Hybrid drives are conventional disk drives augmented with a non-volatile semiconductor memory (NVSM) such as a flash which helps improve certain aspects of the disk drive. For example, the non-volatile semiconductor memory may store boot data in order to expedite the boot operation of a host computer. Another use of a NVSM may be to store frequently accessed data and/or non-sequential data for which the access time is typically much shorter than the disk (which suffers from mechanical latency including seek and rotational latency). Other policies may reduce write amplification of the NVSM in order to maximize its longevity, such as storing frequently written data to the disk (or data having a write/read ratio that exceeds a predetermined threshold).
The hybrid drive may spin-up the disk for any suitable reason, such as when the hybrid drive is powered on or reset wherein the control circuitry executes a boot operation. In another embodiment, the hybrid drive may spin-up the disk when exiting a low power mode. In one embodiment, the control circuitry may begin the spin-up operation immediately as part of a boot operation or when exiting a low power mode, and in another embodiment, the control circuitry may delay spinning up the disk. For example, in one embodiment the control circuitry may delay spinning up the disk until it predicts that the disk will be needed based on the space available in the NVSM write cache or the pattern of access commands that indicates a cache miss is imminent. The control circuitry may begin spinning up the disk using the first spin-up profile, but if the NVSM write cache fills up too fast or the cache miss prediction is too late and access to the disk is needed sooner, the control circuitry may finish spinning up the disk using the second spin-up profile.
The control circuitry may switch to the second spin-up profile based on any suitable cache event. In an embodiment shown in the flow diagram of
In one embodiment, if the write cache in the NVSM is full (or near full) the control circuitry may flush the write cache to the disk and then configure the operating mode into a low power mode so that the control circuitry will begin the next spin-up operation using the first spin-up profile. In another embodiment, the NVSM may wear out over time such that the NVSM may be disabled or converted to a read-only device. When this happens, the control circuitry may configure the operating mode of the hybrid drive so that the control circuitry selects the second spin-up profile when spinning up the disk. This is because the NVSM can no longer be used to service write commands which also increases the probability of a cache miss for read commands. Therefore, it is more likely access to the disk will be necessary (e.g., during a boot operation) and so the disk is spun up faster to decrease the access time.
In another embodiment of the present invention, the control circuitry may spin down the disk when entering a low power mode. The disk may be spun down completely, or spun down to a lower standby speed as shown in
Any suitable control circuitry may be employed to implement the flow diagrams in the embodiments of the present invention, such as any suitable integrated circuit or circuits. For example, the control circuitry may be implemented within a read channel integrated circuit, or in a component separate from the read channel, such as a disk controller and/or NVSM controller, or certain steps described above may be performed by a read channel and others by a disk controller and/or NVSM controller. In one embodiment, the read channel and controllers are implemented as separate integrated circuits, and in an alternative embodiment they are fabricated into a single integrated circuit or system on a chip (SOC). In addition, the control circuitry may include a suitable preamp circuit implemented as a separate integrated circuit, integrated into the read channel or disk controller circuit, or integrated into an SOC.
In one embodiment, the control circuitry comprises a microprocessor executing instructions, the instructions being operable to cause the microprocessor to perform the steps of the flow diagrams described herein. The instructions may be stored in any computer-readable medium. In one embodiment, they may be stored on a non-volatile semiconductor memory external to the microprocessor, or integrated with the microprocessor in a SOC. In another embodiment, the instructions are stored on the disk and read into a volatile semiconductor memory when the hybrid drive is powered on. In yet another embodiment, the control circuitry comprises suitable logic circuitry, such as state machine circuitry.
Number | Name | Date | Kind |
---|---|---|---|
5333138 | Richards et al. | Jul 1994 | A |
5581785 | Nakamura et al. | Dec 1996 | A |
5586291 | Lasker et al. | Dec 1996 | A |
6044439 | Ballard et al. | Mar 2000 | A |
6115200 | Allen et al. | Sep 2000 | A |
6275949 | Watanabe | Aug 2001 | B1 |
6429990 | Serrano et al. | Aug 2002 | B2 |
6661591 | Rothberg | Dec 2003 | B1 |
6662267 | Stewart | Dec 2003 | B2 |
6687850 | Rothberg | Feb 2004 | B1 |
6754021 | Kisaka et al. | Jun 2004 | B2 |
6785767 | Coulson | Aug 2004 | B2 |
6807630 | Lay et al. | Oct 2004 | B2 |
6909574 | Aikawa et al. | Jun 2005 | B2 |
6920533 | Coulson et al. | Jul 2005 | B2 |
6966006 | Pacheco et al. | Nov 2005 | B2 |
6968450 | Rothberg et al. | Nov 2005 | B1 |
6989953 | Codilian | Jan 2006 | B1 |
7017037 | Fortin et al. | Mar 2006 | B2 |
7028174 | Atai-Azimi et al. | Apr 2006 | B1 |
7082494 | Thelin et al. | Jul 2006 | B1 |
7107444 | Fortin et al. | Sep 2006 | B2 |
7120806 | Codilian et al. | Oct 2006 | B1 |
7142385 | Shimotono et al. | Nov 2006 | B2 |
7334082 | Grover et al. | Feb 2008 | B2 |
7395452 | Nicholson et al. | Jul 2008 | B2 |
7411757 | Chu et al. | Aug 2008 | B2 |
7454653 | Nicholson et al. | Nov 2008 | B2 |
7461202 | Forrer, Jr. et al. | Dec 2008 | B2 |
7469336 | Choo | Dec 2008 | B2 |
7472222 | Auerbach et al. | Dec 2008 | B2 |
7477477 | Maruchi et al. | Jan 2009 | B2 |
7509471 | Gorobets | Mar 2009 | B2 |
7516346 | Pinheiro et al. | Apr 2009 | B2 |
7610438 | Lee et al. | Oct 2009 | B2 |
7613876 | Bruce et al. | Nov 2009 | B2 |
7620784 | Panabaker | Nov 2009 | B2 |
7644231 | Recio et al. | Jan 2010 | B2 |
7685360 | Brunnett et al. | Mar 2010 | B1 |
7752491 | Liikanen et al. | Jul 2010 | B1 |
8015433 | Chu et al. | Sep 2011 | B2 |
8111476 | Arizono et al. | Feb 2012 | B2 |
8341339 | Boyle et al. | Dec 2012 | B1 |
8375190 | Hamilton et al. | Feb 2013 | B2 |
20020156970 | Stewart | Oct 2002 | A1 |
20050251617 | Sinclair et al. | Nov 2005 | A1 |
20060195657 | Tien et al. | Aug 2006 | A1 |
20070186039 | Nam | Aug 2007 | A1 |
20080040537 | Kim | Feb 2008 | A1 |
20080059694 | Lee | Mar 2008 | A1 |
20080130156 | Chu et al. | Jun 2008 | A1 |
20080177938 | Yu | Jul 2008 | A1 |
20080222353 | Nam et al. | Sep 2008 | A1 |
20080256287 | Lee et al. | Oct 2008 | A1 |
20080307270 | Li | Dec 2008 | A1 |
20090019218 | Sinclair et al. | Jan 2009 | A1 |
20090031072 | Sartore | Jan 2009 | A1 |
20090103203 | Yoshida | Apr 2009 | A1 |
20090106518 | Dow | Apr 2009 | A1 |
20090144501 | Yim et al. | Jun 2009 | A2 |
20090150599 | Bennett | Jun 2009 | A1 |
20090172324 | Han et al. | Jul 2009 | A1 |
20090249168 | Inoue | Oct 2009 | A1 |
20090271562 | Sinclair | Oct 2009 | A1 |
20090327603 | McKean et al. | Dec 2009 | A1 |
20100088459 | Arya et al. | Apr 2010 | A1 |
20100157463 | Arizono et al. | Jun 2010 | A1 |
Entry |
---|
Hannes Payer, Marco A.A. Sanvido, Zvonimir Z. Bandic, Christoph M. Kirsch, “Combo Drive: Optimizing Cost and Performance in a Heterogeneous Storage Device”, http://csl.cse.psu.edu/wish2009—papers/Payer.pdf. |
Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishan, Ted Wobber, “Extending SSD Lifetimes with Disk-Based Write Caches”, http://research.microsoft.com/pubs/115352/hybrid.pdf, Feb. 2010. |
Xiaojian Wu, A. L. Narasimha Reddy, “Managing Storage Space in a Flash and Disk Hybrid Storage System”, http://www.ee.tamu.edu/˜reddy/papers/mascots09.pdf. |
Tao Xie, Deepthi Madathil, “SAIL: Self-Adaptive File Reallocation on Hybrid Disk Arrays”, The 15th Annual IEEE International Conference on High Performance Computing (HIPC 2008), Bangalore, India, Dec. 17-20, 2008. |
Non-Volatile Memory Host Controller Interface revision 1.0 specification available for download at http://www.intel.com/standards/nvmhci/index.htm. Ratified on Apr. 14, 2008, 65 pages. |
U.S. Appl. No. 12/720,568, filed Mar. 9, 2010, 22 pages. |