This invention relates to firearms. More specifically, this invention relates to the loading mechanism for self-loading firearms.
The M16 rifle, and its civilian counterpart the AR-15, was originally developed by American engineer Eugene Stoner of ArmaLite Inc. in the late 1950s. The rifle was notable for its light weight, its accuracy, and its relative capacity to fire large amounts of ammunition. The Stoner auto loading design was the subject of U.S. Pat. No. 2,951,424, which issued to E. M. Stoner on Sep. 6, 1960. Specifically, the '424 patent discloses the M16 bolt and bolt carrier system and the gas operation thereof. The system utilizes a gas tube that extends from a gas port in the barrel, back into the upper receiver of the rifle and into a gas tube pocket or “key” attached to the bolt carrier. The original Stoner design is frequently referred to as a “gas impingement” or “direct impingement” system.
Direct impingement or gas impingement is a type of gas operation for a firearm designed to expel a spent cartridge and load a new cartridge using the gas that is discharged from a cartridge as it trails a bullet down the barrel of a rifle. In a gas impingement system, the gas from firing a cartridge is directed down the barrel of a rifle and enters a gas tube at or toward the distal end of the barrel. The gas tube forms a conduit through which the gas is propelled back to the bolt carrier or slide assembly to cycle the action in the firearm. More specifically, in a direct gas impingement system, when the firearm is fired, the exhaust propellant gases from the fired cartridge are directed through a port at the end of the barrel and then channeled back to the bolt carrier and will strike, or impinge, the bolt carrier moving it rearward toward the buttstock and into a retracted position. The exhaust gases will then discharge out the exhaust on the bolt carrier group or the ejection port on the side of the firearm near the buttstock. After discharge, the buffer tube spring, acting on the bolt carrier, will move the bolt carrier back to the engaged position, while simultaneously stripping and picking up another cartridge from the magazine and moving that cartridge into a battery position within the firearm's breech. Examples of direct gas impingement firearms include the AR-15, M4, AR-10, and M16 style firearms.
The conventional AR-15/M-16 gas-operated direct impingement system has been observed to have a number of short-comings. The principal shortcoming of this system is the deposits of residues that accumulate in the bolt from discharge gasses. The deposits decrease the reliability and usability of the rifle. Deposits inhibit the proper operation of the firearm, requiring frequent cleaning of the gas operating system. The discharge of gases into the bolt also creates excessive heat in the bolt and break down lubrication that normally enables the smooth operation of the bolt assembly. Additionally, performing the cleaning of the rifle bolt assembly under field conditions is difficult and requires specialized tools, which may not be available.
The original direct impingement system has been modified or replaced with a gas piston system in an effort to overcome some of the aforementioned shortcomings. Many of the designs are retrofit systems that entirely replace the gas tube with a piston and cylinder. In these systems, the piston head and cylinder are mounted to the gas block towards the distal end of the barrel. Discharge gasses flow out of the barrel and into the piston chamber where the gasses force the piston back towards the bolt carrier, driving the bolt carrier back toward the buttstock and into a retracted position. The exhaust gases can then discharge out from the firearm near the gas block. Like the gas impingement system, after discharge, the buffer tube spring acting on the bolt carrier will move the bolt carrier back to the engaged position, while simultaneously stripping or picking up another cartridge from the magazine and moving that cartridge into a battery position within the firearm's breech.
Because the gasses vent out of the firearm near the barrel, firearms using a gas piston system do not deposit as much residue in the bolt carrier assembly. They also do not heat up as much around the bolt carrier assembly. This enables rifles using a gas piston system to require less frequent maintenance. They also operate cooler in situations where large amounts of ammunition is fired over a short period of time. However, gas piston systems have their own drawbacks. First, rifles using gas piston systems are heavier than otherwise identical rifles using direct impingement systems. To compound the problem, the additional weight of the gas piston system is localized towards the barrel of the rifle, which can impair the maneuverability of the rifle in field situations. Second, rifles with gas piston systems have proven to be less accurate than otherwise identical direct impingement rifles. This may occur because the gas piston system reduces or eliminates the ability of the barrel to float, leading to diminished harmonics. Lastly, many gas piston systems have designs that render them difficult, or impossible, to service in the field. While these rifles generally require less service, they still must be serviced occasionally. Malfunctions also need to be addressed or cleared when they arise with the piston system. These malfunctions can occur due to the deposition of residues that will contact the piston system.
It would be highly advantageous, therefore, to remedy the foregoing and other deficiencies inherent in the previous direct impingement and gas piston systems. However, in view of the art considered as a whole at the time the present invention was made, it was not obvious to those of ordinary skill in the field of this invention how the shortcomings of the prior art could be overcome.
The long-standing but heretofore unfulfilled need for is now met by a new, useful, and nonobvious hybrid gas-piston system and barrel nut.
In a first aspect the present invention provides a gas piston assembly. The gas piston assembly includes a barrel nut having a substantially hollow generally cylindrical shape with an external surface and an internal surface. The internal surface of the barrel nut has an engagement member configured to securely engage a receiver of a firearm. The engagement member could be threads that are complementary to threads on the receiver of a rifle. The barrel nut also has piston mount on the external surface of the barrel nut. The gas piston assembly also includes a gas piston unit having a first piston chamber component that is integral or affixed to the piston mount, a second piston chamber component removeably affixed to the first gas piston chamber, and a piston. The piston has a piston head in the chamber formed by the first and second piston components and a piston rod that engages a bolt carrier key of a bolt carrier group. The gas piston assembly further includes a gas tube in communication with a rifle barrel gas port at a first end of the gas tube and the gas piston chamber at a second end of the gas tube.
In an advantageous embodiment the piston mount on the external surface of the barrel nut is distal to the engagement member. Having the piston mount at a distal point to the engagement member (e.g. barrel nut threads) allows the system to achieve the proper geometry for the piston rod to engage the key on the bolt carrier group. In still further advantageous embodiments, the piston mount and the engagement member are threaded. The threads of the piston mount are distal to the threads on the engagement member. Again, this facilitates the proper geometry for the piston rod.
The second piston chamber can be removeably affixed to the first piston chamber piston chamber with a set of complementary threads. This facilitates access to the inner portion, or inside, of the piston chamber for cleaning of the piston chamber and the piston head inside the chamber. The second piston chamber can include a flattened or structured surface configured to be engaged by a wrench to facilitate the disengagement of the second piston chamber from the first piston chamber. In a similar manner, the second piston chamber can include a slot or channel configured to be engaged by a knife or screwdriver to facilitate the disengagement of the second piston chamber from the first piston chamber.
The second piston chamber can receive the gas tube through an aperture in the second piston chamber. Disengaging the second piston chamber from the first piston chambers can then allow the second piston chamber to slide up the gas tube towards the first end of the gas tube. This allows a user to access the inside of the gas chamber and the piston assembly for operations such as cleaning.
Either the first piston chamber component or the second piston chamber component can include an exhaust port positioned within the chamber to allow exhaust gases to escape the chamber as the piston head is forced past the exhaust port by the exhaust gases.
The first piston chamber component can have a chamber floor and there can be a piston spring on the piston rod between the piston head and the chamber floor. This configuration with the piston spring prevents the piston head from contacting the chamber floor when the piston head is forced back by the exhaust gases.
In an advantageous embodiment the gas piston assembly can include a piston chamber lock that prevents the disengagement of the first piston chamber component from the piston mount during operation. The piston chamber lock can be a sliding bolt lock.
In further advantageous embodiments the first piston chamber component can be removeably affixed to the piston mount with a set of complementary threads.
In a second aspect the present invention provides a second gas piston assembly. The gas piston assembly of the second aspect includes a barrel nut having a substantially hollow generally cylindrical shape with an external surface and an internal surface. The internal surface has an engagement member configured to securely engage a receiver of a firearm. The barrel nut also has a piston mount on the external surface of the barrel nut. The gas piston assembly also includes a gas piston unit having a gas piston chamber at a first end with a piston rod extending from the chamber to a second end. The gas piston chamber, or a portion thereof, is affixed (e.g. removeably affixed, permanently affixed or integral) to the piston mount of the barrel nut and the piston rod is configured to engage a bolt carrier key at the second end. The gas piston assembly further includes a gas tube in communication with a rifle barrel gas port at a first end of the tube and the gas piston chamber at a second end of the gas tube. The gas tube can be affixed to the gas block at the first end of the gas tube. The piston mount can be integral to the barrel nut or it can be removeably affixed to the barrel nut, such as by a piston mount adapter. The piston mount can have a bore or aperture through which the piston rod travels during operation.
In an advantageous embodiment the gas piston assembly includes a release to disengage the gas piston assembly from the piston mount of the barrel nut. The release prevents the gas piston assembly from disengaging from the barrel nut during use.
In a third aspect the present invention provides a third gas piston assembly. The gas piston assembly of the third aspect includes a piston mount adapter having a piston mount and a barrel nut engagement member. The piston mount adapter securely affixes to the barrel nut of a rifle. The gas piston assembly of the third aspect has a gas piston unit having a gas piston chamber at a first end with a piston rod extending from the chamber to a second end. The gas piston unit affixes at the gas piston chamber to the piston mount of the piston mount adapter. The piston rod of the gas piston unit is configured to engage a bolt carrier key at the second end. The gas piston assembly of the third aspect further includes a gas tube in communication with a rifle barrel gas port at a first end of the tube and the gas piston chamber at a second end of the gas tube. The piston mount adapter can be configured to securely affix to the barrel nut of the rifle distal to the threads of the barrel nut. The piston mount adapter can be cylindrical in shape with a circumferential channel configured to receive the index of a barrel nut.
In a fourth aspect the present invention provides a barrel nut. The barrel nut can have a barrel nut body having a substantially hollow generally cylindrical shape with an internal surface with an engagement member configured to securely engage a receiver of a rifle and an external surface. The hollow cylindrical shape defines a generally longitudinally extending bore extending from a back end of the nut along a longitudinal axis to a front end of the nut. The barrel nut can also have a piston mount on the external surface of the barrel nut body. The piston mount can have a generally longitudinally extending bore extending from a back end of the mount along a longitudinal axis to the front end of the mount and parallel to the barrel nut body bore. The piston mount has a piston mount engagement member adapted to secure a piston chamber of a gas piston system. The piston mount can be integral to the barrel nut body. The piston mount engagement member can have a set of threads configured to engage complementary threads on a piston chamber of a gas piston system.
In an advantageous embodiment the piston mount has a piston chamber lock to prevent the disengagement of a gas piston chamber from the piston mount during operation.
The piston mount on the external surface of the barrel nut can be distal to the engagement member. The piston mount and the engagement member can be threaded and the threads of the piston mount can be distal to the threads on the engagement member when the barrel nut is mounted on a rifle.
In a fifth aspect the present invention provides a second barrel nut. The barrel nut of the second aspect can have a barrel nut body having a substantially hollow generally cylindrical shape with an external surface and an internal surface with an engagement member configured to securely engage a receiver of a rifle. The hollow cylindrical shape defines a generally longitudinally extending bore extending from a back end of the nut along a longitudinal axis to a front end of the nut. The barrel nut can also have a piston mount on the external surface of the barrel nut body. The piston mount has an attachment member configured to removeably secure a gas piston chamber to the barrel nut body. The piston mount can have a piston release component to disengage the gas piston chamber from the piston mount.
In certain embodiments the piston mount is integral to the barrel nut body. The piston mount on the external surface of the barrel nut can be distal to the engagement member on the internal surface of the barrel nut when the barrel nut is mounted on a rifle. In an advantageous embodiment the piston mount and the engagement member are threaded and the threads of the piston mount are distal to the threads on the engagement member.
In a sixth aspect the present invention provides a piston mount adapter. The piston mount adapter can have a piston mount adapter body having a substantially hollow generally cylindrical shape with an internal surface with an engagement member configured to securely engage a barrel nut of a rifle and an external surface. The hollow cylindrical shape defines a generally longitudinally extending bore extending from a back end of the piston mount adapter body along a longitudinal axis to a front end of the piston mount adapter body. The piston mount adapter can also have a piston mount on the external surface of the piston mount adapter body. The piston mount can have a generally longitudinally extending bore extending from a back end of the mount along a longitudinal axis to a front end of the mount and parallel to the piston mount adapter body bore. The piston mount has a piston mount engagement member adapted to secure a piston chamber of a gas piston system. The piston mount on the external surface of the piston mount adapter can be distal to the engagement member on the internal surface of the adapter. The piston mount and the engagement member can be threaded and the threads of the piston mount can be distal to the threads on the engagement member when the adapter is mounted on the barrel nut of a rifle.
In an advantageous embodiment the inner surface of the piston mount adapter has a circumferential channel configured to receive the index of a barrel nut.
For a fuller understanding of the invention, reference should be made to the following detailed description, taken in connection with the accompanying drawings, in which:
An improved gas piston system for the automatic loading of a rifle, especially a rifle of the M-16/AR-15 type, is disclosed herein. The system employs a barrel nut or piston mount adapter that has been modified to secure one end of a gas piston system. The other end of the gas piston system, namely the piston rod, engages, either directly or indirectly, the key on a bolt carrier group. This configuration positions the gas piston system at a point starting near the barrel nut and extending to the bolt carrier group of the rifle, while a gas tube extends from the gas block to the gas piston system at a point near the barrel nut. This localizes the weight of the gas piston system roughly within the region of the upper receiver of the rifle. The system according to the invention uses a gas tube to direct gas out from the barrel and gas block and back along a path parallel to the rifle barrel to the gas piston system starting at the barrel nut, where the gas tube terminates at the chamber for the gas piston system. Exhaust gasses are ported out of the piston chamber as the exhaust gases drive the piston assembly back against the key on the bolt carrier group. This effects a cycling of the bolt carrier resulting in a spent cartridge being ejected and a live cartridge being loaded.
Rifles of the invention are a significant improvement over rifles using both direct impingement systems and gas piston systems. Rifles according to the invention rectify many of the problems associated with both of those designs. The exhaust gases used to provide the energy for automatic reloading do not heat up the bolt carrier group or leave the deposits associated with direct impingement rifles because the gases are exhausted from the rifle at a point away from the bolt carrier group. Lubrication applied to components in the region of the bolt carrier group break down at a much slower rate because the rifle heats up less in the area of the bolt carrier group. Rifles of the invention achieve significantly less deposits in the bolt carrier group. As a result, rifles according to the invention can operate significantly longer between service intervals when compared to rifles using a direct impingement system.
Many of the gas piston system designs affix one end of the piston system to the gas block towards the far end of the barrel and the other end of the piston system, namely the piston rod, contacts the bolt carrier key. This arrangement has the effect of reducing or eliminating the float of the barrel, which creates a rifle with measurably reduced accuracy when compared to an otherwise identical direct impingement system rifle. Rifles of the invention do not attach the piston assembly to the gas block. Instead, one end of the piston system is anchored to the barrel nut, which is generally firmly affixed to the upper receiver of the rifle. As such, the piston assembly does not influence the float of the barrel. The other end of the piston system contacts the key of the bolt carrier. The region of the rifle between the barrel nut and the gas block employs a gas tube. By virtue of this configuration, rifles according to the invention are able to exhibit significantly greater accuracy than otherwise identical gas piston system-equipped rifles and perform, from an accuracy standpoint, like a direct impingement system rifle. In addition, rifles according to the invention tend to be lighter than otherwise identical gas piston system-equipped rifles and have less weight distributed towards the barrel. The better weight distribution results in a rifle that is easier to maneuver in the field and less fatiguing to the user.
In a rifle utilizing a hybrid gas piston system according to the invention, when the firearm is fired, the exhaust propellant gases from the fired cartridge are directed through a port at the end of the barrel and into the gas block. At the gas block, the exhaust gases are channeled back towards the barrel nut of the rifle via a gas tube. The gas tube carries the gases back into a two-piece piston chamber assembly mounted on the piston mount of the barrel nut. Once in the piston chamber, the gases drive a piston back towards the bolt carrier, moving the bolt carrier rearward toward the buttstock and into a retracted position. The exhaust gases can then discharge out exhaust ports in the piston chamber assembly. After discharge, the buffer tube spring, acting on the bolt carrier, will move the bolt carrier back to the engaged position, while simultaneously stripping and picking up another cartridge from the magazine and moving that cartridge into a battery position within the firearm's breech. The buffer tube spring also provides the force necessary to return the piston to its ready position in the piston chamber.
Rifles according to the invention can also have autoloading systems that can be broken down and quickly cleaned and reassembled in the field. In a preferred embodiment, rifles according to the invention have a two-piece piston chamber assembly. A first piece of the two-piece piston chamber assembly, referred to below as the “barrel piston cylinder”, threads into a piston mount that is integral to the barrel nut, or otherwise attached to the barrel nut. The second piece of the two-piece piston chamber assembly, referred to as the “piston cap”, threads into the first piece, or barrel piston cylinder, forming a chamber with a piston head inside the chamber. A piston rod extends from the piston head and out of an opening on the barrel piston cylinder of the two-piece piston chamber assembly. A gas tube terminates in an opening of the barrel piston cap of the two-piece piston chamber assembly. A user can unscrew the barrel piston cap of the two-piece piston chamber assembly from the barrel piston cylinder and slide the barrel piston cap up the gas tube to access the piston within the piston chamber. The piston and the inside of the piston chamber can then be quickly cleaned. Once cleaned, the piston head can be returned to the chamber and the second piece of the two-piece piston chamber assembly can be securely threaded back onto the first piece. The entire operation can be performed with simple tools, such as the end of a knife, to engage the second piece of the piston chamber (i.e. the barrel piston cap) while unscrewing from the first piece (i.e. the barrel piston cylinder). A cloth can then be used to remove deposits from within the exposed chamber and piston head.
Referring now to
The rifle of
Turning to
Barrel nut 60 has an integral piston mount 62 on its superior aspect. The piston mount 62 has an aperture 64 or bore (see
The barrel nut threads onto the upper receiver of the rifle and must be attached within a specified torque range. Failure to properly align the piston mount when threading the barrel nut onto the upper receiver can impact the performance of the gas-piston system. Minor discrepancies in alignment of the piston mount can often be resolved by inserting thin spacers between the barrel nut 60 and the receiver 12 of the rifle. The piston mount 62 serves as an anchor for the distal end of a piston assembly in a hybrid gas impingement-piston system. By using the barrel nut as an anchor for the piston, as opposed to anchoring the piston to the barrel of the rifle, the barrel of the rifle can achieve a greater degree of “float”, which is believed to increase the accuracy of the rifle. In addition, the heavier piston assembly (as compared to a gas impingement system) is moved towards the center of the rifle, making the rifle better balanced and less unwieldy to maneuver and fire. The piston chamber assembly (i.e. elements 70, the barrel piston cap, and 80, barrel piston cylinder) are shown as being on the distal side of the piston mount 62 (i.e. distal relative to the buttstock). It is contemplated that the piston assembly could be re-worked to allow the assembly to be mounted on the proximal side of the barrel nut flange, although this can be far less optimal for reasons mentioned elsewhere in the present disclosure.
The barrel piston assembly includes a piston 50, barrel piston cylinder 80 and a barrel piston cap 70. A first end (proximal end) of barrel piston cylinder 80 is inserted into the aperture 64 (see
An actuator 94 on the spring-loaded piston lock 90 (see e.g.
The barrel piston cap 70 has a pair of barrel piston adapter slots 72 designed to receive the end of a flat article such as a screw driver. Insertion of an article within the slots 72 facilitates rotation of the barrel piston cap 70 using the additional leverage applied with the article, which can have the benefit of disengaging the barrel piston cap 70 from the barrel piston cylinder 80, such as when breaking down of the piston assembly for cleaning. Alternatively, a wrench can engage the flattened surfaces 70a on opposing sides of the barrel piston cap 70 to disengage the barrel piston cap 70 from the barrel piston cylinder 80. In this manner, the rifle does not require specialized tools to breakdown and clean the piston assembly. In addition, deposits are kept away from the critical components including the bolt and bolt carrier assembly. This is particularly important in the field where access to tools is limited and stress can significantly impact a user's ability to service the rifle. Furthermore, the manner in which the piston components fit together makes their assembly and disassembly less complicated. This can be particularly important in combat situations where the stress of combat may reduce an individual's ability to perform tasks quickly and accurately, such as the precise reassembly of a rifle. Furthermore, having the gas from the spent cartridge directed out prior to re-entering the chamber can significantly reduce deposits in the chamber and extends the life of lubricants applied to bolt and bolt carrier, thereby enhancing the time between servicing those components.
In the traditional Stoner design incorporating a gas impingement system the gas tube that provided a conduit for the escaping gas was not firmly clamped to the barrel of the rifle. This meant that the gas tube did not limit the float of the barrel. On the other hand, gas piston systems utilize a long piston assembly that is anchored at one end to a point fairly far out along the barrel. This means of anchoring appears to have the effect of reducing the “float” of the barrel. By reducing the float of the barrel, the rifle becomes less accurate. Consequently, the trade-off for adopting the longer service life of a gas-piston system is a heavier and less accurate rifle. Through the adoption the teachings of the present invention (e.g. the realization that the piston system can be mounted to an alternative structure on the rifle that does not impact the float of the barrel) a rifle can be produced that has the accuracy of a direct impingement system, the service life of a gas piston system, and the weight and maneuverability of a rifle falling somewhere in the middle of the two systems. As such, the design is a very significant advancement over prior designs.
More particularly, the barrel nut represents a point on the rifle that is already locked down to the upper receiver. As such, it provides a static anchoring point. On the other hand, it remains fairly accessible during operation in the field, such that parts affixed to it can be easily broken down, cleaned and serviced. In addition, ending the gas tube at this general location prevents the gases from traveling further back into the chamber of the rifle. This makes the barrel nut a particularly advantageous point for mounting the distal end of the piston assembly.
Turning to
Turning to
The piston rod of the barrel piston 50 (see
When the barrel piston cylinder 80 is assembled into the barrel piston cap 70, a chamber is formed with the piston head 54 and a piston spring 56 within the barrel piston chamber 88 (not shown). Between firing cycles, the piston head would be held in position near the distal end of the chamber by the force of the buffer tube spring. When a round is fired, the exhaust gases travel down the gas tube, where they enter the barrel piston chamber and force the piston head back, compressing the piston spring. The piston spring prevents the piston head from slamming into the bottom of the barrel piston cylinder. Once the piston head has traveled far enough in the rearward direction, the gas venting ports 87 are exposed, which allow the exhaust gas to vent from the chamber, reducing the pressure that has built up in the chamber. After the pressure in the piston chamber has decreased, the buffer tube spring rebounds, returning the piston head to its extended position.
The piston mount adapter 160 is designed to be securely affixed to the barrel nut 19. The piston mount adapter 160 has an upper piston mount member 160a and a lower piston mount adapter member 160b. The upper piston mount member 160a and a lower piston mount adapter member 160b are fastened together over the barrel nut 19 with a pair of bolts 169. The piston mount adapter 160 has a piston mount 162 on the superior aspect of upper piston mount member 160a. The piston mount 162 has an aperture 164 or bore (see
The superior outside surface of the piston mount adapter 160 has a piston slot 165 to provide passage and clearance of the piston shaft 52 and to allow air to escape from the barrel piston chamber. The piston mount adapter 160 also has circular index channel 163 on its inner surface. The index channel is designed to receive the index 19a of the barrel nut 19. The index channel 163 can also be seen in
The barrel piston cap 70 has a pair of barrel piston adapter slots 72 designed to receive the end of a flat article such as a screw driver. Insertion of an article within the slots 72 facilitates rotation of the barrel piston cap 70 using the additional leverage applied with the article, which can have the benefit of disengaging the barrel piston cap 70 from the barrel piston cylinder 80, such as when breaking down of the piston assembly for cleaning. Alternatively, a wrench can engage the flattened surfaces 70a on opposing sides of the barrel piston cap 70 to disengage the barrel piston cap 70 from the barrel piston cylinder 80. In this manner, the rifle does not require specialized tools to breakdown and clean the piston assembly. In addition, deposits are kept away from the critical components including the bolt and bolt carrier assembly. This is particularly important in the field where access to tools is limited and stress can significantly impact a user's ability to service the rifle. Furthermore, the manner in which the piston components fit together makes their assembly and disassembly less complicated. This can be particularly important in combat situations where the stress of combat may reduce an individual's ability to perform tasks quickly and accurately, such as the precise reassembly of a rifle. Furthermore, having the gas from the spent cartridge directed out prior to re-entering the chamber can significantly reduce deposits in the chamber and extends the life of lubricants applied to bolt and bolt carrier, thereby enhancing the time between servicing those components.
As used throughout the entire application, the terms “a” and “an” are used in the sense that they mean “at least one”, “at least a first”, “one or more” or “a plurality” of the referenced components or steps, unless the context clearly dictates otherwise.
As used herein, the term “comprising” is intended to mean that the products, compositions and methods include the referenced components or steps, but not excluding others. “Consisting essentially of” when used to define products, compositions and methods, shall mean excluding other components or steps of any essential significance. Thus, a composition consisting essentially of the recited components would not exclude trace contaminants. “Consisting of” shall mean excluding more than trace elements of other components or steps.
The term “and/or” wherever used herein includes the meaning of “and”, “or” and “all or any other combination of the elements connected by said term”.
The term “about” or “approximately” as used herein means within 20%, preferably within 10%, and more preferably within 5% of a given value or range.
The advantages set forth above, and those made apparent from the foregoing description, are efficiently attained. Since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matters contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
The terms “distal” and “proximal” are used throughout the specification and claims of the application. The term “proximal” refers to a position closer to the buttstock of the gun and away from the end of the barrel of a gun, while the term “distal” to a position closer to the end of the barrel of a gun of the gun and away from the buttstock of a gun.
All references cited in the present application are incorporated in their entirety herein by reference to the extent not inconsistent herewith.
It will be seen that the advantages set forth above, and those made apparent from the foregoing description, are efficiently attained and since certain changes may be made in the above construction without departing from the scope of the invention, it is intended that all matters contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described, and all statements of the scope of the invention which, as a matter of language, might be said to fall therebetween. Now that the invention has been described,