1. Technical Field
The present disclosure relates to electrosurgical apparatuses, systems and methods. More particularly, the present disclosure is directed to electrosurgical systems utilizing one or more capacitive return electrodes configured to monitor contact quality thereof.
2. Background of Related Art
Energy-based tissue treatment is well known in the art. Various types of energy (e.g., electrical, ultrasonic, microwave, cryogenic, heat, laser, etc.) are applied to tissue to achieve a desired result. Electrosurgery involves application of high radio frequency electrical current to a surgical site to cut, ablate, coagulate or seal tissue. In monopolar electrosurgery, the active electrode is typically part of the surgical instrument held by the surgeon and applied to the tissue to be treated. A patient return electrode is placed remotely from the active electrode to carry the current back to the generator and safely disperse current applied by the active electrode.
The return electrodes usually have a large patient contact surface area to minimize heating at that site. Heating is caused by high current densities which directly depend on the surface area. A larger surface contact area results in lower localized heat intensity. Return electrodes are typically sized based on assumptions of the maximum current utilized during a particular surgical procedure and the duty cycle (i.e., the percentage of time the generator is on).
The first types of return electrodes were in the form of large metal plates covered with conductive jelly. Later, adhesive electrodes were developed with a single metal foil covered with conductive jelly or conductive adhesive. However, one problem with these adhesive electrodes was that if a portion peeled from the patient, the contact area of the electrode with the patient decreased, thereby increasing the current density at the adhered portion and, in turn, increasing the heating at the tissue. This risked burning the patient in the area under the adhered portion of the return electrode if the tissue was heated beyond the point where circulation of blood could cool the skin.
To address this problem various return electrodes and hardware circuits, generically called Return Electrode Contact Quality Monitors (RECQMs), were developed. Such systems relied on measuring impedance at the return electrode to calculate a variety of tissue and/or electrode properties. These systems were configured to measure changes in impedance of the return electrodes to detect peeling. Furthermore, the systems were designed to work with conventional resistive return electrodes.
The present disclosure relates to electrosurgical return electrodes. Disclosure provides for a hybrid return electrode having a capacitive return electrode and a resistive monitoring electrode which includes one or more pairs of split conductors. The dual nature of the hybrid return electrodes provides for increased heat dispersion as well as return electrode monitoring.
According to one aspect of the present disclosure an electrosurgical return electrode is disclosed. The return electrode includes an intermediary layer formed from a dielectric material, the intermediary layer having a top surface and a patient-contacting surface. The return electrode also includes a capacitive return electrode formed from a conductive material disposed on the top surface of the intermediary layer and a resistive monitoring electrode formed from a conductive material disposed on the patient-contact surface of the intermediary layer.
According to another aspect of the present disclosure an electrosurgical system is provided. The system includes one or more electrosurgical return electrodes, each of which includes an intermediary layer formed from a dielectric material, the intermediary layer having a top surface and a patient-contacting surface. The return electrode also includes a capacitive return electrode formed from a conductive material disposed on the top surface of the intermediary layer and a resistive monitoring electrode formed from a conductive material disposed on the patient-contact surface of the intermediary layer. The resistive monitoring electrode includes one or more pairs of split electrode conductors. The system also includes a return electrode monitoring system coupled to one or more pairs of split electrode conductors and configured to measure impedance between the one or more pairs of split electrode conductors.
A method for manufacturing an electrosurgical return electrode is also contemplated by the present disclosure. The method includes the steps of forming an intermediary layer from a dielectric material, the intermediary layer having a top surface and a patient-contacting surface. The method also includes the steps of depositing a first conductive material onto the top surface of the intermediary layer to form a capacitive return electrode and depositing a second conductive material onto the patient-contact surface of the intermediary layer to form a resistive monitoring electrode. The method further includes the step of heating the intermediary layer, capacitive return electrode and resistive monitoring electrode for a predetermined period of time at a temperature from about 70° C. to about 120° C.
Various embodiments of the present disclosure are described herein with reference to the drawings wherein:
Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.
A capacitive return electrode can safely return more current than a return electrode incorporating a resistive design. However, conventional capacitive return electrodes are not configured to couple with a return electrode monitoring (“REM”) system. The REM system monitors the adherence of the return electrode to the patient by measuring the impedance and/or current between one or more split conductors. Split conductor designs are incorporated into resistive return electrodes but previously are not included in capacitive return electrode designs due to the increased impedance of these return electrodes.
The present disclosure provides for a hybrid return electrode incorporating capacitive and return electrode monitoring technologies. More specifically, the hybrid return electrode according to the present disclosure includes a dielectric layer and a solid metal layer (e.g., silver) deposited on a top (e.g., outside) surface providing for a capacitive configuration. The hybrid return electrode also includes one or more pairs of split metallic conductors (e.g., silver foil) disposed on a bottom (e.g., patient contact) surface of the dielectric layer. The split metallic conductors serve as a resistive monitoring electrode which is interrogated by the REM system to determine contact quality of the hybrid return electrode.
The generator 20 includes input controls (e.g., buttons, activators, switches, touch screen, etc.) for controlling the generator 20. In addition, the generator 20 may include one or more display screens for providing the user with variety of output information (e.g., intensity settings, treatment complete indicators, etc.). The controls allow the user to adjust power of the RF energy, waveform, and other parameters to achieve the desired waveform suitable for a particular task (e.g., coagulating, tissue sealing, intensity setting, etc.). The instrument 2 may also include a plurality of input controls that may be redundant with certain input controls of the generator 20. Placing the input controls at the instrument 2 allows for easier and faster modification of RF energy parameters during the surgical procedure without requiring interaction with the generator 20.
The controller 24 includes a microprocessor 25 operably connected to a memory 26, which may be volatile type memory (e.g., RAM) and/or non-volatile type memory (e.g., flash media, disk media, etc.). The microprocessor 25 includes an output port that is operably connected to the HVPS 27 and/or RF output stage 28 that allows the microprocessor 25 to control the output of the generator 20 according to either open and/or closed control loop schemes. Those skilled in the art will appreciate that the microprocessor 25 may be substituted by any logic processor (e.g., control circuit) adapted to perform the calculations discussed herein.
A closed loop control scheme is a feedback control loop wherein sensor circuit 22, which may include a plurality of sensors measuring a variety of tissue and energy properties (e.g., tissue impedance, tissue temperature, output current and/or voltage, etc.), provides feedback to the controller 24. Such sensors are within the purview of those skilled in the art. The controller 24 then signals the HVPS 27 and/or RF output stage 28, which then adjust DC and/or RF power supply, respectively. The controller 24 also receives input signals from the input controls of the generator 20 or the instrument 2. The controller 24 utilizes the input signals to adjust power outputted by the generator 20 and/or performs other control functions thereon.
The generator 20 includes a return electrode monitoring system having an impedance monitor 30 which is coupled to a pair of split electrode conductors 31 and 32 disposed within the return electrode 6. The impedance sensor 30 measures the impedance between the split electrode conductors 31 and 32 and transmits the measurements to the sensor circuit 22 which analyzes the impedance measurement to determine an adherence factor (e.g., the degree of adherence) of the return electrode 6 to the patient. If impedance between the split electrode conductors 31 and 32 decreases, the sensor circuit 22 recognizes that the return electrode 6 is peeling and notifies the user of the event via an alarm and/or terminates the supply of RF energy.
The return electrode 6 includes an intermediary dielectric layer 40 which can be formed from a variety of flexible polymer materials such as polyimide film sold under a trademark KAPTON™ and polyester film, such as biaxially-oriented polyethylene terephthalate (boPET) polyester film sold under trademarks MYLAR™ and MELINEX™.
The return electrode 6 also includes a capacitive return electrode 42 disposed on the top surface of the intermediary dielectric layer 40. The capacitive return electrode 42 may be formed from a suitable conductive material (e.g., metal) adapted to conduct the electrosurgical energy from the surgical site to the generator 20. In embodiments, a variety of conductive metals may be used, such as silver, copper, gold, stainless steel, various alloys formed therefrom and the like. The capacitive return electrode 42 may be deposited directly as a solid contiguous metallic layer onto the dielectric layer 40 by using a variety of methods such as screen printing, spraying, painting and the like. The shape of the capacitive return electrode 42 may conform to the shape of the dielectric layer 40, such that the edges of the capacitive return electrode 42 do not overhang the dielectric layer 40 to prevent direct contact between the capacitive return electrode 42 and the patient. Since the capacitive return electrode 42 is separated from the patient P via the dielectric layer 40, the combination of the dielectric layer 40 and the capacitive return layers 42 act as a capacitor. This provides for more even heating throughout the return electrode 6 eliminating creation of so-called “hot spots” which can lead to tissue damage.
The return electrode 6 also includes a resistive monitoring electrode 44 disposed on the patient-contacting surface of the dielectric layer 40. The resistive monitoring electrode 44 may also be formed from a suitable conductive material (e.g., metal) such as silver, copper, gold, stainless steel, etc. and may be deposited directly onto the dielectric layer 40 by using similar methods such as screen printing and the like. The monitoring electrode 44 includes a pair of split electrode conductors 31 and 32 which are separated from one another and are coupled to the impedance sensor 30. The addition of the monitoring electrode 44 having split electrode conductors 31 and 32 allows for return electrode monitoring. The impedance sensor 30 interrogates the split electrode conductors 31 and 32 to determine impedance therein and thereby calculate the adherence factor of the return electrode 6. Return electrode monitoring is technically impracticable utilizing only a simple capacitive return electrode due to the increased impedance thereof. The hybrid return electrode 6 according to the present disclosure combines both, capacitive return electrode 42 and resistive monitoring electrode 44 with the dielectric layer 40 disposed therebetween, allowing for combination of both technologies.
While several embodiments of the disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
This application claims the benefit of priority to U.S. Provisional Application Ser. No. 61/026,385 entitled “HYBRID CONTACT QUALITY MONITORING RETURN ELECTRODE” filed Feb. 5, 2008 by James E. Dunning, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3913583 | Bross | Oct 1975 | A |
3923063 | Andrews et al. | Dec 1975 | A |
4126137 | Archibald | Nov 1978 | A |
4166465 | Esty et al. | Sep 1979 | A |
4188927 | Harris | Feb 1980 | A |
4200104 | Harris | Apr 1980 | A |
4303073 | Archibald | Dec 1981 | A |
4304235 | Kaufman | Dec 1981 | A |
4387714 | Geddes et al. | Jun 1983 | A |
4494541 | Archibald | Jan 1985 | A |
4669468 | Cartmell et al. | Jun 1987 | A |
4788977 | Farin et al. | Dec 1988 | A |
4799480 | Abraham et al. | Jan 1989 | A |
4844063 | Clark | Jul 1989 | A |
4942313 | Kinzel | Jul 1990 | A |
5042981 | Gross | Aug 1991 | A |
5087257 | Farin et al. | Feb 1992 | A |
5246439 | Hebborn et al. | Sep 1993 | A |
5312401 | Newton et al. | May 1994 | A |
5370645 | Klicek et al. | Dec 1994 | A |
5452725 | Martenson | Sep 1995 | A |
5678545 | Stratbucker | Oct 1997 | A |
5688269 | Newton et al. | Nov 1997 | A |
5695494 | Becker | Dec 1997 | A |
5720744 | Eggleston et al. | Feb 1998 | A |
5830212 | Cartmell et al. | Nov 1998 | A |
5836942 | Netherly et al. | Nov 1998 | A |
5868742 | Manes et al. | Feb 1999 | A |
5947961 | Netherly | Sep 1999 | A |
5971981 | Hill et al. | Oct 1999 | A |
6007532 | Netherly | Dec 1999 | A |
6053910 | Fleenor | Apr 2000 | A |
6083221 | Fleenor et al. | Jul 2000 | A |
6171304 | Netherly et al. | Jan 2001 | B1 |
6214000 | Fleenor et al. | Apr 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6454764 | Fleenor et al. | Sep 2002 | B1 |
6544258 | Fleenor et al. | Apr 2003 | B2 |
6582424 | Fleenor et al. | Jun 2003 | B2 |
6666859 | Fleenor et al. | Dec 2003 | B1 |
6860881 | Sturm et al. | Mar 2005 | B2 |
7160293 | Sturm et al. | Jan 2007 | B2 |
7166102 | Fleenor et al. | Jan 2007 | B2 |
7169145 | Isaacson et al. | Jan 2007 | B2 |
7267675 | Stern et al. | Sep 2007 | B2 |
7422589 | Newton et al. | Sep 2008 | B2 |
20030139741 | Goble et al. | Jul 2003 | A1 |
20050085806 | Auge et al. | Apr 2005 | A1 |
20060041251 | Odell et al. | Feb 2006 | A1 |
20060041252 | Odell et al. | Feb 2006 | A1 |
20060074411 | Carmel et al. | Apr 2006 | A1 |
20070049916 | Isaacson et al. | Mar 2007 | A1 |
20070073284 | Sturm et al. | Mar 2007 | A1 |
20070167942 | Rick | Jul 2007 | A1 |
20070244478 | Bahney | Oct 2007 | A1 |
20080281309 | Dunning et al. | Nov 2008 | A1 |
20080281310 | Dunning et al. | Nov 2008 | A1 |
20080281311 | Dunning et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
1219642 | Mar 1987 | CA |
3206947 | Sep 1983 | DE |
3544443 | Jun 1987 | DE |
4238263 | May 1993 | DE |
4231236 | Mar 1994 | DE |
19717411 | Nov 1998 | DE |
19801173 | Jul 1999 | DE |
10328514 | Jun 2003 | DE |
102004010940 | Sep 2005 | DE |
0262888 | Apr 1988 | EP |
390937 | Oct 1990 | EP |
836868 | Apr 1998 | EP |
0930048 | Jul 1999 | EP |
1051949 | Nov 2000 | EP |
1076350 | Feb 2001 | EP |
1468653 | Oct 2004 | EP |
1645236 | Apr 2006 | EP |
1707151 | Oct 2006 | EP |
1808144 | Jul 2007 | EP |
1902684 | Mar 2008 | EP |
2276027 | Jun 1974 | FR |
2516782 | May 1983 | FR |
2054382 | Feb 1981 | GB |
2374532 | Oct 2002 | GB |
WO 9737719 | Oct 1997 | WO |
WO 9818395 | May 1998 | WO |
WO 9909899 | Mar 1999 | WO |
WO 9911187 | Mar 1999 | WO |
WO 0032122 | Jun 2000 | WO |
WO 0053113 | Sep 2000 | WO |
WO 0065993 | Nov 2000 | WO |
WO 0187175 | Nov 2001 | WO |
WO 02058579 | Aug 2002 | WO |
WO 02060526 | Aug 2002 | WO |
WO 03094766 | Nov 2003 | WO |
WO 2004028385 | Apr 2004 | WO |
WO 2005087124 | Sep 2005 | WO |
WO 2005099606 | Oct 2005 | WO |
WO 2005115262 | Dec 2005 | WO |
WO 2008009385 | Jan 2008 | WO |
Entry |
---|
U.S. Appl. No. 10/696,946, filed Jun. 30, 2003. |
U.S. Appl. No. 11/900,190, filed Sep. 10, 2007. |
U.S. Appl. No. 12/396,814, filed Mar. 3, 2009. |
U.S. Appl. No. 12/395,812, filed Mar. 2, 2009. |
U.S. Appl. No. 12/364,624, filed Feb. 3, 2009. |
U.S. Appl. No. 12/335,281, filed Jan. 16, 2009. |
U.S. Appl. No. 12/401,428, filed Mar. 10, 2009. |
U.S. Appl. No. 12/407,008, filed Mar. 19, 2009. |
Boyles, Walt; “Instrumentation Reference Book”, 2002; Butterworth-Heinemann ; 262-264. |
International Search Report EP05002027.0 dated May 12, 2005. |
International Search Report EP05021944.3 dated Jan. 25, 2006. |
International Search Report EP06006961 dated Aug. 3, 2006. |
International Search Report EP06006961.4 dated Oct. 5, 2007. |
International Search Report EP06018206.0 dated Oct. 13, 2006. |
International Search Report EP06023756.7 dated Feb. 21, 2008. |
International Search Report EP07000567.3 dated Dec. 3, 2008,. |
International Search Report EP07000885.9 dated May 15, 2007. |
International Search Report EP07007783.9 dated Aug. 6, 2007. |
International Search Report EP07018375.1 dated Jan. 8, 2008. |
International Search Report EP07019173.9 dated Feb. 12, 2008. |
International Search Report EP07019178.8 dated Feb. 12, 2008. |
International Search Report EP07253835.8 dated Feb. 20, 2007. |
International Search Report EP08006731.7 dated Jul. 29, 2008. |
International Search Report EP08006734.1 dated Aug. 18, 2008. |
International Search Report EP08006735.8 dated Jan. 8, 2009. |
International Search Report EP08008510.3 dated Oct. 27, 2008. |
International Search Report EP08013758.1 dated Nov. 20, 2008. |
International Search Report EP08013760.7 dated Nov. 20, 2008. |
International Search Report EP08155779-partial dated Sep. 8, 2008. |
International Search Report EP08155779 dated Jan. 23, 2009. |
International Search Report EP09152032 dated Jun. 17, 2009. |
International Search Report EP09152130.2 dated Apr. 6,2009. |
International Search Report PCT/US2004/004196 dated Oct. 4, 2007. |
Number | Date | Country | |
---|---|---|---|
20090198229 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
61026385 | Feb 2008 | US |