This application relates to an aircraft cooling system that combines a vapor cycle, a liquid cycle, and an air cycle.
Aircraft are being provided with more and more auxiliary functions. With these auxiliary functions, cooling loads must be handled.
Modern aircraft are typically provided with an air cycle system which provides cool air. The air is delivered to cabins as breathing air, and to cool electronic equipment, etc. Typically, the air cycle system takes in outside air, cools that air, and then delivers it to its uses.
Separately from the air cycle, aircraft can also have a vapor cycle refrigerant system. The vapor cycle refrigerant system can operate to cool a liquid in a liquid cycle. The liquid is utilized to provide cooling at various loads such as the galley on commercial airlines, or to cool avionics in military aircraft.
To date, aircraft have been provided with separate cooling systems incorporating these three basic systems.
An aircraft cooling system includes a refrigerant cycle including a first heat exchanger. A liquid cycle passes a liquid through the first heat exchanger, at which it is cooled by a refrigerant in the refrigerant cycle. An air cycle compresses air and delivers the compressed air into a second heat exchanger. The liquid passes through the second heat exchanger at a location downstream of the first heat exchanger. The liquid cools the air in the second heat exchanger. Air passes downstream of the liquid heat exchanger to be utilized by a use on an aircraft.
These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.
An air cycle 40 takes in outside air at 200 to a compressor 42. The compressed air is delivered into a line 44 to a primary heat exchanger 46. A fan 202 passes outside air over the primary heat exchanger 46, such that the air is cooled in the heat exchanger 46. In addition, the heat exchanger 46 could receive another source of air 300 from a compressor 301 powered by a motor 303. Air from the atmosphere at 302 enters the compressor 301, is compressed, and delivered to the heat exchanger 46 through the line 300. The air is then delivered downstream into an air moisture condensing heat exchanger 48. The liquid from the liquid cooling system branches from the main line 36, downstream of the evaporator 26, such that a portion of it passes through a line 32 and through the heat exchanger 48. This further cools the air in the heat exchanger 48. The air downstream of the heat exchanger 48 passes through a water extractor 50, and then to a turbine 52. The air is expanded across the turbine 52, thus further cooling the air. The air may then be delivered through line 210 to use 58, such as a cabin space or a space to cool equipment. A motor 54, in combination with the turbine 52, operates to drive the compressor 42.
An intermediate heat exchanger 56 is shown downstream of the turbine 52. The heat exchanger 56 also receives a portion of the cooled liquid, and in the disclosed embodiment, the portion which does not pass to the heat exchanger 48. The liquid is further cooled in the heat exchanger 56. The liquid downstream of the heat exchanger 56 passes to the liquid uses or loads 60, which may include a galley cooling system, avionics, etc. The liquid returns through line 34 to line 36.
The present invention thus incorporates a hybrid system wherein the liquid cooling system is utilized to cool the air cycle system. The synergistic benefits of combining the systems include the reduction of parts, and the more efficient provision of the cooled fluids to the several uses.
Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.