1. Technical Field
The present invention relates in general to earth-boring drill bits and, in particular, to a bit having a combination of rolling and fixed cutters and cutting elements and a method of drilling with same.
2. Description of the Related Art
The success of rotary drilling enabled the discovery of deep oil and gas reservoirs and production of enormous quantities of oil. The rotary rock bit was an important invention that made the success of rotary drilling possible. Only soft earthen formations could be penetrated commercially with the earlier drag bit and cable tool, but the two-cone rock bit, invented by Howard R. Hughes, U.S. Pat. No. 930,759, drilled the caprock at the Spindletop field, near Beaumont, Tex. with relative ease. That venerable invention, within the first decade of the last century, could drill a scant fraction of the depth and speed of the modern rotary rock bit. The original Hughes bit drilled for hours, the modern bit drills for days. Modern bits sometimes drill for thousands of feet instead of merely a few feet. Many advances have contributed to the impressive improvements in rotary rock bits.
In drilling boreholes in earthen formations using rolling-cone or rolling-cutter bits, rock bits having one, two, or three rolling cutters rotatably mounted thereon are employed. The bit is secured to the lower end of a drillstring that is rotated from the surface or by a downhole motor or turbine. The cutters mounted on the bit roll and slide upon the bottom of the borehole as the drillstring is rotated, thereby engaging and disintegrating the formation material to be removed. The rolling cutters are provided with cutting elements or teeth that are forced to penetrate and gouge the bottom of the borehole by weight from the drillstring. The cuttings from the bottom and sides of the borehole are washed away by drilling fluid that is pumped down from the surface through the hollow, rotating drillstring, and are carried in suspension in the drilling fluid to the surface.
Rolling cutter bits dominated petroleum drilling for the greater part of the 20th century. With improvements in synthetic diamond technology that occurred in the 1970s and 1980s, the fixed-cutter, or “drag” bit, became popular again in the latter part of the 20th century. Modern fixed-cutter bits are often referred to as “diamond” or “PDC” (polycrystalline diamond compact) bits and are far removed from the original fixed-cutter bits of the 19th and early 20th centuries. Diamond or PDC bits carry cutting elements comprising polycrystalline diamond compact layers or “tables” formed on and bonded to a supporting substrate, conventionally of cemented tungsten carbide, the cutting elements being arranged in selected locations on blades or other structures on the bit body with the diamond tables facing generally in the direction of bit rotation. Diamond bits have an advantage over rolling-cutter bits in that they generally have no moving parts. The drilling mechanics and dynamics of diamond bits are different from those of rolling-cutter bits precisely because they have no moving parts. During drilling operation, diamond bits are used in a manner similar to that for rolling cutter bits, the diamond bits also being rotated against a formation being drilled under applied weight on bit to remove formation material. Engagement between the diamond cutting elements and the borehole bottom and sides shears or scrapes material from the formation, instead of using a crushing action as is employed by rolling-cutter bits. Rolling-cutter and diamond bits each have particular applications for which they are more suitable than the other; neither type of bit is likely to completely supplant the other in the foreseeable future.
Some earth-boring bits use a combination of one or more rolling cutters and one or more fixed blades. Some of these combination-type drill bits are referred to as hybrid bits. Previous designs of hybrid bits, such as is described in U.S. Pat. No. 4,343,371 to Baker, III, have provided for the rolling cutters to do most of the formation cutting, especially in the center of the hole or bit. Other types of combination bits are known as “core bits,” such as U.S. Pat. No. 4,006,788 to Garner. Core bits typically have truncated rolling cutters that do not extend to the center of the bit and are designed to remove a core sample of formation by drilling down, but around, a solid cylinder of the formation to be removed from the borehole generally intact.
Another type of hybrid bit is described in U.S. Pat. No. 5,695,019 to Shamburger, Jr., wherein the rolling cutters extend almost entirely to the center. Fixed cutter inserts 50 (
A concern with all bits is stable running. Fixed- and rolling-cutter bits have different dynamic behavior during drilling operation and therefore different bit characteristics contribute to stable or unstable running. In a stable configuration, a bit drills generally about its geometric center, which corresponds with the axial center of the borehole, and lateral or other dynamic loadings of the bit and its cutting elements are avoided. Stabilizer pads can be provided to increase the area of contact between the bit body and the sidewall of the borehole to contribute to stable running. Such stabilizer pads tend to be effective in fixed-cutter bits, but can actually contribute to unstable running in rolling-cutter bits because the contact point between the pad and the sidewall of the borehole becomes an instant center of rotation of the bit, causing the bit to run off-center. Commonly assigned U.S. Pat. No. 4,953,641 to Pessier et al. and U.S. Pat. No. 5,996,731 to Pessier et al. disclose stabilizer pad arrangements for rolling-cutter bits that avoid the disadvantages of stabilizer pads. None of the foregoing “hybrid” bit disclosures address issues of stable running.
Although each of these bits is workable for certain limited applications, an improved hybrid earth-boring bit with enhanced stabilization to improve drilling performance would be desirable.
Embodiments of the present invention comprise an improved earth-boring bit of the hybrid variety. One embodiment comprises a bit body configured at its upper extent for connection into a drillstring. At least one fixed blade extends downwardly from the bit body, and has a radially outermost gage surface. A plurality of fixed cutting elements is secured to the fixed blade, preferably in a row at its rotationally leading edge and the radially outermost cutting elements on the radially outermost surface of the fixed blade define the bit and borehole diameter. At least one bit leg is secured to the bit body and a rolling cutter is mounted for rotation on the bit leg. At least one stabilizer pad is disposed between the bit leg and the fixed blade, the stabilizer pad extending radially outward to substantially the gage surface.
According to an embodiment of the present invention, the stabilizer pad is formed integrally with the fixed blade and extends toward the bit leg in a rotationally leading direction
According to an embodiment of the present invention, a portion of the bit leg extends radially outward to substantially the gage surface and the stabilizer pad, the gage surface of each fixed blade, and the portion of the bit leg extending to the gage surface together describe a segment of the circumference of the borehole that equals or exceeds 180 degrees.
According to an embodiment of the present invention, each stabilizer pad has an equal area.
According to an embodiment of the present invention, there may be a plurality of fixed blades and bit legs and associated rolling cutters.
According to an embodiment of the present invention, the outermost radial surfaces of the bit legs and fixed blades are joined or formed integrally to define a stabilizer pad.
Other features and advantages of embodiments of the earth-boring bit according to the present invention will become apparent with reference to the drawings and the detailed description of the invention.
So that the manner in which the features and advantages of the present invention, which will become apparent, are attained and can be understood in more detail, more particular description of embodiments of the invention as briefly summarized above may be had by reference to the embodiments thereof that are illustrated in the appended drawings which form a part of this specification. It is to be noted, however, that the drawings illustrate only some embodiments of the invention and therefore are not to be considered limiting of its scope as the invention may admit to other equally effective embodiments.
Referring to
At least one (two are shown) bit leg 17 extends downwardly from the bit body 13 in the axial direction. The bit body 13 also has a plurality (e.g., also two shown) of fixed blades 19 that extend downwardly in the axial direction. The number of bit legs 17 and fixed blades 19 is at least one but may be more than two. In the illustrated embodiment, bit legs 17 (and the associated rolling cutters) are not directly opposite one another (are about 191 degrees apart measured in the direction of rotation of bit 11), nor are fixed blades 19 (which are about 169 degrees apart measured in the direction of rotation of bit 11). Other spacings and distributions of legs 17 and blades 19 may be appropriate.
A rolling cutter 21 is mounted on a sealed journal bearing that is part of each bit leg 17. According to the illustrated embodiment, the rotational axis of each rolling cutter 21 intersects the axial center 15 of the bit. Unsealed journal or sealed or unsealed rolling-element bearings may be employed in addition to the sealed journal bearing. The radially outermost surface of each rolling cutter 21 (typically called the gage cutter surface in conventional rolling cutter bits), is spaced slightly radially inward from the outermost gage surface of bit body 13, but the radially outermost surfaces of the bit legs may extend to full gage diameter (typically within 0.050-0.250 inch of full gage diameter), so that the bit legs contact the sidewall of the borehole during drilling operation to assist in stabilizing the bit during drilling operation. The radially outermost surface of each bit leg 17 may also be recessed from the full gage diameter, in which case less or no stabilization is effected. In the illustrated embodiment, rolling cutters 21 have no skew or angle and no offset, so that the axis of rotation of each rolling cutter 21 intersects the axial center (central axis) 15 of the bit body 13. Alternatively, the rolling cutters 21 may be provided with skew angle and (or) offset to induce sliding of the rolling cutters 21 as they roll over the borehole bottom.
At least one (a plurality is illustrated) rolling-cutter cutting elements 25 are arranged on the rolling cutters 21 in generally circumferential rows. Rolling-cutter cutting elements 25 need not be arranged in rows, but instead could be “randomly” placed on each rolling cutter 21. Moreover, the rolling-cutter cutting elements may take the form of one or more discs or “kerf-rings,” which would also fall within the meaning of the term rolling-cutter cutting elements.
Tungsten carbide inserts 25, secured by interference fit into bores in the rolling cutter 21 are shown, but a milled- or steel-tooth cutter having hardfaced cutting elements (25) integrally formed with and protruding from the rolling cutter could be used in certain applications and the term “rolling-cutter cutting elements” as used herein encompasses such teeth. The inserts or cutting elements may be chisel-shaped as shown, conical, round, or ovoid, or other shapes and combinations of shapes depending upon the application. Rolling-cutter cutting elements 25 may also be formed of, or coated with, super-abrasive or super-hard materials such as polycrystalline diamond, cubic boron nitride, and the like.
In addition, a plurality of fixed-blade cutting elements 31 are arranged in a row and secured to each of the fixed blades 19 at the rotationally leading edges thereof (leading being defined in the direction of rotation of bit 11). Each of the fixed-blade cutting elements 31 comprises a polycrystalline diamond layer or table on a rotationally leading face of a supporting tungsten carbide substrate, the diamond layer or table providing a cutting face having a cutting edge at a periphery thereof for engaging the formation. The radially outermost cutting elements 31 on the radially outermost surface of each of the fixed blades 19 define the bit and borehole diameter (shown in phantom in
In addition to fixed-blade cutting elements 31 (and backup cutters 33) including polycrystalline diamond tables mounted on tungsten carbide substrates, such term as used herein encompasses thermally stable polycrystalline diamond (TSP) wafers or tables mounted on tungsten carbide substrates, and other, similar super-abrasive or super-hard materials such as cubic boron nitride and diamond-like carbon. Fixed-blade cutting elements 31 may be brazed or otherwise secured in recesses or “pockets” on each blade 19 so that their peripheral or cutting edges on cutting faces are presented to the formation.
The upper, radially outermost (gage) surface of each fixed blade 19 extends to full gage diameter (typically within 0.050-0.250 inch of full gage diameter) and serves as a stabilizer. This surface may be provided with a plurality of flat-topped inserts 41 that may or may not be configured with relatively sharp cutting edges. Without sharp cutting edges, inserts 41 serve to resist wear of the upper portion of each fixed blade. With sharp cutting edges, as disclosed in commonly assigned U.S. Pat. Nos. 5,287,936, 5,346,026, 5,467,836, 5,655,612, and 6,050,354, inserts 41 assist with reaming and maintaining the gage diameter of the borehole. Inserts 41 may be formed of tungsten carbide or other hard metal, alone or in combination with polycrystalline or synthetic or natural diamond or other super-abrasive material. Super-abrasive materials are preferred, but not necessary, if inserts 41 are provided with sharp cutting edges for active cutting of the sidewall of the borehole. Inserts may be brazed or interference fit, or otherwise conventionally secured to fixed blades 19 (and may also be provided on the radially outermost surfaces of bit legs 17).
According to the illustrated embodiment, at least a portion of at least one of the fixed cutting elements 31 is located near or at the axial center 15 of the bit body 13 and thus is positioned to remove formation material at the axial center of the borehole (typically, the axial center of the bit will generally coincide with the center of the borehole being drilled, with some minimal variation due to lateral bit movement during drilling). In a 7⅞ inch bit as illustrated, at least one of the fixed cutting elements 31 has its laterally innermost edge tangent or in close proximity to the axial center 15 of the bit 11. While this center-cutting feature is a preferred embodiment, the teachings of the present invention are equally applicable to hybrid bits lacking this feature.
A stabilizer pad 51, 151 is located on the bit body 13 between each bit leg 17 and fixed blade 19, preferably rotationally leading or ahead of each fixed blade 19 and midway between blade 19 and bit leg 17. Each stabilizer pad extends radially outwardly to the full gage diameter (again, typically within 0.050-0.250 inch) of bit 11 to ensure that each pad 51, 151 remains in contact with the sidewall of the borehole during drilling operation to effect stabilization of the bit. As shown in
Each pad 51, 151 has a borehole sidewall engaging surface formed as described in commonly assigned U.S. Pat. No. 5,996,713 to Pessier, et al. Additionally, the area (exposed to the sidewall of the borehole being drilled) of each pad 51, 151 should be equal, so that no single pad has a greater area of contact than any other pad and the pads are therefore less likely to become an instant center of rotation of the bit 11.
As shown in
Each stabilizer pad 51, 151, 251 (and the portions of each bit leg 17, 217, 317 and fixed blade 19, 219, 319 that extend radially outwardly to the full gage diameter of the bit 11) describes a segment or angular portion (A, B, C, D, E, and F, in
By way of example, the segments or angular portions described by various stabilizer pads 51, full-gage bit legs 17, and full-gage blades 19 in
A=D=34°
B=E=36°
C=F=24°
The segments or angular portions described by full-gage bit legs 17 and blades 19 with integrated stabilizer pads 151 in
A′=C′=34°
B′=D′=66°
The segments or angular portions described by full-gage bit legs 217 and blades 219 in
A″=C″=34°
B″=D″=81°
In the case of the embodiment of
A′″=B′″=96°
The invention has several advantages and includes providing a hybrid drill bit that is stable in drilling operation while avoiding off-center running. A stable-running bit avoids damage to cutting elements that could cause premature failure of the bit.
While the invention has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention as hereinafter claimed, and legal equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
930759 | Hughes | Aug 1909 | A |
1388424 | George | Sep 1921 | A |
1394769 | Sorensen | Oct 1921 | A |
1519641 | Thompson | Dec 1924 | A |
1816568 | Carlson | Jul 1931 | A |
1821474 | Mercer | Sep 1931 | A |
1874066 | Scott et al. | Aug 1932 | A |
1879127 | Schlumpf | Sep 1932 | A |
1896243 | Macdonald | Feb 1933 | A |
1932487 | Scott | Oct 1933 | A |
2030722 | Scott | Feb 1936 | A |
2117481 | Howard et al. | May 1938 | A |
2119618 | Zublin | Jun 1938 | A |
2198849 | Waxier | Apr 1940 | A |
2216894 | Stancliff | Oct 1940 | A |
2244537 | Kammerer | Jun 1941 | A |
2297157 | McClinton | Sep 1942 | A |
2320136 | Kammerer | May 1943 | A |
2320137 | Kammerer | May 1943 | A |
2380112 | Kinnear | Jul 1945 | A |
RE23416 | Kinnear | Oct 1951 | E |
2719026 | Boice | Sep 1955 | A |
2815932 | Wolfram | Dec 1957 | A |
2994389 | Bus, Sr. | Aug 1961 | A |
3010708 | Hlinsky et al. | Nov 1961 | A |
3050293 | Hlinsky | Aug 1962 | A |
3055443 | Edwards | Sep 1962 | A |
3066749 | Hildebrandt | Dec 1962 | A |
3126066 | Williams, Jr. | Mar 1964 | A |
3126067 | Schumacher, Jr. | Mar 1964 | A |
3174564 | Morlan | Mar 1965 | A |
3239431 | Raymond | Mar 1966 | A |
3250337 | Demo | May 1966 | A |
3269469 | Kelly, Jr. | Aug 1966 | A |
3387673 | Thompson | Jun 1968 | A |
3424258 | Nakayama | Jan 1969 | A |
3583501 | Aalund | Jun 1971 | A |
RE28625 | Cunningham | Nov 1975 | E |
4006788 | Garner | Feb 1977 | A |
4140189 | Garner | Feb 1979 | A |
4190126 | Kabashima | Feb 1980 | A |
4270812 | Thomas | Jun 1981 | A |
4285409 | Allen | Aug 1981 | A |
4293048 | Kloesel, Jr. | Oct 1981 | A |
4320808 | Garrett | Mar 1982 | A |
4343371 | Baker, III et al. | Aug 1982 | A |
4359112 | Garner et al. | Nov 1982 | A |
4369849 | Parrish | Jan 1983 | A |
4386669 | Evans | Jun 1983 | A |
4410284 | Herrick | Oct 1983 | A |
4428687 | Zahradnik | Jan 1984 | A |
4444281 | Schumacher, Jr. et al. | Apr 1984 | A |
4527637 | Bodine | Jul 1985 | A |
4572306 | Dorosz | Feb 1986 | A |
4657091 | Higdon | Apr 1987 | A |
4664705 | Horton et al. | May 1987 | A |
4690228 | Voelz et al. | Sep 1987 | A |
4706765 | Lee et al. | Nov 1987 | A |
4726718 | Meskin et al. | Feb 1988 | A |
4727942 | Galle et al. | Mar 1988 | A |
4738322 | Hall et al. | Apr 1988 | A |
4765205 | Higdon | Aug 1988 | A |
4874047 | Hixon | Oct 1989 | A |
4875532 | Langford, Jr. | Oct 1989 | A |
4892159 | Holster | Jan 1990 | A |
4915181 | Labrosse | Apr 1990 | A |
4932484 | Warren et al. | Jun 1990 | A |
4936398 | Auty et al. | Jun 1990 | A |
4943488 | Sung et al. | Jul 1990 | A |
4953641 | Pessier | Sep 1990 | A |
4976324 | Tibbitts | Dec 1990 | A |
4984643 | Isbell et al. | Jan 1991 | A |
4991671 | Pearce et al. | Feb 1991 | A |
5016718 | Tandberg | May 1991 | A |
5027912 | Juergens | Jul 1991 | A |
5028177 | Meskin et al. | Jul 1991 | A |
5030276 | Sung et al. | Jul 1991 | A |
5049164 | Horton et al. | Sep 1991 | A |
5116568 | Sung et al. | May 1992 | A |
5145017 | Holster et al. | Sep 1992 | A |
5176212 | Tandberg | Jan 1993 | A |
5224560 | Fernandez | Jul 1993 | A |
5238074 | Tibbitts et al. | Aug 1993 | A |
5287936 | Grimes et al. | Feb 1994 | A |
5289889 | Gearhart et al. | Mar 1994 | A |
5337843 | Torgrimsen et al. | Aug 1994 | A |
5346026 | Pessier et al. | Sep 1994 | A |
5351770 | Cawthorne et al. | Oct 1994 | A |
5361859 | Tibbitts | Nov 1994 | A |
5429200 | Blackman et al. | Jul 1995 | A |
5439068 | Huffstutler et al. | Aug 1995 | A |
5452771 | Blackman et al. | Sep 1995 | A |
5467836 | Grimes et al. | Nov 1995 | A |
5472057 | Winfree | Dec 1995 | A |
5472271 | Bowers et al. | Dec 1995 | A |
5513715 | Dysart | May 1996 | A |
5518077 | Blackman et al. | May 1996 | A |
5547033 | Campos, Jr. | Aug 1996 | A |
5553681 | Huffstutler et al. | Sep 1996 | A |
5558170 | Thigpen et al. | Sep 1996 | A |
5560440 | Tibbitts | Oct 1996 | A |
5570750 | Williams | Nov 1996 | A |
5593231 | Ippolito | Jan 1997 | A |
5606895 | Huffstutler | Mar 1997 | A |
5624002 | Huffstutler | Apr 1997 | A |
5641029 | Beaton et al. | Jun 1997 | A |
5644956 | Blackman et al. | Jul 1997 | A |
5655612 | Grimes et al. | Aug 1997 | A |
D384084 | Huffstutler et al. | Sep 1997 | S |
5695018 | Pessier et al. | Dec 1997 | A |
5695019 | Shamburger, Jr. | Dec 1997 | A |
5755297 | Young et al. | May 1998 | A |
5862871 | Curlett | Jan 1999 | A |
5868502 | Cariveau et al. | Feb 1999 | A |
5873422 | Hansen et al. | Feb 1999 | A |
5941322 | Stephenson et al. | Aug 1999 | A |
5944125 | Byrd | Aug 1999 | A |
5967246 | Caraway et al. | Oct 1999 | A |
5979576 | Hansen et al. | Nov 1999 | A |
5988303 | Arfele | Nov 1999 | A |
5992542 | Rives | Nov 1999 | A |
5996713 | Pessier et al. | Dec 1999 | A |
6092613 | Caraway et al. | Jul 2000 | A |
6095265 | Alsup | Aug 2000 | A |
6109375 | Tso | Aug 2000 | A |
6116357 | Wagoner et al. | Sep 2000 | A |
6173797 | Dykstra et al. | Jan 2001 | B1 |
6220374 | Crawford | Apr 2001 | B1 |
6241034 | Steinke et al. | Jun 2001 | B1 |
6241036 | Lovato et al. | Jun 2001 | B1 |
6250407 | Karlsson | Jun 2001 | B1 |
6260635 | Crawford | Jul 2001 | B1 |
6279671 | Panigrahi et al. | Aug 2001 | B1 |
6283233 | Lamine et al. | Sep 2001 | B1 |
6296069 | Lamine et al. | Oct 2001 | B1 |
RE37450 | Deken et al. | Nov 2001 | E |
6345673 | Siracki | Feb 2002 | B1 |
6360831 | Akesson et al. | Mar 2002 | B1 |
6367568 | Steinke et al. | Apr 2002 | B2 |
6386302 | Beaton | May 2002 | B1 |
6401844 | Doster et al. | Jun 2002 | B1 |
6405811 | Borchardt | Jun 2002 | B1 |
6408958 | Isbell et al. | Jun 2002 | B1 |
6415687 | Saxman | Jul 2002 | B2 |
6439326 | Huang et al. | Aug 2002 | B1 |
6446739 | Richman et al. | Sep 2002 | B1 |
6450270 | Saxton | Sep 2002 | B1 |
6460635 | Kalsi et al. | Oct 2002 | B1 |
6474424 | Saxman | Nov 2002 | B1 |
6510906 | Richert et al. | Jan 2003 | B1 |
6510909 | Portwood et al. | Jan 2003 | B2 |
6527066 | Rives | Mar 2003 | B1 |
6533051 | Singh et al. | Mar 2003 | B1 |
6544308 | Griffin et al. | Apr 2003 | B2 |
6562462 | Griffin et al. | May 2003 | B2 |
6568490 | Tso et al. | May 2003 | B1 |
6581700 | Curlett et al. | Jun 2003 | B2 |
6585064 | Griffin et al. | Jul 2003 | B2 |
6589640 | Griffin et al. | Jul 2003 | B2 |
6592985 | Griffin et al. | Jul 2003 | B2 |
6601661 | Baker et al. | Aug 2003 | B2 |
6601662 | Matthias et al. | Aug 2003 | B2 |
6684967 | Mensa-Wilmot et al. | Feb 2004 | B2 |
6729418 | Cariveau et al. | May 2004 | B2 |
6739214 | Griffin et al. | May 2004 | B2 |
6742607 | Beaton | Jun 2004 | B2 |
6745858 | Estes | Jun 2004 | B1 |
6749033 | Griffin et al. | Jun 2004 | B2 |
6797326 | Griffin et al. | Sep 2004 | B2 |
6823951 | Yong et al. | Nov 2004 | B2 |
6843333 | Richert et al. | Jan 2005 | B2 |
6861098 | Griffin et al. | Mar 2005 | B2 |
6861137 | Griffin et al. | Mar 2005 | B2 |
6878447 | Griffin et al. | Apr 2005 | B2 |
6883623 | McCormick et al. | Apr 2005 | B2 |
6902014 | Estes | Jun 2005 | B1 |
6986395 | Chen | Jan 2006 | B2 |
6988569 | Lockstedt et al. | Jan 2006 | B2 |
7096978 | Dykstra et al. | Aug 2006 | B2 |
7111694 | Beaton | Sep 2006 | B2 |
7137460 | Slaughter, Jr. et al. | Nov 2006 | B2 |
7152702 | Bhome et al. | Dec 2006 | B1 |
7197806 | Boudreaux et al. | Apr 2007 | B2 |
7198119 | Hall et al. | Apr 2007 | B1 |
7234550 | Azar et al. | Jun 2007 | B2 |
7270196 | Hall | Sep 2007 | B2 |
7281592 | Runia et al. | Oct 2007 | B2 |
7320375 | Singh | Jan 2008 | B2 |
7350568 | Mandal et al. | Apr 2008 | B2 |
7350601 | Belnap et al. | Apr 2008 | B2 |
7360612 | Chen et al. | Apr 2008 | B2 |
7377341 | Middlemiss et al. | May 2008 | B2 |
7387177 | Zahradnik et al. | Jun 2008 | B2 |
7392862 | Zahradnik et al. | Jul 2008 | B2 |
7398837 | Hall et al. | Jul 2008 | B2 |
7416036 | Forstner et al. | Aug 2008 | B2 |
7435478 | Keshavan | Oct 2008 | B2 |
7462003 | Middlemiss | Dec 2008 | B2 |
7473287 | Belnap et al. | Jan 2009 | B2 |
7493973 | Keshavan et al. | Feb 2009 | B2 |
7517589 | Eyre | Apr 2009 | B2 |
7533740 | Zhang et al. | May 2009 | B2 |
7568534 | Griffin et al. | Aug 2009 | B2 |
7621346 | Trinh et al. | Nov 2009 | B1 |
7621348 | Hoffmaster et al. | Nov 2009 | B2 |
7703556 | Smith et al. | Apr 2010 | B2 |
7703557 | Durairajan et al. | Apr 2010 | B2 |
7819208 | Pessier et al. | Oct 2010 | B2 |
7836975 | Chen et al. | Nov 2010 | B2 |
7845435 | Zahradnik et al. | Dec 2010 | B2 |
7845437 | Bielawa et al. | Dec 2010 | B2 |
7847437 | Chakrabarti et al. | Dec 2010 | B2 |
20010000885 | Beuershausen et al. | May 2001 | A1 |
20020092684 | Singh et al. | Jul 2002 | A1 |
20020100618 | Watson et al. | Aug 2002 | A1 |
20020108785 | Slaughter, Jr. et al. | Aug 2002 | A1 |
20040099448 | Fielder et al. | May 2004 | A1 |
20040238224 | Runia | Dec 2004 | A1 |
20050087370 | Ledgerwood, III et al. | Apr 2005 | A1 |
20050103533 | Sherwood et al. | May 2005 | A1 |
20050178587 | Witman, IV et al. | Aug 2005 | A1 |
20050183892 | Oldham et al. | Aug 2005 | A1 |
20050263328 | Middlemiss | Dec 2005 | A1 |
20050273301 | Huang | Dec 2005 | A1 |
20060032674 | Chen et al. | Feb 2006 | A1 |
20060032677 | Azar et al. | Feb 2006 | A1 |
20060162969 | Belnap et al. | Jul 2006 | A1 |
20060196699 | Estes et al. | Sep 2006 | A1 |
20060254830 | Radtke | Nov 2006 | A1 |
20060266558 | Middlemiss et al. | Nov 2006 | A1 |
20060266559 | Keshavan et al. | Nov 2006 | A1 |
20060278442 | Kristensen | Dec 2006 | A1 |
20060283640 | Estes et al. | Dec 2006 | A1 |
20070029114 | Middlemiss | Feb 2007 | A1 |
20070062736 | Cariveau et al. | Mar 2007 | A1 |
20070079994 | Middlemiss | Apr 2007 | A1 |
20070187155 | Middlemiss | Aug 2007 | A1 |
20070221417 | Hall et al. | Sep 2007 | A1 |
20080066970 | Zahradnik et al. | Mar 2008 | A1 |
20080264695 | Zahradnik et al. | Oct 2008 | A1 |
20080296068 | Zahradnik et al. | Dec 2008 | A1 |
20090114454 | Belnap et al. | May 2009 | A1 |
20090120693 | McClain et al. | May 2009 | A1 |
20090126998 | Zahradnik et al. | May 2009 | A1 |
20090159338 | Buske | Jun 2009 | A1 |
20090159341 | Pessier et al. | Jun 2009 | A1 |
20090166093 | Pessier et al. | Jul 2009 | A1 |
20090178855 | Zhang et al. | Jul 2009 | A1 |
20090183925 | Zhang et al. | Jul 2009 | A1 |
20090272582 | McCormick et al. | Nov 2009 | A1 |
20100224417 | Zahradnik et al. | Sep 2010 | A1 |
20100276205 | Oxford et al. | Nov 2010 | A1 |
20100288561 | Zahradnik et al. | Nov 2010 | A1 |
20100320001 | Kulkarni | Dec 2010 | A1 |
20110024197 | Centala et al. | Feb 2011 | A1 |
20110079440 | Buske et al. | Apr 2011 | A1 |
20110079441 | Buske et al. | Apr 2011 | A1 |
20110079442 | Buske et al. | Apr 2011 | A1 |
20110079443 | Buske et al. | Apr 2011 | A1 |
20110162893 | Zhang | Jul 2011 | A1 |
Number | Date | Country |
---|---|---|
13 01 784 | Aug 1969 | DE |
0225101 | Jun 1987 | EP |
0157278 | Nov 1989 | EP |
0391683 | Jan 1996 | EP |
0874128 | Oct 1998 | EP |
2089187 | Aug 2009 | EP |
2183694 | Jun 1987 | GB |
2000080878 | Mar 2000 | JP |
2001159289 | Jun 2001 | JP |
1 331 988 | Aug 1987 | SU |
8502223 | May 1985 | WO |
2008124572 | Oct 2008 | WO |
Entry |
---|
Beijer, G., International Preliminary Report on Patentability for International Patent Application No. PCT/US2009/042514, The International Bureau of WIPO, dated Nov. 2, 2010. |
Jung Hye Lee, International Search Report for International Patent Application No. PCT/US2009/042514, Korean Intellectual Property Office, dated Nov. 27, 2009. |
Jung Hye Lee, Written Opinion for International Patent Application No. PCT/US2009/042514, Korean Intellectual Property Office, dated Nov. 27, 2009. |
Kang, K.H., International Search Report for International Patent Application No. PCT/US2010/033513, Korean Intellectual Property Office, dated Jan. 10, 2011. |
Kang, K.H., Written Opinion for International Patent Application No. PCT/US2010/033513, Korean Intellectual Property Office, dated Jan. 10, 2011. |
Kang, M.S., International Search Report for International Patent Application No. PCT/US2010/032511, Korean Intellectual Property Office, dated Jan. 17, 2011. |
Kang, M.S., Written Opinion for International Patent Application No. PCT/US2010/032511, Korean Intellectual Property Office, dated Jan. 17, 2011. |
Choi, J.S., International Search Report for International Patent Application No. PCT/US2010/039100, Korean Intellectual Property Office, dated Jan. 25, 2011. |
Choi, J.S., Written Opinion for International Patent Application No. PCT/US2010/039100, Korean Intellectual Property Office, dated Jan. 25, 2011. |
Baharlou, S., International Preliminary Report on Patentability, The International Bureau of WIPO, dated Jan. 25, 2011. |
Sung Joon Lee, International Search Report for International Patent Application No. PCT/US2009/050672, Korean Intellectual Property Office, dated Mar. 3, 2010. |
Sung Joon Lee, Written Opinion for International Patent Application No. PCT/US2009/050672, Korean Intellectual Property Office, dated Mar. 3, 2010. |
Pessier, R. and Damschen, M., “Hybrid Bits Offer Distinct Advantages in Selected Roller Cone and PDC Bit Applications,” IADC/SPE Drilling Conference and Exhibition, Feb. 2-4, 2010, New Orleans. |
S.H. Kim, International Search Report for International Patent Application No. PCT/US2009/067969, Korean Intellectual Property Office, dated May 25, 2010. |
S.H. Kim, Written Opinion for International Patent Application No. PCT/US2009/067969, Korean Intellectual Property Office, dated May 25, 2010. |
International Search Report for corresponding International patent application No. PCT/US2008/083532. |
Written Opinion for corresponding International patent application No. PCT/US2008/083532. |
Sheppard, N. and Dolly, B. “Rock Drilling—Hybrid Bit Success for Syndax3 Pins.” Industrial Diamond Review, Jun. 1993, pp. 309-311. |
Tomlinson, P. and Clark, I. “Rock Drilling—Syndax3 Pins—New Concepts in PCD Drilling.” Industrial Diamond Review, Mar. 1992, pp. 109-114. |
Williams, J. and Thompson, A. “An Analysis of the Performance of PDC Hybrid Drill Bits.” SPE/IADC 16117, SPE/IADC Drilling Conference, Mar. 1987, pp. 585-594. |
Warren, T. and Sinor L. “PDC Bits: What's Needed to Meet Tomorrow's Challenge.” SPE 27978, University of Tulsa Centennial Petroleum Engineering Symposium, Aug. 1994, pp. 207-214. |
Smith Services. “Hole Opener—Model 6980 Hole Opener.” [retrieved from the Internet on May 7, 2008 using <URL: http://www.siismithservices.com/b—products/product—page.asp?ID=589>]. |
Mills Machine Company, Inc. “Rotary Hole Openers—Section 8.” [retrieved from the Internet on Apr. 27, 2009 using <URL: http://www.millsmachine.com/pages/home—page/mills—catalog/cat—holeopen/cat—holeopen.pdf>]. |
Ersoy, A. and Waller, M. “Wear characteristics of PDC pin and hybrid core bits in rock drilling.” Wear 188, Elsevier Science S.A., Mar. 1995, pp. 150-165. |
R. Buske, C. Rickabaugh, J. Bradford, H. Lukasewich and J. Overstreet. “Performance Paradigm Shift: Drilling Vertical and Directional Sections Through Abrasive Formations with Roller Cone Bits.” Society of Petroleum Engineers—SPE 114975, CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Canada, Jun. 16-19, 2008. |
Dr. M. Wells, T. Marvel and C. Beuershausen. “Bit Balling Mitigation in PDC Bit Design.” International Association of Drilling Contractors/Society of Petroleum Engineers—IADC/SPE 114673, IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Indonesia, Aug. 25-27, 2008. |
B. George, E. Grayson, R. Lays, F. Felderhoff, M. Doster and M. Holmes. “Significant Cost Savings Achieved Through the Use of PDC Bits in Compressed Air/Foam Applications.” Society of Petroleum Engineers—SPE 116118, 2008 SPE Annual Technical Conference and Exhibition, Denver, Colorado, Sep. 21-24, 2008. |
Georgescu, M., International Search Report for International Patent Application No. PCT/US2010/051019, dated Jun. 6, 2011, European Patent Office. |
Georgescu, M., Written Opinion for International Patent Application No. PCT/US2010/051019, dated Jun. 6, 2011, European Patent Office. |
Georgescu, M., International Search Report for International Patent Application No. PCT/US2010/051020, dated Jun. 1, 2011, European Patent Office. |
Georgescu, M., Written Opinion for International Patent Application No. PCT/US2010/051020, dated Jun. 1, 2011, European Patent Office. |
Georgescu, M., International Search Report for International Patent Application No. PCT/US2010/051017, dated Jun. 8, 2011, European Patent Office. |
Georgescu, M., Written Opinion for International Patent Application No. PCT/US2010/051017, dated Jun. 8, 2011, European Patent Office. |
Georgescu, M., International Search Report for International Patent Application No. PCT/US2010/051014, dated Jun. 9, 2011, European Patent Office. |
Georgescu, M., Written Opinion for International Patent Application No. PCT/US2010/051014, dated Jun. 9, 2011, European Patent Office. |
Georgescu, M., International Search Report for International Patent Application No. PCT/US2010/050631, dated Jun. 10, 2011, European Patent Office. |
Georgescu, M., Written Opinion for International Patent Application No. PCT/US2010/050631, dated Jun. 10, 2011, European Patent Office. |
Becamel, P., International Preliminary Report on Patentability, dated Jan. 5, 2012, the International Bureau of WIPO, Switzerland. |
Number | Date | Country | |
---|---|---|---|
20100288561 A1 | Nov 2010 | US |