: 54
IGHV(II)-28-1*02
cgcaatgaagggccttcattgtgagcctagacacaaccctccctgcaggggtgaatagga




gcagcagggggcattcggggcagtatgggggcttaggatgattgttaggggtcaggatga





SEQ ID NO: 55
IGHV(II)-30-41*01
cattgtgagcctagacacaaccctccctgcaggggtgaataggagcagcagggggcattc




ggggcagtatgggggcttaggatgattgttaggggtcaggatgagcaggatcaaggcttc





SEQ ID NO: 56
IGHV(II)-65-1*01
cacaacgaggggaagtcattgtgagcccagatacaaacctccctgcaggggagctcagaa




agagcaggaggcactcaggacaccagggaacactctggacacatcaaggcaggtgcaatg





SEQ ID NO: 57
IGHV(II)-51-2*01
aacagaagagatgtcagtgtgatcccagacacaaacttccctggagaggggcccaggacc




accaaagagcactcaggcccatgaaaacagggcccaagctggagaacgggtttcctgtca





SEQ ID NO: 58
GHV(II)-15-1*01
cacagaaggggaggtcattgtgaggccagacacaaacctccctgcagggaagctcaggac




accagggggtgctcagacaccaagggctctcaggacacatcaaggcaggtgcaagagggg





SEQ ID NO: 59
IGHV6-1*01
cacagtgaggggaagtcagtgtgagcccagacacaaacctccctgcagggatgctcagga




ccccagaaggcacccagcactaccagcgcagggcccagaccaggagcaggtgtggagtta





SEQ ID NO: 60
IGHV(II)-60-1*01
cagagtgaggggaccacggtgcgagctcacacccaaaccttcctggaggggtgcacagga




cagcaggagtcccgatgatggaagggggtggtctggattccaggtcactctcaagatcat





SEQ ID NO: 61
IGHV(II)-53-1*01
cacagtaaggtaaccacagtgggaactcacacccaaacctccctgtgggggtgcacagga




cagccacagttactcaggaccccaggattcctcaggacaccaaggggcactcaaggccat





SEQ ID NO: 62
IGHV(II)-20-1*01
cacagtgaggggacatcagtgtgagcccagacacaaacctccctatgcgggttcacagga




cagcatggggtgctgaggacagaggtgggcactcaggaaccagcagggaaacccaggggg





SEQ ID NO: 63
IGHV3-41*01
agtgagaggaagtccgtgtgagcccagacacaaacctccctgcaggggcacgcggggcca




ccagagggtgcccaggatcccctgaagacagggacagcccaaaggcaggtgcagatggat





SEQ ID NO: 64
IGHV3-52*01
cacagtgaggggaggtcagtgtgagcccagacacaaacctcctgcaggggcatctggagc




cacaagggggcgctcaggatacacagaggacaggggcagccccagggcaggtgcaggtgg





SEQ ID NO: 65
IGHV3-73*02
cacagtgaggggaggtcagtgtgagcccggacacaaacctccctgcaggggcgcgcgggg




ctaccagggggcgctcgggactcactgagggcgggacaggtcccaggaacaggtgcagcg





SEQ ID NO: 66
IGHV3-42*03
cagtgagggggaggttaacgtaggcccatacacaaatctccctgcaggggcgcgcagggc




caactgggggcgctcgggacccactgaggatgggacaggtcccaggggcgggtgcagggg





SEQ ID NO: 67
IGHV3-6*01
tacggtaaggagaagtcagtgtgagcccagacacaaacctcccttcagggtacctgggac




aaccagggaaagcctgggacactgtgcactgtgctgaccccaggggcaagtgcaggtgct





SEQ ID NO: 68
IGHV3/OR16-9*01
cacagagtgaggggaagtcagtgagagcccaggcacaaacctccctgaaggggtcccaga




aacgactagggggcgccaggacactgtgcacggggctgtctccagggcaggtgcaggtgc





SEQ ID NO: 69
IGHV(II)-44-2*01
aacagtgagaggaagtcaatgtgagtccagacataaaccttcctgctgagaacaatggaa




agcttttcttctaagataaggaataagaaaagaatgcccagtcttaataattctaatcag





SEQ ID NO: 70
IGHV3-25*02
cacagtgaggggaggtcagtgtgagcccagacacaaacctccctgcagggccatgcgggt




ggtttcctttctcagctgcaggaggcgggcttattgttgcaggactctggagacttatta





SEQ ID NO: 71
IGHV(II)-26-2*01
ctcagtgaggaggtgtccttatgagccctgacacaaacctgtcagggcacttaggacctc




caggaagactcaagaccaccaaggggactcacgaccactggggaagggcaggttgcagta





SEQ ID NO: 72
IGHV(III)-67-3*01
cacagcgagggacatttctgtgagtccagacagaaacctccctgcagggagacaagagag




gactttgtgataaatggtgcttaggacaccagggggcactcaggacagcagagggtgctc





SEQ ID NO: 73
IGHV(III)-47-1
cacggtgaggggacatctgtgtgagctcagacacaaacctgcctgcagggagacacaaac




ctccctgcatggtagatgcttctcagaaccaccagggggtgcacaggaaaccagaaggtg





SEQ ID NO: 74
IGHV(III)-82*01
cataggagcaggaacatctgcgtgagcccagacacaaaatcctctgcagggagacaggag




ggaatcgcatggtagatgctgattggaactaccatgtgtcgctcagaactaccaggaggt





SEQ ID NO: 75
IGHV(III)-67-4*01
cacaggagagagattatctgcacaagcccagacacaaaaatctgcagggagacaggaggg




aactgcatggtagatgctgctcagaagcaccagggggcactcaacacaagggggcgctca





SEQ ID NO: 76
IGHV(III)-16-1*01
agacacaggagagggaatatctgcgtgagcccagacagaaaaatctctgcaggaagacag




gagggagctgcatggtagatgctcctcagaaccaccagggcaccttggggacaacctggg





SEQ ID NO: 77
IGHV3-57*02
cacaggagagggaatatctgtgtgagcccagacacaaaaatctctgcagagagacaggag




ggaactgcatggtagatgctcctcataaccacaaaggggcagtcaggaccatcaggagga





SEQ ID NO: 78
IGHV(III)-5-1*01
cacatgaggaaaggccggtgtgagacacaaacctccaggaacacctgggctaatgagctg




cagggggcgctcaggacccactgatcagtcaaccacagaggggagtgcaaaggttaggac





SEQ ID NO: 79
IGHV3-63*01
ccaagtgaggaaacatcggtgtgagtccagacacaaaatttcctgcagaaagaagaaagg




attctgggccgaaggggacactcagcactcacaaaacaggtggagccccagggcaggtac





SEQ ID NO: 80
IGHV3-54*01
gtcaccaggtaagaagacatcagtgtgatcacagacacagaatttcctgaaataagggag




gagtctgggctaaaagggcactcaggacccacagaaaacagcggaagctctagggc





SEQ ID NO: 81
IGHV3-54*04
caccaggtaagaagacatcagtgtgaacacagacacagaatttcctgaaataagggagga




gtctgggctaaaagggcactcaggacccacagaaaacaggggaagctctagggcaggtgc





SEQ ID NO: 82
IGHV3-79*01
agaagacatcagtgtgaacacagacacagaggttcctgtaatgataagggaggaggctgg




gataaagggagcactcaagacccacagaaaacaggggaagctctagggcaggtgcagacg





SEQ ID NO: 83
IGHV3-30-33*01
caccaggtaagaagacatcagtgtgaacacagacacagagtttcctgcaatgataaggga




ggaggctgggctaaaaggggcactcaggacccactgaaaacgggcagctctagggcaggt





SEQ ID NO: 84
IGHV3-30-2*01
ccaggtaagaagacatcagtgtgaacacagacacagtttcctgcaatgataagggaggag




gctgggctaaaaggggcactcaggacccactgaaaacgggcagctctagggcaggtacag





SEQ ID NO: 85
IGHV3-9*01
cacagtgaggggaagtcagcgagagcccagacaaaaacctcctgcaggaagacaggaggg




gcctgggctgcagagggcactcaagacacactgaaaacacggttaacactgggacaagtt





SEQ ID NO: 86
IGHV(III)-51-1*01
catcgtgatgggaagtccacgtgggctcagagacagactgccatgcaggacacagggggt




ggcttggctgaagggggcactcagcacccacagaagacaggagcagcccagggcaggggc





SEQ ID NO: 87
IGHV3-62*01
cgcagtgagaagtcagtgtgagcccagacacaaacctcctgcagggtacctgggacaatc




agggaaagcctgggacactgtatactgggctgtccccaggggcaagtccaggtgatataa





SEQ ID NO: 88
IGHV3-19*01
cactgtgagaggacggaagtgtgagcccagacacaaacctcctgcaggaacgttggggga




aatcagctgcagggggcgctcaagacccactcatcagagtcaaccccagagcaggtgcac





SEQ ID NO: 89
IGHV3-76*01
cacagtgaggagaagtcagtgtgagcccagtcacaaacctcctacaggaacgctgggagg




aaaatcagctacagggctcactcaaggcccactgatcagagtccactccagagggaggtt





SEQ ID NO: 90
IGHV3-37*01
catggtgaggggaaatcagtatgagcccagccagaaacctccctgcaggaaccctggggt




ggggggaaatcagctgcagggggcactcaggacccactgatcagaatcaaccccagaagg





SEQ ID NO: 91
IGHV3-23D*01
cacagtgaggggaagtcattgtgagcccagacacaaacctccctgcaggaacgatggggg




tgaaatcagcggcagggggcgctcaggacccgctgatcagagtcatccgcagaggcaggt





SEQ ID NO: 92
IGHV3-53*02
cacagtgaggggaggccattgtgcgcccagacacaaacctccctgcaggaacgctgggga




aatcagcggcagggggcgctcaggagccactgatcagagtcagccccggaggcaggtgca





SEQ ID NO: 93
IGHV4-39*07
cacagtgaggggaggtgagtgtgagcccagacaaaaacctccctgcagggaggctgaggg




cgcggtcgcaggtgcagctcagggccagcagggggcgcgcggagctcacggaatacaagg





SEQ ID NO: 94
IGHV4-55*02
tacacagtgaggggaggtgagtgtgagcccagacacaaacctccctacagataggcagag




ggggcgggcacaggtgctgctcaggaccaacagggggcgcgcgaggcacagagcccgagg





SEQ ID NO: 95
IGLV11-55*01
cacagtgagacagatgaggaagtcggacaaaaaccaaggttttaagcttgtcatttttac




tgaactggttaagaacttcagtggttaataaaatcacattaaatacaggattgttgttaa





SEQ ID NO: 96
IGLV(IV)-53*01
cactgtgctctaggccaatgggaaaatcccctctgcttgtgctgcctgggctcccactag




gcccctgctgtttgtgacaacagccagcactggtggtgacgcttcagccatgtatgccct





SEQ ID NO: 97
IGKV6D-41*01
cactgtgctacaacccaaaacaaaaattagctcagcctggcggaacagagaaactgaaca




ataccccgtttttatgatccttgcaggtgcagttggggaaataatttaccaaataccatc





SEQ ID NO: 98
IGKV7-3*01
cacagtgctttaggtctaaacaaaaacctccccaggcagctgctccctgaggctcaaatc




cctcagatgtggctttttatgcaggtccatcagcctgctgtcataggcttgtttgaacaa





SEQ ID NO: 99
IGKV2-23*01
cacaatggttcagcaccaaacaaaagcctcctgcttggattgtcccagctgcccaaatta




gttccttcactgaggagtagacagggtatatgctctaaatctatgtaacaggaagatgtt





SEQ ID NO: 100
IGKV2-18*01
cacagtggtacaaccctgaacagaaacctcccttcttgctgtggttcagctgcccaaatg




tgttgtttatctggaaagcagacactgtctattatcttgggagagtaaagagaggaagat





SEQ ID NO: 101
IGKV2-4*01
cacagtggtaaaaccctgaacacaaacctccctacttgggatggcccagccatccacaag




tgtttgcacgtggactgtctgcatggcagattctgagttggcttcacaggtagatgttag





SEQ ID NO: 102
IGKV2/OR22-4*01
cacagtgctacatcctcgaacagaaacctccctgctggttgacccagctcgcgcatgggc




tgcttgtctgagggaacagctgagcagagtctttgagtctgcagaggagaaggctgttgg





SEQ ID NO: 103
IGKV4-1*01
cacagtgcttcagcctcgaacacaaacctcctccccatacgctgggccagtaggtctttg




ctgcagcagctgcttcctctgcacacagcccccaacatgcatgcttcctctgtgtgttgg





SEQ ID NO: 104
IGHV4-80*01
gggaggcggagggggcgggcgcaggtgccgctcaggaccagcagggggcgcgcggggccc




acagagcaggaggccgggtcaggagcaggtgcagggagggcggggcttcctcatctgctc





SEQ ID NO: 105
IGLV2-11*01
ctcagcctcctcactcagggcacaggtgacacctccagggaaagggtcacaggggtctct




gggctgatccttggtctcctgctcctcaggctcacctgggcccagcactgactcactaga





SEQ ID NO: 106
IGLV(I)-70*01
tgcccttggcctgtcccgaggctgatcactccatacttgcctatgacaaacaaagagggt




gcctgtggctgatcgtacagtttaagcaagggaggaagtgagactcagccacaggcccct





SEQ ID NO: 107
IGLV(IV)-66-1*01
cactgtgctccagacttacggggaagtgagattagaacctcccctgcattctctctgcct




tgtgcaggcaacaatacactgtctgggaccgagtgtggctcatcagtagcagctttgttg





SEQ ID NO: 108
IGLV5-52*01
cacagtgctccagacccatgaggaagtaagacaaaaccctcccctctactctcctggtct




agtgaaatcacccctgctggtggctctgaccaaatctagctcagggggtgacatctgttg





SEQ ID NO: 109
IGLV1-62*01
tacagtgctccaggcttgcaggggagtgagacaagaacccccttcctcctttcccaggag




ggtgagtgcccagcagctactgcacaggcctggcctgtggcttctgcagttgctgtttcc





SEQ ID NO: 110
IGLV6-57*01
cacagtgctccagacccatggggaagtgagacagaaactccccagagcatctctacctgg




gccagtctcagcctgtctccaccagagagggtagctctcccatctctcctgtctaagtgc





SEQ ID NO: 111
IGLV(I)-20*01
caccgtggtccaagttcatggggaattgagacccaaacctgccctgggctctcagcctct




ctcttgttctgaagatgcttcctcaccctgtgcaaggggcttcttgcagcactgccttga





SEQ ID NO: 112
IGLV8/OR8-1*02
tccacagtgatttaaacccatgaggaggtgcaactaaaacctctttacatactcagaaag




attcagcccttagaagcaagagagaagttgagagggtgggaatgtcaacaccatgagctg





SEQ ID NO: 113
IGLV3-17*01
cacagtgacacagacagattggaaagtgagatctaaagaccttcactgtctgtatcaccc




tctttctccagccatagcaggactgagcagggctggcccgggtcacctggatcgaagccc





SEQ ID NO: 114
IGLV3-26*01
cactcatgggacagcagtgctactcacctcacaatgacacagacagattgggaagtgaga




tctaaagaccttcactgtctgtgtcaccctcttcctccagccatagcaggactgtggaga





SEQ ID NO: 115
IGLV3-29*01
cacagtgacagaggcagacaaggaagtaagacacagaccccttccccatctgtgctgctg




tcgtcctccagcccggcaacactgtggacaaagccatgagcatgcatgacccagttcacc





SEQ ID NO: 116
IGLV4-60*02
cacagtgatacaggcagatgaggaagtgggacaaaatcctcaacctgctgaggctattgt




tcagtgacaatttttaattttaaaacattttctgtatgtaaaaaatctatctggatgcat





SEQ ID NO: 117
IGLV10-54*02
cacagtgcctcaggccagtggggaagtgagataaaaactcaagagctccctcggcctcac




tgaacaggcctcacagagcactgtttaaactggaccacccaaaagacaagggatgcattc





SEQ ID NO: 118
IGLV10-67*01
cacagcgcctcaggggaagtgagacgaaaactcaggagctcccctagcttcactcggtat




gcgggggcgtcatagagcactgtttaaactaaaccaaaaatgacaagggctggtttccac





SEQ ID NO: 119
IGLV(I)-42*01
aacagtgctgcagtctgggaaagtgagatgagaacacgccaggtctcctaggagcatgac




cttccaatggcaccacccacaaccaggacacgctggtcttgttttaccatttgtgtggat





SEQ ID NO: 120
IGLV2-28*01
cacagtggacataagattgattctcaggctccaagtctggccagtgagcttctttgagac




tccctgggatcccagcagtgacactgatcactattgctgtcccacacatcccaagtgatg





SEQ ID NO: 121
IGLV(IV)-65*01
cagcactccagacccactgggaggttacaaaaacctcttctctgatctcctggcctggtg




tagtcactcctgctggtggctctaataaagtctatctcactgggtgacttatattttaga





SEQ ID NO: 122
IGLV(I)-63*01
cacagtgctccgggttgaagtaagtcagaccaaaacacacagtgtgcccagccatgaagc




tctcccatgcaccccctactctgcagctaagtcaatgtgttctctcacttgtttgtccta





SEQ ID NO: 123
IGLV(I)-68*01
ggcagtacttcaggccagtggggaagtgggagaaaaagctgctgcccatccagcaatgga




gcttctctgtgcagcccccacttcttgggcaagtcagctgattaacgttgcttttcattt





SEQ ID NO: 124
IGHV(II)-28-2*01
acacctggcctcttcgtttttattcatatattccttcagcagccactatgtcttcccact




gatttcttcagtttctgccttttccttttgaataaggctgttactcctgagggaagatgg





SEQ ID NO: 125
IGHV(II)-44-3*01
ggcaggccaccaagtccagctaatttttgtatttttagtagacactgggtttcacaatat




tggtctggctggtctcaaactcctgatctcagcctcccaaagtgctgggattaaagccgt





SEQ ID NO: 126
IGHV3-36*01
attgtgtgcatcccttgtttaggtacatgcagagatgctgctttggtgtgttcaggggct




cctgttttggggacaccaattttggagtttgcagtatccttgagtccagtacgttcatgg





SEQ ID NO: 127
IGHV(III)-25-1*01
atggtctcactgatatctttacttcttttatcacttttgttatgtaaatcacaatgaata




gtgtattcctcatctattatacatttgttaagtcttttttggtgtctttaaaaaaactga





SEQ ID NO: 128
IGHV(III)-25-1*02
cacaatgaatagtgtattcctcatctattatacatttgttaagtcttttttggtgtcttt




aaaaaaactgataactttatagtatgtaatatccttaagtcctgaaagtgttttttgatg





SEQ ID NO: 129
IGHV(III)-11-1*01
cttcatctattatacacttgttaagtcttttttggcatcttttaaaaaactggtaacttt




atcctgtgtaatatccctgttaagtcctaaaagtcttttttgatgtctattttttcttaa





SEQ ID NO: 130
IGHV(III)-20-2*01
tacctaaatgtgtgtgggggaagcagggggtgttattctgttgttctgtgttctctgaga




tgcatggattcaccatttactctgcctccattttggggaacacagttagaaaaaatgtca





SEQ ID NO: 131
IGHV(III)-44D*01
tggttttcagcagttttaataagattcacctaaatgtgtgtgtgtgtgtcgaggggtgtt




atgctattgttctgtgttctctgagatgcatggattcaccgtttactctgtctccatttt





SEQ ID NO: 132
TRGV1*01
cacagtgattcagacactgaaaatctgcctgtggttgcttctggtacacaagatagacca




gccaactctcatttcctgccctgaatttactgtattctgtacaaagagaaacacagctta





SEQ ID NO: 133
TRGV4*01
cacagtgattcagatccgccctacaccacactgaaaacctgccttgtggctgcttctggt




acacaagatagagctgccccctctcatttcctgccaccaaatttaccgtgtgctgaacaa





SEQ ID NO: 134
TRGV9*01
cacagcagcagacagtttgagccatcccattcaataaatgtttattgagtctttgtttat




aattacgaattgggaagccacagttaccaccagtgtgcttgtaaacagtttttaagataa





SEQ ID NO: 135
TRGVA*01
cgcagccttgcatgctgccccagccctacacaaaaggactcttcctcccgatccaacaag




gccttgggcattttcacttactcttggtcccttgggtttccctgtggcatagaagaaaaa





SEQ ID NO: 136
TRBV8-1*01
caataatggcaatgtggcagtttccatacatatgtttgtgctagcttttttattattata




tagtaaacttctttgcctctttttatagttattgtcttgaaatatattttatctgatata





SEQ ID NO: 137
TRBV22-1*01
cacaatggaagcacaaccattgtctctctgtgcggaaatgtgtcctcaccctacagcccc




caccacatcctctagcttaattttttcatttttaatattttcttgagattttactatgtc





SEQ ID NO: 138
TRAV1-1*01
cacagtgactatgaggcctccttaactgtgccaaaattcaaaagacaatcagtggagtac




aggtgggcttgagaagttctagaacttcctgagtgtatctttgcttaccgtctaatttta





SEQ ID NO: 139
TRAV1-2*01
cacggtgactatgaggcctctttagctgcaccaaaattcaaaaggcaaccacagcagcga




gaagctgtatttcctgagtgtatgcctgctgtgagttaagactggggactttggaaccag





SEQ ID NO: 140
TRAV8-5*01
tcaggaccctgtgataattgtgttaactgcacaaattatagagcatgtgtgttcaaacaa




tatgaaatctgggcaccttgaaaaaagaacaggataacagcaatgttcagggaataagag





SEQ ID NO: 141
TRBV21/OR9-2*01
cacagtgccgaatgttagcccttcttagaacacaaactcattatggacccagctcaggaa




ataagtgtatgtcaggttggtacacactataataacagaaagccaacttgaaagacaata





SEQ ID NO: 142
TRBV16*01
cacaatgttaaatattagctaatcttaggacacagactcatcacggactcagctcaggaa




gcaggtggtatactaggttggaaggaaataacagaaactagagctagcttaagccaaagg





SEQ ID NO: 143
TRBV23-1*01
cacagcactgaaatgtcagttcctcttagcacacaaacttgtcacagacccagctcagga




agcaggtgatgtattaggctggaagggagtaacagaaaataactggagccagcttaagcc





SEQ ID NO: 144
TRAV40*01
cactgtgttaaaagcacagtgggagctatacaaaaacctcaaaggctcagaggaagtatg




tagtgaggctggaaaacccaggttgtagagccctgttctctctttcacagacagtcctgt





SEQ ID NO: 145
TRDV3*01
cactatgatgcaggtgcccaggaagtcataacacaaactcctggggcacagctcagcaga




gctgcctcttagggcaggtcatgtctgggacttggcatccttctcttagccattttgggt





SEQ ID NO: 146
TRAV2*01
cacagaggcagggaacccatgaagagctgaacagaaacagagatcacagcctttgcagga




ggcaaaacagagatgagcaataactttttcctccttaattcagtattacccaagcttttt





SEQ ID NO: 147
TRAV16*01
cacagtagctggttttgcaaggaagcagaacacaaaccctttaaatacaggaaatatttc




tttgcaaactctctgtatggccacagcagggcattctttctccagaaattaatattgagt





SEQ ID NO: 148
TRAV8-7*01
gactgtgcctgggactgcaggaggagctgaacacaaacttcctgagacactgaggttttc




aggaactcaagggcacagcctgacctatttgtagcaaggtctctcatttgatgaaagtga





SEQ ID NO: 149
TRAV8-6*01
cacagtgcctgagactgcaggagagctgaacacaaacctcctgagatgctgagactttct




gtgactcaagaactcaacctgtggagctttcaagagggtcccttttttctgtgcccgttt





SEQ ID NO: 150
TRAV3*01
cacactgataggggctgcagggggagcagaacacaaactcttgagtctggtaaagcccat




tttcttgaagtctttgttccttcacatgagaacggtgtgcttccaggatatgtcacttat





SEQ ID NO: 151
TRAV8-1*01
cacagtgtctgggactgcaaagggagctgaacacaaacttcctaaggtgctagggagaat




aactgcctctgaaagattttggattctgtcacagtagaaaccatgatgttagtattttta





SEQ ID NO: 152
TRAV18*01
cagagtgggagggactgcagcgagagcccagcacaaaccctggggaacgcaggtggggcc




tgggtgtgagccgctttgggagatgaatgaatatggactcttgttcgctgggaccccaaa





SEQ ID NO: 153
TRAV9-1*01
cacagtgacagggactgcaggggaagctgagcacaaactctgagcagcacgaggggcctg




gctgctgagtgtaagccactgtgatcccctctggttagggaccaggaactactctactat





SEQ ID NO: 154
TRAV31*01
cactgtgaagaacatgttagaagagccttacaaaaagatcggaactcaacctgaggcaat




tgcctattcccacattctcaggaaaaactcacaaaccttacccaggcatttgttagcagc





SEQ ID NO: 155
TRAV38-1*01
cacaatgagatgagcagcagggagaggcttacagaaacctcagacctcagcatctgtgca




aaggtcacagggtgagagggaagtggtagggtaataggtatagaaaatcattgacttctc





SEQ ID NO: 156
TRAV19*01
cacagtgagatgggtgcctgtgggagccctacaaaaacctcaacaagaggcagggctcct




ggggagagactctgtcacagacaggaagaagcaaggagggtctgtgtcagcacaggtggt





SEQ ID NO: 157
TRAV14/DV4*01
cacagtgacagaactgtcggagggaggtgtacaaaagccctggggacctgcttgagacct




ccacctgctggagaaccaaggcgggaaatcaacatcacagacaggaagtggcta





SEQ ID NO: 158
TRAV33*01
cacagaagtagaaatgacagtggaagataaacaaaaaccttagcactccataaaggaagc




cacctgctcaggagcttagggaaaatacatgaagcacagacaggaagaaggcacattagt





SEQ ID NO: 159
TRDV1*01
cacagtgtttgaagtgatagtaaaagcaaaacaaaaaccctagggctcaataagagaacc




cctctactccccatcctttgctacaggagccaatctgaaatgcacacctgcagatctcag





SEQ ID NO: 160
TRDV2*03
caccctgctgcagctctacttctgagcagctcaaaaaccactgaccaggcgcggtggctc




acacctgtaatcccagcactttgggaggccgaggtgggtggatcacgaggtcaggagatc





SEQ ID NO: 161
TRBV30*01
cacactgagctgggtggggcagacatctgtgcaaaaaccccaccctctcctgagccctaa




ccatactccccaggggccttcacttagggactgggtggaggatatttgtaagtaggtttc





SEQ ID NO: 162
TRBV20-1*01
cacagcgccaggaggggatcagacaccgcggcaagaacccctgcagctgccctccgcccc




agcgggccccctgagtgctgagaggggaagcgtggagaatggaaaaccacagctttcctg





SEQ ID NO: 163
TRBV29/OR9-2*01
cacagtgcagggcacagatcaaagatctaagcaagaacctcagctcccttctacccagct




cccctcacatgaacctgagggccctgtcaaggtgggacagaagaggaaaccacagctctt





SEQ ID NO: 164
TRBVB*01
gccacacacactcaagatgccccagacaccctgcactccgatcttactcgttcctttact




gttttcatcctaattgccctcttacacatttgaccacacatttttggtcttggtggttgt





SEQ ID NO: 165
TRGV10*02
accatactagaactgttgaaacaacatgcacaaaatcccctcccagggtctgtgcccacc




acatccttcccaacaggggcaaccacagccagtccccagctgggctcccagactcaggct





SEQ ID NO: 166
TRGVB*01
cacagcatcagtgccacactgtcccacacaacaacctctgttgggtctctgcccaaccac




atccttcccatgggagcaaactctatggactcctagctgggctcccaccctcagccttgc





SEQ ID NO: 167
TRGV11*02
cacagtgttagagttgtcaagataacctacacagaaactatctccgagtctgtgcctgtc




cacatccttctccatgtgggcaaccacagcggtttgctcagctgggtgcccagccggagc





SEQ ID NO: 168
TRAV4*01
ctcgtgggtgacacacagtgagacagatgggcctgcacctgtgccgttttcctctgtggg




gtgggagtcacagcctagaaagaagtccaaaagtgctttctaaaatttttattttcaaaa





SEQ ID NO: 169
TRAV26-1*01
cacactgggacagatggggctgcacctgtgcaatatctccctggtggcaagtgaggagga




gggtagcattcacctagagcaaaatgtcgataggagtcaaaaagtaacaagaaaagagga





SEQ ID NO: 170
TRAV26-2*01
cacagtgggacagatggggctgcagctgtgcaatatctccctggtgatgaaagggaaggc




atctaacgaggccactgcacaagaaggagcagaagtttaatagaggaagaagaaaattta





SEQ ID NO: 171
TRBV10-1*01
cacagtgctgcacagctgcctcctctctgcacataaagggcagttagaatgactgaggtt




gcctgtgctcccaagtcccagccttcacaggagtcggagagccctggctagcctgggggc





SEQ ID NO: 172
TRBV10-2*01
cacagtgctgcacagctgcctcctctctgcacggaaacggcagttagaaaaactgaggtt




gcctgtgcacccaagtctgggccccaccctgggacgtctcagcccccataggagtcacag





SEQ ID NO: 173
TRBV10-3*01
cacagtgctgcatggctgcctcctctctgcacgtaaacagcagttagaaagactgaggtt




gctctgtgtctatccccacccttggaagtccaggcctccatagaagtcagagggccctgg





SEQ ID NO: 174
TRBV28*01
cacagcgcagcacagctgcatcctctctgcacaaaaagagcggacgtaagagagaagggg




ccctaactcagggctggtgctggctccgatggcacattcgtgctaaatagaaaaaaagcg





SEQ ID NO: 175
TRBV6-2*01
cacagtgctgcacggctgtctcctctctgcacagaaaggcaagggaaggtgctgccctcc




tccgcagcacagattcagcgatgcccttggtcctagcaccgaaaactttggagccccaat





SEQ ID NO: 176
TRBV6-4*01
cacagtgctgcacagccatctcctctctgtacataaatgcaggggaggctctgccctcct




ccccgaccccagactcaaccatgtccttggcagagttctcagcactgggaatcttggaag





SEQ ID NO: 177
TRBV6-9*01
cacagcgctgcaagcctgtctcctctctgcacataaaggcacagaggctctgccctcctc




ccacccaagactcaaggatgccctgggcagagttctctgcaccaggaaccttggaaccca





SEQ ID NO: 178
TRBV6-7*01
cacagcgctgcaaggctgtctcctctctgcacataaaggcaagggaaggtgctgccctcc




tcccccacccaagactcaaggatgccctgtgcagagatctctgcaccaggaaccttggaa





SEQ ID NO: 179
TRBV6-5*01
cacagcgctacaaggccgtctcctctctgcacataaaggcagggaggttctgccctcctc




ccccacccaagactcagggatgccctgggcagagatctctgcgccaggaaccttggaacc





SEQ ID NO: 180
TRBV19*02
gccagtagtatagacacagtgaagcacggatgtcgcctctctgtgcataaatgtgcccag




tcctgcttccccgaccaggtggcagggctcctctgcactctatgatggcagg





SEQ ID NO: 181
TRBV19*01
cacagtgaagcacggatgtcgcctctctgtgcataaatgtgcccagtcctgcttccccga




ccaggtgacagggctcctctgcactctatgatggcaggaaacgccactcagccactaagc





SEQ ID NO: 182
TRBVA*01
cacagcactgcacaggcatgtgctcacctcacaaaatggcagtctcaaagggaggagtgc




ccacccacaagaggctccaccctattctgagaaagaacttctttcagaggaggagagaat





SEQ ID NO: 183
TRBV26/OR9-2*01
cacagcactgcatagctgccacatcctctccacataaaaaaaggtgcataccaaagagga




aaagcctgccctcaaaattcctcaccgcaaataagagaagttacctcacaggtattgaca





SEQ ID NO: 184
TRBV25/OR9-2*01
cacagtgctacatagataccgacactctgcacagaaagggtcgcctctaaggtgaggaca




tcttgccttcagaaaccttatcttaaactacagaaacccctgcaaatcttcccagactcc





SEQ ID NO: 185
TRBV27*01
cacagtgttgcacagccagctgctctctgcacaaaaacagagggtagctgcaagaacaag




gagactcctccttcaggagacccctcaccgaccaacaggataaacttcctccatcatccc





SEQ ID NO: 186
TRBV8-2*01
cgcagccctgcacagccagctgccctctgcacaaaaagggcagtcacaggctggaggtgg




gcactccttatggaagcccgtgtctcaaccagaagaaaaagctgccctttctgaagctct





SEQ ID NO: 187
TRBV24-1*01
cacagtgcttcttggccacctgctctctacacagaaagacagacacatgggtgagttgtt




tgctctgaagggtacctggatgtgggttgtgggatgtggggtgtttagagctttcagtgg





SEQ ID NO: 188
TRBV2*01
cacagccttgcaaagacaactccagcctgtgcaaaatccctcacagagctgcctccctcc




cagccgccagctcccacttcctgcctaagaaaaggaagtctctggttgggtttgttcttg





SEQ ID NO: 189
TRBV11-1*01
cacagcgttgcagagactttctctcctgtgcacaaaactccagggctctctccgctctac




tcagctcacagcagcctttccttattcctcatcctctcagggaagaagtgagttttcaga





SEQ ID NO: 190
TRBV11-2*01
cacagtgtagcagagacacttccctcctgtgcagaaaaccagaaaaccgcaggactctct




cctctctactcagctcacagcagcctttccttattcctcatcctcccaaggaagaagtga





SEQ ID NO: 191
TRBV11-3*01
cacagtgtagcagagacacttccctcctgtgcagaaaaccgcaggactctctcctctcta




ctcagctcacagcagcctttccttattcctcatcctcccaggaaagaagtgagttttcag





SEQ ID NO: 192
TRBV15*01
cacagagctgcagtgcttcctgctctctgttcataaacctcattgtttcccagatccagg




tgctttctctaggacttctccctcaccacctcttacaacaataggaagtgggttggtggc





SEQ ID NO: 193
TRBV12-5*01
cacagcgctgcagaatcacctgctccctgtgcagaaaccctggtgcttcctcttctcctc




cagtacccagcagctctcagcagcctttcttgctcctcccctagcacaggaagtacatag





SEQ ID NO: 194
TRBV12-1*02
cacagcactgcagaatctccccatctctgtgcagaaaccctggtgcttcctcttctcccc




acagctctcagcagtcgtcagcaaagtctttcctgctctctgctcaccatggctcacgcc





SEQ ID NO: 195
TRBV7-3*01
cacagcatgacacaatcgcctccttcctgctcataaacctcctcctctctctccttgctt




ccttatgatactattttgcaccaggggatcctcatctcacaccactccactgcctcttcc





SEQ ID NO: 196
TRBV7-9*01
cacagcatggcacagtcgcctccttcctgctcacaaaccctcaggcacttacttctcctt




ccagctctcagaagccctgaacaaaggagctgccctgctctttcctcagcaaggagaatg





SEQ ID NO: 197
TRBV7-2*01
cacagcatggcacagtcgcctccttcctgctcataaacctcatccttctctctccttgca




gctcctagacacccttaacagaggcttctctttgcttctccctccccatgggaaacaagt





SEQ ID NO: 198
TRBV7-5*01
cacagtgtggcatagtcgcctccttcctgttcacaaacctcatccttctctctccttgca




cctcctagagacccttaacagaggcctctctttgctcctcacttttgatgggaaagaagt





SEQ ID NO: 199
TRBV17*01
cacagcatggctgagtcagttccctccagggtgcaaaccctctggctgctcttctcccag




ttgaactccaagaaaacatttgaaaaagcctcttccttatcttcctaccccagaagaaag





SEQ ID NO: 200
TRBV5-7*01
cacagcccagcagagtcactgacattctgtatataaacttccgccttagctttgacttga




gaactgcaggccccacccaggtttcactccttcaagggaagcttttagttgtttggaagg





SEQ ID NO: 201
TRBV5-6*01
cacagcccatcagagtcactgacgttctgtatataaacttcctgccttagctttgccttg




agagctgcaggccccacccagatttcactccttcaagggaagcttttagttgtttggaag





SEQ ID NO: 202
TRBV5-1*01
cacagccctacaaagccaaccacattctgtgcacaaacctccctggcccaatgtggagca




acctcagccctgacatatctgtgagaacctggggactgcagggagaaagaaaggcaattt





SEQ ID NO: 203
TRBV5-3*01
cacagccctgcagagtcactggaactctgtgcactaatctctctgcttccgtgtacagca




gtctcagaccagacagctgtgagaacctggggccttcagggggaaagataaacaatttca





SEQ ID NO: 204
TRBV5-2*01
atgcaggcctgcagagccaagaacattctgtgtacaaacatccctgccccagtgtggaga




acttcagccctaacatatctgtgagaacttgaggactgtagtgggaaagaaaagcagttt





SEQ ID NO: 205
TRBV4-1*01
cacagccttgcagagtcaccgctttcctgtgcagaaaccttcggggcctgccaggaagcc




gtgggggccacggagggctcgggtgaacatttcctccaagagccccgaagaagcttcaga





SEQ ID NO: 206
TRBV1*01
cacagccctgcagagtcaccgcctccctgtgcacaaacctcctggatctaatcagaaaac




cgtgggggcaacgcatccagctgagcctcagcactcggttcagcattctgtaagacctca





SEQ ID NO: 207
TRBV3-2*02
acacagccttacagagccactgcatccctgtgcacaaacctcccggctcagccaggaagc




tgtgggccgtgtgtgcacctgcacccaaggctccagtctccattccctgatggcctctga





SEQ ID NO: 208
TRBV18*01
cacattgatgcagagccacatcctctcagtccacaaacatcctccagacctgccttggaa




acagcggtgggccaggaagggaaacgcgttacctgtacagtgaacaggtcagctctacgg





SEQ ID NO: 209
TRBV9*01
cacagccctgcatgagcatcagccttctgtgcaataacattcctgccccactcaggaagt




gacggtgaggggagggctgccagccagaggggctcaggccctggagagtggacaggcctt





SEQ ID NO: 210
TRBV13*01
cacagaccctggagaattactggctttctgtacccaaaccctcctatctcacttgaggat




gtaatagggagaaggaggtgggggctgccacacaactttagccaagccccagagatgctt





SEQ ID NO: 211
TRAV34*01
cacagcgattttcaggcctctatcagctgtctccaaacctgcagctgggccacatatgct




cttctgacatggggctcctgagatgtggctgggacctttgccaagacatgaagtctcaga





SEQ ID NO: 212
TRAV30*01
cacagtgatacccaggcctccaagacctgtactcaaacctaaagctgagccgcagatgct




cccctagcacagatgcccaccacaggagtatggggaacttaccagaaggttcatccatga





SEQ ID NO: 213
TRAV7*01
cacagtactccctaggcacctgcaacctgtatccaaacatgcagctgggtagaagtacca




taacagaagcatcagcaataggggccctgagcctgagtagacgtgaagaactaaggcatg





SEQ ID NO: 214
TRAV22*01
cacagtgctccccaggcacctgcggcctgtacacaaaccctcatccgggctcggttcctc




taccagtaacaaccacatcacgaggccaccgcagcagcattttgcacagcttaatattcc





SEQ ID NO: 215
TRAV6*01
cacagtagtgccctggcagctgcttcctgcacccaaactctgctaactctcacaatcaga




gctcatggctgtgctgtctcccaaaggctaatcacagctcctgacagaatgggggggtgt





SEQ ID NO: 216
TRAV27*01
cacagtgctcttgaggcacctgctgcctgcacccaaaccctgctgccagccccagtcacg




aggctgccacatgcctccagctccgcctcgcacagcttatggcatgaatagagagaacaa





SEQ ID NO: 217
TRAV20*01
cacagcgttccccaggcacctgcaacttgtatcaaaaccctgcagctgaggatctgaaat




gatggcagaggtatctctgctgttcttcctcttgaaggagtatttatttaatgcccagga





SEQ ID NO: 218
TRAV36/DV7*01
cacagtgctccctagtcacctgcagcctgtactcaaattctacagctgaggctctgcaac




tgtaagatggggaacttgctacattgagcaagccctcaaaaataaactatacggaaaagc





SEQ ID NO: 219
TRAV21*01
cacagtgcacaacaggcacctgcaaccaatacccaaactctatagctggggctctaactg




catgttttatcttgagactgagcaatgtttttgcattaagaggacttctaaattgacact





SEQ ID NO: 220
TRAV41*01
cacagtgctccccaggcacctggagcccgtacctaaactctaaagttgaggcatcatttc




ttactcctgtctttcagacttgtctgtctctatccttggtcagatgatgtaaaatgttta





SEQ ID NO: 221
TRAV37*01
cacagtgcccacagtcacctgcacccggtacctaaagcttgctgaggggcctgggcacac




ctccttttataagggccctggggcactgactataactctgctgcatacaaagggaaatat





SEQ ID NO: 222
TRAV11*01
agtagtgtctccccagcacctgcagcctgtaccataacctgcagccgggacccttgacac




aggctagccttgcaggtgggagtgaagattttttttttttttttgtatagagggaacttt





SEQ ID NO: 223
TRAV15*01
cacagggtccccaagcacctgcagcctgtaccacaacctgcatccgggacccttgacaca




gccttgccttgcaggtgggagtgaaggtgttgtctttatatgtagagagaacttctttat





SEQ ID NO: 224
TRAV17*01
cacagtgttccccaggaacctgcagcctctacgcaaaccctgccaaagcagcttcttaga




agccctaatagtgggtagaattagtggttatgtctttcagtcaagaagagtctacaaaca





SEQ ID NO: 225
TRAV10*01
cactgtgctccacaggcacttgaagccagtatgcaaacctgcacctggaggttatcaagg




aggcataggagttagagtagaccgttattttttatgcagaatatgatttcactagtgaat





SEQ ID NO: 226
TRBV7-1*01
cacagcactactgctccagtgtcagcttggttccctaggaaatggggtttctagaacctg




aatgctgacaaataagagttgtatatgtgtataccatgcaacctgcgtttaaaaatgtat





SEQ ID NO: 227
TRAV24*01
cacagtgctgttcaggcacctgcagcccatacgcaaacctgtgtctggtgttgcactgtt




accagcattgacaaagaaccatgagtaggatggaaaagacaagttcgttgaattacagtt





SEQ ID NO: 228
TRAV39*01
cacagtgctcccctgacgccaccagtctgtacccaaacctgcagctggtgggcccactcc




tcctgcaggaactatgactgtgaggcttcgttcactgtctgtacatttctttctgcaagg





SEQ ID NO: 229
TRAV35*01
cacagtgctccccaaacacctgcagcctgtactcaaacttgcagctggaactctagtctc




tatgctgccttcagctcttagtcctcttggcatgaaatgtgattatgcatgccacctttg





SEQ ID NO: 230
TRAV12-2*01
cacagtgctccccagacacctgcagtctgtacccaaacctgccatgccccaggaatgcct




gatgtagagcttagactgcagggtagtgaaactccccttgctctctagtttcaagtggaa





SEQ ID NO: 231
TRAV29/DV5*01
cacagtgctctccaggcacctgcagcccgtactcaaacctgctttggggactcagactgg




gagacacatagactcgcttccatttacacatgccaatatgagagattatgctttgaagta





SEQ ID NO: 232
TRAV23/DV6*01
cacagtgctccccaggcacctgaagcctgtacccaaacctgcagttgaggttccagccaa




accccacagtgggagcttacgtaggcagagatgtagcctagttttcatctgcatatgcaa





SEQ ID NO: 233
TRAV28*01
cactgtgctcttcagacacctgcagcctatacatgaaaccatagctgaaggcctaaccca




tccccgagagtggcagtaggtcccgatgtgattagcattgcattcccactgcctacatct





SEQ ID NO: 234
TRAV25*01
cacagtgctccccaagcacctgctgcctgtctccaaatcttgccctgggtcttcaggagc




agatcatcctactctccccaaagagcgggcgccagagaaagccaaagtcacaatgtctgt





SEQ ID NO: 235
TRAV32*01
cacagaactcttcaggcacctgcaacctgtactcaaacctgcaactgggagtccagtcac




attctttgtctttgaacgggttttgggttagaatggtttaccataatgtgcttgtttcta





SEQ ID NO: 236
TRAV5*01
cacattgcttctcaggcacctgtaccctgtacccaaacctgcacctgggactaaagccac




actctatttcctttacctttaagtcagggattttgctgtaaggtacttttaatgtacgga





SEQ ID NO: 237
TRAV13-2*01
cacattgctttccaggcatctgtaaccatcacccaaacctgagatgggaggtgaagcagc




atccctttcctttgcaataaattttagttatagcacttgtcattttgtttgttcataagt





SEQ ID NO: 238
TRAV13-1*01
gcagcaagtacacattgcttcccaggcacctgctacccgtacacaaacctgagactggag




ctgaagctgcaccccctttcctttgtcatagatcgtcaattatagcatttgtcatattgt








Claims
  • 1. A library of nucleic acid probes for hybrid capture of double stranded DNA fragments, the library consisting of probes designed to hybridize to substantially all V gene segments and all J gene segments within the B cell receptor genomic loci, immunoglobulin genomic loci, or the combination thereof, wherein each probe hybridizes either to a 3′ end of the V gene segment or a 5′ end of the J gene segment, and wherein each probe comprises a label for distinguishing between double stranded DNA fragments bound to the probes and unbound double stranded fragments.
  • 2. The library of claim 1, wherein the library consists of probes designed to hybridize to all V gene segments and all J gene segments within the B cell receptor genomic loci, immunoglobulin genomic loci, or the combination thereof, wherein each probe hybridizes either to a 3′ end of the V gene segment or a 5′ end of the J gene segment.
  • 3. The library of claim 1, wherein the probes of the library consist of substantially all of the probes encoded by the nucleic acid sequences of SEQ ID NOs:239-826 and SEQ ID NOs:872-872.
  • 4. The library of claim 1, wherein the probes of the library consist of all of the probes encoded by the nucleic acid sequences of SEQ ID NOs:239-826 and SEQ ID NOs:872-872.
  • 5. The library of claim 1, wherein the label is biotin.
  • 6. A method of capturing DNA fragments existing in a patient sample using a collection of nucleic acid hybrid capture probes, comprising: obtaining a sample from a patient;obtaining a library of nucleic acid probes of claim 1, wherein each capture probe is designed to hybridize to a known V gene segment and/or a J gene segment within a B cell receptor and/or immunoglobulin genomic loci; andusing the library of nucleic acid probes to capture DNA fragments in the patient sample.
  • 7. The method of claim 6, further comprising sequencing the captured DNA fragments, wherein the sequencing can be used to determine clonotypes within the patient sample.
  • 8. The method of claim 7, wherein said sequencing is optimized for short read sequencing.
  • 9. The method of claim 7, further comprising amplifying a population of sequences using nucleic acid amplification probes/oligonucleotides that recognize an adapter prior to said sequencing.
  • 10. The method of claim 6, wherein the patient sample comprises tissue, urine, cerebral spinal fluid, saliva, feces, ascities, pleural effusion, blood or blood plasma.
  • 11. The method of claim 6, wherein the patient sample comprises cell-free nucleic acids in blood plasma.
  • 12. The method of claim 6, wherein the hybrid capture probes are immobilized on an array.
  • 13. The method of claim 6, further comprising immunologically classifying a population of B-Cell receptor and/or immunoglobulin sequences by: (a) identifying all sequences containing a V gene segment from the sequences of the DNA fragments by aligning the sequences of the DNA fragments to a library of known V gene segment sequences;(b) trimming the identified sequences in (a) to remove any sequences corresponding to V gene segments to produce a collection of V-trimmed nucleotide sequences;(c) identifying all sequences containing a J gene segment in the population of V-trimmed nucleotide sequences by aligning the V-trimmed nucleotide sequences to a library of known J gene segment sequences;(d) trimming the V-trimmed nucleotide sequences identified in (c) to remove any sequences corresponding to J gene segments to produce VJ-trimmed nucleotide sequences;(e) identifying any D gene segment comprised in the VJ-trimmed nucleotide sequences identified in (d) by aligning the VJ-trimmed nucleotide sequences to a library of known D gene segment sequences;(f) for each VJ-trimmed nucleotides sequence identified in (d), assembling a nucleotide sequence comprising the V gene segment, any D gene segment, and the J gene segment identified in steps (a), (e) and (c) respectively;(g) selecting from the nucleotide sequence assembled in step (f) a junction nucleotide sequence comprising at least the junction between the V gene segment and the J gene segment, including any D gene segment, the junction nucleotide sequence comprising between 18 bp and 140 bp, preferably 40-100 bp, further preferably about 80 bp;and optionally (h) and (i):(h) translating each reading frame of the junction nucleotide sequence and its complementary strand to produce 6 translated sequences; and(i) comparing the 6 translated sequences to a library of known CDR3 regions of T-Cell receptor and/or immunoglobulin sequences to identify the CDR3 region in the DNA fragments.
  • 14. The method of claim 13, further comprising, prior to step (a), aligning left and right reads of overlapping initial DNA fragments to produce the DNA fragments on which step (a) is performed.
  • 15. The method of claim 13, wherein steps (a), (c), (e) are performed with BLASTn and step (i) is performed using expression pattern matching to known sequences and IMGT annotated data.
  • 16. The method of claim 6, further comprising identifying CDR3 regions in B-Cell receptor and/or immunoglobulin sequences by: (a) identifying a V gene segment comprised in the immunoglobulin sequence by aligning the immunoglobulin sequence to a library of known V gene segment sequences;(b) identifying a J gene segment comprised in the immunoglobulin sequence by aligning the immunoglobulin sequence to a library of known J gene segment sequences;(c) if V and J gene segments are identified, then comparing the immunoglobulin sequence to a library of known CDR3 regions of T-Cell receptor and/or immunoglobulin sequences to identify any CDR3 region in the immunoglobulin sequence.
  • 17. The method of claim 16, wherein steps (a) and (b) are performed using the Burrows-Wheeler Alignment or other sequence alignment algorithm.
  • 18. The method of claim 16, wherein if a CDR3 region is identified in step (c), then the method further comprises determining whether the identified V and J gene segments could be rearranged in the same locus using a heuristic approach.
  • 19. The method of claim 16, further defined as a method for characterizing B-cell clonality as a feature of disease in the patient.
  • 20. The method of claim 19, wherein the patient has cancer.
  • 21. The method of claim 19, wherein the patient has a B-cell related disease, plasma cell disorder, or a B-cell lymphoma.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national phase application under 35 U.S.C. § 371 of International Application No. PCT/CA2018/000104 filed 29 May 2018, which claims priority to U.S. Provisional Application No. 62/512,255 filed 30 May 2017. The entire contents of each of the above-referenced disclosures is specifically incorporated by reference herein without disclaimer.

PCT Information
Filing Document Filing Date Country Kind
PCT/CA2018/000104 5/29/2018 WO
Publishing Document Publishing Date Country Kind
WO2018/218332 12/6/2018 WO A
US Referenced Citations (10)
Number Name Date Kind
2392551 Roe Jan 1946 A
6189282 VanderWerf Feb 2001 B1
9453341 Swierad et al. Sep 2016 B1
20070292216 Hamel Dec 2007 A1
20080125333 Labgold et al. May 2008 A1
20100018146 Aube et al. Jan 2010 A1
20100029498 Gnirke Feb 2010 A1
20110072753 MacDonald Mar 2011 A1
20140331343 Bradley et al. Nov 2014 A1
20150218620 Behlke et al. Aug 2015 A1
Foreign Referenced Citations (3)
Number Date Country
WO 2016090273 Jun 2016 WO
WO 2017013436 Jan 2017 WO
WO 2017177308 Oct 2017 WO
Non-Patent Literature Citations (38)
Entry
He et al., “IgH gene rearrangements as plasma biomarkers in Non-Hodgkin's Lymphoma patients,” Oncotarget 2011, 2:178-185. (Year: 2011).
Extended European Search Report issued in Corresponding European Application No. 18810749.4, dated Apr. 19, 2021.
Yaari et al., “Practical guidelines for B-cell receptor repertoire sequencing analysis” Genome Medicine 2015, 7(1), 14 pages.
Bleakley et al., “Recovering probabilities for nucleotide trimming processes for T cell receptor TRA and TRG V-J junctions analyzed with IMGT tools”, BMC Bioinformatics, 9:408, 2008.
Jiang et al., “VDJ-Seq: Deep Sequencing Analysis of Rearranged Immunoglobulin Heavy Chain Gene to Reveal Clonal Evolution Patterns of B Cell Lymphoma”, J Vis Exp., 106:053215, 2015.
Mamedov et al., “Preparing unbiased T-cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling”, Front Immunol., 4:456, 2013.
Matsuda et al., “The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus”, J Exp Med., 188(11):2151-2162, 1998.
Monod et al., “IMGT/JunctionAnalysis: the first tool for the analysis of the immunoglobulin and T cell receptor complex V-J and V-D-J Junctions”, Bioinformatics, 20 Suppl 1 :i379-385, 2004.
Partial Supplementary European Search Report Issued in Corresponding EP Patent Application No. 18810749.4, dated Jan. 12, 2021.
Woodsworth et al., “Sequence analysis of T-cell repertoires in health and disease”, Genome Med., 5(10):98, 2013.
Gao & Wang, “Ligation-Anchored PCR Unveils Immune Repertoire of TCR-Beta from Whole Blood,” BMC Biotechnology, 15-39, 2015.
Yaari & Kleinstein, “Practical Guidelines for B-Cell Receptor Repertoire Sequencing Analysis,” Genome Medicine, 7: 121, 2015.
He, J. et al., “IgG gene rearrangements as plasma biomarkers in non-Hodgkin's lymphoma patients.” Oncotarget 2011, 2(3), 178-185.
International Search Report and Written Opinion issued in corresponding application No. PCT/CA2018/000104, dated Sep. 4, 2018.
Bashford-Roger, et al., “Capturing Needles in Haystacks: A Comparison of B-Cell Receptor Sequencing Methods,” BMC Immunology, 15: 29, 2014.
Bolotin, et al., “Next Generation Sequencing for TCR Repertoire Profiling Platform-Specific Features and Correction Algorithms,” European Journal Immunology, 42: 3073-3083, 2012.
Brochet et al., “IMGTN-QUEST: the Highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis” Nucleic Acids Res., 2008, 36:W503-508.
Camacho et al., “BLAST+: architecture and applications” BMC Bioinformatics, 2009, 10:421.
Extended European Search Report issued in corresponding Application No. 17781661.8, dated Nov. 18, 2019.
Fisher, et al., “Neuroblastoma Killing Properties of V-Delta 2 and V-Delta2 Negative Gamma Delta T Cells Following Expansion by Artificial Antigen Presenting Cells,” Clinical Cancer Research, 20(22): 5720-5732, 2014.
Gazzola et al., “The evolution of clonality testing in the diagnosis and monitoring of hematological malignancies” Therapeutic Advances in Hematology., 2014, 5(2):35-47.
Halper-Stromberg, et al., “Fine Mapping of V(D)J Recombinase Mediated Rearrangements in Human Lymphoid Malignancies,” BMC Genomics, 14: 565, 2014.
Herman et al., “Filter-based hybridization capture of subgenomes enables resequencing and copy-number detection” Nature Methods 2009, 6(7), 7 pages.
Jiang, et al., “Deep Sequencing Reveals Clonal Evolution Patterns and Mutation Events Associated with Relapse in B-Cell Lymphomas,” Genome Biology, 15: 432, 2014.
Li, HD “Fast and accurate short read alignment with Burrows-Wheeler Transform” Bioinformatics, 2009, 25:1754-1760.
Lin, et al., “Highly Sensitive and Unbiased Approach for Elucidating Antibody Repertoires,” PNAS, 113(28):7826-7851, 2016.
Linneman, et al., “High-Throughput Identification of Antigen-Specific TCRs by TCR Gene Capture,” Nature Medicine, 19(11): 1534-1541, and Supplementary Information, 2013.
Liu et al. “Systematic Comparative Evaluation of Methods for Investigating the TCRβ Repertoire” PLOS One 2016, 18 pages.
Logan, et al., “High-Throughput VDJ Sequencing for Quantification of Minimal Residual Disease in Chronic Lymphocytic Leukemia and Immune Reconstitution Assessment,” PNAS, 108(52): 21194-21199, 2011.
Mahe, “Design & Validation of a Hybrid-Capture Next-Generation Sequencing-Based T-Cell Clonality Assay,” Master of Science Thesis, University of Toronto, Graduate Department of Laboratory Medicine and Pathobiology, 2016.
Mamanova et al. “Target-enrichment strategies for next-generation sequencing” Nat. Methods, 2010, 7(2):111-118.
Mamedov, et al., “Quantitative Tracking of T Cell Clones After Haematopoietic Stem Cell Transplantation,” EMBO Mol. Med, 201-207, 2011.
Mulder, et al., “CapTCR-Seq: Hybrid Capture for T-Cell Receptor Repetoire Profiling,” Blood Advances, 2(23): 3506-3514, 2018.
Office Action Issued in U.S. Appl. No. 16/093,825, dated Aug. 18, 2020.
Parkinson, et al., “Violation of the 12/23 Rule of Genomic V(D)J Recombination is Common in Lymphocytes,” Genome Research, 25: 226-234, 2015.
Rosati, et al., “Overview of Methodologies for T-Cell Receptor Repertoire Analysis,” BMC Biotechnology, 17: 61, 2017.
Ruggiero, et al., “High-resolution analysis of the human T-cell receptor repertoire” Nature Communications 2015, 1-7.
Smith et al., “Identification of common molecular subsequences” J. Mot. Biol., 1981, 147(1):195-197.
Related Publications (1)
Number Date Country
20200115749 A1 Apr 2020 US
Provisional Applications (1)
Number Date Country
62512255 May 2017 US