1. Field of the Invention
The present invention relates generally to the design of a time-to-digital converter, and more particularly to a hybrid coarse-fine time-to-digital converter.
2. Description of the Background Art
A time-to-digital converter is usually employed to measure the time difference of two input signals. The performance of a time-to-digital converter is characterized by its linearity, offset, and resolution. The finer resolution results in a much smaller quantization noise in any application. A coarse time-to-digital converter usually has very small offset and better linearity while its quantization resolution is generally much larger. Though a fine time-to-digital converter results in a smaller quantization noise, it has a comparably large offset and worse linearity, which are quite sensitive to process, voltage, and temperature variations.
To achieve a finer quantization resolution, a low offset, and a good linearity, a hybrid coarse-fine time-to-digital converter is proposed in the invention.
The present invention pertains to a time-to-digital converter.
In one embodiment, a hybrid coarse-fine time-to-digital converter is disclosed in accordance with the present invention. The hybrid coarse-fine time-to-digital converter is configured to receive a first input signal and a second input signal and to generate a digital output that corresponds to the time difference of between a rising edge of the first input signal and a rising edge of the second input signal. The hybrid coarse-fine time-to-digital converter comprises a coarse time-to-digital converter, a fine time-to-digital converter, and a correlated output generator. Corresponding to each time difference, the coarse time-to-digital converter generates a first intermediate output that provides a low offset output and better linearity. The fine time-to-digital converter generates a second intermediate output that provides a finer quantization resolution of the time difference. In order to correlate the first and second intermediate outputs, the correlated output generator first generates a quantization level corresponding to each first intermediate output transition. The generated quantization levels are then used to map the first and second intermediate outputs to the final digital output.
These and other features of the present invention will be readily apparent to persons of ordinary skill in the art upon reading the entirety of this disclosure, which includes the accompanying drawings and claims.
a) shows an input timing diagram of the hybrid coarse-fine time-to-digital converter in
b) shows an input-output transfer function curve of the hybrid coarse-fine time-to-digital converter in
a) schematically shows a coarse time-to-digital converter in accordance with an embodiment of the present invention.
b) shows the truth table of the coarse time-to-digital convert in
c) shows an input-output transfer function curve of the coarse time-to-digital converter in
a) schematically shows a coarse time-to-digital converter in accordance with an embodiment of the present invention.
b) shows the truth table of the coarse time-to-digital convert in
c) shows an input-output transfer function curve of the coarse time-to-digital converter in
a) shows a time amplifier in accordance with an embodiment of the present invention.
b) shows a timing diagram of the time amplifier in
a) shows a correlated output generator in accordance with an embodiment of the present invention.
b) shows a quantization level calibration circuit in accordance with an embodiment of the present invention.
c) shows an output combiner in accordance with an embodiment of the present invention.
The use of the same reference label in different drawings indicates the same or like components.
In the present disclosure, numerous specific details are provided, such as examples of electrical circuits, components, and methods, to provide a thorough understanding of embodiments of the invention. Persons of ordinary skill in the art will recognize, however, that the invention can be practiced without one or more of the specific details. In other instances, well-known details are not shown or described to avoid obscuring aspects of the invention.
Embodiments of the present invention advantageously allow for fabrication of a time-to-digital converter with fine resolution, small offset, and better linearity.
The hybrid coarse-fine time-to-digital converter comprises a coarse time-to-digital converter 101, a fine time-to-digital converter 102, and a correlated output generator 103. Corresponding to each time difference between the first and second input signals, the coarse time-to-digital converter 101 generates a first intermediate output OUT1 and the fine time-to-digital converter 102 generates a second intermediate output OUT2. The correlated output generator receives the first intermediate output OUT1 and the second intermediate output OUT2 and generates the digital output DOUT.
a) shows a four-level coarse time-to-digital converter 101A in accordance with an embodiment of the present invention. The coarse time-to-digital converter 101A comprises three flip-flops and two buffers. The first input signal SIG1 samples the second input signal SIG2 to generate a binary signal Q1 at the output of the flip-flop 301. The first input signal SIG1 passes a buffer with delay Δ to generate a signal SIG1D. The signal SIG1D samples the second input signal SIG2 to generate a binary signal Q2 at the output of the flip-flop 302. The second input signal SIG2 passes a buffer with delay Δ to generate a signal SIG2D. The signal SIG2D samples the first input signal SIG1 to generate a binary signal Q0 at the output of the flip-flop 300.
In one embodiment, the coarse time-to-digital converter is a bang-bang detector.
If a rising edge of the first input signal leads a corresponding rising edge of the second input signal, the flip-flop 401 generates a binary zero at its positive output. If a rising edge of the first input signal lags a corresponding rising edge of the second input signal, the flip-flop 401 generates a binary one at its positive output. The coarse time-to-digital converter 101B generates +1 as the first intermediate output OUT1 if the first input signal SIG1 lags the second input signal SIG2. Otherwise, an output value of −1 is generated as the first intermediate output OUT1.
a) shows a time amplifier in accordance with an embodiment of the present invention. The time amplifier comprises two unbalanced SR latches, two special XOR gates, and four output capacitances. The unbalanced SR latch comprises two NAND gates, in which the size of the NMOS of one NAND gate is larger or smaller than the size of the NMOS of the other NAND gate. With this method, a TA gain of 20 can be obtained. The special XOR gate comprises an OR gate and two inverters where one inverter's input is used as the power supply of the other inverter and vice versa. The output of the special XOR is binary one if and only if one input of the special XOR gate is a binary one and the other input is a binary zero. A normal XOR gate cannot be used because its output is unstable when the inputs to the XOR gate do not reach binary levels during time amplification.
a) shows a correlated output generator 103A in accordance with an embodiment of the present invention. The coarse time-to-digital converter 101A is in use with the correlated output generator 103A which comprises three quantization level calibration circuits, three adaptation decision circuits, and an output combiner. A quantization level calibration circuit is configured to receive the second intermediate output OUT2 and a binary decision signal DS from a corresponding adaptation decision circuit and to generate a quantization level QUAN corresponding to a first intermediate output transition and a residue RESI to the corresponding adaptation decision circuit. The quantization level calibration circuit 800 generates the quantization level QUAN0 corresponding to the first intermediate output transition between −2 and −1. The quantization level calibration circuit 801 generates the quantization level QUAN1 corresponding to the first intermediate output transition between −1 and −1. The quantization level calibration circuit 802 generates the quantization level QUAN2 corresponding to the first intermediate output transition between +1 and +2.
An adaptation decision is configured to receive the first intermediate output OUT1 and a residue RESI from a corresponding quantization level calibration circuit and to generate a binary decision signal DS to the corresponding quantization level calibration circuit. The adaptation decision circuit 810 receives the first intermediate output OUT1 and the residue RES0 and generates a binary decision signal DS0 to the quantization level calibration circuit 800 that indicates if the quantization level QUAN0 needs an update. The adaptation decision circuit 811 receives the first intermediate output OUT1 and the residue RES1 and generates a binary decision signal DS1 to the quantization level calibration circuit 801 that indicates if the quantization level QUAN1 needs an update. The adaptation decision circuit 812 receives the first intermediate output OUT1 and the residue RES2 and generates a binary decision signal DS2 to the quantization level calibration circuit 802 that indicates if the quantization level QUAN2 needs an update. The output combiner 820 generates the digital output DOUT in accordance with to the first intermediate output OUT1, the residue RESI2, the residue RESI1, the residue RESI0, the quantization level QUAN2, the quantization level QUAN1, and the quantization level QUAN0.
b) shows a quantization level calibration circuit in accordance with an embodiment of the present invention. The quantization level calibration circuit is configured to receive the second intermediate output OUT2 and the binary decision signal DS and to generate the quantization level QUAN and the residue RESI. The quantization level calibration circuit comprises an adder 851, a multiplexer 852, a multiplier 853, and an accumulator 854. The adder 851 subtracts the current quantization level QUAN from the second intermediate output OUT2 to obtain the residue RESI. If the decision signal DS is a binary one, the residue is then scaled in the multiplier 853 and added to the current quantization level QUAN in the accumulator 854. If the decision signal DS is a binary zero, the current quantization level QUAN keeps unchanged.
The decision circuit is configured to receive the first intermediate output OUT1 and the residue RESI from a corresponding quantization level calibration circuit and to generate the decision signal DS to the corresponding quantization level calibration circuit. In the quantization level calibration circuit 812, if the first intermediate output OUT1 is 2 and the residue RESI2 is negative, it means that the current quantization level QUAN2 is too high and the negative residue RESI2 is scaled and added to the current quantization level QUAN2. If the first intermediate output OUT1 is 1 and the residue is positive, it means that the current quantization level QUAN2 is too low and the positive residue RESI2 is scaled and added to the current quantization level QUAN2.
In the quantization level calibration circuit 811, if the first intermediate output OUT1 is 1 and the residue RESI1 is negative, it means that the current quantization level QUAN1 is too high and the negative residue RESI1 is scaled and added to the current quantization level QUAN1. If the first intermediate output OUT1 is −1 and the residue is positive, it means that the current quantization level QUAN1 is too low and the positive residue RESI1 is scaled and added to the current quantization level QUAN1.
In the quantization level calibration circuit 810, if the first intermediate output OUT1 is −1 and the residue RESI0 is negative, it means that the current quantization level QUAN0 is too high and the negative residue RESI0 is scaled and added to the current quantization level QUAN0. If the first intermediate output OUT1 is −2 and the residue is positive, it means that the current quantization level QUAN0 is too low and the positive residue RESI0 is scaled and added to the current quantization level QUAN0.
c) shows a method to generate the digital output DOUT in accordance with an embodiment of the present invention. If the first intermediate output OUT1 is positive, a normalization gain GAIN1 is used to normalize the digital output DOUT. If the first intermediate output OUT1 is negative, a normalization gain GAIN2 is used to normalize the digital output DOUT.
A hybrid coarse-fine time-to-digital converter has been disclosed. While specific embodiments of the present invention have been provided, it is to be understood that these embodiments are for illustration purposes and not limiting. Many additional embodiments will be apparent to persons of ordinary skill in the art reading this disclosure.
A phase-locked loop has been disclosed. While specific embodiments of the present invention have been provided, it is to be understood that these embodiments are for illustration purposes and not limiting. Many additional embodiments will be apparent to persons of ordinary skill in the art reading this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
7536299 | Cheng et al. | May 2009 | B2 |
20070273569 | Lin | Nov 2007 | A1 |