Not applicable.
Not applicable.
Conventional rotorcraft utilizing ducted fans for lift typically feature ducted fans driven directly by combustion engines. Combustion engines have been preferred because they can produce a large amount of power relative to the fuel required to operate them. However, using ducted fans driven directly by combustion engines can be inefficient and noisy during certain periods of flight. For example, rotorcraft having both ducted fans and a wing for lift will not likely need the ducted fans entirely during forward flight.
In this disclosure, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of this disclosure, the devices, members, apparatuses, etc. described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower,” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction.
This disclosure describes a hybrid-electric rotorcraft having a pair of ducted fans located in a fuselage of the rotorcraft primarily for providing lift along with two pairs of pivotable ducted fans for selectively providing lift and thrust. Each of the ducted fans located outside the fuselage feature an orthogonal set of control surfaces to provide selective thrust control of the rotorcraft. During wing-borne flight, the pair of ducted fans in the fuselage are enclosed to make the rotorcraft more aerodynamic.
The outboard ducted fans 109, 111, 113, 115 are located outboard of the fuselage 103. The forward outboard left ducted fan 109 is rotationally carried by the forward left aerodynamic fairing 131 and can pivot from horizontal to a vertical orientation through approximately 90 degrees of rotation. The forward outboard right ducted fan 111 is rotationally carried by the forward right aerodynamic fairing 133 and can pivot from horizontal to a vertical orientation through approximately 90 degrees of rotation. The aft outboard left ducted fan 113 is rotationally carried by the aft left wing 127 and can pivot from horizontal to a vertical orientation through approximately 90 degrees of rotation. The aft outboard right ducted fan 115 is rotationally carried by the aft right wing 129 and can pivot from horizontal to a vertical orientation through approximately 90 degrees of rotation. Each of the fans 109, 111, 113, 115 can be controlled independently to provide the operator with pitch, yaw, roll, and translation control as needed.
The cabin 121 is located mid-fuselage between the forward fuselage ducted fan 105 and the aft fuselage ducted fan 107. As illustrated, the cabin 121 is configured for seating four passengers, however other configurations are contemplated. The pair of vertical stabilizers 117 extend upwards from a rear of the fuselage 103 and support the horizontal stabilizer 119. Control surfaces (not shown) can be selectively located on the pair of vertical stabilizers 117 and the horizontal stabilizer 119 as needed. Landing gear 123 is typically wheel based and extends/retracts from the fuselage 103 and the aft wings 127, 129 as needed for landing.
The fuselage 103, as illustrated, has a teardrop shape having a width narrowest adjacent the cabin 121. Alternatively, the fuselage 103 features a width more uniform along a length of the aircraft. The forward left aerodynamic fairing 131 and the forward right aerodynamic fairing 133 utilizes an airfoil shape to provide lift during forward flight and are shorter in length than the aft left wing 127 and the aft right wing 129. The forward left aerodynamic fairing 131 and the forward right aerodynamic fairing 133 are the forward aerodynamic fairings and are located forward of the cabin 121. The wings 127, 129 each utilize an airfoil shape to provide lift during forward flight and are longer in length than the forward left aerodynamic fairing 131 and the forward right aerodynamic fairing 133. The aft left wing 127 and the aft right wing 129 are configured to provide most of the rotorcraft's lift during wing-borne flight and are forward swept. The wings 127, 129 are the aft wings and are located aft of the cabin 121. Alternative wing configurations are contemplated by this application, for example, a single wing instead of a pair of aft wings.
The forward left ducted fan 109 comprises a vertical control surface 161, a horizontal control surface 163, a tilt actuator 165, an electric motor 167, and an array of fan blades 169. The forward right ducted fan 111 comprises a vertical control surface 161, a horizontal control surface 163, a tilt actuator 165, an electric motor 167, and an array of fan blades 169. The aft left ducted fan 113 comprises a vertical control surface 161, a horizontal control surface 163, a tilt actuator 165, an electric motor 167, and an array of fan blades 169. The aft right ducted fan 115 comprises a vertical control surface 161, a horizontal control surface 163, a tilt actuator 165, an electric motor 167, and an array of fan blades 169. Each horizontal control surface 163 is pivotally attached to the respective ducted fan and selectively rotates relative to the fan to direct thrust. Each vertical control surface 161 is pivotally attached to the respective ducted fan and selectively rotates relative to the fan to direct thrust. The thrust and speed of each ducted fan can be directed by controller 153. Additionally, each outboard ducted fan 109, 111, 113, 115 is pivotally attached to the rotorcraft 101 with the tilt actuator 165 providing selective rotation of the fan. Tilt actuator 165, as controlled by controller 153, enables each outboard ducted fan 109, 111, 113, 115 to pivot from horizontal to a vertical orientation through approximately 90 degrees of rotation, but other amounts of rotation are contemplated by this application.
The forward fuselage ducted fan 105 comprises an electric motor 167, an array of fan blades 169, and the louvers 125. The aft fuselage ducted fan 107 comprises an electric motor 167, an array of fan blades 169, and the louvers 125. Louvers 125 comprise a plurality of slats aligned longitudinally with the rotorcraft 101 with each slat hinged along a side. Louvers 125 are mechanically interconnected and can pivot between an open position and a closed position with an actuator (not shown). During the closed position, the louvers 125 form a circular shape and close an opening of the fan. The position of the louvers 125 is controlled by controller 153. During takeoffs and landings, the louvers 125 remain open, whereas during wing-borne flight the louvers 125 are closed. Both the set of louvers 125 above and below the ducted fans 105, 107 are identical.
At least one embodiment is disclosed, and variations, combinations, and/or modifications of the embodiment(s) and/or features of the embodiment(s) made by a person having ordinary skill in the art are within the scope of this disclosure. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiment(s) are also within the scope of this disclosure. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, Rl, and an upper limit, Ru, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=Rl+k*(Ru−Rl), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 95 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed. Use of the term “optionally” with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having should be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of. Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present invention. Also, the phrases “at least one of A, B, and C” and “A and/or B and/or C” should each be interpreted to include only A, only B, only C, or any combination of A, B, and C.