This invention relates generally to direct-contact heat and material exchange. More particularly, we are interested in a combined bubbler and spray tower.
Direct-contact heat and material exchange is a process that is used extensively in a broad spectrum of industries. Many types of direct-contact exchangers exist, including spray towers and bubblers. Spray towers are herein defined to include gas-liquid contactors where droplets are formed by liquid nozzles, drip trays, perforated plates, or other droplet producing apparatuses. Bubblers include gas-liquid contactors with bubble trays, bubble plates, spargers, gas nozzles, bubble caps, and similar bubbling apparatuses.
Spray towers benefit from a relatively low pressure drop and good temperature gradients. Bubblers benefit from high heat flux and space efficiency. An exchanger with the benefits of both spray towers and bubblers would be of significant use in direct-contact exchange. The Applicant is unaware of any process that combines these two direct-contact processes in one unit operation.
U.S. Pat. No. 965,116, to Morison teaches a cooling tower. The present disclosure differs from this prior art disclosure in that the prior art disclosure only utilizes a spray tower. This prior art disclosure is pertinent and may benefit from the devices disclosed herein and is hereby incorporated for reference in its entirety for all that it teaches.
U.S. Pat. No. 2,568,875, to Hartmann teaches a spray-type absorption tower. The present disclosure differs from this prior art disclosure in that the prior art disclosure only utilizes a spray tower. This prior art disclosure is pertinent and may benefit from the devices disclosed herein and is hereby incorporated for reference in its entirety for all that it teaches.
U.S. Pat. No. 5,545,356, to Curtis, et al., teaches an industrial cooling tower. The present disclosure differs from this prior art disclosure in that the prior art disclosure only utilizes a spray tower. This prior art disclosure is pertinent and may benefit from the devices disclosed herein and is hereby incorporated for reference in its entirety for all that it teaches.
U.S. Pat. No. 2292350, to Brandt, teaches a heat exchange apparatus. The present disclosure differs from this prior art disclosure in that the prior art disclosure only utilizes a bubbler tower. This prior art disclosure is pertinent and may benefit from the devices disclosed herein and is hereby incorporated for reference in its entirety for all that it teaches.
U.S. Pat. No. 2,833,527, to Kohl, et al., teaches an industrial cooling tower. The present disclosure differs from this prior art disclosure in that the prior art disclosure only utilizes a bubbler tower. This prior art disclosure is pertinent and may benefit from the devices disclosed herein and is hereby incorporated for reference in its entirety for all that it teaches.
U.S. Pat. No. 5,942,164, to Tran, teaches a combined heat and mass transfer device for improving a separation process. The present disclosure differs from this prior art disclosure in that the prior art disclosure only utilizes a bubbler tower. This prior art disclosure is pertinent and may benefit from the devices disclosed herein and is hereby incorporated for reference in its entirety for all that it teaches.
A process and device for separating a vapor from a gas is disclosed. A direct-contact exchanger comprising a droplet-generating apparatus in a top portion of the exchanger and a bubbling apparatus in a bottom portion of the exchanger is provided. An inlet gas, comprising a vapor, is passed through the bubbling apparatus, forming bubbles in a bottoms liquid. The bottoms liquid strips a portion of the vapor and exchanges heat with the bubbles, producing a product liquid and a middle gas. A barren liquid is passed through the droplet-generating apparatus to form droplets of the barren liquid in the top portion. The droplets descend against the middle gas and strip a second portion of the vapor from and exchange heat with the middle gas, producing the bottoms liquid, which collects in the bottom portion, and a product gas.
The droplet-generating apparatus may comprise one or more nozzles, drip trays, perforated plates, or combinations thereof. The bubbling apparatus may comprise one or more bubble trays, bubble plates, bubble caps, spargers, nozzles, or combinations thereof.
The barren liquid may comprise water, hydrocarbons, liquid ammonia, liquid carbon dioxide, cryogenic liquids, or combinations thereof. The inlet gas may comprise flue gas, syngas, producer gas, natural gas, steam reforming gas, hydrocarbons, light gases, refinery off-gases, organic solvents, steam, ammonia, or combinations thereof. The vapor may comprise carbon dioxide, nitrogen oxide, sulfur dioxide, nitrogen dioxide, sulfur trioxide, hydrogen sulfide, hydrogen cyanide, water, mercury, hydrocarbons, pharmaceuticals, or combinations thereof. The inlet gas may further comprise entrained solids, the entrained solids comprising salts, biomass, dust, ash, or combinations thereof. The bottoms liquid may be a slurry, comprising entrained solids.
A supplemental stream of the barren liquid may be provided to the bottoms liquid in the bottom portion. A supplemental stream of the inlet gas may be provided to the exchanger above the bottoms liquid.
In order that the advantages of the invention will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered limiting of its scope, the invention will be described and explained with additional specificity and detail through use of the accompanying drawings, in which:
It will be readily understood that the components of the present invention, as generally described and illustrated in the Figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the invention, as represented in the Figures, is not intended to limit the scope of the invention, as claimed, but is merely representative of certain examples of presently contemplated embodiments in accordance with the invention.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In some embodiments, the droplet-generating apparatus comprises one or more nozzles, drip trays, perforated plates, or combinations thereof. In some embodiments, the bubbling apparatus comprises one or more bubble trays, bubble plates, bubble caps, spargers, nozzles, or combinations thereof.
In some embodiments, the barren liquid comprises water, hydrocarbons, liquid ammonia, liquid carbon dioxide, cryogenic liquids, or combinations thereof. In some embodiments, the inlet gas comprises flue gas, syngas, producer gas, natural gas, steam reforming gas, hydrocarbons, light gases, refinery off-gases, organic solvents, steam, ammonia, or combinations thereof. In some embodiments, the vapor comprises carbon dioxide, nitrogen oxide, sulfur dioxide, nitrogen dioxide, sulfur trioxide, hydrogen sulfide, hydrogen cyanide, water, mercury, hydrocarbons, pharmaceuticals, or combinations thereof. In some embodiments, the inlet gas further comprises entrained solids, the entrained solids comprising salts, biomass, dust, ash, or combinations thereof. In some embodiments, the bottoms liquid is a slurry, comprising the entrained solids and solid forms of the vapor.
In some embodiments, a supplemental stream of the barren liquid is added to the bottoms liquid in the bottom portion.
Combustion flue gas consists of the exhaust gas from a fireplace, oven, furnace, boiler, steam generator, or other combustor. The combustion fuel sources include coal, hydrocarbons, and biomass. Combustion flue gas varies greatly in composition depending on the method of combustion and the source of fuel. Combustion in pure oxygen produces little to no nitrogen in the flue gas. Combustion using air leads to the majority of the flue gas consisting of nitrogen. The non-nitrogen flue gas consists of mostly carbon dioxide, water, and sometimes unconsumed oxygen. Small amounts of carbon monoxide, nitrogen oxides, sulfur dioxide, hydrogen sulfide, and trace amounts of hundreds of other chemicals are present, depending on the source. Entrained dust and soot will also be present in all combustion flue gas streams. The method disclosed applies to any combustion flue gases. Dried combustion flue gas has had the water removed.
Syngas consists of hydrogen, carbon monoxide, and carbon dioxide.
Producer gas consists of a fuel gas manufactured from materials such as coal, wood, or syngas. It consists mostly of carbon monoxide, with tars and carbon dioxide present as well.
Steam reforming is the process of producing hydrogen, carbon monoxide, and other compounds from hydrocarbon fuels, including natural gas. The steam reforming gas referred to herein consists primarily of carbon monoxide and hydrogen, with varying amounts of carbon dioxide and water.
Light gases include gases with higher volatility than water, including hydrogen, helium, carbon dioxide, nitrogen, and oxygen. This list is for example only and should not be implied to constitute a limitation as to the viability of other gases in the process. A person of skill in the art would be able to evaluate any gas as to whether it has higher volatility than water.
Refinery off-gases comprise gases produced by refining precious metals, such as gold and silver. These off-gases tend to contain significant amounts of mercury and other metals.
This invention was made with government support under DE-FE0028697 awarded by The Department of Energy. The government has certain rights in the invention.