In general, the present invention relates to a hybrid connector for electrically grounding a plurality of conductors together. The connector comprises a recess which has been milled or formed into the body of the connector and pre-filled with solder to be heated and melted once the conductors have been installed in the connector.
There are three common methods of providing a grounding connection for a plurality of conductors. These methods include exothermic connectors, mechanical connectors and compression connectors. Each method has its own advantages and disadvantages. Exothermic connectors are believed to be the superior connection among the three mentioned methods, as it yields a solid conductor mass if the method is carried out properly. The solid joint that is produced is not susceptible to mechanical or electrical degradation. However, some disadvantages of this method include the types of tools required and the susceptibility of this method to environmental conditions such as rain or humidity. Mechanical connectors are easy to install and require no special tools for installation of conductors. However, mechanical connectors are often not preferred as a grounding method, as a tightened mechanical connector can become loose through vibrations over time which does not provide a permanent connection. Compression connectors are considered to form a permanent connection, but are believed in some instances to be inferior to exothermic connections due to small voids which can exist in the compressed joint which may allow moisture to penetrate the joint, leading to oxidation or degradation of the connection over time. Compression connectors are considered to be inferior to exothermic for resistance to fault currents. An improved connector which combines the positive attributes of the previously described methods is desired.
The present invention provides a hybrid connector for electrically grounding a plurality of conductors together. The connector comprises a recess which has been milled, extruded or formed into an interior wall of the body of the connector and pre-filled with solder. The interior walls of the connector can also be coated with flux material to promote solder flow. Conductors are installed within the connector, compressed, and an external heat source is applied which is sufficiently hot to melt the solder which is contained in the recess. The heat source remains applied until the melted solder flows into the strands of the conductors, thereby solidifying the joint of the connector.
The above and other features, aspects and advantages of the present invention will now be discussed in the following detailed description of preferred embodiments and appended claims, which are to be considered in conjunction with the accompanying drawings in which identical reference characters designate like elements throughout the views.
Shown in
Shown in
Shown in
Although the invention has been described in detail above, it is expressly understood that it will be apparent to persons skilled in the relevant art that the invention may be modified without departing from the spirit of the invention. Various changes of form, design, or arrangement may be made to the invention without departing from the spirit and scope of the invention. Therefore, the above mentioned description is to be considered exemplary, rather than limiting, and the true scope of the invention is that defined in the following claims.
Number | Date | Country | |
---|---|---|---|
61777846 | Mar 2013 | US |