1. Field of the Invention
The invention relates to hybrid electric vehicles and to a method for controlling regenerative braking.
2. Background Art
The need to reduce fossil fuel consumption and to improve engine exhaust gas emission quality for vehicles powered predominantly by an internal combustion engine is well known. This need is addressed by using a hybrid electric vehicle powertrain in which an internal combustion engine and an electric motor-generator establish a mechanical power flow path and an electrical power flow path to vehicle traction wheels. The powertrain may include a motor, a generator and a battery that are electrically coupled to define a motor-generator subsystem wherein the subsystem is capable of establishing a braking torque and to capture vehicle kinetic energy during braking, thus charging the battery as a motor acts as a generator. The generator, using battery power, can propel the vehicle in a so-called electromechanical driving mode as the generator acts as a motor. A vehicle system controller coordinates control of the two power sources.
Under normal powertrain operating conditions, the vehicle system controller interprets a driver command for acceleration or deceleration and then determines when and how much torque each power source needs to provide in order to meet the driver's command and to achieve a specified vehicle performance. As in the case of conventional vehicle powertrains, it is possible to achieve better fuel economy and exhaust gas emission quality by operating the engine at or near the most efficient operating region of its engine speed and torque relationship.
It is known design practice to provide such hybrid electric vehicle powertrains with electric regenerative braking. Kinetic energy that the hybrid electric vehicle dissipates during braking, or any other period in which the driver relaxes the accelerator pedal position while the vehicle is in motion, is regenerated as the electric motor operates as a generator. The kinetic energy recovery during this process can be used to recharge the battery and store it for future use.
Typically, regenerative braking is used to control deceleration of a vehicle with a combination of friction braking and regenerative braking. It is known design practice to supplement regenerative braking strategy with conventional friction brake strategy. Friction brakes, for this purpose, are used on all four wheels of the vehicle. Examples of hybrid powertrains embodying these features are U.S. Pat. Nos. 3,774,095; 5,472,264; 5,492,192; 5,683,322; 5,707,115; 5,853,229; and 5,890,982.
The invention comprises a powertrain with a first driving axle driven by an electric motor, which also functions as a generator to provide regenerative braking. A second driving axle of the present invention can be powered solely by an internal combustion engine, or, alternatively, powered by an internal combustion engine and a second motor combination. The configuration of the vehicle of the present invention allows for optimization of regenerative braking. On a tip-out of the accelerator by the driver, the electric motor provides a so-called compression regenerative braking on one driving axle to slow the vehicle, while at the same time sending energy to the battery. If the vehicle driver commands a friction braking mode, the electric motor establishes a service regenerative braking operation, up to a regenerative braking limit. Additional braking required to slow or stop the vehicle then is provided by friction braking on the second driving axle. If the second driving axle is powered by an internal combustion engine or by a combination of the internal combustion engine and a second electric motor, compression braking by the internal combustion engine can additionally take place at the second driving axle. There is no friction braking at the first driving axle.
The invention is characterized further by a reduction in vehicle brake system complexity and weight. It can be applied to powertrains regardless of whether the first or second driving axle is at the front of the vehicle or at the rear of the vehicle. In any case, only one of the driving axles requires conventional friction brakes.
The invention further is characterized by a strategy that comprises a first hierarchy of method steps when the vehicle driver initiates a throttle tip-out to initiate deceleration. A second, separate hierarchy of method steps is used in the braking strategy if the operator initiates a service braking request.
During a so-called throttle tip-out event, a vehicle system controller will calculate the engine compression braking request. The strategy will then determine whether the battery state-of-charge has a sufficient so-called headroom or energy (charge) storage capacity available. If sufficient charge capacity is available, a compression regenerative braking routine is initiated. If the battery charge is not sufficient, the braking is achieved by engine compression braking.
If the driver applies the brakes at the beginning of the deceleration mode, a so-called service braking request is calculated. The strategy then will determine whether the battery state-of-charge headroom is sufficient to accommodate braking kinetic energy storage in the battery. If the head room is sufficient, a so-called service regenerative braking routine is initiated. If the battery state-of-charge head room is not sufficient for this purpose, the friction brakes are used to decelerate the vehicle.
If the driver desires to bring the vehicle to a complete stop following compression braking, the friction brakes will be available for that purpose regardless of which strategy hierarchy is used.
a and 2b show software strategy flow diagrams for, respectively, regenerative braking when the friction brakes are not applied and regenerative braking when the friction brakes are applied;
In
Compound planetary gearing establishes a driving connection between sun gear 16 and ring gear 20. A compound planetary carrier 32 rotatably supports the compound pinions. The carrier can be connected selectively to shaft 22 by friction clutch 34.
A rear motor-generator 52 has an armature driveably connected through torque transfer gearing 54 to gear 56, which is connected to the differential pinion carrier for differential 58. One side gear of the differential 58 is connected to axle half shaft 38′ and the other side gear is connected to axle half shaft 38.
The planetary gearing 18 is capable of providing two forward driving ratios as engine torque is distributed to the front axle half shafts 36 and 36′. A low speed ratio is effected by applying friction clutch 34 as brake 28 is applied. Ring gear 20, at this time, acts as a reaction element and driving torque is distributed through the compound planetary carrier through the engaged clutch 34 to shaft 22.
To achieve a ratio change to a high speed ratio, clutch 34 remains applied and clutch 26 is applied, while brake 28 is released. A direct mechanical torque flow path is established between the engine crankshaft and shaft 22 for each speed ratio when the engine is commanded to provide engine compression braking, as will be explained subsequently.
The powertrain system schematically illustrated in
The transmission gearing 18 is under the control of a transmission control module 74 (TCM), which receives control instructions from the vehicle system controller 60 over signal flow path 76. The transmission control module controls engagement and release of the friction clutches and the brake for the gearing 18 by issuing engagement and release signals through signal flow path 78, which are received by a transmission control valve body (not shown).
An absolute manifold pressure signal (MAP) is developed at the engine intake manifold 80. The signal is distributed to the engine control module 66 over signal flow path 82.
The vehicle system controller 60 is in communication with the rear motor-generator 52 over signal flow path 84. The rear motor-generator 52 is powered by battery 86, the voltage distribution path between the battery and the motor-generator being indicated schematically at 88. Preferably, the motor-generator 52 is a high voltage induction motor. The two-phase power supply from battery 86 is distributed to inverter 90, which establishes a three-phase electric power supply for the induction motor at 52.
The powertrain system includes a driver operated brake pedal 92 and a brake pedal position sensor 94 (BPS), which develops a signal functionally related in magnitude to pedal depression. The signal developed at the brake pedal position sensor is distributed to a brake control module 96 (BCM), which in turn communicates, as shown at 98, with the vehicle system controller 60. The brake control module issues a control signal through signal flow path 100 to a brake master cylinder (BMC), as shown at 102. The brake master cylinder 102 distributes brake pressure through brake pressure lines 104 to friction wheel brake actuators 104 and 104′ for traction wheels 48 and 48′, respectively.
The engine control module 66 distributes a throttle position signal, as shown at 106, to a throttle controller 108 for the engine throttle.
The powertrain system illustrated in
The configuration of the powertrain system of the invention allows for optimization of the regenerative braking such that on a tip-out of the accelerator, the electric motor-generators provide regenerative braking on their respective driving axle to slow the vehicle while at the same time sending electrical energy to the battery. If the vehicle operator commands a braking operation by depressing the brake pedal, the electric motor-generators continue to provide braking, which hereinafter may be referred to as service braking, to their respective driving axle up to a regenerative limit. Any additional braking required to slow the vehicle or to stop the vehicle then can be provided by the friction braking on the second driving axle. If the second driving axle is powered by an internal combustion engine or by an internal combustion engine and second motor combination, compression braking by the internal combustion engine can additionally occur at the second driving axle. A feature of the present invention is that there are no friction service brakes at the rear driving axles.
In the schematic powertrain illustration of
The second axle of the arrangement of
A planetary gear set 130 divides the output energy of engine 132 into a series path from the engine to a second motor-generator 134 and a parallel path from the engine to the traction wheels, shown at 136. The speed of the engine can be controlled by varying the split or power ratio for the series path while maintaining a mechanical driving connection through the parallel path. A powertrain arrangement having these characteristics may be seen by referring to U.S. patent application Ser. No. 10/709,537, filed May 12, 2004, entitled “Method for Controlling Starting of an Engine in a Hybrid Electric Vehicle Powertrain.”
In the configuration of
When the accelerator pedal is relaxed by the vehicle operator, regenerative braking is performed by the motor-generator 142 on axle 140. The regenerative braking will occur up to a first level for axle 140. If the operator desires a greater level of braking, the hydraulically or electrically actuated friction brakes 143 at the second driving axle 128 will provide supplemental braking torque. A controller 146, corresponding to the previously described vehicle system controller 60, will continuously monitor the regenerative braking headroom available. A corresponding controller for the
In the case of the configuration of
In the case of
When the vehicle driver's foot is lifted off the accelerator, motor-generator 142 as well as the engine 132 may provide regenerative braking. The internal combustion engine 132, in the configuration of
When compression braking by the engine is not desired, regenerative braking of the motor-generator 142 can provide all of the regenerative braking exclusive of the engine. This can be accomplished by disengaging the engine from the driving axle 128 by a disconnect clutch schematically shown at 150 in
In the configuration of
If the optional motor-generator 110 is included in the configuration of
The coordination of the regenerative braking of the vehicles is determined by the vehicle system controller 60 in response to the various operating variables as previously described. The compression braking of the engine and the regenerative braking of the motor-generators occurs according to a hierarchal strategy, which will be explained with reference to
a and 2b illustrate separate control routines for throttle tip-out and driver actuated brake peal braking. The routine that would be relied upon by the vehicle system controller would depend upon whether the friction brakes are being applied by the operator. If the vehicle brakes are not applied, the vehicle system controller will determine at decision block 152 whether the vehicle operator has initiated a throttle tip-out. If a throttle tip-out has not occurred, execution of the strategy will not begin. If a throttle tip-out has occurred, the controller will calculate at action block 154 a total compression braking request, which is determined by the current driving conditions and the powertrain operating variables. Having determined the total compression braking requirements, a decision is made at decision block 156 whether the battery state-of-charge headroom is sufficient to accommodate the requested compression braking. If sufficient headroom is available, the routine will provide a so-called compression regenerative braking mode at 158 wherein the rear motor-generator 52 is commanded by the vehicle system controller to provide motor-generator regenerative braking. If the battery state-of-charge is low and headroom is not available, as determined at decision block 156, either the clutch 26 or the clutch 34, or both, establishes a mechanical torque flow path from the engine crankshaft to the input shaft 22 for the torque transfer gearing 24. The selection of which clutch to apply is determined by the vehicle system controller, which distributes an appropriate signal to the transmission control module 74 to engage an appropriate clutch. In the alternative, both clutches can be applied if a direct driving connection between the crankshaft and the shaft 22 is desired.
In the case of a design schematically illustrated in
The term “compression regenerative braking” is used in this description since the effect of the regenerative braking is comparable to the actual mechanical engine compression braking that would be provided by the engine when the engine is in the torque flow path.
Engine compression braking occurs at action block 160 if the decision at decision block 156 is negative. The regenerative braking step at action block 158 then is bypassed.
If regenerative braking is initiated when the friction brakes are applied, as determined at decision block 162, the vehicle system controller will calculate a so-called service braking request at action block 164. If the brakes are not applied, the routine will return to the starting point as the previous controller routine is initiated.
If the decision at decision block 162 is positive and a service braking request is determined at 164, the routine then will determine at decision block 166 whether the battery state-of-charge headroom is sufficient to accommodate the braking request. If there is sufficient headroom, the routine will proceed to action block 168, which initiates the service regenerative braking function as the rear motor-generator 52, in the case of
The term “service regenerative braking” is used in this description to describe regenerative braking when the driver requests braking by depressing the brake pedal when the vehicle system controller commands regenerative torque and the battery state-of-charge headroom is sufficient to accommodate the total braking request. The braking function then is analogous to braking using friction brakes even though the friction brakes (service brakes) are not applied.
In each of the configurations, there are no friction service brakes on the non-powered wheels. This feature reduces vehicle complexity and weight. The friction service brakes are appropriately sized so that desired stopping distance can be maintained when regenerative braking is disabled.
Although the embodiments of the invention have been described, it will be apparent to persons skilled in the art that modifications may be made without departing from the scope of the invention. All such modifications and equivalents thereof are intended to be covered by the following claims.
This application is a continuation-in-part of U.S. application Ser. No. 09/850,354 filed May 7, 2001, entitled “Regenerative Brake System Architecture for an Electric or Hybrid Electric Vehicle.”
Number | Date | Country | |
---|---|---|---|
Parent | 09850354 | May 2001 | US |
Child | 11050183 | Feb 2005 | US |