Hybrid device having a personal digital key and receiver-decoder circuit and methods of use

Information

  • Patent Grant
  • 11080378
  • Patent Number
    11,080,378
  • Date Filed
    Friday, July 27, 2018
    7 years ago
  • Date Issued
    Tuesday, August 3, 2021
    4 years ago
Abstract
A hybrid device includes a personal digital key (PDK) and a receiver-decoder circuit (RDC). The PDK and RDC of the hybrid device are coupled for communication with each other. In one embodiment, the hybrid device also provides a physical interconnect for connecting to other devices to send and receive control signals and data, and receive power. The hybrid device operates in one of several modes including, PDK only, RDC only, or PDK and RDC. This allows a variety of system configurations for mixed operation including: PDK/RDC, RDC/RDC or PDK/PDK. The present invention also includes a number of system configurations for use of the hybrid device including: use of the hybrid device in a cell phone; simultaneous use of the PDK and the RDC functionality of hybrid device; use of multiple links of hybrid device to generate an authorization signal, use of multiple PDK links to the hybrid device to generate an authorization signal; and use of the hybrid device for authorization inheritance.
Description

Applicants hereby notify the USPTO that the claims of the present application are different from those of the aforementioned related applications. Therefore, Applicant rescinds any disclaimer of claim scope made in the parent application, grandparent application or any other predecessor application in relation to the present application. The Examiner is therefore advised that any such disclaimer and the cited reference that it was made to avoid may need to be revisited at this time. Furthermore, the Examiner is also reminded that any disclaimer made in the present application should not be read into or against the parent application, the grandparent application or any other related application.


BACKGROUND
1. Field of Art

The invention generally relates to personal digital keys and corresponding sensors, capable of proximity detection/location determination and auxiliary data services/application services. Still more particularly, the present invention relates to a hybrid device including a personal digital key (PDK) and a receiver-decoder circuit (RDC) and methods for using same.


2. Description of the Related Art

Proximity sensors and location tracking are technologies with many applications. For example, proximity sensors can be used to provide secure access to physical and/or digital assets, based on biometrics, passwords, PINs, or other types of authentication. Proximity sensors typically have advantages of being less cumbersome, easier to use, and more flexible in form factor and implementation. Proximity sensors can be used to control access to resources and/or to authenticate individuals, for example.


One possible application that can take advantage of proximity sensors is location tracking. RFID tracking is one example. In RFID, RFID tags are attached to objects to be tracked. RFID readers then interact with the RFID tags to determine the location of the tag. Regardless of how it is accomplished, location tracking (i.e., knowledge about the location of an object or person) is generally useful. For example, location tracking information can be used to track inventory and trace the route of objects through various locations. It can be used for time and motion studies. If tags are attached to people, then tracking of people can be used to better understand their behavior. Knowledge about a person's location (and/or their past locations and projected future locations) could be used to provide better services to that person.


However, most proximity systems and location tracking systems have limited capabilities. Typically, the proximity sensor, RFID tag or similar device is a dumb device, in the sense that the device is designed and has the capability only to report its location. For example, such devices typically do not have the capabilities to run different applications or to even interact with different applications. Furthermore, these systems typically are proprietary and narrowly tailored for a specific situation, thus preventing easy expandability to other situations or third party applications.


SUMMARY

Various drawbacks of the prior art are overcome by providing a hybrid device including a personal digital key (PDK) and a receiver-decoder circuit (RDC). The PDK and RDC of the hybrid device are coupled for communication with each other. In one embodiment, the hybrid device also provides a physical interconnect for connecting to other devices to send and receive control signals and data, and receive power. The hybrid device operates in one of several modes including, PDK only, RDC only, or PDK and RDC. This allows a variety of system configurations for mixed operation including: PDK/RDC, RDC/RDC or PDK/PDK. The present invention also includes a number of system configurations for use of the hybrid device including: use of the hybrid device in a cell phone; simultaneous use of the PDK and the RDC functionality of hybrid device; use of multiple links of hybrid device to generate an authorization signal, use of multiple PDK links to the hybrid device to generate an authorization signal; use of the hybrid device for authorization inheritance and use of the hybrid device for automatically disabling a service or feature.


Other aspects of the invention include systems and components corresponding to the above, and methods corresponding to all of the foregoing.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a block diagram illustrating one embodiment of a system according to the invention.



FIG. 2 is a block diagram illustrating one embodiment of a Personal Digital Key (PDK).



FIG. 3 is a block diagram illustrating one embodiment of a sensor.



FIGS. 4-6 are block diagrams illustrating further embodiments of systems according to the invention.



FIG. 7 is a block diagram illustrating one embodiment of a system with networked sensors.



FIGS. 8-9 are block diagrams illustrating operation of the system in FIG. 7.



FIG. 10 is a diagram illustrating operation of the system in FIG. 7.



FIG. 11 is a block diagram of one embodiment of a hybrid device in accordance with the present invention.



FIG. 12 is a block diagram of one embodiment of a system in which the hybrid device is part of a cell phone in accordance with the present invention.



FIG. 13 is a block diagram of one embodiment of a system using the PDK and the RDC functionality of hybrid device in accordance with the present invention.



FIG. 14 is a block diagram of one embodiment of a system using the multiple links of hybrid device to generate an authorization signal in accordance with the present invention.



FIG. 15 is a block diagram of one embodiment of a system using the multiple PDK links to the hybrid device to generate an authorization signal in accordance with the present invention.



FIG. 16 is a block diagram of one embodiment of a system using the hybrid device for authorization inheritance in accordance with the present invention.





The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.


DETAILED DESCRIPTION


FIG. 1 is a high level block diagram illustrating a system for allowing access to multiple applications (or services). The system 100 comprises a Personal Digital Key (PDK) 102, a sensor 108, a network 110 and one or more applications 120 (including services). The sensor 108 is coupled to the PDK 102 by a wireless link 106 and coupled to a network 110 by either a wired or wireless link. In this example, the applications 120 are also accessed over network 110. The sensor 108 is also adapted to receive a biometric input 104 from a user and is capable of displaying status to a user. In alternative embodiments, different or additional resources and databases may be coupled to the network 110, including for example registries and databases used for validation or to check various registrations of the user. In another embodiment, the sensor 108 operates as a standalone device without a connection to the network 110.


The PDK 102 includes multiple service blocks 112A-N as described in more detail in FIG. 2. Each service block 112 is accessed using a corresponding service block access key 118. In this example, the sensor 108 contains three of the service block access keys 118A, D, F. The service block access keys 118 allow the sensor 108 to unlock information stored in the corresponding service blocks 112, which information is used as local secured information.


In one example, a biometric is required in order to access specific service blocks 112 in the PDK 102. Verification of the biometric is achieved by using service block 112A. The sensor 108 stores the corresponding service block access key 118A and uses this key to unlock the biometric service block 112A, which stores a valid biometric. A current biometric is received using biometric input 104. The sensor 108 then verifies the stored biometric (from service block 112A) against the recently acquired biometric (from input 104). Upon proper verification, various applications 120 are permitted to connect to the PDK 102 via the sensor 108 and/or to gain access to other service blocks 112.


The system 100 can be used to address applications 120 where it is important to authenticate an individual for use. Generally, the sensor 108 wirelessly receives information stored in the PDK 102 that uniquely identifies the PDK 102 and the individual carrying the PDK 102. The sensor 108 can also receive a biometric input 104 from the individual. Based on the received information, the sensor 108 determines if access to the application 120 should be granted. In this example, the system 100 provides authentication without the need for PINs or passwords (although PINs and passwords may be used in other implementations). Moreover, personal biometric information need not be stored in any local or remote storage database and is only stored on the user's own PDK (in one embodiment).


The credibility of the system 100 is ensured by the use of a PDK 102 that stores trusted information. The PDK 102 is a compact, portable uniquely identifiable wireless device typically carried by an individual. The PDK 102 stores digital information in a tamper-proof format that uniquely associates the PDK 102 with an individual. Example embodiments of PDKs are described in more detail in U.S. patent application Ser. No. 11/292,330, entitled “Personal Digital Key And Receiver/Decoder Circuit System And Method” filed on Nov. 30, 2005; U.S. patent application Ser. No. 11/620,581 entitled “Wireless Network Synchronization Of Cells And Client Devices On A Network” filed on Jan. 5, 2007; and U.S. patent application Ser. No. 11/620,577 entitled “Dynamic Real-Time Tiered Client Access” filed on Jan. 5, 2007, the entire contents of which are all incorporated herein by reference.


The sensor 108 wirelessly communicates with the PDK 102 when the PDK 102 is within a proximity zone (i.e., within a microcell) of the sensor 108. The proximity zone can be, for example, several meters in radius and preferably can be adjusted dynamically by the sensor 108. Thus, in contrast to many conventional RF ID devices, the sensor 108 can detect and communicate with the PDK 102 without requiring the owner to remove the PDK 102 from his/her pocket, wallet, purse, etc. Generally, the sensor 108 receives uniquely identifying information from the PDK 102 and initiates an authentication process for the individual carrying the PDK 102. In one embodiment, the sensor 108 is adapted to receive a biometric input 104 from the individual. The biometric input 104 comprises a representation of physical or behavioral characteristics unique to the individual. For example, the biometric input 104 can include a fingerprint, a palm print, a retinal scan, an iris scan, a photograph, a signature, a voice sample or any other biometric information such as DNA, RNA or their derivatives that can uniquely identify the individual. The sensor 108 compares the biometric input 104 to information received from the PDK 102 to determine authentication. Alternatively, the biometric input 104 can be obtained by a biometric sensor on the PDK 102 and transmitted to the sensor 108 for authentication. In additional alternative embodiment, some or all of the authentication process can be performed by the PDK 102 instead of the sensor 108.


In this example, the sensor 108 is further communicatively coupled to the network 110 in order to receive and/or transmit information to remote databases for remote authentication. In an alternative embodiment, the sensor 108 includes a non-volatile data storage that can be synchronized with one or more remote databases or registries. Such an embodiment alleviates the need for a continuous connection to the network 110 and allows the sensor 108 to operate in a standalone mode and for the local data storage to be updated when a connection is available. For example, a standalone sensor 108 can periodically download updated registry entries and perform authentication locally without any remote lookup.


In yet another alternative, a standalone sensor 108 may have a pre-configured secure access key 118 and encryption algorithm, or a variable access key 118 that changes, for example based on time and sensor ID. One example application would be a sensor 108 located in a hotel room door, where the sensor could constantly compute a different access key 118 based on time, and the PDK 102 could be associated with this key during the hotel registration process.


The network 110 provides communication between the sensor 108 and various validation databases and/or registries, in addition to the applications 120. In one embodiment, the network 110 uses standard communications technologies and/or protocols. Thus, the network 110 can include links using technologies such as Ethernet, 802.11, 802.16, integrated services digital network (ISDN), digital subscriber line (DSL), asynchronous transfer mode (ATM), etc. Similarly, the networking protocols used on the network 110 can include the transmission control protocol/Internet protocol (TCP/IP), the hypertext transport protocol (HTTP), the simple mail transfer protocol (SMTP), the file transfer protocol (FTP), etc. The data exchanged over the network 110 can be represented using technologies and/or formats including the hypertext markup language (HTML), the extensible markup language (XML), etc. In addition, all or some of links can be encrypted using conventional encryption technologies such as the secure sockets layer (SSL), Secure HTTP and/or virtual private networks (VPNs). In another embodiment, the entities can use custom and/or dedicated data communications technologies instead of, or in addition to, the ones described above.


In one aspect, the sensor 108 may connect to a validation database that stores additional information that may be used for authorizing a transaction to be processed at the sensor. For example, in purchase transactions, the sensor 108 may interact with a credit card validation database that is separate from the merchant providing the sale. Alternatively, a different database may be used to validate different types of purchasing means such as a debit card, ATM card, or bank account number.


In another aspect, the sensor 108 may connect to various registries that store, among other items, PDK, notary, and/or sensor information. In one embodiment, a registry stores biometric or other types of information in an encoded format that can only be recovered using an algorithm or encoding key stored in the PDK. Information stored in the registries can be accessed by the sensor 108 via the network 110 for use in the authentication process. Two basic types of registries are private registries and a Central Registry. Private registries are generally established and administered by their controlling entities (e.g., a merchant, business authority, or other entity administering authentication). Private registries can be custom configured to meet the specialized and independent needs of each controlling entity. A Central Registry is a highly-secured, centrally-located database administered by a trusted third-party organization. In one embodiment, all PDKs 102 are registered with the Central Registry and may be optionally registered with one or more selected private registries. In alternative embodiments, a different number or different types of registries may be coupled to the network 110.


The service blocks 112 can be used for purposes other than user authentication. For example, information used or produced by an application 120 can be transferred back and forth to the corresponding service block 112. That is, each service block 112 can be used as a local secure memory for the corresponding application 120. Thus, a service 120B may store certain sensitive information in service block 112B, and a separate service 120C will not be able to access that information without the corresponding access key 118B. In this example, the sensor 108 only holds access keys 118A, D, F and does not hold access key 118B. The application 120B may hold the access key 118B, thus allowing it to access service block 112B but preventing application 120C from accessing the service block 112B. Note that this implementation would also prevent the sensor 108 acting alone from accessing the service block 112B.


Turning now to FIG. 2, an example embodiment of a PDK 102 is illustrated. The PDK 102 comprises a memory 210, control logic 250, wireless application 260 and a transceiver 270. The PDK 102 can be standalone as a portable, physical device or can be integrated into commonly carried items. For example, a PDK 102 can be integrated into a portable electronic device such as a cell phone, Personal Digital Assistant (PDA), or GPS unit, an employee identification tag, clothing, or jewelry items such as watches, rings, necklaces or bracelets. In one embodiment, the PDK 102 can be, for example, about the size of a Subscriber Identity Module (SIM) card and be as small as a square inch in area or less. In another embodiment, the PDK 102 can be easily contained in a pocket, on a keychain, or in a wallet. The PDK can also contain other components not shown, for example various other inputs, outputs and/or interfaces (serial or parallel).


The memory 210 can be a read-only memory, a once-programmable memory, a read/write memory or any combination of memory types, including physical access secured and tamperproof memories. The memory 210 typically stores a unique PDK ID 212. The PDK ID 212 comprises a public section and a private section of information, each of which can be used for identification and authentication. In one embodiment, the PDK ID 212 is stored in a read-only format that cannot be changed subsequent to manufacture. The PDK ID 212 is used as an identifying feature of a PDK 102 and distinguishes between PDKs 102 in private or Central registry entries. In an alternative embodiment, the registries can identify a PDK 102 by a different ID than the PDK ID 212 stored in the PDK 102, or may use both the PDK ID 212 and the different ID in conjunction. The PDK ID 212 can also be used in basic PDK authentication to ensure that the PDK 102 is a valid device.


The memory 210 also stores the various service blocks 112A-N. Whether a particular service block 112 is stored in volatile or non-volatile memory may be determined by the specific application. In one approach, the original issuer of the PDK defines how the internal memory 210 may be used for service blocks 112. In some cases, the issuer may choose to only allow their service blocks to be stored, in which case third party applications will not be able to store service blocks in memory 210. In other cases, the issuer may allow any third party service 120 to use available service blocks 112. If a new service block is created, then memory for that service block is allocated. The specific location of the service block and generation of the corresponding service block access key can be handled by the PDK 102, or can be handled via an external service.


Regardless of how created, once created, external applications (such as applications 120 in FIG. 1) can gain access to a specific service block 112 by proving the corresponding access key 118. In FIG. 2, this is shown conceptually by control logic 250. The wireless application 260 on the PDK 102 communicates to the sensor (not shown in FIG. 2) via transceiver 270. The wireless application provides a service block select 226 and a service block access key 118 in order to store, retrieve and/or modify data in a service block 112. The selector 252 selects a service block 112 based on the select signal 226 and the access key 118. The encryption engine 254 encrypts/decrypts data 228 flowing to/from the service block 112 based on the access key 118 (or some other key generated based on the access key, for example a session key). In an alternate method, the service block 112 may be selected based on the service block access key 118, eliminating the need for a separate select signal 226.


The PDK 102 may also include other data and applications. For example, the PDK 102 typically will include various profiles. Many different types of profiles are possible. A biometric profile, for example, includes profile data representing physical and/or behavioral information that can uniquely identify the PDK owner. A PDK 102 can store multiple biometric profiles, each comprising a different type of biometric information. The same biometric information can also be stored multiple times in a PDK 102. For example, two different applications may use the right index fingerprint, and that biometric information may be stored in two different service blocks, one for each application. In addition, the PDK 102 may also store one or more biometric profile “samples” associated with each biometric profile. Profiles may also store one or more PINs or passwords associated with the PDK owner, or one or more pictures of the PDK owner. A profile can further include personal identification information such as name, address, phone number, etc., bank information, credit/debit card information, or membership information. This information can be useful for transactions.


The transceiver 270 is a wireless transmitter and receiver for wirelessly communicating with a sensor 108 or other wireless device. The transceiver 270 can send and receive data as modulated electromagnetic signals. Moreover, the data can be encrypted by the transceiver 270 and transmitted over a secure link. Further, the transceiver 270 can actively send connection requests, or can passively detect connection requests from another wireless source.


In one embodiment, the transceiver 270 is adapted to communicate over a range of up to around 5 meters. In another embodiment, the transceiver 270 range can be varied.


Turning now to FIG. 3, an example embodiment of a sensor 108 is illustrated. The embodiment includes one or more biometric readers 302, a receiver-decoder circuit (RDC) 304, a processor 306, a network interface 308 and an I/O port 312. In alternative embodiments, different or additional modules can be included in the sensor 108.


The RDC 304 provides the wireless interface to the PDK 102. Generally, the RDC 304 wirelessly receives data from the PDK 102 in an encrypted format and decodes the encrypted data for processing by the processor 306. An example embodiment of an RDC is described in U.S. patent application Ser. No. 11/292,330 entitled “Personal Digital Key And Receiver/Decoder Circuit System And Method,” the entire contents of which are incorporated herein by reference. Encrypting data transmitted between the PDK 102 and sensor 108 minimizes the possibility of eavesdropping or other fraudulent activity. In one embodiment, the RDC 304 is also configured to transmit and receive certain types of information in an unencrypted, or public, format.


The biometric reader 302 receives and processes the biometric input 104 from an individual. In one embodiment, the biometric reader 302 is a fingerprint scanner. Other embodiments of biometric readers 302 include retinal scanners, iris scanners, facial scanner, palm scanners, DNA/RNA analyzers, signature analyzers, cameras, microphones, and voice analyzers. Furthermore, the sensor 108 can include multiple biometric readers 302 of different types.


The network interface 308 can be a wired or wireless communication link between the sensor 108 and network 110. For example, in one type of authentication, information is received from the PDK 102 at the RDC 304, processed by the processor 306, and transmitted to external authentication databases through the network interface 308. The network interface 308 can also receive data sent through the network 110 for local processing by the sensor 108. In one embodiment, the network interface 308 provides a connection to a remote system administrator to configure the sensor 108 according to various control settings.


The I/O port 312 provides a general input and output interface to the sensor 108. The I/O port 312 may be coupled to any variety of input devices to receive inputs such as a numerical or alphabetic input from a keypad, control settings, menu selections, confirmations, and so on. Outputs can include, for example, status LEDs, an LCD, or other display that provides instructions, menus or control options to a user.



FIGS. 4-6 are high level block diagrams illustrating additional examples of applications accessing service blocks. FIGS. 4 and 5 illustrate that the application 120 need not be located at any particular location on the network. Rather, the service block 112 is accessed from any application 120 that can attach (in a network sense) to the sensor 108.


In FIG. 4, the sensor 108 attaches to the PDK 102 within its microcell, using service block access key 118(A) and service block 112(A). A personal computer or other standalone device 510 is attached to the sensor 108, either directly or via a network. In this example, the device 510 communicates with the sensor via a standardized API 520. An application 120 executes on the device 510 and has access to the service block access key 118(B). It uses this key to gain access to the corresponding service block 112(B). This is an example of a local application 120.



FIG. 5 illustrates a remote application. In this example, the sensor 108 attaches to the PDK 102 in the same manner as FIG. 4, using service block access key 118A and service block 112A. However, application 120 is not executing on a local device. Rather, it executes remotely. Here, it is shown as an external service 120. However, service 120 can still gain access to service block 112B by use of service block access key 118B, although it does so via network 110 and intermediate device 512. Although the sensor 108 is the device that attaches to the PDK 102, a local or remote application 120 with the right credentials may store or retrieve information in a service block 112 in the PDK 102.


The PDK itself can also be configured to prevent the same source from repeating invalid access attempts to the PDK's service blocks. The PDK may monitor access to the service blocks. When an attached service makes multiple unsuccessful attempts to unlock a service block, the PDK tracks this and eventually ignores the requests from that service for a period of time. Alternately, the PDK may disconnect from the network or take other actions.


An example of a local application (FIG. 4) is an auto login/logoff of a personal computer. When a PDK 102 is within the proximity of the personal computer 510, the PDK 102 is detected and the sensor 108 attaches to the PDK 102 (using service block 112A). The login/logoff application 120 then sends the service block access key 118B along with a request for the contents of the service block 112B to the PDK 102 via the sensor 108. For example, a standard may specify that particular service block 112B contains username and password. These are returned to the application 120, allowing automatic login to the personal computer 510.


An example of a remote application (FIG. 5) is a credit card transaction. The sensor 108 in this case could be a credit card terminal. When the PDK 102 is brought in close proximity, the credit card terminal 108 attaches to the PDK 102 (using service block 112A). The terminal 108 then sends the PDK ID 212 to the credit card issuer (the external service) for identification. The credit card issuer may then send a service block access key 118B back to the sensor 108, where it is passed on to the PDK 102 to unlock a specific service block 112B. The contents of the service block 112B could then be sent back to the credit card issuer where further decryption could occur and the credit card holder could be verified. Once verified, the credit card terminal displays that the transaction is approved.


These two examples illustrate basic concepts of the capabilities of the service blocks and how an application (service) may use them. Since service blocks preferably are both readable and writable, services may use them as they see fit (i.e. debit, username/password, credit card information, etc.). In some sense, the service block acts as a secure local memory on the PDK.



FIGS. 4 and 5 illustrate a basic case where a single application accesses a single service block on a single PDK via a single sensor. The invention is not limited to this case. FIG. 6 illustrates a case with multiple applications, sensors, and service blocks. This illustrates the sharing of service blocks. As shown, service blocks may be limited to a single service or source or may be shared across multiple services and sources. A service block 112 is a protected memory element which allows an application 120 with the right credentials to access it. In this example, applications 120W, 120X and 120Y1 can each access service block 112C since each application has access to service block access key 118C. Similarly, applications 120V, 120Z2 and 120Z3 can each access service block 112B. Although not shown in FIG. 6, it is also possible for an application to access more than one service block. FIG. 6 also shows a situation where applications 120Z1-3 running on different devices 510Z1-3 all access the PDK 102 through the same sensor 108Z. Each sensor 108 covers a certain proximity zone (i.e., microcell). The presence of the PDK 102 within a microcell indicates proximity of the PDK to that particular sensor.


Also shown is a device 510Y with two applications 120Y1 and 120Y2, each of which accesses a different service block. In some cases, the first application 120Y1 is enabled from a first service block 112C, thus allowing a second application 120Y2 to operate using a second service block 112F (although the two applications need not be on the same device 510). For example, the first application 120Y1 might be the auto login/logoff, where a user logs in to a personal computer via a service block 112C that provides a username and password. Now that the user is logged in, the user wishes to attach to his credit card company. The user types in the web address of the credit card provider, where the credit card provider requests the user's credentials. First, the user may have to provide some live biometric information. Application 120Y2 compares this against a biometric stored in a second service block 112F on the PDK. After the sensor 108Y verifies the correct biometrics, the sensor indicates to the PDK that external services may now access their service blocks. The credit card provider 120Z1 then sends its service block access key 118A to the PDK where this third service block 112A is retrieved and sent back to the credit card issuer. The credit card issuer then verifies the data and authorizes the user's transaction.


Furthermore, although the above scenarios focus mostly on service blocks in the PDK, applications may also use the basic authentication function that allows the PDK and sensor to verify each other. In this scenario, once the sensor and PDK finish their verification the application is signaled. The application may then use this information as an assurance that the PDK is a legitimate device (but not necessarily that the holder of the device is legitimate).


In certain cases, access to a service block 112 may allow the application 120 to access various input/outputs on the PDK. For example, the PDK may have several inputs and/or outputs, as well as a serial (or other) interface. The inputs may be either transition triggered or level triggered. An example of a transition triggered event might be a button press, where level triggered might be turning a switch on. Multiple outputs may also exist where they may also be pulsed or level outputs. Finally an interface may allow attachment of an external device, which may then send data through the PDK to the application. In many cases, the inputs and outputs may be simple push button switches and LEDs used to allow a user to interact with an application.


Since the number of applications is limitless, different applications may use the inputs and outputs for different functionality. For example, a user walking into a casino may require attention from a service representative and if the casino has enabled button 1 for this functionality, when the user depresses button 1, an attendant is alerted with information related to the user and the location of the user. In a different application, an actual button may not exist, but it may be tied to an output of another device indicating when a piece of equipment was in use. Whenever the device was in use, the PDK transmits the input 1 active alert back to the backend application. The backend application may then be using this information to determine when the equipment must be recalibrated based on its usage.


This is also true for outputs and any interfaces. Outputs may be used to turn on a light or sound an audible tone used to locate an asset in a building. For example, there may be 20 pieces of equipment in a room which all show up using a location tracking program, but the user would then have to sift through each piece of equipment until the right one is located. Using an output as described above, a light could be lit and the equipment could be immediately located within the room. The interface allows another attached application to the PDK to send information to an end application attached to the sensor. In this case the sensor provides a medium to push data to an external source.



FIG. 7 is a high level block diagram illustrating one embodiment of a system with networked sensors. In this example, multiple sensors (marked “S”) are attached to a Sensor Management Module (SMM) 730. The SMM 730 provides data routing for the sensors (e.g., to and from applications 720A-E). In this example, the SMM 730 also receives data from the sensors and processes this data to provide location tracking of PDKs (marked “P”) that are within the sensor field. In this implementation, the system also includes an application layer message bus 740, over which the SMM 730 and applications 720 can exchange messages. This allows multiple applications 720 to simultaneously communicate with PDKs and make use of the location tracking of the PDKs. The application layer message bus 740 may also be extended to other applications via a remote application interface.


In FIG. 7, each sensor's microcell (i.e., proximity zone) is denoted by a circle around the sensor. Similarly, the PDK's range is shown by the heavy larger circle. In the example shown, the PDK is in range of four different sensor zones and any of the four sensors may establish communications to the PDK. Using a network topology as shown, the SMM may instruct a specific sensor to attach to the PDK. Once established, the communication link will allow the PDK to communicate with various applications 720, in this example via the SMM 730 and bus 740. Applications 720 will be able to access service blocks on the PDK through the use of service block access keys, as described above.


In addition, in this example, the sensors are at known locations, preferably at fixed locations. For example, sensors may be distributed throughout a building or other structure or site (including outdoors). The sensors interact with the PDK in a manner that allows the sensors to gather position data about the PDK. This position data is sent by the sensors to the SMM 730, which processes the data to determine the PDK's position and to provide location tracking of the PDK over time. The position and/or location tracking information can then be made available to applications 720 via bus 740, in addition to allowing the applications 720 to communicate with the PDK.


Location tracking of the PDK by the sensor network can be achieved in different ways, one of which will be described below. The example in FIG. 7 uses a coordination module (marked “C”) or simply coordinator, although this is not required in other implementations. The large dashed circle shows the coordinator's cell. In this example, the sensors preferably contain two transceivers, one to communicate with the coordinator on what will be referred to as the control channel and another to communicate with the PDK on what will be referred to as the traffic channel.



FIG. 8 illustrates operation of the system in FIG. 7. The coordinator C broadcasts 810 a periodic beacon on a control channel. The sensors and PDKs synchronize to this periodic beacon. On the control channel, when a sensor is not receiving the broadcasted beacon, it is timesharing between listening for a PDK ALOHA response and possibly sending a command to a specific PDK. The PDK, after detecting the beacon, remains on the control channel and continues to periodically wake up, receive the beacon, and realign its timing. By using system related information found in the beacon and its own serial number, the PDK calculates the wakeup time to synchronize to the beacon and broadcast 820 an ALOHA response. As shown, the PDK's broadcasted ALOHA response may overlap several sensors causing multiple sensors to receive the information simultaneously. Each sensor that receives an ALOHA response from a PDK performs a store and forward 830 of the responses to the SMM 730 on a periodic basis.


The coordinator and sensors communicate to the SMM 730 via a backend network. This communications method used to attach each device to the SMM may be wired or wireless provided it has the bandwidth required to transport the information between the devices. When a PDK ALOHA response is detected by a sensor, the sensor collects information such as the PDK ID, receiver signal strength indication, and timestamp. After receiving this information from the sensors, the SMM independently applies the new information for each PDK from the sensors, to the previous history of that PDK and through location deterministic algorithms computes the most likely sensor microcell in which the PDK is located. There are multiple known algorithms for doing so. In one approach, location (proximity) is determined based on prior location history, time at the current location, RF signal strength and geographic contours. The SMM may also store the raw data for further alternate processing methods or for diagnostic purposes.


The SMM 730 can broadcast this information on the application layer messaging bus 740 for applications 720 to use. For example, one application 720A might be a location tracking application with a graphical user interface that shows the current position or trail of the PDK. The SMM 730 (or applications 720) may also store the location information and make it available on an on-demand basis.


In this particular example, access is allocated using a time division multiple access (TMDA) system, where an RF logical channel is distributed over time and each device has a specific period known as a timeslot in which they are allowed to respond. Each timeslot has a preamble and timeslot synchronization character followed by a packet, and lastly a guard period. The content of each packet is dependent on the source device, channel type (control or traffic), and timeslot location.


For example, the coordinator broadcasts the beacon on a period basis. All sensors and PDKs receive the beacon. Each PDK then broadcasts its ALOHA response at a specific timeslot allocated for that purpose. In addition to the handshake messages that occur on the control channel, the beacon and ALOHA response may also carry auxiliary data. This data may be in the form of an alarm indication, command/status, or user/application data, for example. It could be provided by an end application, SMM network command, external device interface (such as a terminal interface), or via an internal alarm functions such as low battery, input signal change, or setting an output signal polarity.


After an ALOHA response is broadcast from a PDK, the PDK listens for a command from nearby sensors. Based on the type of PDK and time it is present in one geographical location, one or more nearby sensors that detected the ALOHA response, may also send additional paging or auxiliary data in the sensor command response timeslot for a specific PDK.


Other timeslots can be allocated to traffic channels and/or to other messages over the control channel. Various TDMA approaches can be used to allocate the wireless communications channel. Non-TDMA approaches can also be used.


The sensor network system of FIG. 7 provides a closed loop system. With the SMM 730 being the central hub, broadcasting auxiliary data through the coordinator (and sometimes sensor devices) and collecting PDK auxiliary data through the sensors, it is possible to determine if in an asymmetrical system a command was successfully completed.



FIG. 9 illustrates an example of how the closed loop system works. In step 910, the SMM 730 (via the coordinator) broadcasts a beacon that also contains auxiliary information. This auxiliary information contains a command from an application 720 to be executed by the PDK. Assume that, for this particular command, the PDK is expected to acknowledge execution of the command. After the PDK executes the command, the PDK sends 920 the acknowledge message as auxiliary data in one of the PDK's ALOHA responses. The sensor receives the ALOHA response and passes 930 the information back to the SMM 730. The SMM 730 has now verified that the command was successfully executed. Such commands could be as simple as set an output to turn on a light or generate an audible sound. It is also possible that an application 720 attached to the SMM 730 may request to pass data to the specific PDK where that data may then be passed to an external terminal application where the system acts only as a transport mechanism. In this mode, the applications attached at each end would be responsible for verifying and acknowledging the data was sent and received successfully.


A second example is shown in FIG. 10, where the PDK initiates an alert. The coordinator periodically transmits a beacon and the PDK periodically returns an ALOHA response. In the example, a user carrying a PDK is located within a service oriented business, such as a department store, casino, restaurant, etc. The user desires to talk with a service representative from the organization and depresses 1010 the service button on their PDK (button 1). The next time the PDK wakes up to send an ALOHA response, the PDK attaches the button 1 alert to the ALOHA messages and broadcasts 1020A it. A local sensor receives the location response containing the button 1 alert and eventually sends 1020B the received ALOHA responses back to the SMM. The SMM may reformat the data and passes 1020C the indication back to the application. The application then indicates 1030 a button 1 request from the particular PDK serial number (and other related user information) on the application console. The PDK continues to send back the button 1 alert until cleared or a timeout period occurs. This allows devices that have inadequate coverage (e.g., on the edge of a cell boundary) to continue to send the alert until detected.


Eventually the console operator becomes aware of the service request and dispatches a representative to the user and clears 1040 the button 1 alert on the console. The clear button 1 alert is then sent 1050A-B to the coordinator where it is queued to go out 1050C on the proper beacon when the PDK will be awake. Once the PDK wakes up and receives 1050C its next beacon, the PDK clears out 1060 the button 1 alert indicator and returns to a basic ALOHA state with no auxiliary data pending.


The example shown may have also had a visible indicator in the PDK where the visible indicator may have become lit when the button was depressed. Once the button 1 alert was cleared the indicator would be unlit.


In this example, neither the application nor SMM verified the PDK actually received the clear button 1 alert. In one approach, each auxiliary message (page, alert, etc.) sent by a device contains a sequence number. If a device continues to send the information after it is acknowledged or cleared, the device is aware of the condition because of the sequence number. Any time a new auxiliary message is sent, the sequence number is incremented to alleviate the confusion as to how new or old any message is.


For some systems, redundancy is important. Redundancy can be implemented in the example system of FIG. 7 in a number of ways. For example, it is possible to provide multiple coordinators where these coordinators can be used to extend a coverage area or as a redundant backup. In one approach, each coordinator broadcasts its beacon on the same RF channel with a slight timing offset from the other coordinators. This creates a simulcast system where if one coordinator fails, the second coordinator can still resume system operation. This may also counter the issues of multipath by providing spatial diversity with the coordinators. Another redundancy measure is that information can be sent to PDK via the sensors, in addition to or in place of the coordinator. Another example of redundancy is that multiple sensor may receive messages from the PDK so there may be multiple paths back to the SMM via different sensors.


Referring now to FIG. 11, one embodiment of a hybrid device 1102 in accordance with the present invention will be described. The hybrid device 1102 comprises a PDK 102a and an RDC 304a. Depending on the embodiment, the hybrid device 1102 utilizes the PDK functionality, the RDC functionality or both the PDK functionality and the RDC functionality. Those skilled in the art will recognize that in other embodiments, the hybrid device 1102 has multiple instances of PDK functionality or multiple instances of the RDC functionality or multiple instances of both. As illustrated in FIG. 11, the PDK 102a is coupled by signal line 1104 to the RDC 304a. This direct coupling allows the PDK 102a and the RDC 204a to communicate control signals and data for various applications will be described below. The signal line 1104 is also used to provide power to the PDK 102a via the RDC 304a in configurations where the RDC 204a is coupled to a power source via signal line 1106. In this embodiment, the RDC 304a is also coupled to signal line 1106 for communication with other devices (not shown). The signal line 1106 can be used to send and receive control signals and data as well as to receive power. Thus, in certain embodiments, the hybrid device 1102 need not have its own independent power source. Moreover, in other embodiments not shown, signal line 1106 is coupled directly to the PDK 102a to provide power.


In one embodiment, the PDK 102a is similar to the PDK 102 described above with reference to FIG. 2 and includes the same functionality as described above. Those skilled in the art will recognize that in other embodiments, the PDK 102a includes less functionality than that described above with reference to FIG. 2. In a minimal embodiment, the PDK 102a includes an antenna and a transceiver for communicating with a RDC (not shown) and a controller and memory for storing information particular to a user. In yet other embodiments, the PDK 102a includes functionality beyond that described above with reference to FIG. 2. The PDK 102a implements the PDK functionality as will be described below with reference to FIGS. 11-16 using a processor and memory of the PDK 102a.


For simplicity and ease of understanding, the hybrid device 1102 is shown as including an RDC 304a. In one embodiment, the RDC 304a is similar to that described above with reference to FIG. 3 above. In another embodiment, the RDC 304a represents and includes the functionality described above as being provided by the sensor 108. Those skilled in the art will recognize that the RDC 304a may have more or less functionality that described above with reference to FIG. 3 above. The RDC 304a implements RDC functionality as will be described below with reference to FIGS. 11-16 using a processor and memory of the RDC 304a. The RDC 304a is coupled to an antenna for communication with other PDKs 102 and coupled to signal line 1106 to send and receive data and control signals from other devices (not shown). In certain embodiments, signal line 1106 also provides power to the RDC 304a.


Referring now to FIG. 12, one embodiment a system 1200 of the present invention in which the hybrid device 1102 is part of a cell phone 1202 will be described. The system 1200 comprises a PDK 102b and the cell phone 1202. The cell phone 1202 further comprises cell phone components and a battery 1204 and the hybrid device 1102. As described above with reference to FIG. 11, the hybrid device 1102 includes PDK 102a and RDC 304a coupled for communication with each other via signal line 1104. In this embodiment, the cell phone components and a battery 2004 are coupled to the RDC 304a by signal line 1106. This allows the RDC 304a to use the communication capabilities of the cell phone 1202 including the voice and data channels provided by conventional cell phone to communicate with other networks and devices (not shown). The RDC 304a and the PDK 102a are adapted to communicate wirelessly with other devices, such as the PDK 102b. While FIG. 12 shows the hybrid device 1102 as including both the RDC 304a and the PDK 102a, in another embodiment the hybrid device 1102 includes only the RDC 304a.


In one embodiment, the cell phone 1202 including the hybrid device 1102 collectively forms a secure cell phone or a generic access point. In such an embodiment, the hybrid device 1102 has a form factor similar to that of a conventional SIM card for cell phones. This is particularly advantageous because the hybrid device 1102 can be used with a variety of existing cell phones without any modification and the hybrid device 1102 is merely inserted in place of a conventional SIM card to provide this functionality. The conventional SIM card is replaced with the hybrid device 1102 that provided the RDC functionality. In other words, the hybrid device 1102 provides authorization control as well as a storage area for storing information specific to a user. The SIM content (Cell phone account, contact information, and credit card information) that is normally stored in the cell phone 1202 is instead stored in the PDK 102b carried by the user. In one embodiment, the PDK 102b stores the original SIM content in its local memory. For example, the PDK 102b defines a SIM slot 1208 to receive the original SIM card 1206, communicatively couples to the SIM card 1206 and copies the information from the SIM card 1206, effectively giving the original SIM card 1206 a wireless extension.


Such a configuration is particularly advantageous for a number of reasons. First, the cell phone 1202 is rendered useless (except 911) if the PDK 102b is out of range of the RDC 304a of the hybrid device 1102. Second, the local phone content such as calendar, contacts, etc. is protected because it resides on the PDK 102b, and is secure and not accessible by the cell phone 1202, its hybrid device 1102 or its RDC 304a without the PDK 102b. Third, the RDC function provided by the RDC 304a of the hybrid device 1102 in the cell phone 1202 becomes a generic access point and allows any PDK 102, not just the PDK 102b, to access it. Thus, any user that has an account with a specific service provider may “bond” or “link” their PDK 102 to the cell phone 1202, allowing their account to be charged for any services rendered. Both the bonding process and service access may be performed via the keypad, voice activated, or via bio-functions of the cell phone 1202. Fourth, any PDK 102 may store and provide contract based account information (such as a cell phone account), or may provide credit information (such as a credit or debit card) that is billed for the service. This allows any person that carries a PDK 102 with credit card information store thereon to use their credit card to gain wireless voice and data services without signing a long term contract. Fifth, since the content is carried on the PDK 102, any type of cell phone may be used. The PDK 102 provides active updates to its internal contents allowing for “last call received” or “last number dialed” to be saved. By bonding the PDK 102 to another phone and hitting redial, the last number that was dialed from any other phone associated with the PDK, is now redialed. There is no need to transfer information from phone to phone or to have back up contact information stored on a personal computer. In an alternate embodiment, the contents (including last number dialed) are stored at the service provider (or in a user defined path—i.e. personal website, etc.) and become available on the cell phone 1202 when the PDK 102 “bonds” to the phone 1202. The referenced account is obtained and the data is transferred to that phone in volatile memory using the network of the service provider to which the cell phone 1202 is coupled. Moreover, the PDK “phone” contents may also be synchronized to a personal computer application via an RDC attached to the personal computer. The phone does not have to be present, only the PDK with a correct password or entry method (bio, etc). The above application/configuration makes cell phones generic allowing any subscriber carrying a PDK 102 with either a cell phone account or credit account to acquire any phone and start using it. Since the user's information stays with the user, it is possible the user could span across multiple cell phone providers in different countries and still maintain a single virtual cell phone account.


In another embodiment, the hybrid device 1102 contains a copy of the contents of SIM card 1206 information. In this embodiment, the contents that are stored in hybrid device 1102 may only be accessible if PDK102b is within proximity of the Cell Phone 1202. In this embodiment, SIM card 1206 is not required to be present in the PDK 102b.


In a variation to the embodiment described above with reference to FIG. 12, a second embodiment of the system 1200 does not include the PDK 102b. Instead the functionality described above with reference to the PDK 102b is provided by the PDK 102a that is part of the hybrid device 1102. The hybrid device 1102 uses the PDK function provided by PDK 102a. The hybrid device 1102 is coupled to the cell phone 1202, in particular the cell phone components and battery 1204, via internal integration or an access port. Such a configuration is particularly advantageous because the PDK function then becomes part of the cell phone 1202 using battery power from the cell phone 1202 and providing the same type of access as described above. Moreover, PDK 102a can provide access control passwords etc. for any type of functions enabled by the phone such as but not limited to gaming, personal computer access, e-commerce, etc. Additionally, the PDK enabled phone uses the back channel to perform other validation/update functions via the cellular infrastructure.


In a variation to the embodiment described above with reference to FIG. 12, the hybrid device 1102 includes and uses both the RDC 304a and the PDK 102a. This adds the hybrid functionality of being capable of performing both simultaneous RDC and PDK functions to the cell phone 1202. The hybrid functionality extends the type of offerings and functionality by allowing the cell phone 1202 to perform the functionality described above as well as additional functionality described below with reference to FIGS. 13-16.


Referring now to FIGS. 13-16, the hybrid functionality provided by the hybrid device 1102 will be described in more detail. The hybrid device 1102 allows for many different configurations and operations of the secure PDK/RDC protocol. The hybrid device 1102 allows mixed operations including: RDC/PDK, RDC/RDC or PDK/PDK combinations. For purposes of explanation below, each device is enabled with either or both RDC and PDK functionality.



FIG. 13 is a block diagram of one embodiment of a system 1300 simultaneously using the PDK and the RDC functionality of the hybrid device 1102 in accordance with the present invention. FIG. 13 shows the system 1300 comprising a hybrid device 1102 having a first PDK 102a and a first RDC 304a, a second PDK 102b, and a second RDC 304b. In this configuration of the system 1300, the hybrid device 1102 maintains two separate simultaneous links: a first link 1302 between the second PDK 102b and the first RDC 304a of the hybrid device 1102; and a second link 1304 between the first PDK 102a of the hybrid device 1102 and the second RDC 304b. In this system 1300, the second PDK 102b, possibly carried by a user, enables the first RDC 304a of the hybrid device 1102. The hybrid device 1102 in turn with its first PDK 102a enables the second RDC 304b, for example being associated with a third component such as endpoint RDC function.


In one embodiment, each link 1302, 1304 of the system 1300 provides an independent authorization. In FIG. 13, the hybrid device 1102 provides authorization to the second RDC 304b. The hybrid device 1102 carries credentials (credit card, account information, etc.) that are used to enable a service associated with the second RDC 304b. For example, a cell phone includes the hybrid device 1102 and the hybrid device 1102 stores credit card information. A user makes a purchase using the cell phone as their credit source. The same user also carries the second PDK 102b. The second PDK 102b provides authorization to the hybrid device 1102 to enable specific functionality (charging using of the credit card information) provided by the hybrid device 1102. In other words, the second PDK 102b is used to enable specific features in the hybrid device 1102. The second PDK 102b carries the user's cellular service account information that is used to enable specific cellular services. If the second PDK 102b is no longer present, those services are disabled. Each the authorizations, credit card and cell service, is independent of the other.


In another embodiment, the links 1302, 1304 of the system 1300 provide a daisy chained authorization. In FIG. 13, the second PDK 102b authorizes the hybrid device 1102 which in turn authorizes the second RDC 304b. It is mandatory for the second PDK 102b to have a connection to the hybrid device 1102 before the hybrid device 1102 can initiate a request for authorization from the second RDC device 304b. For example, a parent could give a child conditional charging privileges where the child may only charge if the parent is present. The child carries the hybrid device 1102 (possibly in a cell phone), and chooses to make a purchase in a local video store. That store has a specific account for the child that is linked to his/her PDK 102a of the hybrid device 1102. When the child walks up to the counter to make the purchase, he/she is identified by their personal ID (included on PDK 102a of the hybrid device 1102 and transmitted to the RDC 304b) and their account is opened. Since the parent is in the same vicinity, the hybrid device 1102 communicates with the parents PDK 120b and obtains authorization to charge to the parent's account. If the parent was not present, the child would still be identified, but would not have charging privileges. In an alternate embodiment, the RDC 304a of the hybrid device 1102 allows different PDKs with different credentials to “bond” with it (i.e. Fathers, Mothers, guardian, adult sibling, etc.), any one of which could be used for authorization.


Referring now to FIG. 14, one embodiment of a system 1400 using the multiple links to the hybrid device 1102 to generate an authorization signal in accordance with the present invention will be described. More specifically, only when the hybrid device 1102 has multiple links 1402, 1404 will the hybrid device 1102 generate an authorization or enable signal on signal line 1406. In this embodiment, the hybrid device 1102 has a physical output or connection for providing the authorization signal. Any variety of different types of devices may be coupled to signal line 1406 to receive the authorization or enabling signal. Without receipt of such a signal, the associated devices (not shown) are not operable. As illustrated in FIG. 14, the hybrid device 1102 requires authorization from both the second RDC 304b and the second PDK 102b to enable functionality. As an example, the hybrid device 1102 is coupled to and secures a personal computer (not shown). For the personal computer to operate, it must authenticate with a specific RDC 304b or fixed equipment at a specific physical location. A user carrying a PDK 102b with the correct privileges must also be present to gain access to the computer. If either the RDC 304b or PDK 102b is not present, the hybrid device 1102 does not allow operation of the personal computer. This prevents theft and illegal use of the property.


Referring now to FIG. 15, one embodiment of a system 1500 that uses multiple PDK links 1502, 1504 to the hybrid device 1102 to generate an authorization signal is shown. For the system 1500, only when multiple PDK links 1502, 1504 to the hybrid device 1102 exist, will an authorization/enablement signal be generated on signal line 1506. Again, in this embodiment, the hybrid device 1102 has a physical output or connection for providing the authorization signal. The system 1500 comprises the hybrid device 1102 and a plurality of PDKs 102a-102n. Although only two PDKs are shown in FIG. 15, those skilled in the art will recognize that the system 1500 may be configured to include any number of PDKs greater than two. As shown in FIG. 15, the hybrid device 1102 requires authorization (e.g., that a link be established) from multiple PDKs 102b, 102n in order to enable functionality. As an example, the hybrid device 1102 is coupled to control an electronic lock for a safety deposit box. The office manager and the customer each with respective PDKs 102b, 102n need to be present before the hybrid device 1102 generates an enable signal on signal line 1506 to unlock the safety deposit box and allow access to it.


Referring now to FIG. 16, one embodiment of a system 1600 using the hybrid device 1102b for authorization inheritance is shown. One particular advantage of using hybrid devices 102 is that they provide a mechanism for authorization inheritance within the system 1600. Authorization inheritance is when a first device passes selected information to a second device and the second device then “inherits” that information for use. The use of the information can be a one-time use during the presence of the first device, multiple uses with or without the presence of the first device or permanent use. Furthermore, there are multiple types of inheritance including service inheritance, feature inheritance and personality inheritance. Service inheritance is authorization of the second device for any functionality provided by a given service. Feature inheritance is similar to service inheritance but for a limited set of features offered by a given service. Personality inheritance is where the preferences of a user or holder of a first device are shared with a user or holder of a second device.


These inheritance concepts and the operation of the hybrid device 1102b will now be described in the specific context of system 1600 shown in FIG. 16 as including a PDK 102b operating as the first device, the hybrid device 1102b operating as the second device and the RDC 304b operating as the third device. The system 1600 illustrates a hybrid device 1102b with simultaneous PDK and RDC functionality to provide inheritance. In this context, the inheritance promulgates the authorization or features from the first device to the second device and onto the third device. However, those skilled in art will recognize that in another embodiment, the first and second devices both communicate directly with the third device to perform the same function. For example, the PDK 102b and the hybrid device 1102b both directly communicate to the RDC 304b and both provide permissions to allow the RDC 304b to generate an authorization or access (without the PDK 102b going through the hybrid device 1102b).


As shown in FIG. 16, the PDK 102b is similar to the PDK 102 described above with reference to FIG. 2 and includes like components and has similar functionality. The PDK 102b also includes service inheritance storage 1602, feature inheritance storage 1604 and personality inheritance storage 1606. The service inheritance storage 1602, feature inheritance storage 1604 and personality inheritance storage 1606 are used to store information that is provided from the PDK 102b, the first device, and inherited by the second device, the hybrid device 1102b. The PDK 102b is carried by a first user and the PDK 102b has multiple accounts on this first device. For example, the service inheritance information stored in service inheritance storage 1602 includes a first credit card account, a first cell phone account, Wi-Fi access information, and computer A access information. The feature inheritance storage 1604 and personality inheritance storage 1606 are used to store information used for feature and personality inheritance as will be described below. Those skilled in the art will recognize that in another embodiment, the service inheritance storage 1602, the feature inheritance storage 1604 and the personality inheritance storage 1606 is a shared or unified memory space with the service inheritance storage 1602, the feature inheritance storage 1604 and the personality inheritance storage 1606 each being a set of references or pointers to the information in the shared or unified memory space. Those skilled the art will recognize that working memory of the PDK 102b may be used for storing the inheritance information, and that in another embodiment, the PDK 102b need not have service inheritance storage 1602, feature inheritance storage 1604 and personality inheritance storage 1606, but may have only one or two of them.


The hybrid device 1102b is similar to the hybrid device 1102 described above with reference to FIG. 11 and includes like components and has similar functionality. The hybrid device 1102b also includes service inheritance storage 1612, feature inheritance storage 1614 and personality inheritance storage 1616. The hybrid device 1102b is communicatively coupled to the service inheritance storage 1612, feature inheritance storage 1614 and personality inheritance storage 1616. The service inheritance storage 1612, feature inheritance storage 1614 and personality inheritance storage 1616 are also used to store inheritance information specific to the user of the hybrid device 1102b. The service inheritance storage 1612, feature inheritance storage 1614 and personality inheritance storage 1616 are used to store inheritance information received from PDKs, e.g., the PDK 102b. In one embodiment, the hybrid device 1102b is carried by a second user that has a different set of accounts than the user of the first device. For example, the service inheritance information stored in the service inheritance storage 1612 includes a second credit card account, a second cell account, no Wi-Fi access information, and computer B access information. Again, the service inheritance storage 1612, feature inheritance storage 1614 and personality inheritance storage 1616 are portions of working memory of the hybrid device 1102b and the hybrid device 1102b need not have service inheritance storage 1612, feature inheritance storage 1614 and personality inheritance storage 1616, but may have only one or two of them.


In yet another embodiment, the RDC rather than the hybrid device 1102b collects and uses inherited information. For example, in a configuration where there are 2 PDKs, a first PDK and a second PDK, the first PDK links and communicates with an RDC. The first PDK then signals the RDC that inherited information is available from the second PDK. The RDC establish a link with the second PDK and gets the inherited information from the second PDK. This is particularly advantageous because it avoids having to send the inherited data through the hybrid PDK 1102b as shown in FIG. 16. It also allows inheritance to be performed without a hybrid PDK 1102.


The RDC 304b operates as the third device and is used to access or enable a Wi-Fi Service. In this embodiment, the RDC 304b receives inheritance information and uses it to enable or disable the services associate with the RDC 304b. While the RDC 304b does not store the inheritance information, in another embodiment it includes service inheritance storage, feature inheritance storage and personality inheritance storage for doing so.


An example method of using the system 1600 will now be described. Both a first user and a second user are at an airport. A Wi-Fi service is offered in the airport and has RDC 304b controlling access and use of the Wi-Fi service. The first user has and is in possession of the PDK 102b, and the second user has and is in possession of the hybrid device 1102b. The second user with the hybrid device 1102b wants to obtain Wi-Fi access to check email, but the second user doesn't have a Wi-Fi Access account. The first user having the PDK 102b allows the second user to inherit the Wi-Fi access for a one time use. The PDK 102b provides this information to the RDC 304a of the hybrid device 1102b and the hybrid device 1102b stores the inherited information in its service inheritance storage 1612 for use as represented by line 1650. The hybrid device 1102b then communicates with the RDC 304b to access the Wi-Fi service using the first user's account as represented by line 1652. The hybrid device 1102b is able to access and receive the service using the first user's account which it inherited. Depending on the terms with which the information was inherited, the inherited information allows any number of accesses, access for a predetermined amount of time (e.g., for 30 minutes), a single access, or access up to a particular dollar amount of charges.


In another embodiment, the inheritance information is transferred prior to the service being available. For example, the first user is a parent with a debit card account that is associated with or stored in PDK 102b. A child or minor of the parent is associated or in possession of the hybrid device 1102b. The system 1600 allows the first user to transfer to their child, a specific dollar amount that the child could spend. In one embodiment, the money is transferred from PDK 102b to the hybrid device 1102b by transferring account information, a dollar amount and spending restrictions from the service inheritance storage 1602 of PDK 102b to the service inheritance storage 1612 of the hybrid device 1102b. In another embodiment, the actual transfer is done via a backend server (not shown) where the child's device 102b and the hybrid device 1102b are only referenced and the backend server actually carries the charge type and amount available. In yet another embodiment, attributes stored in the hybrid device 1102b and the backend server can be combined to determine the amount and charge types allowed.


The system 1600 is also used to provide feature inheritance. Feature inheritance is similar to service inheritance except feature inheritance is limited to a portion of a service. An example of feature inheritance is where a parent, the first user having the PDK 102b, allows a child, the second user, to play a teen video game or access a specific website while the parent is present. The child is in possession of the hybrid device 1102b, and when in proximity, it enables the computer that has the RDC 304 controlling its use and access to the internet. When the parent is in the room or within proximity of the child, the hybrid device 1102b then acquires permission from the PDK 102b and is then able to pass additional attributes to the RDC 304 of the personal computer or video game that allow a different rating to be in place. When the parent and the PDK 102b leave the room, the child's hybrid device 1102b loses the privileges and the child must return to lower rated games and sites. Those skilled in the art will recognize how the system 1600 may be integrated as part of a DVD player to control what movies may be viewed. If a movie or other video has selective portions of content that are associated with different ratings, the portions of video content that are output depend on a PDK 102 and a hybrid device 1102b and their associated authorizations. This would allow a single DVD and DVD player to present one version of a movie to an adult viewer while providing a different version of a movie to a child. More specifically, violent or mature content would be removed from the version of the movie output by the DVD system when only the child's hybrid device 1102b is present.


The system 1600 is also used to provide personality inheritance. Personality inheritance is where the preferences of a user or holder of a first device are shared with a user or holder of a second device which are then be used to make informed decisions or provide guidance to the second device. For example, assume 2 children who are friends like to play video games. Let's assume that each child is associated with a hybrid device 1102b that accumulates information related to the purchases, rentals, and play of these games (i.e. the game may have an RDC as well). Around Christmas, the 2 friends choose to exchange game related personality information—hybrid device 1102 to hybrid device 1102. Now each friend knows what the other one has played, they type of games they like to play, and if a particular game was rented, purchased, played online, etc. Each friend can now go and purchase, using the information in their hybrid device 1102, a game that they want to give to the other friend for Christmas. In a second example, a work colleague has collected information on the internet related to a specific subject and wants to now share that information with a second colleague. Personality Inheritance can be done via accumulation in the hybrid device 1102, the PDK 102 or via a backend server or both.


The hybrid device 1102b is also particularly advantages for automatically disabling a service or feature. The concept of “service and/or feature disability” is to remove a capability when a device is within proximity of a zone. There are conditions where it is highly desirable to disable a function in a portable device. An example is cell phones in movie theatres, or phone cameras in an office building, etc. In these settings, it is possible that the present invention disables or changes the personality or feature set of a device based on the presence of the RDC 304. For example, in a theatre having an associated RDC, any phone that includes the hybrid device 1102 is placed into a vibrate mode, silent mode, or disabled. When the person leaves the theatre, the phone would return to its normal operation. Of course, the user may still need to have their PDK 102 to obtain service, but both of these features can work in conjunction with the other feature. In another example, when an outside vendor attends a meeting for a corporation, his/her cell phone camera is disabled and possibly his/her phone volume is lowered. There are features that can be controlled by the PDK 102, RDC 304 or the hybrid device 1102 located in a corporate office environment. In addition to the switching (or inhibiting) of features when visiting a facility, these same types of attributes can change when any PDK 102, RDC 304 or hybrid device 1102 comes in to proximity of any other PDK 102, RDC 304 or hybrid device 1102. The above examples described how the functionality of a portable device changes depending upon the devices in its vicinity. In addition, the operational state of the fixed (or semi-portable) type of devices could change as well. For example, the parents are watching an R-rated movie and a pre-teen child walks in the room. The movie becomes immediately blocked (or paused) by the display device so that the pre-teen is protected against the content. In another example, an employee of a recreational facility carries an ID badge including a PDK 102. The recreational facility provides areas for access by customers only, not for employees during predefined hours. When an employee gets close to the entrance, their PDK 102 is recognized by the RDC controlling the door locks, and the employee is not permitted into the area.


Finally, the hybrid device 1102 has been described above as being capable of propagating information between the PDK 102 and the RDC 304. Those skilled in the art will recognize that in environments where there are a plurality of hybrid devices 1102, there are any number of communication paths that can be established between the plurality of hybrid devices 1102 by effectively creating a “daisy chain” of PDKs 102 an RDCs 304 to propagate information from one hybrid device 1102 to another. Such a network of hybrid devices 1102 provides the capability for complex decisions and/or capabilities. There can be any number of information and control transfers between devices having an associated hybrid device 102 such as but not limited to portable to portable, portable to fixed, fixed to fixed, and backend equipment. In such an environment, any device with an associated hybrid device 1102 is able to allow, remove, or alter, the features and capabilities of any other device having an associated hybrid device 102 given the proper authority.


Various other modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method and apparatus of the present invention disclosed herein without departing from the spirit and scope of the invention as defined in the appended claims. Therefore, the scope of the invention should be determined by the appended claims and their legal equivalent.

Claims
  • 1. A device comprising: a secure memory storing local secured information;a battery; anda wireless interface for communicating wirelessly with a first external device within a first proximity zone and a second external device within a second proximity zone, the wireless interface communicatively coupled to the secure memory for communication with the secure memory, and coupled to the battery to draw power, the wireless interface communicating wirelessly with the first external device to receive data uniquely identifying the first external device and communicating wirelessly with the second external device to send an enablement signal including credentials from the secure memory to enable one or more of an application, a function, and a service to execute a finance transaction with the second external device, the first external device receiving a biometric input to authorize the execution of the one or more of the application, the function, and the service, and the credentials from the secure memory being made accessible only when the wireless interface of the device and the first external device are within the first proximity zone.
  • 2. The device of claim 1, wherein the local secured information stored by the secure memory is used to enable the one or more of the application, the function, and the service.
  • 3. The device of claim 1, wherein the one or more of the application, the function, and the service is enabled, at least in part, on the device.
  • 4. The device of claim 1, wherein the one or more of the application, the function, and the service is enabled, at least in part, external to the device using an external wireless interface, the device communicatively coupled to wirelessly communicate with the external wireless interface.
  • 5. The device of claim 1, wherein the local secured information stored by the secure memory includes biometric information for authenticating a user.
  • 6. The device of claim 5, wherein the biometric information is based on a biometric scan of a finger of the user.
  • 7. The device of claim 1, wherein the local secured information stored by the secure memory includes financial information and wherein the one or more of the application, the function, and the service completes the financial transaction based on the financial information.
  • 8. The device of claim 7, wherein the financial transaction is completed also based on a signal received from the second external device.
  • 9. The device of claim 1, wherein the local secured information stored by the secure memory includes auxiliary information transmitted to the first external device.
  • 10. The device of claim 7, wherein the one or more of the application, the function, and the service enabled completes the financial transaction using an external authentication database, and wherein the device transmits the financial information to the external authentication database.
  • 11. The device of claim 10, wherein the external authentication database is separate from a merchant system providing a sale in the financial transaction.
  • 12. The device of claim 1, wherein the one or more of the application, the function, and the service enabled based on the local secured information stored by the secure memory includes a first application, function, or service based on a first subset of the local secured information stored by the secure memory and a second application, function, or service based on a second subset of the local secured information, the first subset and the second subset of the local secured information having different accessibility.
  • 13. The device of claim 1, wherein the first external device is a cell phone.
  • 14. The device of claim 1, wherein the device is included in jewelry.
  • 15. The device of claim 1, wherein the device is a watch.
  • 16. A method comprising: creating a first wireless link between a device and a first external device within a first proximity zone, the device including a battery and a secure memory coupled to the battery;receiving at the device a first signal from the first external device via the first wireless link, the first signal including data uniquely identifying the first external device;generating, responsive to receiving the first signal, an enablement signal including credentials from the secure memory for enabling one or more of an application, a function, and a service to execute a financial transaction with a second external device within a second proximity zone, the first external device receiving a biometric input to authorize the execution of the one or more of the application, the function, and the service, and the credentials from the secure memory being made accessible only when the device and the first external device are within the first proximity zone;creating a second wireless link between the device and the second external device within the second proximity zone; andsending, responsive to creating the second wireless link, the enablement signal from the device to the second external device via the second wireless link to execute the financial transaction.
  • 17. The method of claim 16, wherein the one or more of the application, the function, and the service is enabled in part on the device and in part on the second external device.
  • 18. The method of claim 16, wherein the secure memory stores biometric information for authenticating a user.
  • 19. The method of claim 16, wherein the secure memory stores financial information and wherein the one or more of the application, the function, and the service completes the financial transaction based on the financial information.
  • 20. The method of claim 16, wherein the first external device is a cell phone.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of and claims priority to U.S. application Ser. No. 15/595,739, entitled “Hybrid Device Having a Personal Digital Key and Receiver-Decoder Circuit and Methods of Use,” filed May 15, 2017, which is a continuation of and claims priority to U.S. application Ser. No. 14/961,645, entitled “Hybrid Device Having a Personal Digital Key and Receiver-Decoder Circuit and Methods of Use,” filed Dec. 7, 2015, which claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/677,893 entitled “Hybrid Device Having a Personal Digital Key and Receiver Decoder Circuit and Method of Use,” filed Apr. 2, 2015, which claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 14/171,705 entitled “Hybrid Device Having a Personal Digital Key and Receiver Decoder Circuit and Method of Use,” filed Feb. 3, 2014, now U.S. Pat. No. 9,049,188, which claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 13/445,825 entitled “Hybrid Device Having a Personal Digital Key and Receiver Decoder Circuit and Method of Use,” filed Apr. 12, 2012, now U.S. Pat. No. 8,646,042, which claims priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 12/329,329 entitled “Hybrid Device Having a Personal Digital Key and Receiver Decoder Circuit and Method of Use,” filed Dec. 5, 2008, now U.S. Pat. No. 8,171,528, which claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 60/992,953 entitled “Reverse Prox,” filed on Dec. 6, 2007 by David L. Brown, John J. Giobbi and Fred S. Hirt. The entire contents of all of the foregoing are incorporated by reference herein.

US Referenced Citations (1003)
Number Name Date Kind
3665313 Trent May 1972 A
3739329 Lester Jun 1973 A
3761883 Alvarez et al. Sep 1973 A
3906166 Cooper et al. Sep 1975 A
4101873 Anderson et al. Jul 1978 A
4430705 Cannavino et al. Feb 1984 A
4476469 Lander Oct 1984 A
4598272 Cox Jul 1986 A
4661821 Smith Apr 1987 A
4759060 Hayashi et al. Jul 1988 A
4814742 Morita et al. Mar 1989 A
4871997 Adriaenssens et al. Oct 1989 A
4993068 Piosenka et al. Feb 1991 A
5043702 Kuo Aug 1991 A
5187352 Blair et al. Feb 1993 A
5224164 Elsner Jun 1993 A
5296641 Stelzel Mar 1994 A
5307349 Shloss et al. Apr 1994 A
5317572 Satoh May 1994 A
5325285 Araki Jun 1994 A
5392287 Tiedemann, Jr. et al. Feb 1995 A
5392433 Hammersley et al. Feb 1995 A
5410588 Ito Apr 1995 A
5416780 Patel May 1995 A
5422632 Bucholtz et al. Jun 1995 A
5428684 Akiyama et al. Jun 1995 A
5450489 Ostrover et al. Sep 1995 A
5473690 Grimonprez et al. Dec 1995 A
5481265 Russell Jan 1996 A
5506863 Meidan et al. Apr 1996 A
5517502 Bestler et al. May 1996 A
5541583 Mandelbaum Jul 1996 A
5544321 Theimer et al. Aug 1996 A
5552776 Wade et al. Sep 1996 A
5563947 Kikinis Oct 1996 A
5589838 McEwan Dec 1996 A
5594227 Deo Jan 1997 A
5598474 Johnson Jan 1997 A
5611050 Theimer et al. Mar 1997 A
5619251 Kuroiwa et al. Apr 1997 A
5623552 Lane Apr 1997 A
5629980 Stetik et al. May 1997 A
5644354 Thompson et al. Jul 1997 A
5666412 Handelman et al. Sep 1997 A
5689529 Johnson Nov 1997 A
5692049 Johnson et al. Nov 1997 A
5719387 Fujioka Feb 1998 A
5729237 Webb Mar 1998 A
5760705 Glessner et al. Jun 1998 A
5760744 Sauer Jun 1998 A
5773954 VanHorn Jun 1998 A
5784464 Akiyama et al. Jul 1998 A
5799085 Shona Aug 1998 A
5821854 Dorinski et al. Oct 1998 A
5825876 Peterson, Jr. Oct 1998 A
5835595 Fraser et al. Nov 1998 A
5838306 O'Connor et al. Nov 1998 A
5854891 Postlewaite et al. Dec 1998 A
5857020 Peterson, Jr. Jan 1999 A
5886634 Muhme Mar 1999 A
5892825 Mages et al. Apr 1999 A
5892900 Ginter et al. Apr 1999 A
5894551 Huggins et al. Apr 1999 A
5898880 Ryu Apr 1999 A
5910776 Black Jun 1999 A
5917913 Wang Jun 1999 A
5923757 Hocker et al. Jul 1999 A
5928327 Wang et al. Jul 1999 A
5991399 Graunke et al. Nov 1999 A
5991749 Morrill, Jr. Nov 1999 A
6016476 Maes et al. Jan 2000 A
6018739 McCoy et al. Jan 2000 A
6025780 Bowers et al. Feb 2000 A
6035038 Campinos et al. Mar 2000 A
6035329 Mages et al. Mar 2000 A
6038334 Hamid Mar 2000 A
6038666 Hsu et al. Mar 2000 A
6040786 Fujioka Mar 2000 A
6041410 Hsu et al. Mar 2000 A
6042006 Van Tilburg et al. Mar 2000 A
6055314 Spies et al. Apr 2000 A
6068184 Barnett May 2000 A
6070796 Sirbu Jun 2000 A
6076164 Tanaka et al. Jun 2000 A
6088450 Davis et al. Jul 2000 A
6088730 Kato et al. Jul 2000 A
6104290 Naguleswaran Aug 2000 A
6104334 Allport Aug 2000 A
6110041 Walker et al. Aug 2000 A
6121544 Petsinger Sep 2000 A
6134283 Sands et al. Oct 2000 A
6137480 Shintani Oct 2000 A
6138010 Rabe et al. Oct 2000 A
6148142 Anderson Nov 2000 A
6148210 Elwin et al. Nov 2000 A
6161179 Seidel Dec 2000 A
6177887 Jerome Jan 2001 B1
6185316 Buffam Feb 2001 B1
6189105 Lopes Feb 2001 B1
6209089 Selitrennikoff et al. Mar 2001 B1
6219109 Raynesford et al. Apr 2001 B1
6219439 Burger Apr 2001 B1
6219553 Panasik Apr 2001 B1
6237848 Everett May 2001 B1
6240076 Kanerva et al. May 2001 B1
6247130 Fritsch Jun 2001 B1
6249869 Drupsteen et al. Jun 2001 B1
6256737 Bianco et al. Jul 2001 B1
6266415 Campinos et al. Jul 2001 B1
6270011 Gottfried Aug 2001 B1
6279111 Jensenworth et al. Aug 2001 B1
6279146 Evans et al. Aug 2001 B1
6295057 Rosin et al. Sep 2001 B1
6307471 Xydis Oct 2001 B1
6325285 Baratelli Dec 2001 B1
6336121 Lyson et al. Jan 2002 B1
6336142 Kato et al. Jan 2002 B1
6343280 Clark Jan 2002 B2
6345347 Biran Feb 2002 B1
6363485 Adams et al. Mar 2002 B1
6367019 Ansell et al. Apr 2002 B1
6369693 Gibson Apr 2002 B1
6370376 Sheath Apr 2002 B1
6381029 Tipirneni Apr 2002 B1
6381747 Wonfor et al. Apr 2002 B1
6385596 Wiser et al. May 2002 B1
6392664 White et al. May 2002 B1
6397387 Rosin et al. May 2002 B1
6401059 Shen et al. Jun 2002 B1
6411307 Rosin et al. Jun 2002 B1
6424249 Houvener Jul 2002 B1
6424715 Saito Jul 2002 B1
6425084 Rallis et al. Jul 2002 B1
6434403 Ausems et al. Aug 2002 B1
6434535 Kupka et al. Aug 2002 B1
6446004 Cao et al. Sep 2002 B1
6446130 Grapes Sep 2002 B1
6463534 Geiger et al. Oct 2002 B1
6480101 Kelly et al. Nov 2002 B1
6480188 Horsley Nov 2002 B1
6484182 Dunphy et al. Nov 2002 B1
6484260 Scott Nov 2002 B1
6484946 Matsumoto et al. Nov 2002 B2
6487663 Jaisimha et al. Nov 2002 B1
6490443 Freeny, Jr. Dec 2002 B1
6510350 Steen, III et al. Jan 2003 B1
6522253 Saltus Feb 2003 B1
6523113 Wehrenberg Feb 2003 B1
6529949 Getsin et al. Mar 2003 B1
6546418 Schena et al. Apr 2003 B2
6550011 Sims, III Apr 2003 B1
6563465 Frecska May 2003 B2
6563805 Murphy May 2003 B1
6564380 Ma et al. May 2003 B1
6577238 Whitesmith et al. Jun 2003 B1
6593887 Luk et al. Jul 2003 B2
6597680 Lindskog et al. Jul 2003 B1
6607136 Atsmon et al. Aug 2003 B1
6628302 White et al. Sep 2003 B2
6632992 Hasegawa Oct 2003 B2
6633981 Davis Oct 2003 B1
6645077 Rowe Nov 2003 B2
6647417 Hunter et al. Nov 2003 B1
6657538 Ritter Dec 2003 B1
6658566 Hazard Dec 2003 B1
6667684 Waggamon et al. Dec 2003 B1
6669096 Saphar et al. Dec 2003 B1
6671808 Abbott et al. Dec 2003 B1
6683954 Searle Jan 2004 B1
6697944 Jones et al. Feb 2004 B1
6709333 Bradford et al. Mar 2004 B1
6711464 Yap et al. Mar 2004 B1
6714168 Berenbaum Mar 2004 B2
6715246 Frecska et al. Apr 2004 B1
6728397 McNeal Apr 2004 B2
6737955 Ghabra et al. May 2004 B2
6758394 Maskatiya et al. Jul 2004 B2
6771969 Chinoy et al. Aug 2004 B1
6775655 Peinado et al. Aug 2004 B1
6785474 Hirt et al. Aug 2004 B2
6788640 Celeste Sep 2004 B2
6788924 Knutson et al. Sep 2004 B1
6795425 Raith Sep 2004 B1
6804825 White et al. Oct 2004 B1
6806887 Chernock et al. Oct 2004 B2
6839542 Sibecas et al. Jan 2005 B2
6850147 Prokoski et al. Feb 2005 B2
6853988 Dickinson et al. Feb 2005 B1
6859812 Poynor Feb 2005 B1
6861980 Rowitch et al. Mar 2005 B1
6873975 Hatakeyarna et al. Mar 2005 B1
6879567 Callaway et al. Apr 2005 B2
6879966 Lapsley et al. Apr 2005 B1
6886741 Salveson May 2005 B1
6889067 Willey May 2005 B2
6891822 Gubbi et al. May 2005 B1
6892307 Wood et al. May 2005 B1
6930643 Byrne et al. Aug 2005 B2
6947003 Huor Sep 2005 B2
6950941 Lee et al. Sep 2005 B1
6957086 Bahl et al. Oct 2005 B2
6961858 Fransdonk Nov 2005 B2
6963270 Gallagher, III et al. Nov 2005 B1
6963971 Bush et al. Nov 2005 B1
6973576 Giobbi Dec 2005 B2
6975202 Rodriguez et al. Dec 2005 B1
6980087 Zukowski Dec 2005 B2
6983882 Cassone Jan 2006 B2
6999023 Pakray et al. Feb 2006 B2
6999032 Pakray et al. Feb 2006 B2
7012503 Nielsen Mar 2006 B2
7020635 Hamilton et al. Mar 2006 B2
7031945 Donner Apr 2006 B1
7049963 Waterhouse et al. May 2006 B2
7055171 Martin et al. May 2006 B1
7058806 Smeets et al. Jun 2006 B2
7061380 Orlando et al. Jun 2006 B1
7068623 Barany et al. Jun 2006 B1
7072900 Sweitzer et al. Jul 2006 B2
7079079 Jo et al. Jul 2006 B2
7080049 Truitt et al. Jul 2006 B2
7082415 Robinson et al. Jul 2006 B1
7090126 Kelly et al. Aug 2006 B2
7090128 Farley et al. Aug 2006 B2
7100053 Brown et al. Aug 2006 B1
7107455 Merkin Sep 2006 B1
7107462 Fransdonk Sep 2006 B2
7111789 Rajasekaran et al. Sep 2006 B2
7112138 Hedrick et al. Sep 2006 B2
7119659 Bonalle et al. Oct 2006 B2
7123149 Nowak et al. Oct 2006 B2
7130668 Chang et al. Oct 2006 B2
7131139 Meier Oct 2006 B1
7137008 Hamid et al. Nov 2006 B1
7137012 Kamibayashi et al. Nov 2006 B1
7139914 Amouse Nov 2006 B2
7150045 Koelle et al. Dec 2006 B2
7155416 Shafford Dec 2006 B2
7159114 Zajkowski et al. Jan 2007 B1
7159765 Frerking Jan 2007 B2
7167987 Angelo Jan 2007 B2
7168089 Nguyen et al. Jan 2007 B2
7176797 Zai et al. Feb 2007 B2
7191466 Hamid et al. Mar 2007 B1
7209955 Major et al. Apr 2007 B1
7218944 Cromer et al. May 2007 B2
7225161 Lam et al. May 2007 B2
7230908 Vanderaar et al. Jun 2007 B2
7231068 Tibor Jun 2007 B2
7231451 Law et al. Jun 2007 B2
7242923 Perera et al. Jul 2007 B2
7249177 Miller Jul 2007 B1
7272723 Abbott et al. Sep 2007 B1
7277737 Vollmer et al. Oct 2007 B1
7278025 Saito et al. Oct 2007 B2
7283650 Sharma et al. Oct 2007 B1
7295119 Rappaport et al. Nov 2007 B2
7305560 Giobbi Dec 2007 B2
7310042 Seifert Dec 2007 B2
7314164 Bonalle et al. Jan 2008 B2
7317799 Hammersmith et al. Jan 2008 B2
7319395 Puzio et al. Jan 2008 B2
7330108 Thomas Feb 2008 B2
7333002 Bixler et al. Feb 2008 B2
7333615 Jarboe et al. Feb 2008 B1
7336181 Nowak et al. Feb 2008 B2
7336182 Baranowski et al. Feb 2008 B1
7337325 Palmer et al. Feb 2008 B2
7337326 Palmer et al. Feb 2008 B2
7341181 Bonalle et al. Mar 2008 B2
7342503 Light et al. Mar 2008 B1
7349557 Tibor Mar 2008 B2
7356393 Schlatre et al. Apr 2008 B1
7356706 Scheurich Apr 2008 B2
7361919 Setlak Apr 2008 B2
7363494 Brainard et al. Apr 2008 B2
7370366 Lacan et al. May 2008 B2
7378939 Sengupta et al. May 2008 B2
7380202 Lindhorst et al. May 2008 B1
7382799 Young et al. Jun 2008 B1
7387235 Gilbert et al. Jun 2008 B2
7401731 Pletz et al. Jul 2008 B1
7424134 Chou Sep 2008 B2
7437330 Robinson et al. Oct 2008 B1
7447911 Chou et al. Nov 2008 B2
7448087 Ohmori et al. Nov 2008 B2
7458510 Zhou Dec 2008 B1
7460836 Smith et al. Dec 2008 B2
7461444 Deaett et al. Dec 2008 B2
7464053 Pylant Dec 2008 B1
7464059 Robinson et al. Dec 2008 B1
7466232 Neuwirth Dec 2008 B2
7472280 Giobbi Dec 2008 B2
7512806 Lemke Mar 2009 B2
7525413 Jung et al. Apr 2009 B2
7529944 Hamid May 2009 B2
7533809 Robinson et al. May 2009 B1
7545312 Kiang et al. Jun 2009 B2
7565329 Lapsley et al. Jul 2009 B2
7573382 Choubey et al. Aug 2009 B2
7573841 Lee et al. Aug 2009 B2
7574734 Fedronic et al. Aug 2009 B2
7583238 Cassen et al. Sep 2009 B2
7583643 Smith et al. Sep 2009 B2
7587502 Crawford et al. Sep 2009 B2
7587611 Johnson et al. Sep 2009 B2
7594611 Arrington, III Sep 2009 B1
7595765 Hirsch et al. Sep 2009 B1
7603564 Adachi Oct 2009 B2
7606733 Shmueli et al. Oct 2009 B2
7617523 Das et al. Nov 2009 B2
7620184 Marque Pucheu Nov 2009 B2
7624073 Robinson et al. Nov 2009 B1
7624417 Dua Nov 2009 B2
7640273 Wallmeier et al. Dec 2009 B2
7644443 Matsuyama et al. Jan 2010 B2
7646307 Plocher et al. Jan 2010 B2
7652892 Shiu et al. Jan 2010 B2
7676380 Graves et al. Mar 2010 B2
7689005 Wang et al. Mar 2010 B2
7706896 Music et al. Apr 2010 B2
7711152 Davida et al. May 2010 B1
7711586 Aggarwal et al. May 2010 B2
7715593 Adams et al. May 2010 B1
7724713 Del Prado Pavon et al. May 2010 B2
7724717 Porras et al. May 2010 B2
7724720 Korpela et al. May 2010 B2
7764236 Hill et al. Jul 2010 B2
7765164 Robinson et al. Jul 2010 B1
7765181 Thomas et al. Jul 2010 B2
7773754 Buer et al. Aug 2010 B2
7774613 Lemke Aug 2010 B2
7780082 Handa et al. Aug 2010 B2
7796551 MacHiraju et al. Sep 2010 B1
7813822 Hoffberg Oct 2010 B1
7865448 Pizarro Jan 2011 B2
7865937 White et al. Jan 2011 B1
7883417 Bruzzese et al. Feb 2011 B2
7904718 Giobbi et al. Mar 2011 B2
7943868 Anders et al. May 2011 B2
7957536 Nolte Jun 2011 B2
7961078 Reynolds et al. Jun 2011 B1
7984064 Fusari Jul 2011 B2
7996514 Baumert et al. Aug 2011 B2
8026821 Reeder et al. Sep 2011 B2
8036152 Brown et al. Oct 2011 B2
8077041 Stern et al. Dec 2011 B2
8081215 Kuo et al. Dec 2011 B2
8082160 Collins, Jr. et al. Dec 2011 B2
8089354 Perkins Jan 2012 B2
8112066 Ben Ayed Feb 2012 B2
8125624 Jones et al. Feb 2012 B2
8135624 Ramalingam et al. Mar 2012 B1
8171528 Brown May 2012 B1
8193923 Rork et al. Jun 2012 B2
8200980 Robinson et al. Jun 2012 B1
8215552 Rambadt Jul 2012 B1
8248263 Shervey et al. Aug 2012 B2
8258942 Lanzone et al. Sep 2012 B1
8294554 Shoarinejad et al. Oct 2012 B2
8296573 Bolle et al. Oct 2012 B2
8307414 Zerfos et al. Nov 2012 B2
8325011 Butler et al. Dec 2012 B2
8340672 Brown et al. Dec 2012 B2
8352730 Giobbi Jan 2013 B2
8373562 Heinze et al. Feb 2013 B1
8387124 Smetters et al. Feb 2013 B2
8390456 Puleston et al. Mar 2013 B2
8395484 Fullerton Mar 2013 B2
8410906 Dacus et al. Apr 2013 B1
8421606 Collins, Jr. et al. Apr 2013 B2
8424079 Adams et al. Apr 2013 B2
8432262 Talty et al. Apr 2013 B2
8433919 Giobbi et al. Apr 2013 B2
8448858 Kundu et al. May 2013 B1
8473748 Sampas Jun 2013 B2
8484696 Gatto et al. Jul 2013 B2
8494576 Bye et al. Jul 2013 B1
8508336 Giobbi et al. Aug 2013 B2
8511555 Babcock et al. Aug 2013 B2
8519823 Rinkes Aug 2013 B2
8522019 Michaelis Aug 2013 B2
8558699 Butler et al. Oct 2013 B2
8572391 Golan et al. Oct 2013 B2
8577091 Ivanov et al. Nov 2013 B2
8646042 Brown Feb 2014 B1
8678273 McNeal Mar 2014 B2
8717346 Claessen May 2014 B2
8738925 Park et al. May 2014 B1
8799574 Corda Aug 2014 B2
8856539 Weiss Oct 2014 B2
8914477 Gammon Dec 2014 B2
8918854 Giobbi Dec 2014 B1
8931698 Ishikawa et al. Jan 2015 B2
8979646 Moser et al. Mar 2015 B2
9037140 Brown May 2015 B1
9049188 Brown Jun 2015 B1
9165233 Testanero Oct 2015 B2
9189788 Robinson et al. Nov 2015 B1
9230399 Yacenda Jan 2016 B2
9235700 Brown Jan 2016 B1
9276914 Woodward et al. Mar 2016 B2
9305312 Kountotsis et al. Apr 2016 B2
9405898 Giobbi Aug 2016 B2
9418205 Giobbi Aug 2016 B2
9542542 Giobbi et al. Jan 2017 B2
9679289 Brown Jun 2017 B1
9830504 Masood et al. Nov 2017 B2
9892250 Giobbi Feb 2018 B2
10073960 Brown Sep 2018 B1
10110385 Rush et al. Oct 2018 B1
10455533 Brown Oct 2019 B2
10817964 Guillama et al. Oct 2020 B2
20010021950 Hawley et al. Sep 2001 A1
20010024428 Onouchi Sep 2001 A1
20010026619 Howard, Jr. et al. Oct 2001 A1
20010027121 Boesen Oct 2001 A1
20010027439 Holtzman et al. Oct 2001 A1
20010044337 Rowe et al. Nov 2001 A1
20020004783 Paltenghe et al. Jan 2002 A1
20020007456 Peinado et al. Jan 2002 A1
20020010679 Felsher Jan 2002 A1
20020013772 Peinado Jan 2002 A1
20020014954 Fitzgibbon et al. Feb 2002 A1
20020015494 Nagai et al. Feb 2002 A1
20020019811 Lapsley et al. Feb 2002 A1
20020022455 Salokannel et al. Feb 2002 A1
20020023032 Pearson et al. Feb 2002 A1
20020023217 Wheeler et al. Feb 2002 A1
20020026424 Akashi Feb 2002 A1
20020037732 Gous et al. Mar 2002 A1
20020052193 Chetty May 2002 A1
20020055908 Di Giorgio et al. May 2002 A1
20020056043 Glass May 2002 A1
20020059114 Cockrill et al. May 2002 A1
20020062249 Iannacci May 2002 A1
20020068605 Stanley Jun 2002 A1
20020069364 Dosch Jun 2002 A1
20020071559 Christensen et al. Jun 2002 A1
20020073042 Maritzen Jun 2002 A1
20020080969 Giobbi Jun 2002 A1
20020083178 Brothers Jun 2002 A1
20020083318 Larose Jun 2002 A1
20020086690 Takahashi et al. Jul 2002 A1
20020089890 Fibranz et al. Jul 2002 A1
20020091646 Lake et al. Jul 2002 A1
20020095586 Doyle et al. Jul 2002 A1
20020095587 Doyle et al. Jul 2002 A1
20020097876 Harrison Jul 2002 A1
20020098888 Rowe et al. Jul 2002 A1
20020100798 Farrugia et al. Aug 2002 A1
20020103027 Rowe et al. Aug 2002 A1
20020103881 Granade et al. Aug 2002 A1
20020104006 Boate Aug 2002 A1
20020104019 Chatani et al. Aug 2002 A1
20020105918 Yamada et al. Aug 2002 A1
20020108049 Xu et al. Aug 2002 A1
20020109580 Shreve et al. Aug 2002 A1
20020111919 Weller et al. Aug 2002 A1
20020112183 Baird et al. Aug 2002 A1
20020116615 Nguyen et al. Aug 2002 A1
20020124251 Hunter et al. Sep 2002 A1
20020128017 Virtanen Sep 2002 A1
20020129262 Kutaragi et al. Sep 2002 A1
20020138438 Bardwell Sep 2002 A1
20020138767 Hamid et al. Sep 2002 A1
20020140542 Prokoski et al. Oct 2002 A1
20020141586 Margalit et al. Oct 2002 A1
20020143623 Dayley Oct 2002 A1
20020143655 Elston et al. Oct 2002 A1
20020144117 Faigle Oct 2002 A1
20020147653 Shmueli Oct 2002 A1
20020148892 Bardwell Oct 2002 A1
20020150282 Kinsella Oct 2002 A1
20020152391 Willins et al. Oct 2002 A1
20020153996 Chan et al. Oct 2002 A1
20020158121 Stanford-Clark Oct 2002 A1
20020158750 Almalik Oct 2002 A1
20020158765 Pape et al. Oct 2002 A1
20020160820 Winkler Oct 2002 A1
20020174348 Ting Nov 2002 A1
20020177460 Beasley et al. Nov 2002 A1
20020178063 Gravelle et al. Nov 2002 A1
20020184208 Kato Dec 2002 A1
20020187746 Cheng et al. Dec 2002 A1
20020191816 Maritzen et al. Dec 2002 A1
20020196963 Bardwell Dec 2002 A1
20020199120 Schmidt Dec 2002 A1
20030022701 Gupta Jan 2003 A1
20030034877 Miller et al. Feb 2003 A1
20030036416 Pattabiraman et al. Feb 2003 A1
20030036425 Kaminkow et al. Feb 2003 A1
20030046228 Berney Mar 2003 A1
20030046552 Hamid Mar 2003 A1
20030048174 Stevens et al. Mar 2003 A1
20030051173 Krueger Mar 2003 A1
20030054868 Paulsen et al. Mar 2003 A1
20030054881 Hedrick et al. Mar 2003 A1
20030055689 Block et al. Mar 2003 A1
20030061172 Robinson Mar 2003 A1
20030063619 Montano et al. Apr 2003 A1
20030079133 Breiter et al. Apr 2003 A1
20030087601 Agam et al. May 2003 A1
20030088441 McNerney May 2003 A1
20030105719 Berger et al. Jun 2003 A1
20030109274 Budka et al. Jun 2003 A1
20030115351 Giobbi Jun 2003 A1
20030115474 Khan et al. Jun 2003 A1
20030117969 Koo et al. Jun 2003 A1
20030117980 Kim et al. Jun 2003 A1
20030120934 Ortiz Jun 2003 A1
20030127511 Kelly et al. Jul 2003 A1
20030128866 McNeal Jul 2003 A1
20030137404 Bonneau, Jr. et al. Jul 2003 A1
20030139190 Steelberg et al. Jul 2003 A1
20030146835 Carter Aug 2003 A1
20030149744 Bierre et al. Aug 2003 A1
20030156742 Witt et al. Aug 2003 A1
20030159040 Hashimoto et al. Aug 2003 A1
20030163388 Beane Aug 2003 A1
20030167207 Berardi et al. Sep 2003 A1
20030169697 Suzuki et al. Sep 2003 A1
20030172028 Abell et al. Sep 2003 A1
20030172037 Jung et al. Sep 2003 A1
20030174839 Yamagata et al. Sep 2003 A1
20030176218 LeMay et al. Sep 2003 A1
20030177102 Robinson Sep 2003 A1
20030186739 Paulsen Oct 2003 A1
20030195842 Reece Oct 2003 A1
20030199267 Iwasa et al. Oct 2003 A1
20030204526 Salehi-Had Oct 2003 A1
20030213840 Livingston et al. Nov 2003 A1
20030223394 Parantainen et al. Dec 2003 A1
20030225703 Angel Dec 2003 A1
20030226031 Proudler et al. Dec 2003 A1
20030233458 Kwon et al. Dec 2003 A1
20040002347 Hoctor et al. Jan 2004 A1
20040015403 Moskowitz et al. Jan 2004 A1
20040022384 Flores et al. Feb 2004 A1
20040029620 Karaoguz Feb 2004 A1
20040029635 Giobbi Feb 2004 A1
20040030764 Birk et al. Feb 2004 A1
20040030894 Labrou et al. Feb 2004 A1
20040035644 Ford et al. Feb 2004 A1
20040039909 Cheng Feb 2004 A1
20040048570 Oba et al. Mar 2004 A1
20040048609 Kosaka Mar 2004 A1
20040059682 Hasurni et al. Mar 2004 A1
20040059912 Zizzi Mar 2004 A1
20040064728 Scheurich Apr 2004 A1
20040068656 Lu Apr 2004 A1
20040073792 Noble et al. Apr 2004 A1
20040081127 Gardner et al. Apr 2004 A1
20040082385 Silva Apr 2004 A1
20040090345 Hitt May 2004 A1
20040098597 Giobbi May 2004 A1
20040114563 Shvodian Jun 2004 A1
20040117644 Colvin Jun 2004 A1
20040123106 D'Angelo Jun 2004 A1
20040123127 Teicher et al. Jun 2004 A1
20040127277 Walker et al. Jul 2004 A1
20040128162 Schlotterbeck et al. Jul 2004 A1
20040128389 Kopchik Jul 2004 A1
20040128500 Cihula et al. Jul 2004 A1
20040128508 Wheeler et al. Jul 2004 A1
20040128519 Klinger Jul 2004 A1
20040129787 Saito et al. Jul 2004 A1
20040132432 Moores et al. Jul 2004 A1
20040137912 Lin Jul 2004 A1
20040158746 Hu et al. Aug 2004 A1
20040166875 Jenkins et al. Aug 2004 A1
20040167465 Mihai et al. Aug 2004 A1
20040181695 Walker Sep 2004 A1
20040193925 Safriel Sep 2004 A1
20040194133 Ikeda et al. Sep 2004 A1
20040203566 Leung Oct 2004 A1
20040203923 Mullen Oct 2004 A1
20040208139 Iwamura Oct 2004 A1
20040209690 Bruzzese et al. Oct 2004 A1
20040209692 Schober et al. Oct 2004 A1
20040214582 Lan et al. Oct 2004 A1
20040215615 Larsson et al. Oct 2004 A1
20040217859 Pucci et al. Nov 2004 A1
20040218581 Cattaneo Nov 2004 A1
20040222877 Teramura et al. Nov 2004 A1
20040230488 Beenau et al. Nov 2004 A1
20040230809 Lowensohn et al. Nov 2004 A1
20040234117 Tibor Nov 2004 A1
20040243519 Perttila et al. Dec 2004 A1
20040246103 Zukowski Dec 2004 A1
20040246950 Parker et al. Dec 2004 A1
20040250074 Kilian-Kehr Dec 2004 A1
20040252012 Beenau Dec 2004 A1
20040252659 Yun et al. Dec 2004 A1
20040253996 Chen et al. Dec 2004 A1
20040254837 Roshkoff Dec 2004 A1
20040255139 Giobbi Dec 2004 A1
20040255145 Chow Dec 2004 A1
20050001028 Zuili Jan 2005 A1
20050002028 Kasapi et al. Jan 2005 A1
20050005136 Chen et al. Jan 2005 A1
20050006452 Aupperle et al. Jan 2005 A1
20050009517 Maes Jan 2005 A1
20050021561 Noonan Jan 2005 A1
20050025093 Yun et al. Feb 2005 A1
20050028168 Marcjan Feb 2005 A1
20050035897 Perl et al. Feb 2005 A1
20050039027 Shapiro Feb 2005 A1
20050040961 Tuttle Feb 2005 A1
20050044372 Aull et al. Feb 2005 A1
20050044387 Ozolins Feb 2005 A1
20050047386 Yi Mar 2005 A1
20050049013 Chang et al. Mar 2005 A1
20050050208 Chatani Mar 2005 A1
20050050324 Corbett et al. Mar 2005 A1
20050054431 Walker et al. Mar 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050055244 Mullan et al. Mar 2005 A1
20050058292 Diorio et al. Mar 2005 A1
20050074126 Stanko Apr 2005 A1
20050076242 Breuer Apr 2005 A1
20050081040 Johnson et al. Apr 2005 A1
20050084137 Kim et al. Apr 2005 A1
20050086115 Pearson Apr 2005 A1
20050086515 Paris Apr 2005 A1
20050089000 Bae et al. Apr 2005 A1
20050090200 Karaoguz et al. Apr 2005 A1
20050091338 de la Huerga Apr 2005 A1
20050091553 Chien et al. Apr 2005 A1
20050094657 Sung et al. May 2005 A1
20050097037 Tibor May 2005 A1
20050105600 Culum et al. May 2005 A1
20050105734 Buer May 2005 A1
20050108164 Salafia, III et al. May 2005 A1
20050109836 Ben-Aissa May 2005 A1
20050109841 Ryan et al. May 2005 A1
20050113070 Okabe May 2005 A1
20050114149 Rodriguez et al. May 2005 A1
20050114150 Franklin May 2005 A1
20050116020 Smolucha et al. Jun 2005 A1
20050117530 Abraham et al. Jun 2005 A1
20050119979 Murashita et al. Jun 2005 A1
20050124294 Wentink Jun 2005 A1
20050125258 Yellin et al. Jun 2005 A1
20050137977 Wankmueller Jun 2005 A1
20050138390 Adams et al. Jun 2005 A1
20050138576 Baumert et al. Jun 2005 A1
20050139656 Amouse Jun 2005 A1
20050141451 Yoon et al. Jun 2005 A1
20050152394 Cho Jul 2005 A1
20050154897 Holloway et al. Jul 2005 A1
20050161503 Remery et al. Jul 2005 A1
20050165684 Jensen et al. Jul 2005 A1
20050166063 Huang Jul 2005 A1
20050167482 Ramachandran et al. Aug 2005 A1
20050169292 Young Aug 2005 A1
20050177716 Ginter et al. Aug 2005 A1
20050180385 Jeong et al. Aug 2005 A1
20050182661 Allard et al. Aug 2005 A1
20050182975 Guo et al. Aug 2005 A1
20050187792 Harper Aug 2005 A1
20050192748 Andric et al. Sep 2005 A1
20050195975 Kawakita Sep 2005 A1
20050200453 Turner et al. Sep 2005 A1
20050201389 Shimanuki et al. Sep 2005 A1
20050203682 Omino et al. Sep 2005 A1
20050203844 Ferguson et al. Sep 2005 A1
20050210270 Rohatgi et al. Sep 2005 A1
20050212657 Simon Sep 2005 A1
20050215233 Perera et al. Sep 2005 A1
20050216313 Claud et al. Sep 2005 A1
20050216639 Sparer et al. Sep 2005 A1
20050218215 Lauden Oct 2005 A1
20050220046 Falck et al. Oct 2005 A1
20050221869 Liu et al. Oct 2005 A1
20050229007 Bolle et al. Oct 2005 A1
20050229240 Nanba Oct 2005 A1
20050242921 Zimmerman et al. Nov 2005 A1
20050243787 Hong et al. Nov 2005 A1
20050249385 Kondo et al. Nov 2005 A1
20050251688 Nanavati et al. Nov 2005 A1
20050253683 Lowe Nov 2005 A1
20050257102 Moyer et al. Nov 2005 A1
20050264416 Maurer Dec 2005 A1
20050268111 Markham Dec 2005 A1
20050269401 Spitzer Dec 2005 A1
20050272403 Ryu et al. Dec 2005 A1
20050281320 Neugebauer Dec 2005 A1
20050282558 Choi et al. Dec 2005 A1
20050284932 Sukeda et al. Dec 2005 A1
20050287985 Balfanz et al. Dec 2005 A1
20050288069 Arunan et al. Dec 2005 A1
20050289473 Gustafson et al. Dec 2005 A1
20060001525 Nitzan et al. Jan 2006 A1
20060014430 Liang et al. Jan 2006 A1
20060022042 Smets et al. Feb 2006 A1
20060022046 Iwamura Feb 2006 A1
20060022800 Krishna et al. Feb 2006 A1
20060025180 Rajkotia et al. Feb 2006 A1
20060026673 Tsuchida Feb 2006 A1
20060030279 Leabman Feb 2006 A1
20060030353 Jun Feb 2006 A1
20060034250 Kim et al. Feb 2006 A1
20060041746 Kirkup et al. Feb 2006 A1
20060046664 Paradiso et al. Mar 2006 A1
20060058102 Nguyen et al. Mar 2006 A1
20060063575 Gatto et al. Mar 2006 A1
20060069814 Abraham et al. Mar 2006 A1
20060072586 Callaway, Jr. et al. Apr 2006 A1
20060074713 Conry et al. Apr 2006 A1
20060076401 Frerking Apr 2006 A1
20060078176 Abiko et al. Apr 2006 A1
20060087407 Stewart et al. Apr 2006 A1
20060089138 Smith et al. Apr 2006 A1
20060097949 Luebke et al. May 2006 A1
20060110012 Ritter May 2006 A1
20060111955 Winter et al. May 2006 A1
20060113381 Hochstein et al. Jun 2006 A1
20060116935 Evans Jun 2006 A1
20060117013 Wada Jun 2006 A1
20060120287 Foti et al. Jun 2006 A1
20060129838 Chen et al. Jun 2006 A1
20060136728 Gentry et al. Jun 2006 A1
20060136742 Giobbi Jun 2006 A1
20060143441 Giobbi Jun 2006 A1
20060144943 Kim Jul 2006 A1
20060156027 Blake Jul 2006 A1
20060158308 McMullen et al. Jul 2006 A1
20060163349 Neugebauer Jul 2006 A1
20060165060 Dua Jul 2006 A1
20060169771 Brookner Aug 2006 A1
20060170530 Nwosu et al. Aug 2006 A1
20060170565 Husak et al. Aug 2006 A1
20060172700 Wu Aug 2006 A1
20060173846 Omae et al. Aug 2006 A1
20060173991 Piikivi Aug 2006 A1
20060183426 Graves et al. Aug 2006 A1
20060183462 Kolehmainen Aug 2006 A1
20060184795 Doradla et al. Aug 2006 A1
20060185005 Graves et al. Aug 2006 A1
20060187029 Thomas Aug 2006 A1
20060190348 Ofer et al. Aug 2006 A1
20060190413 Harper Aug 2006 A1
20060194598 Kim et al. Aug 2006 A1
20060195576 Rinne et al. Aug 2006 A1
20060198337 Hoang et al. Sep 2006 A1
20060200467 Ohmori et al. Sep 2006 A1
20060205408 Nakagawa et al. Sep 2006 A1
20060208066 Finn et al. Sep 2006 A1
20060208853 Kung et al. Sep 2006 A1
20060222042 Teramura et al. Oct 2006 A1
20060226950 Kanou et al. Oct 2006 A1
20060229909 Kaila et al. Oct 2006 A1
20060236373 Graves et al. Oct 2006 A1
20060237528 Bishop et al. Oct 2006 A1
20060238305 Loving et al. Oct 2006 A1
20060268891 Heidari-Bateni et al. Nov 2006 A1
20060273176 Audebert et al. Dec 2006 A1
20060274711 Nelson, Jr. et al. Dec 2006 A1
20060279412 Holland et al. Dec 2006 A1
20060286969 Talmor et al. Dec 2006 A1
20060288095 Torok et al. Dec 2006 A1
20060288233 Kozlay Dec 2006 A1
20060290580 Noro et al. Dec 2006 A1
20060293925 Flom Dec 2006 A1
20060294388 Abraham et al. Dec 2006 A1
20070003111 Awatsu et al. Jan 2007 A1
20070005403 Kennedy et al. Jan 2007 A1
20070007331 Jasper et al. Jan 2007 A1
20070008070 Friedrich Jan 2007 A1
20070008916 Haugli et al. Jan 2007 A1
20070011724 Gonzalez et al. Jan 2007 A1
20070016800 Spottswood et al. Jan 2007 A1
20070019845 Kato Jan 2007 A1
20070029381 Braiman Feb 2007 A1
20070032225 Konicek et al. Feb 2007 A1
20070032288 Nelson et al. Feb 2007 A1
20070033072 Bildirici Feb 2007 A1
20070033150 Nwosu Feb 2007 A1
20070036396 Sugita et al. Feb 2007 A1
20070038751 Jorgensen Feb 2007 A1
20070043594 Lavergne Feb 2007 A1
20070050259 Wesley Mar 2007 A1
20070050398 Mochizuki Mar 2007 A1
20070051794 Glanz et al. Mar 2007 A1
20070051798 Kawai et al. Mar 2007 A1
20070055630 Gauthier et al. Mar 2007 A1
20070060095 Subrahmanya et al. Mar 2007 A1
20070060319 Block et al. Mar 2007 A1
20070064742 Shvodian Mar 2007 A1
20070069852 Mo et al. Mar 2007 A1
20070070040 Chen et al. Mar 2007 A1
20070072636 Worfolk et al. Mar 2007 A1
20070073553 Flinn et al. Mar 2007 A1
20070084523 McLean et al. Apr 2007 A1
20070084913 Weston Apr 2007 A1
20070087682 DaCosta Apr 2007 A1
20070087834 Moser et al. Apr 2007 A1
20070100507 Simon May 2007 A1
20070100939 Bagley et al. May 2007 A1
20070109117 Heitzmann et al. May 2007 A1
20070112676 Kontio et al. May 2007 A1
20070118891 Buer May 2007 A1
20070120643 Lee May 2007 A1
20070132586 Plocher et al. Jun 2007 A1
20070133478 Armbruster et al. Jun 2007 A1
20070136407 Rudelic Jun 2007 A1
20070142032 Balsillie Jun 2007 A1
20070152826 August et al. Jul 2007 A1
20070156850 Corrion Jul 2007 A1
20070157249 Cordray et al. Jul 2007 A1
20070158411 Krieg, Jr. Jul 2007 A1
20070159301 Hirt et al. Jul 2007 A1
20070159994 Brown et al. Jul 2007 A1
20070164847 Crawford et al. Jul 2007 A1
20070169121 Hunt et al. Jul 2007 A1
20070174809 Brown et al. Jul 2007 A1
20070176756 Friedrich Aug 2007 A1
20070176778 Ando et al. Aug 2007 A1
20070180047 Dong et al. Aug 2007 A1
20070187266 Porter et al. Aug 2007 A1
20070192601 Spain et al. Aug 2007 A1
20070194882 Yokota et al. Aug 2007 A1
20070198436 Weiss Aug 2007 A1
20070204078 Boccon-Gibod et al. Aug 2007 A1
20070205860 Jones et al. Sep 2007 A1
20070205861 Nair et al. Sep 2007 A1
20070213048 Trauberg Sep 2007 A1
20070214492 Gopi et al. Sep 2007 A1
20070218921 Lee et al. Sep 2007 A1
20070219926 Kom Sep 2007 A1
20070220272 Campisi et al. Sep 2007 A1
20070229268 Swan et al. Oct 2007 A1
20070245157 Giobbi et al. Oct 2007 A1
20070245158 Giobbi et al. Oct 2007 A1
20070247366 Smith et al. Oct 2007 A1
20070258626 Reiner Nov 2007 A1
20070260883 Giobbi et al. Nov 2007 A1
20070260888 Giobbi et al. Nov 2007 A1
20070266257 Camaisa et al. Nov 2007 A1
20070268862 Singh et al. Nov 2007 A1
20070271194 Walker et al. Nov 2007 A1
20070271433 Takemura Nov 2007 A1
20070277044 Graf et al. Nov 2007 A1
20070280509 Owen et al. Dec 2007 A1
20070285212 Rotzoll Dec 2007 A1
20070285238 Batra Dec 2007 A1
20070288263 Rodgers Dec 2007 A1
20070288752 Chan Dec 2007 A1
20070293155 Liao et al. Dec 2007 A1
20070294755 Dadhia et al. Dec 2007 A1
20070296544 Beenau et al. Dec 2007 A1
20080001783 Cargonja et al. Jan 2008 A1
20080005432 Kagawa Jan 2008 A1
20080008359 Beenau et al. Jan 2008 A1
20080011842 Curry et al. Jan 2008 A1
20080012685 Friedrich et al. Jan 2008 A1
20080012767 Caliri et al. Jan 2008 A1
20080016004 Kurasaki et al. Jan 2008 A1
20080019578 Saito et al. Jan 2008 A1
20080028227 Sakurai Jan 2008 A1
20080028453 Nguyen et al. Jan 2008 A1
20080046366 Bemmel et al. Feb 2008 A1
20080046715 Balazs et al. Feb 2008 A1
20080049700 Shah et al. Feb 2008 A1
20080061941 Fischer et al. Mar 2008 A1
20080071577 Highley Mar 2008 A1
20080072063 Takahashi et al. Mar 2008 A1
20080088475 Martin Apr 2008 A1
20080090548 Ramalingam Apr 2008 A1
20080095359 Schreyer et al. Apr 2008 A1
20080107089 Larsson et al. May 2008 A1
20080109895 Janevski May 2008 A1
20080111752 Lindackers et al. May 2008 A1
20080127176 Lee et al. May 2008 A1
20080129450 Riegebauer Jun 2008 A1
20080148351 Bhatia et al. Jun 2008 A1
20080149705 Giobbi et al. Jun 2008 A1
20080150678 Giobbi et al. Jun 2008 A1
20080156866 McNeal Jul 2008 A1
20080164997 Aritsuka et al. Jul 2008 A1
20080169909 Park et al. Jul 2008 A1
20080186166 Zhou et al. Aug 2008 A1
20080188308 Shepherd et al. Aug 2008 A1
20080195863 Kennedy Aug 2008 A1
20080201768 Koo et al. Aug 2008 A1
20080203107 Conley et al. Aug 2008 A1
20080209571 Bhaskar et al. Aug 2008 A1
20080218416 Handy et al. Sep 2008 A1
20080222701 Saaranen et al. Sep 2008 A1
20080223918 Williams et al. Sep 2008 A1
20080228524 Brown Sep 2008 A1
20080235144 Phillips Sep 2008 A1
20080238625 Rofougaran et al. Oct 2008 A1
20080250388 Meyer et al. Oct 2008 A1
20080251579 Larsen Oct 2008 A1
20080278325 Zimman et al. Nov 2008 A1
20080289030 Poplett Nov 2008 A1
20080289032 Aoki et al. Nov 2008 A1
20080303637 Gelbman et al. Dec 2008 A1
20080313728 Pandrangi et al. Dec 2008 A1
20080314971 Faith Dec 2008 A1
20080316045 Sriharto et al. Dec 2008 A1
20090002134 McAllister Jan 2009 A1
20090013191 Popowski Jan 2009 A1
20090016573 McAfee, II et al. Jan 2009 A1
20090024584 Dharap et al. Jan 2009 A1
20090033464 Friedrich Feb 2009 A1
20090033485 Naeve et al. Feb 2009 A1
20090036164 Rowley Feb 2009 A1
20090041309 Kim et al. Feb 2009 A1
20090045916 Nitzan et al. Feb 2009 A1
20090052389 Qin et al. Feb 2009 A1
20090070146 Haider et al. Mar 2009 A1
20090076849 Diller Mar 2009 A1
20090081996 Duggal et al. Mar 2009 A1
20090096580 Paananen Apr 2009 A1
20090125401 Beenau et al. May 2009 A1
20090140045 Evans Jun 2009 A1
20090157512 King Jun 2009 A1
20090176566 Kelly Jul 2009 A1
20090177495 Abousy et al. Jul 2009 A1
20090199206 Finkenzeller et al. Aug 2009 A1
20090237245 Brinton et al. Sep 2009 A1
20090237253 Neuwirth Sep 2009 A1
20090239667 Rowe et al. Sep 2009 A1
20090253516 Hartmann et al. Oct 2009 A1
20090254971 Herz et al. Oct 2009 A1
20090264712 Baldus et al. Oct 2009 A1
20090310514 Jeon et al. Dec 2009 A1
20090313689 Nyström et al. Dec 2009 A1
20090319788 Zick et al. Dec 2009 A1
20090320118 Müller et al. Dec 2009 A1
20090322510 Berger et al. Dec 2009 A1
20090328182 Malakapalli et al. Dec 2009 A1
20100005526 Tsuji et al. Jan 2010 A1
20100007498 Jackson Jan 2010 A1
20100022308 Hartmann et al. Jan 2010 A1
20100023074 Powers et al. Jan 2010 A1
20100037255 Sheehan et al. Feb 2010 A1
20100062743 Jonsson Mar 2010 A1
20100077214 Jogand-Coulomb et al. Mar 2010 A1
20100117794 Adams et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100169442 Liu et al. Jul 2010 A1
20100169964 Liu et al. Jul 2010 A1
20100172567 Prokoski Jul 2010 A1
20100174911 Isshiki Jul 2010 A1
20100188226 Seder et al. Jul 2010 A1
20100214100 Page Aug 2010 A1
20100277283 Burkart et al. Nov 2010 A1
20100277286 Burkart et al. Nov 2010 A1
20100291896 Corda Nov 2010 A1
20100305843 Yan et al. Dec 2010 A1
20100328033 Kamei Dec 2010 A1
20110072034 Sly et al. Mar 2011 A1
20110072132 Shafer et al. Mar 2011 A1
20110082735 Kannan et al. Apr 2011 A1
20110085287 Ebrom et al. Apr 2011 A1
20110091136 Danch et al. Apr 2011 A1
20110116358 Li et al. May 2011 A9
20110126188 Bemstein et al. May 2011 A1
20110227740 Wohltjen Sep 2011 A1
20110238517 Ramalingam Sep 2011 A1
20110246790 Koh et al. Oct 2011 A1
20110266348 Denniston, Jr. Nov 2011 A1
20110307599 Saretto et al. Dec 2011 A1
20120028609 Hruska Feb 2012 A1
20120030006 Yoder et al. Feb 2012 A1
20120069776 Caldwell et al. Mar 2012 A1
20120086571 Scalisi et al. Apr 2012 A1
20120182123 Butler et al. Jul 2012 A1
20120212322 Idsøe Aug 2012 A1
20120226451 Bacot et al. Sep 2012 A1
20120226565 Drozd Sep 2012 A1
20120226907 Hohberger et al. Sep 2012 A1
20120238287 Scherzer Sep 2012 A1
20120278188 Attar et al. Nov 2012 A1
20120310720 Balsan et al. Dec 2012 A1
20130019295 Park et al. Jan 2013 A1
20130019323 Arvidsson et al. Jan 2013 A1
20130044111 VanGilder et al. Feb 2013 A1
20130111543 Brown et al. May 2013 A1
20130135082 Xian et al. May 2013 A1
20130179201 Fuerstenberg et al. Jul 2013 A1
20130276140 Coifing et al. Oct 2013 A1
20130331063 Cormier et al. Dec 2013 A1
20140074696 Glaser Mar 2014 A1
20140147018 Argue et al. May 2014 A1
20140266604 Masood et al. Sep 2014 A1
20140266713 Sehgal et al. Sep 2014 A1
20150039451 Bonfiglio Feb 2015 A1
20150294293 Signarsson Oct 2015 A1
20150310385 King et al. Oct 2015 A1
20150310440 Hynes et al. Oct 2015 A1
20160210614 Hall Jul 2016 A1
20160300236 Wiley et al. Oct 2016 A1
20170085564 Giobbi et al. Mar 2017 A1
20170091548 Agrawal et al. Mar 2017 A1
20180322718 Qian et al. Nov 2018 A1
20180357475 Honda et al. Dec 2018 A1
20190172281 Einberg et al. Jun 2019 A1
20190260724 Hefetz et al. Aug 2019 A1
Foreign Referenced Citations (18)
Number Date Country
H 10-49604 Feb 1998 JP
0062505 Oct 2000 WO
0062505 Oct 2000 WO
0122724 Mar 2001 WO
0122724 Mar 2001 WO
0135334 May 2001 WO
0175876 Oct 2001 WO
0177790 Oct 2001 WO
0175876 Oct 2001 WO
0177790 Oct 2001 WO
2004010774 Feb 2004 WO
2004038563 May 2004 WO
2005031663 Apr 2005 WO
2005050450 Jun 2005 WO
2005050450 Jun 2005 WO
2005086802 Sep 2005 WO
2005086802 Sep 2005 WO
2007087558 Aug 2007 WO
Non-Patent Literature Citations (130)
Entry
“What is a File?”, Mar. 30, 1998, URL:http://unixhelp.ed.ac.uk/editors/whatisafile.html.accessed Mar. 11, 2010 via http://waybackmachine.org/19980615000000*/http://unixhelp.ed.ac.uk/editors/whatisafile.html.
Yoshida, Junko, “Content Protection Plan Targets Wireless Home Networks,” www.eetimes.com, Jan. 11, 2002, 2 pgs.
“Alliance Activities: Publications: Identity—Smart Card Alliance,” Smart Card Alliance, 1997-2007, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet URL:http://www.smartcardalliance.org/pages/publications-identity.
Antonoff, Michael, “Visiting Video Valley,” Sound Vision, pp. 116 and 118-119, Nov. 2001.
“Applying Biometrics to Door Access,” Security Magazine, Sep. 26, 2002 [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet URL:http://www.securitymagazine.com/CDA/Articles/Technologies/3ae610eaa34d8010VgnVCM100000f932a8c0_.
Beaufour, Allan, and Philippe Bonnet. Personal Servers as Digital Keys. Pervasive Computing and Communications, 2004. Proceedings of the Second IEEE Annual Conference on Publication Year: 2004, Copenhagen: DIKU, pp. 319-328. Internet resource.
BioPay, LLC, “Frequently Asked Questions (FAQs) About BioPay,” BioPay, LLC, 2007, [online] [Retrieved on Jan. 1, 2007] Retrieved from the Internet URL:http://www.biopay.com/faqs-lowes.asp.
“Bluetooth,” www.bluetoothcom, Printed Jlllle I, 2000.
Blum, Jonathan , “Digital Rights Managment May Solve the Napster “Problem””, Technoloav Investor Industrvsector (Oct. 2000),24-27.
Brown, D. “Techniques for Privacy and Authentication in Personal Communication Systems.” IEEE Personal Communications. 2.4 (1995): 6-10.
“Content protection plan targets wireless home networks,” www.eetimes.com, Jan. 11, 2002.
Dagan (Power over Ethernet (PoE) Midspan—The Smart Path to Providing Power for IP Telephony Author: Sharon Dagan, Product Manager, Systems Aug. 2005, PowerDsine Inc.).
Debow, “Credit/Debit Debuts in Midwest Smart Card Test,” Computers in Banking, v6, n11, p. 10, Nov. 1989.
Dennis, Digital Passports Need Not Infringe Civil Liberties, Newsbytes, Dec. 2, 1999, 2 pages.
“Digital Rights Management May Solve the Napster Problem,” Technology Investor, pp. 24-27, Oct. 2000.
Farouk, “Authentication Mechanisms in Grid Computing Environment Comparative Study”, 2012, IEEE, p. 1-6.
Fasca, Chad. “The Circuit”, Electronic News 45(45). (Nov. 8, 1999),20.
“Firecrest Shows How Truly Commercially-Minded Companies Will Exploit the Internet”, Computergram International, Jan. 18, 1996.
“IEEE 802.15.4-2006—Wikipedia, the free encyclopedia,” Wikipedia, Last Modified Mar. 21, 2009. Online. Retrieved on Apr. 30, 2009. Retrieved from the Internet URL:http://en.wikipedia.org/wiki/IEEE_802.15.4-2006.
Katz et al., “Smart Cards and Biometrics in Privacy-Sensitive Secure Personal Identification System”, dated 2002, Smark Card Alliance, p. 1-29.
Kontzer, Tony , “Thomson Bets on Smart Cards for Video Encryption,” www.informationweek.com, Jun. 7, 2001.
Lake, Matt. “Downloading for Dollars”, Sound Vision. (Nov. 2000),137-138.
Lewis, “Sony and Visa in On-Line Entertainment Venture,” New York Times, v145, Nov. 16, 1995.
Liu et al. 2001. “A Practical Guide to Biometric Security Technology”. IT Professional 3, 1 (Jan. 2001), 27-32. DOI=10.1109/6294.899930 http://dx.doi.org/10.1109/6294.899930.
McIver, R. et al., “Identification and Verification Working Together,” BioscryptTM, Aug. 27, 2004, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet URL:http://www.ibia.org/membersadmin/whitepapers/pdf/15/Identification%20and%20Verification%20Working%20Together.pdf.
“Micronas and Thomson multimedia Showcase a New Copy Protection System That Will Drive the Future of Digital Television,” www.micronas.com, Jan. 8, 2002.
Nel, J. J., Kuhn, G. J., 1993 IEEE South African Symposium on Communications and Signal Processing. (Jan. 01, 1993). “Generation of keys for use with the digital signature standard (DSS)”. 6-11.
Nilsson, J. et al., “Match-On-Card for Java Cards,” Precise Biometrics, White Paper, Apr. 2004, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet URL:http://www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20for%20Java%20Cards.pdf.
Nordin, B., “Match-On-Card Technology,” PreciseTM Biometrics, White Paper, Apr. 2004, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet URL:http://www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20technology.pdf.
Paget, Paul, “The Security Behind Secure Extranets,” Enterprise Systems Journal, (Dec. 1999), 4 pgs.
PCT International Search Report and Written Opinion, PCT/US04/38124, dated Apr. 7, 2005, 10 pages.
PCT International Search Report and Written Opinion, PCT/US05/07535, dated Dec. 6, 2005, 6 pages.
PCT International Search Report and Written Opinion, PCT/US05/43447, dated Feb. 22, 2007, 7 pages.
PCT International Search Report and Written Opinion, PCT/US05/46843, dated Mar. 1, 2007, 10 pages.
PCT International Search Report and Written Opinion, PCT/US07/00349, dated Mar. 19, 2008, 10 pages.
PCT International Search Report and Written Opinion, PCT/US07/11103, dated Apr. 23, 2008, 9 pages.
PCT International Search Report and Written Opinion, PCT/US07/11105, dated Oct. 20, 2008, 10 pages.
PCT International Search Report PCT/US07/11104, dated Jun. 26, 2008, 9 pages.
PCT International Search Report, PCT/US07/11102, dated Oct. 3, 2008, 11 pages.
Pope, Oasis Digital Signature Services: Digital Signing without the Headaches, Internet Computing IEEE, vol. 10, 2006, pp. 81-84.
“SAFModuleTM: A Look Into Strong Authentication,” saflink Corporation, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet URL:http://www.ibia.org/membersadmin/whitepapers/pdf/6/SAFmod_WP.pdf.
Sapsford, Jathon, “E-Business: Sound Waves Could Help Ease Web-Fraud Woes,” Wall Street Journal, (Aug. 14, 2000), B1.
“Smart Cards and Biometrics White Paper,” Smart Card Alliance, May 2002, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet URL:http://www.securitymanagement.com/library/smartcard_faqtech0802.pdf.
“Say Hello to Bluetooth”, Bluetooth Web site 4 pages.
Smart Card Alliance Report, “Contactless Technology for Secure Physical Access: Technology and Standsards Choices”, Smart Card Alliance, Oct. 2002, p. 1-48.
“Sound Waves Could Help Ease Web-Fraud Woes”, Wall Street Journal, Aug. 14, 2000.
“Thomson multimedia unveils copy protection proposal designed to provide additional layer of digital content security,” www.thomson-multimedia.com, May 30, 2001. 2 pgs.
Vainio, Juha., “Bluetooth Security”, 2000, Helskinki University of Technology, p. 1-20.
Van Winkle, William, “Bluetooth the King of Connectivity”, Laptop Buyers Guide and Handbook (Jan. 2000), 148-153.
Wade, W., “Using Fingerprints to Make Payments at POS Slowly Gaining Popularity,” Credit Union Journal, International Biometric Group, Apr. 21, 2003, [online] [Retrieved on Jan. 7, 2007] Retrieved from the Internet URL: http://www.biometricgroup.com/in_the_news/04.21.03.html.
Wallace, Bob, “The Internet Unplugged,” InformationWeek, 765(22), (Dec. 13, 1999), 22-24.
Weber, Thomas E., “In the Age of Napster, Protecting Copyright is a Digital Arms Race,” Wall Street Journal, (Jul. 24, 2000), 61.
Micronas, “Micronas and Thomson Multimedia Showcase a New Copy Protection System that Will Drive the Future of Digital Television,” Jan. 8, 2002, retrieved from www.micronas.com/press/pressreleases/printer.php?ID=192 on Mar. 1, 2002, 3 pgs.
Muller, “Desktop Encyclopedia of the Internet,” 1999, Artech House Inc., Norwood, MA, all pages.
National Criminal Justice Reference Service, “Antenna Types,” Dec. 11, 2006, online at http://ncjrs.gov/pdfffiles1/nij/185030b.pdf, retrieved from http://web.archive.org/web/*/http://www.ncjrs.gov/pdffiles1/nij/185030b.pdf on Jan. 12, 2011, 1 pg.
Nel et al., “Generation of Keys for use with the Digital Signature Standard (DSS),” Communications and Signal Processing, Proceedings of the 1993 IEEE South African Symposium, Aug. 6, 1993, pp. 6-11.
Nerd Vittles, “magic.Jack: Could It Be the Asterisk Killer?” Aug. 1, 2007, retrieved from http://nerdvittles.com/index.php?p=187 on or before Oct. 11, 2011, 2 pgs.
Nilsson et al., “Match-on-Card for Java Cards,” Precise Biometrics, white paper, Apr. 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20for%20Java%20Cards.pdf on Jan. 7, 2007, 5 pgs.
Noore, “Highly Robust Biometric Smart Card Design.” IEEE Transactions on Consumer Electronics, vol. 46, No. 4, Nov. 2000, pp. 1059-1063.
Nordin, “Match-on-Card Technology,” Precise Biometrics, white paper, Apr. 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20technology.pdf on Jan. 7, 2007, 7 pgs.
Paget, “The Security Behind Secure Extranets,” Enterprise Systems Journal, vol. 14, No. 12, Dec. 1999, 4 pgs.
Pash, “Automate proximity and location-based computer actions,” Jun. 5, 2007, retrieved from http://lifehacker.com/265822/automate-proximity-and-location+based-computer-actions on or before Oct 11, 2011, 3 pgs.
Pope et al., “Oasis Digital Signature Services: Digital Signing without the Headaches,” IEEE Internet Computing, vol. 10, Sep./Oct. 2006, pp. 81-84.
Saflink Corporation, “SAFModule™: A Look Into Strong Authentication,” white paper, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/6/SAFmod_WP.pdf on Jan. 7, 2007, 8 pgs.
Sapsford, “E-Business: Sound Waves Could Help Ease Web-Fraud Woes,” Wall Street Journal, Aug. 14, 2000, p. B1.
Singh et al. “A Constraint-Based Biometric Scheme on ATM and Swiping Machine.” 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), Mar. 11, 2016, pp. 74-79.
Smart Card Alliance, “Contactless Technology for Secure Physical Access: Technology and Standards Choices,” Smart Card Alliance, Oct. 2002, pp. 1-48.
Smart Card Alliance, “Alliance Activities: Publications: Identity: Identity Management Systems, Smart Cards and Privacy,” 1997-2007, retrieved from www.smartcardalliance.org/pages/publications-identity on Jan. 7, 2007, 3 pgs.
SplashID, “SplashID—Secure Password Manager for PDAs and Smartphones,” Mar. 8, 2007, retrieved from http://www.splashdata.com/splashid/ via http://www.archive.org/ on or before Oct. 11, 2011, 2 pgs.
Srivastava, “Is internet security a major issue with respect to the slow acceptance rate of digital signatures,” Jan. 2, 2005, Computer Law & Security Report, pp. 392-404.
Thomson Multimedia, “Thomson multimedia unveils copy protection proposal designed to provide additional layer of digital content security,” retrieved from www.thompson-multimedia.com/gb/06/c01/010530.htm on Mar. 4, 2002, May 30, 2001, 2 pgs.
Unixhelp, “What is a file?” Apr. 30, 1998, retrieved from unixhelp.ed.ac.uk/editors/whatisafile.html.accessed Mar. 11, 2010 via http://waybackmachine.org/19980615000000*/http://unixhelp.ed.ac.uk/editors/whatisafile.html on Mar. 11, 2011, 1 pg.
Vainio, “Bluetooth Security,” Helsinki University of Technology, May 25, 2000, 17 pgs.
Van Winkle, “Bluetooth: The King of Connectivity,” Laptop Buyer's Guide and Handbook, Jan. 2000, pp. 148-153.
Wade, “Using Fingerprints to Make Payments at POS Slowly Gaining Popularity,” Credit Union Journal, International Biometric Group, Apr. 21, 2003, retrieved from http://www.biometricgroup.com/in_the_news/04.21.03.html on Jan. 7, 2007, 3 pgs.
Wallace, “The Internet Unplugged,” InformationWeek, vol. 765, No. 22, Dec. 13, 1999, pp. 22-24.
Weber, “In the Age of Napster, Protecting Copyright is a Digital Arms Race,” Wall Street Journal, Eastern ed., Jul. 24, 2000, p. B1.
White, “How Computers Work,” Millennium Edition, 1999, Que Corporation, Indianapolis, in, all pages.
Yoshida, “Content protection plan targets wireless home networks,” EE Times, Jan. 11, 2002, retrieved from www.eetimes.com/story/OEG20020111S0060 on Mar. 4, 2002, 2 pgs.
Anonymous, “Applying Biometrics to Door Access,” Security Magazine, Sep. 26, 2002, retrieved from http://www.securitymagazine.com/CDA/Articles/Technologies/3ae610eaa34d8010VgnVCM100000f932a8c0_ on Jan. 7, 2007.
Anonymous, “Firecrest Shows How Truly Commercially-Minded Companies Will Exploit the Internet,” Computergram International, Jan. 18, 1996, 2 pgs.
Anonymous, “IEEE 802.15.4-2006—Wikipedia, the free encyclopedia,” Wikipedia, last modified Mar. 21, 2009, retrieved from http://en.wikipedia.org/wiki/IEEE_802.15.4-2006 on Apr. 30, 2009, 5 pgs.
Antonoff, “Visiting Video Valley,” Sound & Vision, Nov. 2001, pp. 116, 118-119.
Apple et al., “Smart Card Setup Guide,” 2006, downloaded from http://manuals.info.apple.com/en_US/Smart_Card_Setup_Guide.pdf on or before May 3, 2012, 16 pgs.
Balanis, “Antenna Theory: A Review,” Jan. 1992, Proceedings of the IEEE, vol. 80, No. 1, p. 13.
Beaufour, “Personal Servers as Digital Keys,” Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM'04), Mar. 14-17, 2004, pp. 319-328.
Biopay, LLC, “Frequently Asked Questions (FAQs) About BioPay,” at least as early as Jan. 7, 2007, retrieved from http://www.biopay.com/faqs-lowes.asp on Jan. 7, 2007, 5 pgs.
Blueproximity, “BlueProximity—Leave it—it's locked, come back, it's back too . . . ” Aug. 26, 2007, retrieved from http://blueproximity.sourceforge.net/ via http://www.archive.org/ on or before Oct. 11, 2011, 1 pg.
Bluetooth Sig, Inc. “Bluetooth,” www.bluetooth.com, Jun. 1, 2000, 8 pgs.
Bluetooth Sig, Inc., “Say Hello to Bluetooth,” retrieved from www.bluetooth.com, at least as early as Jan. 14, 2005, 4 pgs.
Blum, “Digital Rights Management May Solve the Napster ‘Problem,’” Technology Investor, Oct. 2000, pp. 24-27.
Bohrsatom et al., “Automatically unlock PC when entering proximity,” Dec. 7, 2005, retrieved from http://salling.com/forums/viewtopic.php?t=3190 on or before Oct. 11, 2011, 3 pgs.
Brown, “Techniques for Privacy and Authentication in Personal Communication Systems,” Personal Communications, IEEE, Aug. 1995, vol. 2, No. 4, pp. 6-10.
Chen et al. “On Enhancing Biometric Authentication with Data Protection.” KES2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No. 00TH8516), vol. 1, Aug. 1, 2000, pp. 249-252.
Cisco Systems, Inc., “Antenna Patterns and Their Meaning,” 1992-2007, p. 10.
Costa, “Imation USB 2.0 Micro Hard Drive,” Nov. 22, 2005, retrieved from http://www.pcmag.com/article2/0,2817,1892209,00.asp on or before Oct. 11, 2011, 2 pgs.
Dagan, “Power over Ethernet (PoE) Midspan—The Smart Path to Providign Power for IP Telephony,” Product Manager, Systems, Aug. 2005, Power Dsine Inc., 28 pgs.
Dai et al., “Toward Blockchain-Based Accounting and Assurance”, 2017, Journal of Information Systems, vol. 31, No. 3, Fall 2017, pp. 5-21.
Debow, “Credit/Debit Debuts in Midwest Smart Card Test,” Computers in Banking, vol. 6, No. 11, Nov. 1989, pp. 10-13.
Dennis, “Digital Passports Need Not Infringe Civil Liberties,” Newsbytes, NA, Dec. 2, 1999, 2 pgs.
Derfler, “Flow Networks Work,” Bestseller Edition, 1996, Ziff-Davis Press, Emeryville, CA, all pages.
Farouk et al., “Authentication Mechanisms in Grid Computing Environment: Comparative Study,” IEEE, Oct. 2012, p. 1-6.
Fasca, “S3, Via Formalize Agreement,” Electronic News, The Circuit, 45(45, Nov. 8, 1999), p. 20.
Giobbi, Specification of U.S. Appl. No. 60/824,758, filed Sep. 6, 2006, all pages.
Govindan et al. “Real Time Security Management Using RFID, Biometric and Smart Messages.” 2009 3rd International Conference on Anti-Counterfeiting, Security, and Identification in Communication, Aug. 20, 2009, pp. 282-285.
Gralla, “How the Internet Works,” Millennium Edition, 1999, Que Corporation, Indianapolis, IN, all pages.
Hendron, “File Security, Keychains, Encryptioin, and More with Mac OS X (10.3+)” Apr. 4, 2005, downloaded from http://www.johnhendron.net/documents/OSX_Security.pdf on or before May 3, 2012, 30 pgs.
International Search Report and Written Opinion for International Application No. PCT/USO4/38124, dated Apr. 7, 2005, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US05/07535, dated Dec. 6, 2005, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US05/43447, dated Feb. 22, 2007, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US05/46843, dated Mar. 1, 2007, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/00349, dated Mar. 19, 2008, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11102, dated Oct. 3, 2008, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11103, dated Apr. 23, 2008, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11104, dated Jun. 26, 2008, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11105, dated Oct. 20, 2008, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US08/83060, dated Dec. 29, 2008, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US08/87835, dated Feb. 11, 2009, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US09/34095, dated Mar. 25, 2009, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2009/039943, dated Jun. 1, 2009, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/037609, dated Dec. 9, 2014, 13 pgs.
Jeyaprakash et al. “Secured Smart Card Using Palm Vein Biometric On-Card-Process.” 2008 International Conference on Convergence and Hybrid Information Technology, 2008, pp. 548-551.
Katz et al., “Smart Cards and Biometrics in Privacy-Sensitive Secure Personal Identification System,” May 2002, Smart Card Alliance, p. 1-29.
Kontzer, “Thomson Bets on Smart Cards for Video Encryption,” InformationWeek, Jun. 7, 2001, retrieved from www.informationweek.com/story/IWK20010607S0013 on Mar. 4, 2002, 1 pg.
Lake, “Downloading for Dollars: Who said buying music off the Net would be easy?,” Sound & Vision, Nov. 2000, pp. 137-138.
Lee et al., “Effects of dielectric superstrates on a two-layer electromagnetically coupled patch antenna,” Antennas and Propagation Society International Symposium, Jun. 1989, AP-S. Digest, vol. 2, pp. 26-30, found at http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1347.
Lewis, “Sony and Visa in On-Line Entertainment Venture,” New York Times, vol. 145, Thurs. Ed., Nov. 16, 1995, 1 pg.
Liu et al., “A Practical Guide to Biometric Security Technology,” IT Pro, vol. 3, No. 1, Jan./Feb. 2001, pp. 27-32.
McIver et al., “Identification and Verification Working Together,” Bioscrypt, White Paper: Identification and Verification Working Together, Aug. 27, 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/15/Identification%20and%20Verification%20Working%20Together.pdf on Jan. 7, 2007, 5 pgs.
IEEE Computer Society, “IEEE Std 802.15.4™—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” The Institute of Electrical and Electronics Engineers, Inc., New York, NY, Oct. 1, 2003, 679 pgs.
Provisional Applications (1)
Number Date Country
60992953 Dec 2007 US
Continuations (6)
Number Date Country
Parent 15595739 May 2017 US
Child 16048044 US
Parent 14961645 Dec 2015 US
Child 15595739 US
Parent 14677893 Apr 2015 US
Child 14961645 US
Parent 14171705 Feb 2014 US
Child 14677893 US
Parent 13445825 Apr 2012 US
Child 14171705 US
Parent 12329329 Dec 2008 US
Child 13445825 US