Claims
- 1. Hybrid compression-absorption method for operating heat pumps or refrigeration machines, with a working medium consisting of a solvent and a refrigerant soluble therein, in which in a first heat-exchange action, the refrigerant is dissolved in the solvent, heat being withdrawn, and after expansion of the working medium removed from the first heat-exchange action as liquid phase consisting of the solvent and the refrigerant dissolved therein, heat is supplied to this medium in a second heat-exchange action and thus the refrigerant dissolved in the solvent is at least partially expelled as vapour phase, and in a compression action the vapour phase of the working medium withdrawn from the second heat-exchange action is compressed, the concentration of the refrigerant in the liquid phase of the working medium being continuously varied along the path of the working medium through the second heat exchange action, characterized in that by the supply of heat in the second heat-exchange action the solvent is also partially evaporated, in that along the path of the working medium through the second heat-exchange action, preferably also through the first heat-exchange action, the concentration of the refrigerant in the vapour phase of the working medium too is varied continuously, simultaneously and in common with that of the liquid phase, and in that the vapour phase and the liquid phase of the working medium, which are withdrawn from the second heat-exchange action, are subjected simultaneously and in common to the compression action.
- 2. Method according to claim 1, characterized in that the working medium withdrawn from the first heat-exchange action is brought before the compression action in counter-current into interior heat-exchange with the working medium before the expansion.
- 3. Method according to claim 1, characterized in that the working medium withdrawn from the compression action is mixed in a third heat-exchange action, heat being withdrawn, with a solution poor in refrigerant and thus its vapour phase is condensed and the refrigerant thereof is absorbed, in that then in a fourth heat-exchange action by supply of heat the refrigerant is expelled and a part of the solvent is evaporated out of the refrigerant-rich solution withdrawn from the third heat exchange action, in that the consequent refrigerant-poor solution is brought into heat exchange with the refrigerant-rich solution withdrawn from the third heat-exchange action and thereafter expanded and returned into the third heat-exchange action, and in that the refrigerant and solvent vapour withdrawn from the fourth heat-exchange action is expanded, mechanical energy being generated which is used as drive energy of the compression action, and returned into the first heat-exchange action.
- 4. Hybrid refrigeration machine or heat pump, having a working medium cycle which contains an absorber (1), a gas extractor (4) connected by way of an expansion valve (3) after the absorber, and a mechanical compressor (8) placed after the gas extractor, characterized in that the absorber (1) and the gas extractor (4) are formed as heat exchangers of such kind that, due to their design, between their entry and exit a constrained path for the working medium formed by guide elements and common to the liquid phase and the vapour phase of the working medium is brought about in that between the absorber (1) and the expansion valve (3) on the one hand and between the gas extractor (4) and the compressor (8) on the other an inner counter-current heat exchanger (2) is placed, and in that the exit of the gas extractor (4) is connected by way of the inner heat exchanger (2) to the compressor (8) without conduit branching.
- 5. Hybrid refrigeration machine or heat pump according to claim 5, characterized in that the exit of the compressor (8) is connected to an absorber (19) of a drive cycle which comprises a boiler (18) following its absorber (19), which boiler is connected on the liquid phase side through a second expansion valve (3) to the absorber (19) of the drive cycle and on the vapour side through a mechanical expansion machine (17), which is coupled with the compressor (8) as its drive, to the absorber (1) of the working medium cycle, while an inner heat exchanger (2) is interposed between the boiler (18) and the expansion valve (3) of the drive cycle on the one hand, and its absorber (19) and the boiler (18) on the other hand.
Priority Claims (1)
Number |
Date |
Country |
Kind |
PE 1086 |
Jun 1979 |
HUX |
|
Parent Case Info
This application is a continuation of application Ser. No. 157422, filed June 9/80, now abandoned.
US Referenced Citations (10)
Foreign Referenced Citations (8)
Number |
Date |
Country |
142330 |
|
DEX |
84084 |
|
DEX |
953378 |
|
DEX |
2538730 |
|
DEX |
2624714 |
|
DEX |
386863 |
|
DEX |
1125956 |
Mar 1962 |
DEX |
537438 |
|
FRX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
157422 |
Jun 1980 |
|