The present disclosure relates to a hybrid heart valve for heart valve replacement, and more particularly to modifications to the construction of surgical heart valves to enable them to receive an expandable prosthetic heart valve therein.
The heart is a hollow muscular organ having four pumping chambers separated by four heart valves: aortic, mitral (or bicuspid), tricuspid, and pulmonary. Heart valves are comprised of a dense fibrous ring known as the annulus, and leaflets or cusps attached to the annulus.
Heart valve disease is a widespread condition in which one or more of the valves of the heart fails to function properly. In a traditional valve replacement operation, the damaged leaflets are typically excised and the annulus sculpted to receive a replacement prosthetic valve.
In tissue-type valves, a whole xenograft valve (e.g., porcine) or a plurality of xenograft leaflets (e.g., bovine pericardium) can provide fluid occluding surfaces. Synthetic leaflets have been proposed, and thus the term “flexible leaflet valve” refers to both natural and artificial “tissue-type” valves. In a typical tissue-type valve, two or more flexible leaflets are mounted within a peripheral support structure that usually includes posts or commissures extending in the outflow direction to mimic natural fibrous commissures in the native annulus. The metallic or polymeric “support frame,” sometimes called a “wireform” or “stent,” has a plurality (typically three) of large radius cusps supporting the cusp region of the flexible leaflets (e.g., either a whole xenograft valve or three separate leaflets). The ends of each pair of adjacent cusps converge somewhat asymptotically to form upstanding commissures that terminate in tips, each extending in the opposite direction as the arcuate cusps and having a relatively smaller radius. Components of the valve are usually assembled with one or more biocompatible fabric (e.g., polyester, for example, Dacron® polyethylene terephthalate (PET)) coverings, and a fabric-covered sewing ring is provided on the inflow end of the peripheral support structure.
Sometimes the need for complete valve replacement may arise after a patient has already had an earlier valve replacement for the same valve. For example, a prosthetic heart valve that was successfully implanted to replace a native valve may itself suffer damage and/or wear and tear many years after initially being implanted. Implanting the prosthetic heart valve directly within a previously-implanted prosthetic heart valve may be impractical, in part because the new prosthetic heart valve (including the support structure and valve assembly) will have to reside within the annulus of the previously-implanted heart valve, and traditional prosthetic heart valves may not be configured to easily receive such a valve-within-a-valve implantation in a manner that provides secure seating for the new valve while also having a large enough annulus within the new valve to support proper blood flow therethrough.
Some attention has been paid to the problem of implanting a new valve within an old valve. In particular, the following disclose various solutions for valve-in-valve systems: U.S. Patent Application Publication No. 2010/0076548, filed Sep. 19, 2008; U.S. Pat. No. 8,613,765, filed Jul. 7, 2011; and International Publication No. WO 2012/018779, filed Aug. 2, 2011. The entire disclosures of these publications are expressly incorporated herein by reference.
Despite certain advances in the valve-in-valve area, there remains a need for a prosthetic heart valve that facilitates the process while maximizing the life of the first valve and simplifying manufacturing techniques.
The invention is a prosthetic heart valve configured to receive a prosthetic heart valve, such as a catheter-deployed (transcatheter) prosthetic heart valve, therein. In one embodiment, the prosthetic heart valve has a support structure that is substantially resistant to radial compression (and that may be substantially resistant to radial expansion) when deployed in the patient's native heart valve annulus to replace the native heart valve (or to replace another prosthetic heart valve), but is configured to be radially expandable, and/or to transform to a generally expanded and/or expandable configuration, in order to receive a prosthetic heart valve therein, such as a percutaneously-delivered prosthetic heart valve. The transformation from expansion-resistant to expanded/expandable can be achieved by subjecting the expansion-resistant support structure to an outward force, such as a dilation force, which may be provided by a dilation balloon used to deploy a replacement prosthetic valve.
A prosthetic heart valve according to the invention may further be a “hybrid” heart valve with an additional support portion in the form of a stent frame positioned at the inflow end of the prosthetic heart valve configured to plastically expand into a substantially flared shape when subjected to a dilation force that is by itself insufficient to cause expansion of the main support structure. The stent frame is positioned upstream or on the inflow end of the entire valve portion.
A first exemplary hybrid prosthetic heart valve is adapted for post-implant expansion and has an inflow end and an outflow end. A valve member includes an inner structural support stent having upstanding commissure posts extending in the outflow direction alternating with arcuate inflow cusps. The inflow end of the valve member undulates up and down corresponding to the commissure posts and cusps. The support stent defines an implant circumference that is non-compressible in normal physiological use and has a first diameter, wherein the support stent permits expansion from the first diameter to a second diameter larger than the first diameter upon application of an outward dilatory force from within the support stent substantially larger than forces associated with normal physiological use. Also, a plurality of flexible leaflets attach along the commissure posts and inflow cusps of the support stent and ensure one-way blood flow therethrough. A plastically-expandable inflow stent frame secured to and projecting from an inflow end of the support stent has a strength requiring a predetermined expansion force to convert to an expanded state. An outflow end of the stent frame undulates with peaks and valleys to at least partially conform to the inflow end of the support stent, and wherein the outflow end has limited radially compressibility to enable compression of the stent frame during delivery of the heart valve.
The first prosthetic heart valve support stent may include a radially outer band located concentrically around and attached to a radially inner band having a single one of the expandable segments formed by overlapping free ends located at one of the cusps and separated by a sliding insert, and further including a flexible sleeve surrounding the overlapping free ends of the outer band to maintain alignment of the free ends. The single expandable segment is desirably located at one of the cusps of support the stent and the inner band is configured to expand below each of the commissure posts when the outer band expands.
A second hybrid prosthetic heart valve adapted for post-implant expansion has an inflow end and an outflow end, and a valve member including an undulating wireform with alternating cusps and commissures supporting a plurality of flexible leaflets configured to ensure one-way blood flow therethrough. A plastically-expandable inflow stent frame having a radially-expandable inflow end and an outflow end is secured to and projects from an inflow end of the wireform. The outflow end of the stent frame undulates with peaks and valleys corresponding to the wireform, and further, the outflow end includes integrated commissure posts located adjacent to and radially outward from the wireform commissures to which the leaflets attach. The outflow end defines an implant circumference with a nominal diameter that enables physiological functioning of the valve member when implanted, and the stent frame outflow end permits limited expansion from the nominal diameter to a second diameter larger than the nominal diameter upon application of an outward dilatory force from within the outflow end substantially larger than forces associated with normal physiological use.
In the second prosthetic heart valve, the stent frame is preferably configured to expand below each of the commissure posts upon application of the outward dilatory force. The integrated commissure posts may separate elements secured with sutures to the stent frame outflow end, or may be integrally formed of the same homogeneous material as the rest of the stent frame. Preferably, the stent frame includes a plurality of circumferential row struts connected by a series of spaced axial column struts, and includes an outflow row strut that extends continuously around a periphery of the stent frame having the peaks and valleys corresponding to the wireform, wherein the outflow row strut has a series of spaced V-shaped notches that permit limited expansion and contraction.
A third exemplary hybrid prosthetic heart valve adapted for post-implant expansion also has an inflow end and an outflow end and a valve member including an undulating wireform with alternating cusps and commissures supporting a plurality of flexible leaflets configured to ensure one-way blood flow therethrough. A plastically-expandable inflow stent frame having a radially-expandable inflow end and an outflow end is secured to and projects from an inflow end of the wireform. The outflow end of the stent frame undulates with peaks and valleys corresponding to the wireform, and further, the outflow end includes three commissure posts located adjacent to and radially outward from the wireform commissures to which the leaflets attach outside of the wireform. The three commissure posts are secured directly to an upper circumferential row of struts defining a nominal diameter that enables physiological functioning of the valve member when implanted. The upper circumferential row of struts is radially compressible to a smaller contracted diameter to enable compression of the outflow end during delivery of the heart valve, and the upper circumferential row of struts also is radially expandable from the nominal diameter to a larger expanded diameter upon application of an outward dilatory force from within the stent frame substantially larger than forces associated with normal physiological use.
In the third prosthetic heart valve, the stent frame is desirably configured to expand below each of the commissure posts upon application of the outward dilatory force. The stent frame may have a series of compression sections including spaces that enable a limited compression of the circumferential structure. Preferably, the upper circumferential row of struts extends continuously around a periphery of the stent frame having the peaks and valleys corresponding to the wireform, and the upper circumferential row of struts has a series of spaced V-shaped notches that permit limited expansion and contraction. Also, the upper circumferential row of struts preferably has limited radially compressibility of between about 7-20% of the nominal diameter to reduce the size of the outflow end during delivery of the heart valve.
A fourth hybrid prosthetic heart valve adapted for post-implant expansion and having an inflow end and an outflow end comprises a valve member including a plurality of flexible leaflets configured to ensure one-way blood flow therethrough and a leaflet support structure defining alternating cusps and commissures to which peripheral edges of the leaflets attach. A plastically-expandable inflow stent frame secured to and projecting from an inflow end of the leaflet support structure has a strength requiring a predetermined expansion force to convert to an expanded state. The stent frame comprising a plurality of expandable struts and an upper edge at an outflow end of the stent frame that undulates with peaks and valleys to at least partially conform to the undulating leaflet support structure. The upper edge defines an implant circumference with a nominal diameter that enables physiological functioning of the valve member when implanted, wherein the upper edge is configured to expand a limited amount from the nominal diameter to an enlarged diameter larger than the nominal diameter upon application of an outward dilatory force from within the outflow end substantially larger than forces associated with normal physiological use.
The prosthetic heart valves further may include a biodegradable band disposed concentrically and in close contact with the support stent, the biodegradable band being configured to provide resistance to expansion of the support stent after implantation, which resistance lessens over time as the band degrades in the body. Consequently, the biodegradable band is configured to provide resistance to expansion of the support stent when the predetermined expansion force is applied to the radially-expandable inflow stent.
In the various prosthetic heart valves a unique identifier may be provided on the support stent or stent frame visible from outside the body after implant that identifies the support stent or stent frame outflow end as being expandable.
Other features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings that illustrate, by way of example, the principles of the invention.
The prosthetic heart valves disclosed herein are “hybrid” in that they include a prosthetic valve member constructed similar to conventional surgical valves, with a relatively stable diameter that is not intended to be compressed or expanded during use after implant, and a lower expandable frame structure to help in anchoring the valve in place. Most prior valves have either a wholly non-compressible/non-expandable valve member or a wholly expandable frame structure that incorporates a valve therein. One specific commercial prosthetic heart valve that is constructed in a hybrid manner is the Edwards Intuity® valve system from Edwards Lifesciences of Irvine, Calif. The hybrid Edwards Intuity® valve system comprises a surgical non-compressible/non-expandable valve member (e.g., similar to a Carpentier-Edwards Magna Ease® valve) having bioprosthetic (e.g., bovine pericardial) leaflets coupled to a stainless steel expandable frame structure on its inflow end.
The prosthetic heart valves described herein each include an internal (meaning incorporated into the valve member itself as opposed to being a supplemental element) structural stent or frame that is generally tubular in shape and defines a flow orifice area through which blood flows from an inflow end to an outflow end. Alternatively, the shape of the internal stent can be oval, elliptical, irregular, or any other desired shape. The valves include flexible leaflets that selectively open and close to allow for one-way fluid flow therethrough.
Various internal stents disclosed herein have “expandable segments” that enable the stent to expand. This can occur from the expandable segment rupturing, plastically stretching, or elastically elongating. Thus, an “expandable segment” means a location on the stent that enables it to enlarge in diameter, such as when a balloon is inflated within the stent. Examples include weak points that can rupture, thinned areas that rupture or stretch, accordion-like structures that elongate elastically or plastically, breaks in the stent that are held together with a breakable member such as a suture or spot weld, and various other means. The term, “expandable segment” thus encompasses each and every one of these alternatives.
A key feature of the “hybrid” valve embodiment of
Note also that in another embodiment, the balloon 28 may be specially shaped (such as depicted in FIGS. 38-40 of related U.S. Pat. No. 8,641,757) so it can be positioned in such a way as to apply radially expansive pressure to the lower frame structure 26 while applying little to no radially expansive pressure to the upper support structure 24. In such an embodiment, the specially shaped balloon for radially expanding just the lower frame structure (e.g., during initial implantation of the prosthetic heart valve 20) could be positioned to apply pressure only to the lower support portion. The specially shaped balloon could then be expanded to a desired pressure, such as 4-5 atmospheres, with the pressure being applied to expand the lower support portion but not being applied to the upper support portion. At a later time when it is desired to radially expand the upper support structure (e.g., when it is desired to deploy a new valve within the existing valve), a much longer and cylindrical balloon can be used to expand both the upper and lower structures. For example, a cylindrical balloon could be positioned within both the upper and lower structures and inflated to between 4 and 5 atmospheres, thus radially expanding both the upper and the lower structures.
The “hybrid” type of prosthetic heart valve such as shown at 20 in
The structural band combination 42 is desirably adapted to enable post-implant expansion, much like the embodiments described in U.S. Patent Application Publication No. 2014/0188221, filed Dec. 20, 2013, the disclosure of which is hereby expressly incorporated by reference. Indeed, the inner band 54 and outer band 56 are illustrated the same as those shown in FIGS. 6A-6B of the '221 publication, though any of the expandable band combinations can be utilized.
When the components are assembled into the valve 40, it will resemble the valve 20 shown in
As mentioned,
The functional portion of the valve 40 defines an orifice diameter d that is relatively stable by virtue of the structural band combination 42, and the valve is intended to function for many years without problem. However, as mentioned, occasionally the valve 40 develops issues such as calcification, which reduces its effectiveness. This process may take decades, but eventually a re-operation to fix the valve may become necessary. The modified valve 40 is designed to enable direct expansion of a replacement valve within its orifice, the expansion widening the valve 40 without the need to explant it.
The strength of the balloon 68 expansion force is sufficient to not only expand the secondary valve 64 outward into contact with the inside of the primary valve 40, but also to outwardly expand the primary valve. As mentioned with reference to
The present application discloses specific modifications to existing surgical and hybrid valves that enable manufacturers to rapidly produce a valve that accommodates valve-in-valve (ViV) procedures. Specifically, the present application contemplates retrofitting or modifying components within existing surgical valves to enable post-implant expansion. Not only does this convert any proven surgical or hybrid valve for use in a ViV procedure, but it also reduces design and manufacturing work. It is therefore necessary to describe components of one popular surgical valve to explain certain modifications thereto.
It should be understood that a leaflet support structure defining alternating cusps and commissures is provided for many prosthetic heart valves, and that such a support structure may or may not include a wireform. That is, some valves have a cloth-covered wireform such as shown at 86 to which the leaflets attach, as well as a structural stent 88, while in other valves a structural stent alone performs the function of the wireform. As such, the term “leaflet support structure” encompasses both variations.
In the exemplary Perimount® valves, the outer band 94 is metallic and is formed from an elongated strip of metal bent to the generally circular shape and welded as at 100. In contrast, the outer band 95 is formed of a biocompatible polymer such as polyester (PET) or polyacetal (e.g., Delrin® polyacetal), which may be molded, and also may be formed as a strip, bent into a circular shape and welded (not shown). Both the outer and inner bands 94, 95 feature a series of through holes that register with each other so that the assembly can be sewn together, as schematically illustrated in
The exemplary prior art surgical valve 80 described above may thus be modified for post-implant expansion. Furthermore, a similar surgical valve structure is used in the aforementioned commercial Edwards Intuity® valve system, and the same modifications can be made in the valve component of that system so that it may be easily expanded post-implant.
The first band 120 includes weakened areas located below each of the commissure posts 124 that enable the band to rupture and easily expand along with the rest of the prosthetic heart valve. Such weakened areas were previously described in U.S. Patent Application Publication No. 2014/0188221, previously incorporated by reference. The first band 120 comprises a series of vertically-spaced through holes 130, 132 at each of the commissure posts 124. In particular, a first pair of through holes 130 is located closely adjacent to a lower edge 134 of the band. A vertical score line 136 through the thickness of band 120 extends vertically upwards from the first pair of through holes 130 to an upper through hole 132 that is located midway up the commissure post 124. Preferably, the score line 136 connects with the upper through hole 132. The through holes 130, 132 may be circular, as shown, or may be slightly elongated such as in a teardrop shape so as to focus any tensile forces generated from expansion of the band 120 to a certain point, such as vertically upward. Because of the relatively weak polymer material and the weakened areas provided by the through holes 130, 132 and score line 136, the first band 120 tends to split apart at three locations below the commissure posts 124. As explained, the flexible leaflets are often secured to the upper end of the commissure posts 124, which remains substantially unchanged above the upper through hole 132. Although the prosthetic heart valve in which the first band 120 is assembled is supplanted by a secondary valve, maintenance of the general integrity of the valve is desirable to avoid any loose components.
The second band 140 is desirably metallic, such as a Co—Cr—Ni alloy like Elgiloy® alloy, and preferably formed initially as a flat band that is bent into an annular shape and has two free ends 146a, 146b that overlap and engage each other for expansion. One preferred example of such engagement is shown in
In the illustrated embodiment, the two free ends 146a, 146b are each distinguished from the rest of the band at a pair of shoulders 148 that reduce the axial height of an intermediate portion 150 having a central circumferential slot 152. Each free end 146a, 146b terminates in an axially enlarged head 154 (or oppositely-directed axial bumps) having an axially height that is approximately the same as the majority of the band 140. A sliding insert 156 or “spacer” is interposed between the two free ends 146a, 146b to reduce sliding friction between. For example, the insert 156 is formed of a lubricious material such as polyester. The insert 156 has a shape that somewhat mirrors the combination of the two free ends 146a, 146b; namely, having an axial height approximately the same as the intermediate portion 150, a central circumferential slot, and axial protrusions the same size as the enlarged heads 154. The polyester insert 156 between the two metal band ends 146a, 146b also prevents metal-on-metal fretting during normal cardiac cycling, which may cause slight relative motion.
The assembly of the two free ends 146a, 146b and insert 156 is seen in
Each of the free ends 146a, 146b further includes the circumferentially-oriented slot 152 that stops short of the terminal ends 154 and provides a pathway for fluid flow. Preferably, slots 152 extend farther outward from the sleeve 158 so that fluid can always enter the space within the sleeve. During storage, the slots 152 permit flow of a fluid between the overlapping free ends 146a, 146b to allow for sterilization. Moreover, the sleeve 158 may be biodegradable to maintain alignment of the two free ends 146a, 146b for a period after implant and then degrades to permit even easier expansion of the band 140.
The band 140 shows a still further identifying trait visible using external imaging and signifying it is expandable. In the illustrated embodiment, a pattern of three holes 160 are provided at each commissure region 144. Again, this permits a surgeon contemplating a replacement operation to quickly confirm that a valve-in-valve procedure is a possibility. The band 140 may also include a valve size indicator visible using external imaging, as illustrated below with respect to
The assembly of the first band 120 in intimate contact with the second band 140, as seen in
The valve member 172 of the hybrid prosthetic heart valve 170 shares some structural aspects with the prior art heart valve 80 illustrated in
In the illustrated embodiment, the heart valve 170 also includes a highly compliant sealing ring 190 extending outward therefrom at approximately the interface between the valve member was 172 and the anchoring 174. The sealing ring 190 as well as the expandable frame 176 are covered with a fabric 192 that helps prevent leakage around the outside of the valve once implanted. Furthermore, the sealing ring 190 is also suture-permeable and may be used to secure the valve in place in the native annulus.
With specific reference to
The upper row strut 200 includes a plurality of eyeholes 202 evenly spaced apart and located just below the top edge thereof that are useful for securing the frame 176 to the fabric of the underside of the valve member 172. A series of axial column struts 206 depend downward from the upper row strut 200, and specifically from each of the eyeholes 202, and connect the upper row strut to two lower row struts 208. The lower row struts 208 circumscribe the frame 176 in zig-zag patterns, with an inverted “V” shape between each two adjacent column struts 206. The lower row struts 208 preferably traverse horizontally around the frame, and the length of the column struts 206 thus varies with the undulating upper row strut 200.
As mentioned above, the lower frame 176, in particular the inflow end thereof, may be plastically expanded, such as by balloon expansion, and may be formed of stainless steel, for example. In a conventional Edwards Intuity® valve, the upper row strut 200 is generally ring-like without capacity for compression or expansion. In the illustrated frame 176, on the other hand, a series of spaced notches 210 are provided that permit expansion and contraction. That is, circumferential segments of the strut 250 are interrupted by the V-shaped notches 210, which permit a limited amount of expansion, perhaps about 3 mm in diameter, to accommodate a supplemental expandable valve to be inserted and expanded therein. More particularly, the upper row strut 200 (outflow end) of the frame 176 defines a nominal diameter seen in
As shown in
If it was not desired to have the frame collapsible but expansion was still desired, the gaps could be reduced to about 25 μm, the practical limit of laser cutting. With 18 gaps of 25 μm, the amount of compression would only be (18×25 μm/π)=0.143 mm (about 0.006″).
In contrast, earlier designs simply removed the upper row of struts that defines the outflow diameter of the frame. That frame configuration had no way to limit the maximum expansion of the valve during a valve-in-valve procedure. Additionally, there could be an advantage to having hybrid valves that are collapsible by a limited amount (e.g., about 2-3 mm) for easier insertion. While a frame without an upper row of struts could be collapsed, there is no limit the amount of compression. It might be desirable to have the maximum compression amount limited as disclosed here for consistency and for preventing physicians from trying to collapse the valve more than it can safely be collapsed.
In addition, a number of valve type indicators 212 are integrated into the frame 176 at locations around its circumference, such as three valve size indicators. In the illustrated embodiment, the valve size indicators 212 comprise small plate-like tags inscribed with the numerical valve size in mm, for example 21 mm in the illustrated embodiment. The use of any alphanumeric characters or other symbols that signify size or other feature of the valve are contemplated. The stainless steel frame 176 may be laser cut from a tubular blank, with the plate-like size indicators 212 left connected to one more of the struts. As shown, the size indicators 212 are located just below the peaks 204 of the undulating upper row strut 200, connected between the corresponding eyehole 252 and the descending column strut 206. There are thus three size indicators 212 spaced 120° apart around the frame 176. This location provides additional space between the upper row strut 200 and the adjacent lower row strut 208. Further, the frame 176 typically has more real estate in which to place the size indicators 212 than the bands of the valve member 172. The inscribed or cutout valve size numerals are sufficiently large to be visualized with X-ray, transesophageal echocardiography (TEE), or other imaging modality. In one embodiment, the valve size numerals are from about 1.5 mm to about 2 mm in height, for example, about 1.75 mm in height.
Due to the attachment of the commissure posts 304 to the frame 302 the subassembly 312 integrates the frame and commissure posts, while as described below, an “integrated” frame may mean that the commissure posts are integrally formed of the same homogeneous material as the rest of the stent frame. Integrated in this sense meaning the two components are securely attached together prior to assembly with the wireform/leaflet subassembly 310, either by securing the two parts or forming them at the same time from the same material. Furthermore, a hybrid heart valve with an “integrated” frame means that the frame provides both the expandable skirt frame as well as commissure posts to which the leaflets attach, without any additional structural bands, such as the metal band 94 seen in
The relative positions of the wireform 306 and the frame/commissure post subassembly 312 is seen in
The removal of the aforementioned stent bands and attachment (integration) of the commissure posts 304 directly to the frame 302 greatly simplifies construction, reduces labor hours, lowers the radial profile of the valve by about 1.6 mm, and allows for expansion during a valve-in-valve procedure. A preferred construction sequence involves attaching the sealing ring 332 to the expandable frame 302, along with 3 cloth-covered commissure posts 304, then attaching this assembly to the wireform/leaflet subassembly 310 during final assembly.
The commissure posts 304 disclosed have specific features that interface with the frame 304 to add stability to the posts in all directions. That is, the specific surfaces 314, 320 that mate with the corresponding peaks 316 on the frame 302 as well as the holes 324 that allow the posts to attach with sutures 322 to the frame provide excellent stability in all directions for subsequent covering with fabric. The commissure posts 304 could be molded from polyester or some other biocompatible material into the shape shown here, or even produced using 3D printing.
The integrated frame member 402, which is also shown in
The frame member 402 is desirably formed from a tubular blank of a suitable material, and has a generally circular inflow or lower edge and an undulating outflow or upper edge. More particularly, the upper edge defines three arcuate cusp portions 416 intermediate three upstanding commissure posts 418. The undulating upper edge is shaped to closely fit underneath the wireform 406. After assembling the frame member 402 with the rest of the heart valve components, the skirt portion 410 is typically crimped in a generally conical manner such that its lower edge has a smaller diameter than its upper edge.
Compression/expansion sections 420 along the annulus band 412 are also added to enable a limited collapse of the frame member 402 during delivery. The compression/expansion sections 420 comprise slits formed in the upper edge of the frame member 402 that have spaces enabling a limited compression, and also permit expansion. In a preferred embodiment, solid segments 422 spaced around the annulus band 412 are connected by thin inverted U-shaped bridges 424.
As seen in
Despite the arcuate slits 430 in the frame member 402 of
For instance,
The assembly 500 is again crimpable and expandable. The stent band 504 is formed of a polymer (e.g., polyester) material that is breakable when an expansion force is applied within the valve. This makes the whole valve expandable for valve-in-valve applications. Because of the polymer commissures 506, the valve load carrying characteristics will be exactly the same as the existing commercial valve platform, thus hydrodynamic performance and durability of the valve shall be the same as the existing commercial valve as well. The relative position of the polyester band and the expandable frame can be assembled as illustrated in
While the disclosure references particular embodiments, it will understood that various changes and additional variations may be made and equivalents may be substituted for elements thereof without departing from the scope or the inventive concept thereof. In addition, many modifications may be made to adapt a particular situation or device to the teachings herein without departing from the essential scope thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiments disclosed herein, but includes all embodiments falling within the scope of the appended claims.
This application claims the benefit of U.S. Application No. 62/188,467, filed Jul. 2, 2015, the entire disclosure of which is incorporated by reference. This application is related to a U.S. patent application filed on Jun. 30, 2016, titled “INTEGRATED HYBRID HEART VALVES”, the entire disclosure of which is incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3143742 | Cromie | Aug 1964 | A |
3320972 | High et al. | May 1967 | A |
3371352 | Siposs et al. | Mar 1968 | A |
3409013 | Berry | Nov 1968 | A |
3546710 | Shumakov et al. | Dec 1970 | A |
3574865 | Hamaker | Apr 1971 | A |
3628535 | Ostrowsky et al. | Dec 1971 | A |
3656185 | Carpentier | Apr 1972 | A |
3657744 | Ersek | Apr 1972 | A |
3686740 | Shiley | Aug 1972 | A |
3755823 | Hancock | Sep 1973 | A |
3839741 | Haller | Oct 1974 | A |
3997923 | Possis | Dec 1976 | A |
4035849 | Angell et al. | Jul 1977 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4078468 | Civitello | Mar 1978 | A |
4079468 | Liotta et al. | Mar 1978 | A |
4084268 | Ionescu et al. | Apr 1978 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4164046 | Cooley | Aug 1979 | A |
4172295 | Batten | Oct 1979 | A |
4217665 | Bex et al. | Aug 1980 | A |
4218782 | Rygg | Aug 1980 | A |
4259753 | Liotta et al. | Apr 1981 | A |
4340091 | Skelton et al. | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4364126 | Rosen et al. | Dec 1982 | A |
4388735 | Ionescu et al. | Jun 1983 | A |
4441216 | Ionescu et al. | Apr 1984 | A |
4451936 | Carpentier et al. | Jun 1984 | A |
4470157 | Love | Sep 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4501030 | Lane | Feb 1985 | A |
4506394 | Bedard | Mar 1985 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4602911 | Ahmadi et al. | Jul 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4626255 | Reichart et al. | Dec 1986 | A |
4629459 | Ionescu et al. | Dec 1986 | A |
4680031 | Alonso | Jul 1987 | A |
4687483 | Fisher et al. | Aug 1987 | A |
4702250 | Ovil et al. | Oct 1987 | A |
4705516 | Barone et al. | Nov 1987 | A |
4725274 | Lane et al. | Feb 1988 | A |
4731074 | Rousseau et al. | Mar 1988 | A |
4778461 | Pietsch et al. | Oct 1988 | A |
4790843 | Carpentier et al. | Dec 1988 | A |
4851000 | Gupta | Jul 1989 | A |
4865600 | Carpentier et al. | Sep 1989 | A |
4888009 | Lederman et al. | Dec 1989 | A |
4914097 | Oda et al. | Apr 1990 | A |
4960424 | Grooters | Oct 1990 | A |
4993428 | Arms | Feb 1991 | A |
5010892 | Colvin et al. | Apr 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5041130 | Cosgrove et al. | Aug 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5104407 | Lam et al. | Apr 1992 | A |
5147391 | Lane | Sep 1992 | A |
5163955 | Love et al. | Nov 1992 | A |
5201880 | Wright et al. | Apr 1993 | A |
5258021 | Duran | Nov 1993 | A |
5258023 | Reger | Nov 1993 | A |
5306296 | Wright et al. | Apr 1994 | A |
5316016 | Adams et al. | May 1994 | A |
5326370 | Love et al. | Jul 1994 | A |
5326371 | Love et al. | Jul 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5376112 | Duran | Dec 1994 | A |
5396887 | Imran | Mar 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411522 | Trott | May 1995 | A |
5423887 | Love et al. | Jun 1995 | A |
5425741 | Lemp et al. | Jun 1995 | A |
5431676 | Dubrul et al. | Jul 1995 | A |
5449384 | Johnson | Sep 1995 | A |
5449385 | Religa et al. | Sep 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5469868 | Reger | Nov 1995 | A |
5476510 | Eberhardt et al. | Dec 1995 | A |
5488789 | Religa et al. | Feb 1996 | A |
5489297 | Duran | Feb 1996 | A |
5489298 | Love et al. | Feb 1996 | A |
5496336 | Cosgrove et al. | Mar 1996 | A |
5500016 | Fisher | Mar 1996 | A |
5533515 | Coller et al. | Jul 1996 | A |
5549665 | Vesely | Aug 1996 | A |
5562729 | Purdy et al. | Oct 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573007 | Bobo, Sr. | Nov 1996 | A |
5578076 | Krueger et al. | Nov 1996 | A |
5584803 | Stevens et al. | Dec 1996 | A |
5593435 | Carpentier et al. | Jan 1997 | A |
5607471 | Seguin et al. | Mar 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5628789 | Vanney et al. | May 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5693090 | Unsworth et al. | Dec 1997 | A |
5695503 | Krueger et al. | Dec 1997 | A |
5713952 | Vanney et al. | Feb 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5728064 | Burns et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5735894 | Krueger et al. | Apr 1998 | A |
5752522 | Murphy | May 1998 | A |
5755782 | Love et al. | May 1998 | A |
5766240 | Johnson | Jun 1998 | A |
5776187 | Krueger et al. | Jul 1998 | A |
5776188 | Shepherd et al. | Jul 1998 | A |
5776189 | Khalid | Jul 1998 | A |
5800527 | Jansen et al. | Sep 1998 | A |
5814097 | Sterman et al. | Sep 1998 | A |
5814098 | Hinnenkamp et al. | Sep 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5824066 | Gross | Oct 1998 | A |
5824068 | Bugge | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5848969 | Panescu et al. | Dec 1998 | A |
5855563 | Kaplan et al. | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5865801 | Houser | Feb 1999 | A |
5888240 | Carpentier et al. | Mar 1999 | A |
5891160 | Williamson, IV et al. | Apr 1999 | A |
5895420 | Mirsch, II et al. | Apr 1999 | A |
5902308 | Murphy | May 1999 | A |
5908450 | Gross et al. | Jun 1999 | A |
5919147 | Jain | Jul 1999 | A |
5921934 | Teo | Jul 1999 | A |
5921935 | Hickey | Jul 1999 | A |
5924984 | Rao | Jul 1999 | A |
5928281 | Huynh | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5972004 | Williamson, IV et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5984973 | Girard et al. | Nov 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6059827 | Fenton, Jr. | May 2000 | A |
6066160 | Colvin et al. | May 2000 | A |
6074418 | Buchanan et al. | Jun 2000 | A |
6081737 | Shah | Jun 2000 | A |
6083179 | Oredsson | Jul 2000 | A |
6099475 | Seward et al. | Aug 2000 | A |
6102945 | Campbell | Aug 2000 | A |
6106550 | Magovern et al. | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6117091 | Young et al. | Sep 2000 | A |
6126007 | Kari et al. | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6183512 | Howanec, Jr. et al. | Feb 2001 | B1 |
6187040 | Wright | Feb 2001 | B1 |
6217610 | Carpentier et al. | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6250308 | Cox | Jun 2001 | B1 |
6258122 | Tweden et al. | Jul 2001 | B1 |
6264611 | Ishikawa et al. | Jul 2001 | B1 |
6322526 | Rosenman et al. | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6348068 | Campbell et al. | Feb 2002 | B1 |
6350282 | Eberhardt | Feb 2002 | B1 |
6391054 | Carpentier et al. | May 2002 | B2 |
6406493 | Tu et al. | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6491624 | Lotfi | Dec 2002 | B1 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6718985 | Hlavka et al. | Apr 2004 | B2 |
6719786 | Ryan et al. | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6773457 | Ivancev et al. | Aug 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6800090 | Alferness et al. | Oct 2004 | B2 |
6802860 | Cosgrove et al. | Oct 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6858039 | McCarthy | Feb 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6921407 | Nguyen et al. | Jul 2005 | B2 |
6942694 | Liddicoat et al. | Sep 2005 | B2 |
6955689 | Ryan et al. | Oct 2005 | B2 |
6966924 | Holmberg | Nov 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
7037333 | Myers et al. | May 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7118595 | Ryan et al. | Oct 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7166126 | Spence et al. | Jan 2007 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7261732 | Justino | Aug 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7399315 | Lobbi | Jul 2008 | B2 |
7452376 | Lim et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7470285 | Nugent et al. | Dec 2008 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7534261 | Friedman | May 2009 | B2 |
7556646 | Yang et al. | Jul 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7625403 | Krivoruchko | Dec 2009 | B2 |
7780723 | Taylor | Aug 2010 | B2 |
7806927 | Styrc | Oct 2010 | B2 |
7871436 | Ryan et al. | Jan 2011 | B2 |
7998151 | St. Goar et al. | Aug 2011 | B2 |
8226707 | White | Jul 2012 | B2 |
8246677 | Ryan | Aug 2012 | B2 |
8308798 | Pintor | Nov 2012 | B2 |
8323337 | Gurskis et al. | Dec 2012 | B2 |
8348998 | Pintor et al. | Jan 2013 | B2 |
8496700 | Edoga et al. | Jul 2013 | B2 |
8500802 | Lane et al. | Aug 2013 | B2 |
8579964 | Lane et al. | Nov 2013 | B2 |
8585757 | Agathos | Nov 2013 | B2 |
9078747 | Conklin | Jul 2015 | B2 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20010021874 | Carpentier et al. | Sep 2001 | A1 |
20010039435 | Roue et al. | Nov 2001 | A1 |
20010039436 | Frazier et al. | Nov 2001 | A1 |
20010041914 | Frazier et al. | Nov 2001 | A1 |
20010041915 | Roue et al. | Nov 2001 | A1 |
20010049492 | Frazier et al. | Dec 2001 | A1 |
20020026238 | Lane et al. | Feb 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020062150 | Campbell et al. | May 2002 | A1 |
20020123802 | Snyders | Sep 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020188348 | DiMatteo et al. | Dec 2002 | A1 |
20020198594 | Schreck | Dec 2002 | A1 |
20030014104 | Cribier | Jan 2003 | A1 |
20030023300 | Bailey et al. | Jan 2003 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030033009 | Gabbay | Feb 2003 | A1 |
20030036795 | Andersen et al. | Feb 2003 | A1 |
20030040792 | Gabbay | Feb 2003 | A1 |
20030040793 | Marquez | Feb 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030114913 | Spenser et al. | Jun 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030149478 | Figulla et al. | Aug 2003 | A1 |
20030167089 | Lane | Sep 2003 | A1 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20030236568 | Hojeibane et al. | Dec 2003 | A1 |
20040019374 | Hojeibane et al. | Jan 2004 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040044406 | Woolfson et al. | Mar 2004 | A1 |
20040106976 | Bailey et al. | Jun 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040122516 | Fogarty et al. | Jun 2004 | A1 |
20040167573 | Williamson et al. | Aug 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040193261 | Berreklouw | Sep 2004 | A1 |
20040206363 | McCarthy et al. | Oct 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040210305 | Shu et al. | Oct 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040225355 | Stevens | Nov 2004 | A1 |
20040236411 | Sarac et al. | Nov 2004 | A1 |
20040249452 | Adams et al. | Dec 2004 | A1 |
20040249453 | Cartledge et al. | Dec 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20040260390 | Sarac et al. | Dec 2004 | A1 |
20050010285 | Lambrecht et al. | Jan 2005 | A1 |
20050027348 | Case et al. | Feb 2005 | A1 |
20050033398 | Seguin | Feb 2005 | A1 |
20050043760 | Fogarty et al. | Feb 2005 | A1 |
20050043790 | Seguin | Feb 2005 | A1 |
20050060029 | Le et al. | Mar 2005 | A1 |
20050065594 | DiMatteo et al. | Mar 2005 | A1 |
20050065614 | Stinson | Mar 2005 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075713 | Biancucci et al. | Apr 2005 | A1 |
20050075717 | Nguyen et al. | Apr 2005 | A1 |
20050075718 | Nguyen et al. | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075720 | Nguyen et al. | Apr 2005 | A1 |
20050075724 | Svanidze et al. | Apr 2005 | A1 |
20050080454 | Drews et al. | Apr 2005 | A1 |
20050096738 | Cali et al. | May 2005 | A1 |
20050096739 | Cao | May 2005 | A1 |
20050131533 | Alfieri et al. | Jun 2005 | A1 |
20050137682 | Justino | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137694 | Haug et al. | Jun 2005 | A1 |
20050137702 | Haug et al. | Jun 2005 | A1 |
20050159811 | Lane | Jul 2005 | A1 |
20050165477 | Anduiza et al. | Jul 2005 | A1 |
20050165479 | Drews et al. | Jul 2005 | A1 |
20050182483 | Osborne et al. | Aug 2005 | A1 |
20050182486 | Gabbay | Aug 2005 | A1 |
20050192665 | Spenser et al. | Sep 2005 | A1 |
20050203616 | Cribier | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050203618 | Sharkawy et al. | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050222674 | Paine | Oct 2005 | A1 |
20050228494 | Marquez | Oct 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050240259 | Sisken et al. | Oct 2005 | A1 |
20050251251 | Cribier | Nov 2005 | A1 |
20050251252 | Stobie | Nov 2005 | A1 |
20050256567 | Lim et al. | Nov 2005 | A1 |
20050256568 | Lim et al. | Nov 2005 | A1 |
20050261765 | Liddicoat | Nov 2005 | A1 |
20050267572 | Schoon et al. | Dec 2005 | A1 |
20050278022 | Lim | Dec 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20060015178 | Moaddeb et al. | Jan 2006 | A1 |
20060015179 | Bulman-Fleming et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060025858 | Alameddine | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060085060 | Campbell | Apr 2006 | A1 |
20060095125 | Chinn et al. | May 2006 | A1 |
20060122634 | Ino et al. | Jun 2006 | A1 |
20060122692 | Gilad et al. | Jun 2006 | A1 |
20060136054 | Berg et al. | Jun 2006 | A1 |
20060149360 | Schwammenthal et al. | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060167543 | Bailey et al. | Jul 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060195184 | Lane | Aug 2006 | A1 |
20060195185 | Lane et al. | Aug 2006 | A1 |
20060195186 | Drews et al. | Aug 2006 | A1 |
20060207031 | Cunanan et al. | Sep 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060235508 | Lane et al. | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060246888 | Bender et al. | Nov 2006 | A1 |
20060253191 | Salahieh et al. | Nov 2006 | A1 |
20060259134 | Schwammenthal et al. | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060265056 | Nguyen et al. | Nov 2006 | A1 |
20060271172 | Tehrani | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20060287719 | Rowe et al. | Dec 2006 | A1 |
20060293745 | Carpentier et al. | Dec 2006 | A1 |
20070005129 | Damm et al. | Jan 2007 | A1 |
20070010876 | Salahieh et al. | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070016285 | Lane et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070016287 | Cartledge et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070043435 | Seguin et al. | Feb 2007 | A1 |
20070067029 | Gabbay | Mar 2007 | A1 |
20070078509 | Lotfy | Apr 2007 | A1 |
20070078510 | Ryan | Apr 2007 | A1 |
20070100440 | Figulla et al. | May 2007 | A1 |
20070100441 | Kron et al. | May 2007 | A1 |
20070129794 | Realyvasquez | Jun 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070142907 | Moaddeb et al. | Jun 2007 | A1 |
20070150053 | Gurskis et al. | Jun 2007 | A1 |
20070156233 | Kapadia et al. | Jul 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070179604 | Lane | Aug 2007 | A1 |
20070185565 | Schwammenthal et al. | Aug 2007 | A1 |
20070198097 | Zegdi | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070203576 | Lee et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070225801 | Drews et al. | Sep 2007 | A1 |
20070233237 | Krivoruchko | Oct 2007 | A1 |
20070239266 | Birdsall | Oct 2007 | A1 |
20070239269 | Dolan et al. | Oct 2007 | A1 |
20070239273 | Allen | Oct 2007 | A1 |
20070244546 | Francis | Oct 2007 | A1 |
20070244558 | Machiraju | Oct 2007 | A1 |
20070255398 | Yang et al. | Nov 2007 | A1 |
20070260305 | Drews et al. | Nov 2007 | A1 |
20070265701 | Gurskis et al. | Nov 2007 | A1 |
20070270944 | Bergheim et al. | Nov 2007 | A1 |
20070282436 | Pinchuk | Dec 2007 | A1 |
20070288089 | Gurskis et al. | Dec 2007 | A1 |
20080021546 | Patz et al. | Jan 2008 | A1 |
20080027483 | Cartledge et al. | Jan 2008 | A1 |
20080033543 | Gurskis et al. | Feb 2008 | A1 |
20080065198 | Quintessenza | Mar 2008 | A1 |
20080114452 | Gabbay | May 2008 | A1 |
20080119875 | Ino et al. | May 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080161910 | Revuelta et al. | Jul 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080183273 | Mesana et al. | Jul 2008 | A1 |
20080200980 | Robin et al. | Aug 2008 | A1 |
20080208327 | Rowe | Aug 2008 | A1 |
20080208329 | Bishop et al. | Aug 2008 | A1 |
20080215144 | Ryan et al. | Sep 2008 | A1 |
20080228263 | Ryan | Sep 2008 | A1 |
20080243246 | Ryan et al. | Oct 2008 | A1 |
20080269878 | Lobbi | Oct 2008 | A1 |
20080275549 | Rowe | Nov 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080319543 | Lane | Dec 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090036903 | Ino et al. | Feb 2009 | A1 |
20090082857 | Lashinski et al. | Mar 2009 | A1 |
20090093876 | Nitzan et al. | Apr 2009 | A1 |
20090192599 | Lane et al. | Jul 2009 | A1 |
20090192602 | Kuehn | Jul 2009 | A1 |
20090192603 | Ryan | Jul 2009 | A1 |
20090192604 | Gloss | Jul 2009 | A1 |
20090192605 | Gloss et al. | Jul 2009 | A1 |
20090192606 | Gloss et al. | Jul 2009 | A1 |
20090216322 | Le et al. | Aug 2009 | A1 |
20090281609 | Benichou et al. | Nov 2009 | A1 |
20100076548 | Konno | Mar 2010 | A1 |
20100076549 | Keidar et al. | Mar 2010 | A1 |
20100082094 | Quadri | Apr 2010 | A1 |
20100121436 | Tuval | May 2010 | A1 |
20100161036 | Pintor et al. | Jun 2010 | A1 |
20100185277 | Braido | Jul 2010 | A1 |
20100249894 | Oba | Sep 2010 | A1 |
20100249908 | Chau et al. | Sep 2010 | A1 |
20100256752 | Forster et al. | Oct 2010 | A1 |
20100331972 | Pintor et al. | Dec 2010 | A1 |
20110022165 | Oba et al. | Jan 2011 | A1 |
20110147251 | Hodshon et al. | Jun 2011 | A1 |
20110166636 | Rowe | Jul 2011 | A1 |
20110178597 | Navia et al. | Jul 2011 | A9 |
20110264207 | Bonhoeffer et al. | Oct 2011 | A1 |
20110276128 | Cao et al. | Nov 2011 | A1 |
20120065729 | Pintor | Mar 2012 | A1 |
20120078357 | Conklin | Mar 2012 | A1 |
20120150288 | Hodshon et al. | Jun 2012 | A1 |
20130053949 | Pintor et al. | Feb 2013 | A1 |
20130116777 | Pintor et al. | May 2013 | A1 |
20130190862 | Pintor | Jul 2013 | A1 |
20140188221 | Chung et al. | Jul 2014 | A1 |
20150119980 | Beith | Apr 2015 | A1 |
20150119982 | Quill et al. | Apr 2015 | A1 |
20150313711 | Chang | Nov 2015 | A1 |
20150366664 | Guttenberg | Dec 2015 | A1 |
20180289475 | Chung | Oct 2018 | A1 |
20190029828 | Carpentier | Jan 2019 | A1 |
Number | Date | Country |
---|---|---|
0125393 | Nov 1984 | EP |
0143246 | Jun 1985 | EP |
0338994 | Oct 1989 | EP |
1034753 | Sep 2000 | EP |
1755459 | Feb 2007 | EP |
1804726 | Jul 2007 | EP |
1958598 | Aug 2008 | EP |
1116573 | Jul 1985 | SU |
1697790 | Dec 1991 | SU |
9213502 | Aug 1992 | WO |
9742871 | Nov 1997 | WO |
Entry |
---|
Krakow, “3F Therapeutics, Inc. Announces the First Clinical Implantation of the 3F Enable Aortic Heart Valve.TM., a Patented, Sutureless Implantation, Replacement Heart Valve Intended to Save Valuable Surgery Time and Reduce Time RelatedComplications . . . ”Healthcare Sales & Marketing Network News Feed, Jan. 18, 2005, pp. 1-2. cited by other. |
Sadowski, Jerzy; Kapelak, Boguslaw; Bartus, Krzysztof, “Sutureless Heart Valve Implantation—A Case Study,” Touch Briefings, 2005, pp. 48-50. cited by other. |
Number | Date | Country | |
---|---|---|---|
20170000603 A1 | Jan 2017 | US |
Number | Date | Country | |
---|---|---|---|
62188467 | Jul 2015 | US |