The invention is related to a cooler for containers. In particular, the invention relates to a cooler for food product containers, such as bottles and cans. It is further related to conserving heat and water by recovering heat during cooling of these containers and re-using it to heat contents of subsequent containers for a variety of process purposes. These purposes include pathogen reduction, controlled microbial death or growth, or regulation of chemical, bio-chemical, or enzymatic reactions.
Containers that have been filled with hot substances, such as food, or heated after being filled, typically must be cooled before distribution and use. One example is an empty container that is filled with a hot product. This hot product pasteurizes or commercially sterilizes the container and the seal when applied. Another example of a container that is heated, then cooled before distribution and use, is a food product container. Often, food products are sterilized or pasteurized to reduce spoilage and to reduce the number of pathogens in the food product. A food product can be treated for pathogen reduction before packaging, or can be filled into a container that then is sealed, and the entire closed container is heated to achieve the desired degree of pathogen reduction. Typically, this degree of pathogen reduction is known as “commercial sterilization.” The food product container then is at elevated temperature and is cooled before distribution and use. Containers of other products, such as animal food, or any product that is heated as a step in processing, also can require cooling.
Typically, containers of food products leave the pathogen reduction step at a temperature of at least about 150° F. It is possible to cool such containers by allowing them to cool in air to achieve the desired temperature reduction. However, cooling in air, even in a forced air or cooled air stream, is not commercially practical. Such cooling requires not only significant time but also large cooling/storage areas. Also, it is necessary to deal with the heat removed.
Food product containers typically are cooled by heat exchange with a cooling fluid. Water is a convenient cooling fluid. Various methods and apparatus for cooling containers are known. For example, cooling water can be sprayed on containers to be cooled. Alternatively, the containers can be introduced into a cooling bath to be cooled. Although it is possible to spray cool water onto a container in a once-through process, multiple zones are preferred.
In a multiple zone system, the cooling fluid and the containers to be cooled move countercurrently, i.e., in opposite directions. Thus, in a first zone, the coolest cooling fluid is used to cool the coolest containers to the target cool temperature. The fluid leaving this first zone is used to cool the warmer containers in the second zone. The pattern continues to the last zone. The last cooling zone is the zone into which the hot containers are introduced. The cooling fluid is the warm cooling fluid, which is raised to its highest temperature in this last zone.
Multiple zone systems also may have plural processing lines in each zone. For example, two or more processing lines for containers to be cooled may be stacked vertically in a cooler. In this way, cooling fluid from an upper processing line then can impinge upon the containers on a processing line at a lower level of the cooler to cool the lower processing line. Also, a lower line may have an additional cooling fluid source.
In this zone system, the cooling fluid can be withdrawn from a sump. The sump for the first zone is fed from a cool fluid source, and the sump for each subsequent zone is fed with cooler fluid from the previous cooling zone. The hot fluid from this last cooling step is collected. Typically, this hot fluid is cooled and recycled.
Often, the hot fluid is cooled by an evaporator-type cooling tower. The cooled fluid then is returned to the first cooling zone. Alternatively, the fluid is cooled by contact in a heat exchanger with a fluid that is circulated in a closed loop between the heat exchanger and a cooling tower.
In an alternative design, evaporative cooling is incorporated into the cooler itself Cooling fluid, typically water, is evaporated in the cooler itself, then discharged to the atmosphere. Evaporation is effected by a flow of unsaturated air over the cooling fluid surface in the cooler.
Although both evaporative cooling and cooling by heat exchange, as with a cooling tower, are known, these methods lose or waste both heat and cooling fluid, typically water, to the atmosphere. Therefore, there exists a need for a method for cooling containers that reduces the amount of waste.
A first embodiment is directed to a method for cooling containers including both evaporative cooling and cooling by heat exchange, wherein cooling fluid is recovered rather than lost to evaporation.
A second embodiment is directed to a method for cooling containers including cooling vaporized coolant fluid in a condenser to condense the coolant fluid and recover heat and cooling fluid otherwise lost to the atmosphere.
A third embodiment is directed to a method for cooling containers including tempering air and cooling vaporized coolant fluid through a condenser to condense the coolant fluid and recover heat and cooling fluid otherwise lost to the atmosphere, wherein heat is recovered from condensed coolant and tempered air is returned to the cooler.
A fourth embodiment is directed to a method for cooling containers wherein the coolant is cooled with fluid and the heat is recovered from that fluid.
In the Figures, like numbers are used to illustrate like parts in each drawing figure.
A first embodiment is directed to a method for cooling containers including cooling vaporized coolant fluid through a condenser to condense the coolant fluid and to recover heat and cooling fluid otherwise lost to the atmosphere.
A second embodiment is directed to a method for cooling containers including cooling vaporized coolant fluid through a condenser to condense the coolant fluid and recover heat and cooling fluid otherwise lost to the atmosphere, wherein condensed coolant is introduced into zones of the cooler.
A third embodiment is directed to a method for cooling containers including cooling vaporized coolant fluid through a condenser to condense the coolant fluid and recover heat and cooling fluid otherwise lost to the atmosphere, wherein air carrying the vaporized coolant is recovered and recycled by introduction into zones of the cooler.
A fourth embodiment is directed to a method for cooling containers wherein the coolant is cooled with fluid and the heat is recovered. The heat thus recovered can be used elsewhere.
The invention relates to cooling of containers. Containers that have been filled with hot substances, such as food, or heated after being filled, typically must be cooled before distribution and use. One example is an empty container that is filled with a hot product. This hot product pasteurizes, or commercially sterilizes the container and the seal when applied. Another example of a container that is heated, then cooled before distribution and use, is a food product container. Often, food products are sterilized or pasteurized to reduce spoilage and to reduce the number of pathogens in the food product. A food product can be treated for pathogen reduction before packaging, or can be filled into a container that then is sealed, and the entire closed container is heated to achieve the desired degree of pathogen reduction, i.e., commercial sterilization. The food product container then is at elevated temperature and is cooled before distribution and use. Containers of other products, such as animal food, or any product that is heated as a step in processing, also can require cooling.
A single deck cooler known in the art is illustrated in
Cooling fluid, typically water, is introduced into each zone at CF. The cooling fluid and the containers move countercurrently, i.e., in opposite directions. Thus, in a first zone, the coolest cooling fluid, at point CF2, is used to cool the coolest containers to the target cool temperature. The cooling fluid then is recovered and is introduced into the next zone, typically by allowing the fluid to flow over a weir as illustrated at F. There, the cooling fluid is collected, typically in a sump S, and is used to cool the containers in that zone. The cooling fluid warms as it moves through zones Z as it cools the containers passing countercurrently through the zones.
In this known system, hot cooling fluid is recovered at point CF1 from the last zone, i.e., the zone into which the hot containers are introduced, and circulated to heat exchanger H. The cooling fluid is cooled in heat exchanger H and returned to the beginning of the cooling fluid flow at point CF2. The heat from the cooling fluid is exchanged to a second fluid circulating in a closed loop between heat exchanger H, where this second fluid is heated, and cooling tower T, where the second fluid is cooled with cooling water, as illustrated. This cooling water evaporates to provide the cooling effect, and is lost to the atmosphere.
Cooling fluid, typically water, is introduced into each zone at CF. The cooling fluid and the containers move countercurrently, as in
In this known system, the cooling fluid is not re-circulated through the cooling tower. Rather, cooling is obtained by evaporation of the cooling fluid into vapor collection hood V. As shown in
Each of these systems is wasteful. The conventional system requires a cooling tower and wastes heat in the form of evaporated fluid in the cooling tower. The evaporative system is wasteful as it requires evaporation of cooling fluid and a significant flow of air.
The inventor has discovered that it is possible to recover heat removed from the cooled containers in a hybrid system. The heat thus recovered can be used in another process or location. In one embodiment, this recovered heat is used to heat the contents of subsequent containers for pathogen reduction.
The inventor has discovered that it is possible to obtain the advantages of each type of conventional cooler of the types illustrated in
One embodiment of the hybrid cooler system of the invention is illustrated in
Cooling fluid, typically water, is introduced into each zone at CF. The cooling fluid and the containers move countercurrently, i.e., in opposite directions. Thus, in a first zone, the coolest cooling fluid, at point CF2, is used to cool the coolest containers to the target cool temperature. The cooling fluid then in recovered and is introduced into the next zone, as illustrated at F. Typically, the fluid is allowed to flow over a weir, as illustrated in
In this embodiment of the invention, hot cooling fluid CF1 is removed from the last sump S and is processed through heat exchanger H, wherein it is cooled. The cooled cooling fluid CF2 is returned to the first sump for use in the lowest temperature zone.
Also, in this embodiment of the hybrid system, cooling fluid is evaporated and removed from the system together with air at vapor collection hood V. One such vapor collection hood that serves all zones F is illustrated in
Heat is recovered from both condenser C and heat exchanger H. The heated streams recovered from these heat exchangers are used in other processes requiring heated streams for heat exchange to heat still other fluids. In the embodiment illustrated in
In accordance with the embodiment illustrated in
Evaporated cooling fluid from stream V1 is condensed in condenser C and taken as condensate stream C3 to hot fluid collection and re-use C1. As noted above, C1 can be a combined stream from all the hot fluid sources, or these streams can be used individually.
Evaporated cooling fluid is condensed and air sucked out of the cooler is cooled in condenser C by exchange of heat with cooling fluid stream C2. This cooling fluid typically is water, but can be any suitable heat exchange fluid. Stream C2 is heated in condenser C and exits the condenser as hot fluid stream C4. Stream C4 is removed to hot fluid collection point C1, where it can but need not be combined with other hot fluid streams to be collected for use in other processes.
Cooling fluid stream C2 also is introduced to heat exchanger H to cool the recirculating cooling fluid used to cool containers in the cooler. After heat exchange, hot fluid stream C5 is set to hot fluid collection point C1 or for use as a heat source in another process.
Thus, in this embodiment of the invention, heat that otherwise would be lost is recovered in streams C3, C4, and C5 and used in other processes or collected at C1 for use in other processes. One embodiment of this use includes heating the fluid in the containers for pathogen control. These containers then are cooled in the hybrid cooler. This embodiment also encompasses recovery and cooling or tempering of air typically sucked through the cooler and exhausted. Not only is the cooling air recycled, but also the air is made available to the cooling process at a relatively constant temperature. This constancy affords the opportunity to more evenly control the system.
In an embodiment of the invention, blower VB is designed to have a suction pressure approximately equal to the vapor pressure of coolant at temperature. In this embodiment, it is advantageous to have a vapor collection hood V for plural zones Z, as illustrated in
Matching the blower suction pressure to the vapor pressure of the coolant creates efficiency not present when only one vapor collection hood is present. Matching the blower suction pressure to the vapor pressure of the coolant minimizes the volume of air and coolant vapors sucked by blower VB. Thus, blower size, the sizes of both the suction and discharge ducts, and the power consumed during operation all are smaller when the blower is sized for the suction temperatures and pressures.
In accordance with one embodiment of the invention, the quantity of air and evaporated cooling fluid now is controlled and made sufficient to compensate for diminished cooling capacity on hot and humid days. Although it typically is possible to maintain the temperature difference between the hot and cool cooling fluid streams CF1 and CF2, the ability of the cooling fluid to cool the containers is reduced on hot days, and particularly on hot and humid days. Therefore, in this embodiment, the quantity of air and evaporated cooling fluid is adjusted to compensate for this diminished capacity.
Each of drawing
As illustrated in
As shown schematically in
An alternative embodiment is illustrated in
These embodiments are examples of how heat removed in the hybrid cooler can be captured and returned to the product at a time heat is needed. Other uses for this heat can be identified.
The skilled practitioner recognizes that, typically, cooling fluid is flowed through the cooler counter-currently to the direction of the conveyance for the containers. However, it is possible to introduce coolant to each zone individually, or to establish a subset of zones through which cooling fluid flows before it is considered spent. It also is possible to pass cooling fluid and containers concurrently through the cooler. The choice of processing scheme is a design consideration left to the skilled practitioner.
The following example includes a comparison of a typical cooler of the type illustrated in
The following tables summarize the temperatures of product into and out of each zone, the temperatures of cooling fluid into and out of each zone, the heat removed in each zone and the retainer flow rate (i.e., the flow ration of stream F).
While the invention has been described with respect to specific examples including presently preferred modes of carrying out the invention, those skilled in the art will appreciate that there are numerous variations and permutations of the above described systems and techniques that fall within the spirit and scope of the invention as set forth in the appended claims.