The present disclosure relates to continuous flow grain dryers.
This section provides background information related to the present disclosure which is not necessarily prior art.
Continuous flow grain dryers, such as those shown in U.S. Pat. Nos. 4,404,756, 4,268,971, and 5,467,535, which are incorporated herein by reference in their entirety, generally include two continuously moving columns of grain. One type of continuous flow grain dryer is known in the industry as a “mixed flow” grain dryer. Such grain dryers are commercially available from companies such as Cimbria, NECO, and Grain Handler USA. Other types of continuous flow grain dryers are also available. Each type of grain dryer has its own advantages and disadvantages.
For example, in most types of continuous flow grain dryers air discharged from a fan typically next passes through a burner and then through a grain column only once before being discharged or returned to the blower for recirculation. Recirculated air from volatile grains presents a risk of fire, since it typically needs to pass through the heater during the recirculation process where fines can be ignited. Such single pass airflow through the grain column, and such limitations on the ability to recirculate the air limits the efficiency of the grain drying operation.
One way to attempt to increase efficiency is to cause the heated air to pass through the grain column multiple times. Sometimes this can create challenges for dealing with grain fines within the grain column. For example, some continuous flow grain dryer types might tend to cause the fines to move to a particular position in the grain column (e.g., the edges). Some continuous flow grain dryer types might also recirculate the heated air into grain when the grain has not yet been sufficiently heated to minimize condensation on the grain kernel, which can cause fines to clump, or to stick to the grain dryer walls or diverters.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
In one aspect of the disclosure a hybrid continuous flow grain dryer includes a pair of grain flow paths through which the grain flows downwardly under the influence of gravity in a grain column. Each grain flow path is defined by a pair of longitudinally extending side walls and a pair of transversely extending end walls. Each grain flow path has an upper portion including a plurality of upper elongated grain diverters extending transversely across the grain flow path between opposing inner faces of the pair of longitudinally extending side walls. The upper portion also includes an upper opening in the side walls associated with each upper grain diverter. Each grain flow path also has a lower portion including a plurality of lower elongated grain diverters extending longitudinally along alternating sides of the grain flow path between opposing inner faces of the pair of end walls. The lower portion also includes a longitudinally extending lower opening in the side walls associated with each lower grain diverter.
In another aspect of the disclosure a hybrid continuous flow grain dryer includes a pair of grain flow paths through which the grain flows downwardly under the influence of gravity in a grain column. Each grain flow path is defined by a pair of longitudinally extending side walls and a pair of transversely extending end walls. Each grain flow path has an upper portion including a plurality of upper elongated grain diverters extending transversely across the grain flow path between opposing inner faces of the pair of longitudinally extending side walls. The upper portion also includes an upper opening in the side walls associated with each upper grain diverter. Each grain flow path also has a lower portion including a plurality of lower elongated grain diverters extending longitudinally along alternating sides of the grain flow path between opposing inner faces of the pair of end walls. The lower portion also includes a longitudinally extending lower opening in the side walls associated with each lower grain diverter. In this aspect the upper elongated grain diverters are aligned substantially perpendicular in plan view to the longitudinally extending side walls, and the lower elongated grain diverters are aligned substantially parallel in plan view to the longitudinally extending side walls.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of one exemplary embodiment and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Referring to
The illustrated embodiment includes four adjacent grain flow paths 16 that define four grain columns in use. In this exemplary embodiment, the adjacent grain flow paths 16 are longitudinally extending and therefore are completely separate from each other. Each grain flow path 16 is defined by a pair of longitudinally extending side walls 95 and a pair of end walls 94. Adjacent grain flow paths 16, however, can also exist in a circular grain dryer wherein opposing portions of a circular grain column can be considered to form adjacent grain flow paths 16.
An upper portion of each grain flow path 16 includes a plurality of upper elongated grain diverters 88 extending transversely across the grain flow path 16. These upper transverse grain diverters 88 can extend substantially perpendicular to the side walls 95 in a side (or elevation) view, or in a top (or plan) view, or in both side and plan views. These upper grain diverters 88 can have a generally inverted “V” or “U” shaped configuration and can be coupled to opposing side walls 95 at their opposing ends.
These upper transverse grain diverters 88 can be arranged in a plurality of substantially horizontal rows. The transverse diverters 88 of each horizontal row can be offset from each other by fifty percent. In other words, the transverse diverters 88 in alternating horizontal rows can be vertically aligned and the transverse diverters 88 of adjacent horizontal rows can be aligned along a plane that is angled to a horizontal plane as seen in
A generally triangular opening 89 in a side wall 95 can be associated with one end of each of the transverse diverters 88. Specifically, the grain diverters 88 in one horizontal row can be coupled to a side wall 95 to surround the upper portion of a triangular opening 89 in the side wall 95 defining a grain flow path 16. The upper transverse grain diverters 88 in adjacent horizontal rows can be coupled to the opposite side wall 95 defining the same grain flow path 16 to surround the upper portion of a triangular opening 89 in the opposite side wall 95.
Such a configuration can create an airflow path through a grain column in the grain flow path 16 as illustrated in
Not only can this upper portion 17 of the grain flow paths 16 have the transverse diverters 88, but the upper portion 17 can also have a relatively large cross-sectional area relative to the lower portion 19 (detailed hereinafter) of the grain flow paths 16. This additional cross-sectional area can be provided by providing a larger transverse distance between the opposing side walls 95 defining each grain flow path 16 in the upper portion 17, than in the lower portion 19. This can enable a larger volume of grain to be resident in the upper portion 17 of the grain column 16 than in the lower portion 19. The relatively larger cross sectional area of width can also enable a larger residence time per vertical foot of movement for the grain in the upper portion 17 of the grain column 16 than in the lower portion 19.
In the lower portion 19 of each grain flow path 16 each of the grain columns can result from an undulating grain flow path 16. The grain flow path 16 is defined by opposing sets of a plurality of longitudinally extending panels 18. The longitudinally extending panels 18 have a lower portion that is angled transversely downwardly and toward the center of the grain flow path 16 to provide lower elongated grain diverters 98, which act as moisture equalizers.
The lower grain diverters 98 extend longitudinally along alternating sides of the grain flow path 16 or grain column between the opposing pair of end walls that define the grain flow path 16. The lower grain diverters 18 can extend longitudinally in a direction substantially parallel to the side walls 95 in a top (or plan) view. Thus, the lower grain diverters 18 can extend longitudinally in a direction that is substantially perpendicular to the longitudinal direction of the upper grain diverters 88 in top (or plan) view, or in side (or elevation) view, or in both side and plan views.
As should be apparent from the above description, the upper grain diverters 88 can tend to distribute grain fines along transverse lines extending the width of the upper portion 17 of the grain column, or substantially perpendicular to the side walls 95. In contrast, the lower grain diverters 98 can tend to distribute grain fines along longitudinal lines substantially parallel to the side walls 95. As a result, the grain fines can remain more evenly distributed throughout the grain column as the grain flows from the top of the grain flow path 16 to its bottom.
The angled panels 18 of each opposing side wall 95 are vertically spaced apart from each other forming upwardly facing elongated openings 20 (seen best in
A central air plenum 22 is located in the space between a pair of grain flow paths 16 (a first and second grain flow path 16) on the left in
Each central air plenum 22 can include a divider 26 separating central plenum 22 into two sub-plenums. The upper sub-plenum can be a heat plenum 32. The high pressure (or positive pressure), high heat airflow from fan 14 first flows into heat plenum 32 of central plenum 22. Sub-plenum below heat plenum 32 can be a return plenum 34. Air which has passed through a grain column in one of the grain flow paths 16 can be pulled from return plenum 34 to an inlet 36 of fan 14 via a return flow air duct 38. Thus, the pressure in return plenum 34 can be below atmospheric pressure (negative pressure) during operation.
Enclosures 40, 42 are provided on sides of the grain flow paths 16 opposite that defining central plenum 22. Outer enclosures 40 on opposing sides of the four grain columns can be defined by outer walls 44 (
Enclosures 40, 42 are positioned laterally adjacent a portion of high pressure, high heat plenum 32 to capture airflow passing through the lower portion of adjacent grain flow path 16 from heat plenum 32 via high heat airflow path represented by two-headed arrow 45. Enclosures 40, 42 additionally define a portion of an airflow path represented by arrows 46 that once again passes through an adjacent grain flow path 16 before being ultimately exhausted to the atmosphere from the grain dryer 10.
Enclosures 40, 42 further define a portion of a temper airflow path represented by arrows 48 that once again passes through an adjacent grain flow path 16 and into return plenum 34. Thus, air entering central plenum 22 and passing through the grain flow path into one of the enclosures 40 and 42 makes two passes through a grain flow path 16 prior to (1) exiting to the atmosphere, or (2) returning via return plenum 34 to fan 14 via return duct 38 for recirculation.
Air also enters the grain columns from each heat plenum 32 at the upper portion of the grain flow paths 16 via the triangular inlet openings 89 of the side walls 95 defining the high pressure (or positive pressure), heat plenum 32 as indicated by double-headed arrows 47. The air flows into the channel created below the associated generally triangular diverter 88. The air then flows through the grain column as seen in
Referring to
A cover can be provided over loop drag conveyor 52, which includes a plurality of panels 64. The loop arrangement of drag conveyor 52 allows grain to be added to the continuous flow dryer 10 at essentially any point along the loop. For example, any cover panel 64 can simply be removed to create a grain input opening to feed grain to loop drag conveyer 52 by which the pairs of grain flow paths 16 are fed. Alternatively, a cover panel 64 including a grain input opening therethrough (not shown) can simply be placed at any point along the loop to feed conveyor 52. Thus, a grain input opening can be located at either end of grain dryer 10, or at any point along either lateral side of grain dryer 10. It can be desirable in some instances to dispose motor 55 opposite in the loop from the location of the grain input. For example, the both motor 55 and the grain input can be on opposite sides at one end of the grain dryer, so that the inputted grain flows along a “U” shape path prior to encountering motor 55 coupled to the paddle drive.
Referring to
Opposing panels 18 forming side walls 95 and grain flow paths 16 can have a smaller width or cross-sectional area lower portion 19 below the upper portion 17 and adjacent return plenum 34 and the heat plenum 32. In lower portion 19 of the grain flow path 16 the lateral spacing between opposing panels 18 forming each grain flow path 16 can be constant. In addition, the lower end of each panel 18 on one side can be vertically aligned with the lower end of opposing panels 18. Thus, the fact that angled panels 18 define undulating grain flow paths 16 defining a grain column can be understood.
Horizontally extending elongated airflow openings 20 can also be defined by spaces between vertically adjacent panels 18 on each side of grain flow paths 16. These airflow openings 20 between vertically adjacent panels 18 are present on opposing sides of each grain flow path 16. Openings 20 enable airflow through one side of the grain flow path 16, through a grain column in the path 16, and out through opposing openings 20 of the other lateral side of the grain flow path 16. The relationship between the airflow flowing through a grain column in to and out of various plenums of central plenum 22 is affected by the width of elongated openings 20 created by the spacing between vertically adjacent panels 18. The width of openings 20 can also be sufficiently large that the exiting airflow speed through openings 20 is below that which lifts grain out of grain flow path 16 through openings 20. Thus, there is no need for any screens on the openings 20, despite the fact that the width of openings 20 is larger than the diameter of grain in grain flow path 16. The width of openings 20 can be many times larger than the average diameter of the grain. For example, the width in some cases can be at least about 25 mm, at least about 50 mm, at least about 75 mm, or at least about 100 mm.
The divider 26 can also affect the relationship between the airflow flowing through grain columns in grain flow paths 16 into and out of the central plenum 22. For example, the divider 26 can be coupled to one of angled panels 18 defining inner (or opposing) walls of adjacent grain flow paths 16. This helps avoid any airflow path around dividers 24, 26 this is undesirably shortened, resulting in an undesirable short circuit of the airflow from heat plenum 32 to an adjacent part of central plenum 22. The width of elongated openings 20 can also be varied in order to aid in reducing undesirably shortened airflow paths. Differences in the widths of various elongated openings at various locations along grain flow paths 16 can be seen in the drawings. Thus, in some instances the width (or height) of openings 20 might vary between 20 mm and 100 mm at various locations along grain flow paths 16.
In addition, divider 26 can have a sloped or convex upper central surface and can be attached at an upper end of an angled panel 18 on each side. Thus, any grain that might possibly fall from one of elongated openings 20 will fall onto the sloped or convex upper surface of the divider 26, which will guide the grain back into an adjacent grain flow path 16 via an adjacent elongated opening 20.
Referring to
Referring to
A shroud 80 on each side of assembly 76 provides airflow ducting from burner 12 to inlet 36 of fan 14. Each shroud 80 also provides a portion of return airflow duct 38 for airflow coming from return plenum 34 to inlets 36 of fan 14. Shroud 80 can include an outer member with a central opening 82 (
Referring to
Return airflow paths represented by arrows 86 can provide additional air to inlets 36 of fan 38. Each return airflow path 86 travels within a return air duct 38 from each of the return plenums 34 to one of the inlets 36 on either side of fan 14. As noted above, shroud 80 can operate as part of the return air duct 38, helping to direct air of the return airflow paths 86 into inlets 36 of fan 14. As discussed above, shroud 80 can include a central opening 82 (
The air from these three flow paths can be thoroughly mixed in fan 14, thereby outputting air that is of substantially uniform temperature. Fan output airflow paths represented by arrows 90 provide communication between outlet of fan 14 and each heat plenum 32. Fan outlet airflow paths 90 can be provided by a dual duct 92 arrangement as seen in
Referring to
From the lower portion of the heat plenum 32, air flows outwardly through the grain columns of lower portions 19 of adjacent grain flow paths 16 into the surrounding enclosures 40, 42 as represented by double headed arrow 45. In this case, the left outer enclosure 40 and the inner enclosure 42. Thus, a heat zone is provided in the grain columns of the lower portion 19 of the grain flow paths 16 adjacent heat plenum 32 due to heat airflow paths 45.
From the upper portion of the heat plenum 32, air flows into the upper portion 17 of the grain flow path 16 via inlet openings 89 associated with alternating rows of upper transverse diverters 88a (
The relationship between the mass or volume of grain and the total cross-sectional area of the openings (89 and 20) in the upper and lower sections (17 and 19, respectively) create a pressure drop ratio that is approximately 2:1 (upper section pressure drop:lower section pressure drop). Stated another way, the openings 89 and grain flow paths 16 are configured to distribute approximately twice the amount of air from the heat plenum 32 into the lower portion 19 than into the upper portion 17 of the grain flow path during operation.
The combination of lower airflow and greater grain mass or volume in the upper portion 17 of grain flow path 16 than in the lower portion 19, results in the grain being gently preheated in the preheat zone of the upper portion 17. The gentle heating of the grain in this pre-heat zone brings the moisture to the surface of the grain without causing it to be trapped within the grain. Likewise, this combination results in the grain being fully heated in the heat zone of the lower portion 19 to drive the moisture out of the grain without it being trapped therein.
Enclosures 40, 42 define portions of airflow paths 46, 48 causing the air to then flow again through one of the grain columns of a grain flow path 16 into the upper portion 17 or lower portion 19, respectively. In this way, air passes into the grain columns or grain flow path 16 twice before being exhausted or returned to fan 14 for recirculation.
For example, enclosures 40, 42 define portions of preheat airflow path 46 through a grain column from enclosures 40, 42 which exits to the atmosphere, for example, through into exhaust plenum 28. The air of preheat airflow path 46 is still warm. As a result of this warm airflow 46, an extended preheat zone is provided in the grain columns of grain flow paths 16 adjacent exhaust plenum 28. The preheat zone helps reduce thermal shock as the grain is being heated in grain dryer 10. Air in the exhaust plenum 28 exits the grain dryer through exhaust opening 30 in the back wall 94 (
Enclosures 40, 42 also define portions of temper airflow path 48 through a grain column of adjacent grain flow paths 16 from enclosures 40, 42 into return plenum 34. Air flowing through a grain column into return plenum 34 from enclosures 40, 42 into return plenum 34 is also still warm. This airflow occurs at an uppermost portion of the grain columns adjacent return plenum 34, providing a temper zone. The temper zone helps reduce thermal shock as the grain is being cooled in grain dryer 10.
A cooling zone is next created in grain columns adjacent below the temper zone as a result of ambient air being pulled into return plenum 34 below temper zone via cooling airflow path 50. In cooling zone, ambient air is pulled into return plenum 34 via cooling airflow path 50 through adjacent grain columns via corresponding openings 20. Air within return plenum 34 is pulled back into the fan 14 via return airflow path 86. Thus, return air plenum 34 can typically be at a negative pressure during operation.
As a result of the various airflow paths 45, 46, 47, 48 and 50 through grain columns of grain flow paths 16 defining central plenum 22, grain is first preheated in preheat zone as a result of airflow path 47. Then, as grain moves down grain flow paths 16, the grain is heated in heat zone as a result of airflow path 45. Continuing down grain flow paths 16, the grain is next subjected to a temper zone as a result of airflow path 48, below which airflow path 50 creates a cooling zone portion of grain columns in grain flow paths 16 Thus, the grain can be subjected to at least four different treatment zones as it flows down through each grain flow path 16.
Cooling airflow path 50, temper airflow path 48, or both, can pick up fines from the grain column and carry them into return plenum 34 and return airflow path 86 to fan 14. After passing through fan 14, any such fines are returned to the grain columns via return airflow paths 90 including fan output airflow paths 90. Thus, return airflow path 86 and fan output airflow path 90, including through fan 14, define a recirculating airflow path in which fines might possibly be present. Since the airflow path through burner 12 is positioned outside the recirculating airflow path, any fines picked up flow through the recirculating airflow path without passing through burner 12. As discussed above, only fresh ambient air flows through burner 12 on its way into the recirculating airflow path. Thus, there is no concern about igniting any fines pulled from a grain column.
Air flowing into the upper portion 17 of the grain column or grain flow path 16 from the central plenum 22 indicated by arrows 47 can pass through the grain as seen in
Various methods should be apparent from the above discussion and should be considered part of the disclosure. For example, some methods disclosed herein can involve providing various components of grain dryer 10 disclosed herein. Other methods disclosed herein can involve arranging or connecting various components as disclosed herein. Further methods disclosed herein can involve providing components to create or creating various airflow paths as disclosed herein. Additional methods disclosed herein can involve operating various components as disclosed herein. Providing various components to create the various treatment zones in a grain column are also methods disclosed herein. Moreover, combinations including various aspects of the disclosed methods, including those listed as examples above, are further methods disclosed herein.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence of importance or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
731682 | Hillig | Jun 1903 | A |
2434202 | Evans et al. | Jan 1948 | A |
3238637 | Mark et al. | Mar 1966 | A |
3629954 | Lavalier | Dec 1971 | A |
4149844 | Noyes | Apr 1979 | A |
4152841 | Westelaken | May 1979 | A |
4249891 | Noyes et al. | Feb 1981 | A |
4268971 | Noyes et al. | May 1981 | A |
4404756 | Noyes | Sep 1983 | A |
4424634 | Westelaken | Jan 1984 | A |
4486960 | Maurice et al. | Dec 1984 | A |
4914834 | Sime | Apr 1990 | A |
5467535 | Lentz | Nov 1995 | A |
6122838 | Bloemendaal | Sep 2000 | A |
6158143 | Da Cunha | Dec 2000 | A |
6209223 | Dinh | Apr 2001 | B1 |
6834442 | Bloemendaal | Dec 2004 | B1 |
6834443 | Bloemendaal | Dec 2004 | B2 |
20130014404 | Bloemendaal | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
240533 | Oct 1925 | GB |
635382 | Nov 1978 | SU |
1267144 | Oct 1986 | SU |
1285284 | Jan 1987 | SU |
Entry |
---|
Bakker-Arkema et. al, Analysis of Continuous-flow Grain Dryers, Grain drying in Asia: Proceedings of an International Conference held at the FAO Regional Office for Asia and the Pacific, Bangkok, Thailand, Oct. 1995. |
Cimbria Continuous Flow Dryer; Cimbria Company Brochure, retrieved from http://almondbg.eu/images/Continuous—Flow—Dryer—brochure—GB.pdf prior to Feb. 13, 2014. |
Grain Handler Continuous Mixed Flow Dryers, Fan Under Series; Grain Handler Company Brochure, retrieved from http://www.grainhandler.com/GrainHandlerBrochure.pdf prior to Feb. 13, 2014. |
NECO Continuous-Flow Grain Dryers; NECO Company Brochure, retrieved from http://www.alliedgrainsystems.com.au/f.ashx/12A-NecoDryersPamphlet.pdf prior to Feb. 13, 2014. |
Russian Patent Office International Search Report acting on behalf of the Turkish Patent Office dated Feb. 21, 2014 for Turkish Patent Application No. TR2012/03897. |
Columbian Patent Office Examiner Report dated May 6, 2014 for Columbian Patent Application No. 12069537 (with English summary). |
Perfless Sales Presentation, CTB/Brock Grain Systems, May 11, 2011. |
Brock Perfless Grain Drying System Brochure, CTB/Brock Grain Systems, Aug. 25, 2011. |
International Search Report and Written Opinion dated Apr. 28, 2015 in corresponding Application No. PCT/US2015/014776. |
Number | Date | Country | |
---|---|---|---|
20150226482 A1 | Aug 2015 | US |