Hybrid horn waveguide antenna

Information

  • Patent Grant
  • 12148992
  • Patent Number
    12,148,992
  • Date Filed
    Wednesday, January 25, 2023
    2 years ago
  • Date Issued
    Tuesday, November 19, 2024
    3 months ago
  • Inventors
  • Original Assignees
    • Aptiv Technologies AG
  • Examiners
    • Smith; Graham P
    • Back; Austin M
    Agents
    • Harness, Dickey & Pierce, P.L.C.
Abstract
This document describes apparatuses, methods, and systems for a hybrid horn waveguide antenna. The hybrid horn waveguide antenna includes a waveguide, described in two sections, and an antenna section having both flaring features and step features. The first waveguide section is electrically coupled to a transmitter/receiver (e.g., transceiver) and defines an energy path along an x-axis. The second waveguide section transitions the energy path to travel along a z-axis. The antenna section has a first aperture that is coupled to the second waveguide section and includes flaring wall features in one plane (e.g., the E-plane) and step features in a second plane (e.g., the H-plane). The waveguide may further include an iris between the first waveguide section and the second waveguide section. Further, the hybrid horn waveguide antenna section may be formed from an upper structure and a lower structure manufactured via injection molding and then mated.
Description
BACKGROUND

Automotive systems may be equipped with radar systems that acquire information about the surrounding environment. Such radar systems use waveguides and/or antennas to provide better directivity of the radiation beam of the radar system. The waveguide and antenna can be used to form a radiation beam that covers a particular field-of-view (e.g., in a travel path of a vehicle). As the automotive industry continues to increasingly rely on radar systems to detect objects in the environment, accurately covering the desired field-of-view of the associated radiation beam is becoming more important to maximize the safety of the automotive systems.


SUMMARY

This document is directed to a hybrid horn waveguide antenna, methods for forming the hybrid horn waveguide antenna, and systems including the hybrid horn waveguide antenna. Some aspects described below include an apparatus comprising a waveguide antenna configured to guide electromagnetic energy through a channel defining an energy path for the electromagnetic energy.


The waveguide antenna comprises a first waveguide section configured to propagate the energy path along an x-axis. The first waveguide section comprises a first port centered around the x-axis at which the electromagnetic energy enters or exits the waveguide antenna. The first waveguide section further comprises a first channel portion extending longitudinally along the x-axis. The waveguide antenna further comprises a second waveguide section configured to propagate the energy path from the x-axis to a z-axis, the z-axis being orthogonal to the x-axis. The second waveguide section comprises a second channel portion extending longitudinally along the z-axis. The second waveguide section further comprises a second port centered around the z-axis.


The waveguide antenna further comprises an antenna section having an inverted trapezoidal prism shape and configured to radiate or receive the electromagnetic energy. The antenna section comprises a first aperture configured to align with the second port of the second waveguide section. The antenna section further comprises a first step feature extending from a first side of the first aperture nearest to the first port along the x-axis towards the first port. The antenna section further comprises a second step feature extending from a second side of the first aperture, opposite the first side, along the x-axis away from the first port. The antenna section further comprises a first wall extending along the z-axis from an edge of the first step feature that is opposite the first side of the first aperture. The antenna section further comprises a second wall extending along the z-axis from an edge of the second step feature that is opposite the second side of the first aperture. The antenna section further comprises a third wall extending along a y-axis and the z-axis from a third side of the aperture, the y-axis being orthogonal to the x-axis and the z-axis, the third side being orthogonal to the first side and the second side, the third wall flaring away from the first aperture. The antenna section further comprises a fourth wall extending along the y-axis and the z-axis from a fourth side of the first aperture, opposite the third side, the fourth wall flaring away from the first aperture. The antenna section further comprises a second aperture opposite the first aperture and defined by edges of the first wall, the second wall, the third wall, and the fourth wall.


Other aspects described below include a method of forming a hybrid horn waveguide antenna. The method comprises forming an upper structure of a waveguide antenna configured to guide electromagnetic energy through a channel defining an energy path for the electromagnetic energy, the upper structure comprising an upper portion of the first waveguide section, an upper portion of the second waveguide section, and the antenna section. The method further comprises forming a lower structure of the waveguide antenna, the lower structure comprising a lower portion of the first waveguide section, and a lower portion of the second waveguide section. The method further comprises mating the upper structure to the lower structure.


Other aspects described below include a system comprising a monolithic microwave integrated circuit, and a waveguide antenna, as described above, electrically coupled to the monolithic microwave integrated circuit.


This Summary introduces simplified concepts related to a hybrid horn waveguide antenna, further described in the Detailed Description and Drawings. This Summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

The details of a hybrid horn waveguide antenna are described in this document with reference to the Drawings that may use same numbers to reference like features and components, and hyphenated numbers to designate variations of these like features and components. The Drawings are organized as follows:



FIG. 1 illustrates an example environment in which a radar system with a hybrid horn waveguide antenna is used on a vehicle, in accordance with this disclosure;



FIG. 2 illustrates sections of a hybrid horn waveguide antenna, in accordance with this disclosure;



FIG. 3-1 illustrates example radiation beam characteristics of a hybrid horn waveguide antenna, in accordance with this disclosure;



FIG. 3-2 illustrates example impedance matching characteristics provided by a hybrid horn waveguide antenna, in accordance with this disclosure;



FIG. 4 illustrates a hybrid horn waveguide antenna separated into an upper structure and a lower structure for manufacturing purposes, in accordance with this disclosure; and



FIG. 5 illustrates an example method for forming a hybrid horn waveguide antenna, in accordance with this disclosure.





DETAILED DESCRIPTION
Overview

As automotive systems become more autonomous, sensing technologies are increasingly being used to detect and track objects in the environment in which an autonomous or semi-autonomous vehicle travels. These sensing technologies include sensor systems such as camera systems, radar systems, LiDAR systems, and the like. Many manufacturers use some combination of the various sensor systems that takes advantage of the different strengths each sensor system provides. For example, radar systems may be less affected by weather than camera and LiDAR systems.


Each sensor of a sensor system may be associated with a field-of-view (FOV) around the vehicle. For example, radar sensors use waveguides and antennas to transmit electromagnetic energy within its FOV and receive electromagnetic energy that is reflected off objects located in the associated FOV. Designing the waveguides and antennas to precisely shape and propagate a radiation beam of electromagnetic energy that covers the associated FOV assures that objects located anywhere within the FOV may be detected. Conventionally, engineers have used a horn antenna (e.g., an antenna with walls that flare out from an aperture in each of the four sides of the antenna structure) or a step antenna (e.g., an antenna that has a step feature expanding from the aperture in each of the four sides of the aperture and has walls that do not flare). The horn antenna, characterized by flaring walls in one or two planes extending from the edges of an aperture, can provide good input impedance matching but produces a beam that is wide. The step antenna, characterized by a step feature extending from the four edges of an aperture and parallel walls in each of two planes, may produce a narrower beam in at least one plane but does not adequately match the input impedance of the coupled circuitry.


In contrast, the hybrid horn waveguide antenna, as described herein, may include the advantages of the traditional horn antenna and the step antenna and minimize the disadvantages of each. The hybrid horn structure maintains a wider beam with moderate roll-off in one plane (e.g., the E-plane) and a narrow beam with low sidelobes in another plane (e.g., the H-plane). Additionally, the input impedance matching is similar to the horn antenna. An iris in the waveguide portion of the hybrid horn waveguide antenna can further be used to match the input impedance.


This document describes apparatuses, methods, and systems for a hybrid horn waveguide antenna. The hybrid horn waveguide antenna includes a waveguide, described in two sections, and an antenna section having both flaring features and step features. The first waveguide section is electrically coupled to a transmitter/receiver (e.g., transceiver) and defines an energy path along an x-axis. The second waveguide section transitions the energy path to travel along a z-axis. The antenna section has a first aperture that is coupled to the second waveguide section and includes flaring wall features in one plane (e.g., the E-plane) and step features in a second plane (e.g., the H-plane). The waveguide may further include an iris between the first waveguide section and the second waveguide section. Further, the hybrid horn waveguide antenna section may be formed from an upper structure and a lower structure manufactured via injection molding and then mated.


Example Environment


FIG. 1 illustrates an example environment 100 in which a radar system 102 with a hybrid horn waveguide antenna 104 is used on a vehicle 106, in accordance with this disclosure. The vehicle 106 may use the hybrid horn waveguide antenna 104 to enable operations of the radar system 102 that is configured to determine a proximity, an angle, or a velocity of one or more objects 108 in the proximity of the vehicle 106.


Although illustrated as a car, the vehicle 106 can represent other types of motorized vehicles (e.g., a motorcycle, a bus, a tractor, a semi-trailer truck, or construction equipment), non-motorized vehicles (e.g., a bicycle), railed vehicles (e.g., a train or a trolley car), watercraft (e.g., a boat or a ship), aircraft (e.g., an airplane or a helicopter), or spacecraft (e.g., satellite). In general, manufacturers can mount the radar system 102 to any moving platform, including moving machinery or robotic equipment. In other implementations, other devices (e.g., desktop computers, tablets, laptops, televisions, computing watches, smartphones, gaming systems, and so forth) may incorporate the radar system 102 with the hybrid horn waveguide antenna 104 and support techniques described herein.


In the depicted environment 100, the radar system 102 is mounted near, or integrated within, a front portion of the vehicle 106 to detect the object 108 and avoid collisions. The radar system 102 provides a FOV 110 towards the one or more objects 108. The radar system 102 can project the FOV 110 from any exterior surface of the vehicle 106. For example, vehicle manufacturers can integrate the radar system 102 into a bumper, side mirror, headlights, rear lights, or any other interior or exterior location where the object 108 requires detection. In some cases, the vehicle 106 includes multiple radar systems 102, such as a first radar system 102 and a second radar system 102 that provide a larger FOV 110. In general, vehicle manufacturers can design the locations of the one or more radar systems 102 to provide a particular FOV 110 that encompasses a region of interest, including, for instance, in or around a travel lane aligned with a vehicle path.


Example FOVs 110 include a 360-degree FOV, one or more 180-degree fields-of-view, one or more 90-degree fields-of-view, and so forth, which can overlap or be combined into a FOV 110 of a particular size. The hybrid horn waveguide antenna 104 may radiate a beam of electromagnetic energy that is wider and has a gentle roll-off in the plane (e.g., the E-plane) in which the flaring occurs. This beam may be narrower in the plane (e.g., the H-plane) that includes the step features. Shaping a beam using the hybrid horn waveguide antenna 104 may ensure that the desired FOV 110 is adequately covered by the radar system 102.


The radar system 102 emits electromagnetic radiation by transmitting one or more electromagnetic signals or waveforms via one or more hybrid horn waveguide antennas 104. In the environment 100, the radar system 102 can detect and track the object 108 by transmitting and receiving one or more radar signals. For example, the radar system 102 can transmit electromagnetic signals between 100 and 400 gigahertz (GHz), between 4 and 100 GHz, or between approximately 70 and 80 GHz.


The radar system 102 can determine a distance to the object 108 based on the time it takes for the signals to travel from the radar system 102 to the object 108 and from the object 108 back to the radar system 102. The radar system 102 can also determine the location of the object 108 in terms of an angle based on the direction of a maximum amplitude echo signal received by the radar system 102.


The radar system 102 can be part of the vehicle 106. The vehicle 106 can also include at least one automotive system that relies on data from the radar system 102, including a driver-assistance system, an autonomous-driving system, or a semi-autonomous-driving system. The radar system 102 can include an interface to the automotive systems. The radar system 102 can output, via the interface, a signal based on electromagnetic energy received by the radar system 102.


Generally, the automotive systems of the vehicle 106 use radar data provided by the radar system 102 to perform a function. For example, a driver-assistance system can provide blind-spot monitoring and generate an alert indicating a potential collision with the object 108 detected by the radar system 102. In this case, the radar data from the radar system 102 indicates when it is safe or unsafe to change lanes. An autonomous-driving system may move the vehicle 106 to a particular location on the road while avoiding collisions with the object 108 detected by the radar system 102. The radar data provided by the radar system 102 can provide information about a distance to and the location of the object 108 to enable the autonomous-driving system to perform emergency braking, perform a lane change, or adjust the speed of the vehicle 106.


The radar system 102 generally includes a transmitter (not illustrated) and at least one hybrid horn waveguide antenna 104 to transmit electromagnetic signals. The radar system 102 generally includes a receiver (not illustrated) and at least one hybrid horn waveguide antenna 104 to receive reflected versions of these electromagnetic signals. The transmitter includes components for emitting electromagnetic signals. The receiver includes components to detect the reflected electromagnetic signals. The transmitter and the receiver can be incorporated together as a transceiver on the same integrated circuit (e.g., a transceiver integrated circuit) or separately on the same or different integrated circuits.


The radar system 102 also includes one or more processors (not illustrated) and computer-readable storage media (CRM) (not illustrated). The processor can be a microprocessor, a system-on-chip, monolithic microwave integrated circuit (MMIC), or the like. The processor executes instructions stored within the CRM. As an example, the processor can control the operation of the transmitter. The processor can also process electromagnetic energy received by the hybrid horn waveguide antenna 104 and determine the location of the object 108 relative to the radar system 102. The processor can also generate radar data for the automotive systems. For example, the processor can control, based on processed electromagnetic energy from the hybrid horn waveguide antenna 104, an autonomous or semi-autonomous driving system of the vehicle 106.


The hybrid horn waveguide antenna 104 defines an energy path for electromagnetic energy to propagate through the hybrid horn waveguide antenna 104. The hybrid horn waveguide antenna 104 has a first waveguide section 112 including a first port 114.


The first port 114 may be coupled to transmit/receive circuitry of a sensor system (e.g., a MMIC associated with the radar system 102). The first waveguide section 112 includes a first channel portion 116 (e.g., a first portion of the energy path) that extends from the first port 114 longitudinally through the first waveguide section 112. A second waveguide section 118 extends the first channel portion 116 via a second channel portion 120 (e.g., a second portion of the energy path) that transitions the energy path in a direction orthogonal to the first channel portion 116 (e.g., transitioning the energy path from traveling along an x-axis to traveling along a z-axis). An iris 122 may be disposed between the first waveguide section 112 and the second waveguide section 118 and is configured to match the input impedance at the first port 114. The energy path continues through a second port 124 aligned with a first aperture 126 of an antenna section 128.


The antenna section 128 has an inverted (in relation to the second waveguide section 118) trapezoidal prism shape. Two opposing walls 130, 132 of the antenna section 128 flare out from two opposing edges of the first aperture 126. Two other opposing walls 134, 136, parallel to one another, of the antenna section 128 extend orthogonally from the edges of step features that extend from the other two opposing edges of the first aperture 126. The top edges of the walls 130, 132, 134, 136 (opposite the first aperture 126) form a second aperture 138 from which electromagnetic energy may enter or exit the hybrid horn waveguide antenna 104. The flaring walls may form a relatively wide beam in the E-plane, and the parallel walls along with the step features may form a relatively narrow beam with low sidelobes in the H-plane. In this manner, the hybrid horn waveguide antenna 104 can be configured to transmit or receive a beam shaped to cover a specific FOV 110. Additionally, using step features in only one plane as opposed to two planes may reduce the impedance imbalance between the hybrid horn waveguide antenna 104 and an input/output device.


Example Architecture


FIG. 2 illustrates sections of a hybrid horn waveguide antenna 200 (e.g., the hybrid horn waveguide antenna 104), in accordance with this disclosure. The hybrid horn waveguide antenna 200 is configured to guide electromagnetic energy through a channel that defines an energy path for electromagnetic energy and includes a first waveguide section 202, a second waveguide section 204, and an antenna section 206. Additionally, the hybrid horn waveguide antenna 200 can include an iris 208.


The first waveguide section 202 is configured to propagate the energy path along an x-axis. It has a first length 210 along the x-axis, a first width 212 along a y-axis, and a first height 214 along a z-axis. The first waveguide section 202 includes a first port 216. The first port 216 can be coupled to transmit and/or receive circuity (e.g., a MIMIC, a digital-to-analog converter, an analog-to-digital converter). A first channel portion runs longitudinally along the x-axis through the first waveguide section.


The second waveguide section 204 continues the energy path and transitions the energy from propagating along the x-axis to propagating along the z-axis. The second waveguide section 204 accomplishes this transition by bending the energy path at a sharp right angle (e.g., 90° angle) between the x-axis and the z-axis. A sharp right angle is used as opposed to a gentler transitional curve or chamfer to reduce leakage due to the manufacturing process as described with respect to FIGS. 4 and 5.


The second waveguide section 204 includes a main portion 218 and may include an optional portion 220. The main portion 218 has a second length 222, the first width 212, and a second height 224. The second height 224 of the main portion 218 may be greater (e.g., 1 millimeter (mm) greater as may be required per limitations of a manufacturing process) than the first height 214 of the first waveguide section 202. The main portion 218 includes a second port 226 that is coupled to the antenna section 206.


The optional portion 220, if present, has a third length 228, the first width 212, and the first height 214. The third length 228 would depend on the placement of the iris 208 and on the wavelength of the electromagnetic energy being propagated. However, the optional portion 220 becomes unnecessary if the second waveguide section 204 is designed with appropriate dimensions to accommodate the wavelength. To minimize the size of the hybrid horn waveguide antenna 200, the second waveguide section 204 may not include the optional portion 220.


The iris 208 can be disposed between the first waveguide section 202 and the second waveguide section 204. The iris 208 has a fourth length 230 and the first height 214. The iris 208 has vertical parallel walls (along the z-axis) that define a second width 232 that is different than the first width 212. Although the second width 232 of the iris 208 can be either narrower or wider than the first width 212, a narrower second width 232 (e.g., 0.8 mm to 0.9 mm narrower as may be required per limitations of the manufacturing process) than the first width 212 reduces the footprint of the hybrid horn waveguide antenna 200. The iris 208 can be strategically placed between the first waveguide section 202 and the second waveguide section 204 to match the input impedance related to the circuitry coupled to the first port 216.


The antenna section 206 has an inverted trapezoidal prism shape that is a hybridization of a traditional pyramid horn (e.g., all four walls of the horn flare away from an aperture) and a traditional step horn. The antenna section 206 has a first aperture 234. The first aperture 234 has the second length 222 and the first width 212 and is configured to align with the second port 226. A first step feature 236-1 extends from a first side of the first aperture 234 along the x-axis and towards the first port 216. A second step feature 236-2 extends from a second side of the first aperture 234, opposite the first side, along the x-axis away from the first port 216.


The antenna section has four walls 238. A first wall 238-1 extends along the z-axis from an edge of the first step feature 236-1 that is opposite the first side of the first aperture 234. Similarly, a second wall 238-2 extends along the z-axis from an edge of the second step feature 236-2 that is opposite the second side of the first aperture 234. A third wall 238-3 extends along the y-axis and the z-axis from a third side of the first aperture 234, orthogonal to the first side and the second side, and a fourth wall 238-4 extends along the y-axis and the z-axis from a fourth side of the first aperture 234, opposite the third side. The third wall 238-3 and the fourth wall 238-4 both flare away from the first aperture 234 creating a flaring angle. The outer edges of the four walls 238 define a second aperture 240. Due to the step features 236 and the flaring angle, the second aperture 240 has a fifth length 242 (along the x-axis) and a third width 244 (along the y-axis) that is greater than the length and width (e.g., the second length 222 and the first width 212) of the first aperture 234.


The flaring angle between the third wall 238-3 and the fourth wall 238-4 is in the E-plane (e.g., yz-plane) and may generate a wide beam in the E-plane that has relatively moderate roll off. In contrast, the first wall 238-1 and the second wall 238-2 are parallel to one another with no flaring angle. This arrangement of the first wall 238-1 and the second wall 238-2 may generate a narrower beam in the H-plane (e.g., xz-plane) with low or minimal side lobes. The length of the step features 236 (e.g., the difference between the fifth length 242 and the second length 222) can be optimized to reduce impedance imbalance. That is, the ratio of the second length 222 of the first aperture 234 to the fifth length 242 along with a third height 246 (along the z-axis) of the four walls 238 can be optimized to achieve lower side lobes.



FIG. 3-1 illustrates example radiation beam characteristics of a hybrid horn waveguide antenna, in accordance with this disclosure. Beam pattern 300 represents a wider beam in the yz-plane with moderate roll off, and the flared sides (e.g., the sides 238-3 and 238-4) can be configured with a flare angle to expand or contract the wide beam pattern 300. The beam pattern 300 can be considered wide with moderate roll off because the pattern covers a wide FOV (e.g., minus 100 degrees to positive 100 degrees) while the beam loses relatively little strength (e.g., less than negative 10 decibels (dB)) across its FOV.


Beam pattern 302 represents a narrower beam in the xz-plane with low side-lobes. In this example, the beam pattern 302 has a narrow portion 304 that has close to 0 dB strength loss close to the center of the beam (e.g., 0 degrees) with rapid roll-off in either direction (e.g., negative 50 degrees to positive 50 degrees). The beam pattern 302 also has side-lobes 306-1 and 306-2. The side-lobes 306 can be considered low as their strength is below a threshold value (e.g., below negative 20 dB in this example). The low side-lobes can be achieved by optimizing the ratio of the second length 222 of the first aperture 234 (in FIG. 2) to the fifth length 242 and the height along the z-axis of the walls 238.



FIG. 3-2 illustrates example impedance matching characteristics provided by a hybrid horn waveguide antenna, in accordance with this disclosure. Impedance matching curve 308 is plotted along a range of operating frequencies from 76 GHz to 81 GHz which is a common frequency band for automotive-based radar systems. As illustrated in FIG. 3-2, the impedance matching curve 308 remains below negative 10 dB across the frequency band which is considered by the industry as adequate impedance matching. The hybrid horn waveguide antenna (e.g., the hybrid horn waveguide antenna 104) accomplishes improved impedance matching in part by having step features (e.g., the step features 236) only along the x-axis, as opposed to traditional antennas that also include step features along the y-axis. Further impedance matching improvements may be accomplished with the inclusion of the iris 208.


Example Manufacturing Methods


FIG. 4 illustrates a hybrid horn waveguide antenna 400 (e.g., the hybrid horn waveguide antenna 104, the hybrid horn waveguide antenna 200) separated into an upper structure 402 and a lower structure 404 for manufacturing purposes, in accordance with this disclosure. The upper structure 402 and the lower structure 404 are separated along a separation plane 406 that is parallel to the xy-plane. The separation of the upper structure 402 and the lower structure 404 is located approximately midway along the walls of the first waveguide section that are parallel to the xz-plane. The purpose of separating the hybrid horn waveguide antenna in this fashion is to be able to easily form the upper structure 402 and the lower structure 404 utilizing an injection molding process or other manufacturing process.


Certain dimensions (as referenced in FIG. 2) including the differences in the heights of the first waveguide section 202 and the second waveguide section 204 (e.g., the difference between the first height 214 and the second height 224), and the width of the iris (e.g., the second width 232) may be determined based on limitations in the manufacturing process (e.g., the injection molding process). For example, the difference between the second height 224 and the first height 214 may be 1 mm or greater due to injection molding constraints. Similarly, the fourth length 230 of the iris 208 may also be 1 mm or greater, and the second width 232 may be no more than 0.8 mm to 0.9 mm less than the first width 212 due to these constraints. It should be noted that as injection molding constraints may change, so may the dimensions of the hybrid horn waveguide antenna 400.


Once the upper structure 402 and the lower structure 404 are mated, an energy path 408 is formed that travels along the x-axis and bends at a sharp right angle (e.g., 90-degree angle to travel along the z-axis. By having the 90-degree change in the energy path (e.g., no transitional rounded or curved edges, miters, or chamfers along the bend), the energy may have a shortest possible path across the separation plane. Because of the shape, energy leakage through the separation plane may be reduced or virtually eliminated.



FIG. 5 illustrates an example method 500 for forming a hybrid horn waveguide antenna, in accordance with this disclosure. Method 500 is shown as sets of operations (or acts) performed, but not necessarily limited to the order or combinations in which the operations are shown herein. Further, any of one or more of the operations may be repeated, combined, or reorganized to provide other methods.


At step 502, an upper structure (e.g., the upper structure 402) of a waveguide antenna (e.g., the hybrid horn waveguide antenna 104, the hybrid horn waveguide antenna 200) is formed. The upper structure includes an upper portion of a first waveguide section (e.g., the first waveguide section 202), an upper portion of a second waveguide section (e.g., the second waveguide section 204), and an antenna section (e.g., the antenna section 206). Additionally, the upper structure can include an upper portion of an iris section (e.g., the iris 208). The upper structure creates an upper channel section.


At step 504, a lower structure (e.g., the lower structure 404) of the waveguide antenna is formed. The lower structure includes a lower portion of the first waveguide section, and a lower portion of the second waveguide section. Additionally, the lower structure can include a lower portion of the iris section. The lower portion creates a lower channel section.


At step 506, the upper structure 402 and the lower structure 404 are mated. Mating the upper structure 402 and the lower structure 404 creates a channel that defines an energy path (e.g., the energy path 408). The upper structure 402 may be held together by various means (e.g., external pressure source, screws). However, the use of solder or conductive adhesives may not be required due to the sharp right-angle bend in the resulting energy path. In this manner, a hybrid horn waveguide antenna may be formed that generates a wider beam with moderate roll off in one dimension and a narrower beam with low side-lobes in an orthogonal dimension and maintains good impedance matching with coupled circuitry.


Additional Examples

Some additional examples for a hybrid horn waveguide antenna are provided below.


Example 1: An apparatus comprising: a waveguide antenna configured to guide electromagnetic energy through a channel defining an energy path for the electromagnetic energy, the waveguide antenna comprising: a first waveguide section configured to propagate the energy path along an x-axis, the first waveguide section comprising: a first port centered around the x-axis at which the electromagnetic energy enters or exits the waveguide antenna; and a first channel portion extending longitudinally along the x-axis; a second waveguide section configured to propagate the energy path from the x-axis to a z-axis, the z-axis being orthogonal to the x-axis, the second waveguide section comprising: a second channel portion extending longitudinally along the z-axis; and a second port centered around the z-axis; and an antenna section having an inverted trapezoidal prism shape and configured to radiate or receive the electromagnetic energy, the antenna section comprising: a first aperture configured to align with the second port of the second waveguide section; a first step feature extending from a first side of the first aperture nearest to the first port along the x-axis towards the first port; a second step feature extending from a second side of the first aperture, opposite the first side, along the x-axis away from the first port; a first wall extending along the z-axis from an edge of the first step feature that is opposite the first side of the first aperture; a second wall extending along the z-axis from an edge of the second step feature that is opposite the second side of the first aperture; a third wall extending along a y-axis and the z-axis from a third side of the aperture, the y-axis being orthogonal to the x-axis and the z-axis, the third side being orthogonal to the first side and the second side, the third wall flaring away from the first aperture; a fourth wall extending along the y-axis and the z-axis from a fourth side of the first aperture, opposite the third side, the fourth wall flaring away from the first aperture; and a second aperture opposite the first aperture and defined by edges of the first wall, the second wall, the third wall, and the fourth wall.


Example 2: The apparatus of example 1, wherein a width of the first waveguide section along the y-axis and a width of the second waveguide section along the y-axis are approximately equal.


Example 3: The apparatus of example 1, wherein at least a portion of the second waveguide section has a height along the z-axis that is greater than a height of the first waveguide section along the z-axis.


Example 4: The apparatus of example 3, wherein the height of at least a portion of the second waveguide section is at least one millimeter greater than the height of the first waveguide section.


Example 5: The apparatus of example 3, further comprising: an iris disposed between the first waveguide section and the second waveguide section, the iris having a width along the y-axis that is not equal to the width of the first waveguide section and the width of the second waveguide section.


Example 6: The apparatus of example 5, wherein a location of the iris, dimensions of the iris, and dimensions of the first step feature and the second step feature are configured to match an input impedance to the waveguide antenna.


Example 7: The apparatus of example 6, wherein the iris is located such that the second waveguide section has no portion that extends longitudinally along the x-axis.


Example 8: The apparatus of example 6, wherein the width of the iris is less than or equal to one millimeter.


Example 9: The apparatus of example 6, wherein a length of the iris along the x-axis is equal to or greater than one millimeter.


Example 10: The apparatus of example 1, wherein the waveguide antenna is separated into an upper structure and a lower structure along a separation plane parallel to an xy-plane defined by the x-axis and the y-axis, the separation plane being located approximately midway along walls of the first waveguide section that are parallel to an xz-plane defined by the x-axis and the z-axis.


Example 11: The apparatus of example 10, wherein the lower structure and the upper structure are formed using an injection molding process.


Example 12: The apparatus of example 10, wherein the second waveguide section is configured to transition the energy path along the x-axis to along z-axis using a right-angle bend without a chamfer, miter, or curve, the right-angle bend configured to minimize energy leakage due to the separation of the waveguide antenna.


Example 13: The apparatus of example 1, wherein a ratio of a length of the first aperture along the x-axis to a length of the antenna section along the x-axis including the length of the first aperture, the length of the first step feature, and the length of the second step feature, and a height of the antenna section along the z-axis are configured to reduce side lobes of a beam generated by the waveguide antenna.


Example 14: A method comprising: forming an upper structure of a waveguide antenna configured to guide electromagnetic energy through a channel defining an energy path for the electromagnetic energy, the upper structure comprising: an upper portion of a first waveguide section including an upper portion of a first port and an upper portion of a first channel section; an upper portion of a second waveguide section including an upper portion of a second channel section and a second port that is parallel to a plane that is orthogonal to a plane that is parallel to the first port; an antenna section having an inverted trapezoidal prism shape, the antenna section comprising: a first aperture configured to align with the second port of the second waveguide section; a first step feature extending from a first side of the first aperture nearest to the first port along an x-axis towards the first port; a second step feature extending from a second side of the aperture, opposite the first side, along the x-axis away from the first port; a first wall extending along a z-axis from an edge of the first step feature that is opposite the first side of the aperture; a second wall extending along the z-axis from an edge of the second step feature that is opposite the second side of the aperture; a third wall extending along a y-axis and the z-axis from a third side of the aperture, the y-axis being orthogonal to the x-axis and the z-axis, the third side being orthogonal to the first side and the second side, the third wall flaring away from the third side; a fourth wall extending along the y-axis and the z-axis from a fourth side of the aperture, opposite the third side, the fourth wall flaring away from the fourth side; and a second aperture opposite the first aperture and defined by edges of the first wall, the second wall, the third wall, and the fourth wall; forming a lower structure of the waveguide antenna, the lower structure comprising: a lower portion of the first waveguide section including a lower portion of the first port and a lower portion of the first channel section; and a lower portion of a second waveguide section including a lower portion of the second channel section; and mating the upper structure to the lower structure.


Example 15: The method of example 14, wherein: the upper structure further comprises an upper portion of an iris disposed between the upper portion of the first waveguide section and the upper portion of the second waveguide section; and the lower structure further comprises a lower portion of the iris disposed between the lower portion of the first waveguide section and the lower portion of the second waveguide section.


Example 16: The method of example 15, wherein: a height, along the z-axis, of the upper portion of the first waveguide section and a height of the upper portion of the iris are equal; and a height, along the z-axis, of the upper portion of the second waveguide section extends along the z-axis such that the second port is at a height along the z-axis that is greater than the height of the upper portion of the first waveguide section and the height of the upper portion of the iris.


Example 17: The method of example 15, wherein, upon mating the upper structure and the lower structure, the second waveguide section bends the energy path at a right angle causing the energy path to transition from propagating along the x-axis to propagating along the z-axis.


Example 18: The method of example 14, wherein forming the upper structure and forming the lower structure utilizes injection molding.


Example 19: A system comprising: a monolithic microwave integrated circuit; and a waveguide antenna electrically coupled to the monolithic microwave integrated circuit and configured to guide electromagnetic energy through a channel defining an energy path for the electromagnetic energy, the waveguide antenna comprising: a first waveguide section configured to propagate the energy path along an x-axis, the first waveguide section comprising: a first port centered around the x-axis at which the electromagnetic energy enters or exits the waveguide antenna; and a first channel portion extending longitudinally along the x-axis; a second waveguide section configured to propagate the energy path from the x-axis to a z-axis, the z-axis being orthogonal to the x-axis, the second waveguide section comprising: a second channel portion extending longitudinally along the z-axis; and a second port centered around the z-axis; and an antenna section having an inverted trapezoidal prism shape and configured to radiate or receive the electromagnetic energy, the antenna section comprising: a first aperture configured to align with the second port of the second waveguide section; a first step feature extending from a first side of the first aperture nearest to the first port along the x-axis towards the first port; a second step feature extending from a second side of the aperture, opposite the first side, along the x-axis away from the first port; a first wall extending along the z-axis from an edge of the first step feature that is opposite the first side of the aperture; a second wall extending along the z-axis from an edge of the second step feature that is opposite the second side of the aperture; a third wall extending along a y-axis and the z-axis from a third side of the aperture, the y-axis being orthogonal to the x-axis and the z-axis, the third side being orthogonal to the first side and the second side, the third wall flaring away from the third side; a fourth wall extending along the y-axis and the z-axis from a fourth side of the aperture, opposite the third side, the fourth wall flaring away from the fourth side; and a second aperture opposite the first aperture and defined by edges of the first wall, the second wall, the third wall, and the fourth wall.


Example 20: The system of example 19, wherein the waveguide antenna further comprises: an iris disposed between the first waveguide section and the second waveguide section, the iris having a width along the y-axis that is not equal to the width of the first waveguide section and the width of the second waveguide section.


Conclusion

While various embodiments of the disclosure are described in the foregoing description and shown in the drawings, it is to be understood that this disclosure is not limited thereto but may be variously embodied to practice within the scope of the following claims. From the foregoing description, it will be apparent that various changes may be made without departing from the spirit and scope of the disclosure as defined by the following claims. Problems associated with waveguides and antennas can occur in other systems. Therefore, although described in relation to a radar system, the apparatuses and techniques of the foregoing description can be applied to other systems that would benefit from propagating energy through a waveguide and/or antenna.


The use of “or” and grammatically related terms indicates non-exclusive alternatives without limitation unless the context clearly dictates otherwise. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c).

Claims
  • 1. An apparatus comprising: a waveguide antenna configured to guide electromagnetic energy through a channel defining an energy path for the electromagnetic energy, the waveguide antenna comprising: a first waveguide section configured to propagate the energy path along an x-axis, the first waveguide section comprising: a first port centered around the x-axis at which the electromagnetic energy enters or exits the waveguide antenna; anda first channel portion extending longitudinally along the x-axis;a second waveguide section configured to propagate the energy path from the x-axis to a z-axis, the z-axis being orthogonal to the x-axis, the second waveguide section comprising: a second channel portion extending longitudinally along the z-axis; anda second port centered around the z-axis; andan antenna section having an inverted trapezoidal prism shape and configured to radiate or receive the electromagnetic energy, the antenna section comprising: a first aperture configured to align with the second port of the second waveguide section, the first aperture of the antenna section having a first width along a y-axis and a first length along the x-axis such that the first length along the x-axis is greater than the first width along the y-axis;a first step feature extending from a first side of the first aperture nearest to the first port along the x-axis towards the first port;a second step feature extending from a second side of the first aperture, opposite the first side, along the x-axis away from the first port;a first wall extending along the z-axis from an edge of the first step feature that is opposite the first side of the first aperture;a second wall extending along the z-axis from an edge of the second step feature that is opposite the second side of the first aperture;a third wall extending along the y-axis and the z-axis from a third side of the first aperture, the y-axis being orthogonal to the x-axis and the z-axis, the third side being orthogonal to the first side and the second side, the third wall flaring away from the first aperture;a fourth wall extending along the y-axis and the z-axis from a fourth side of the first aperture, opposite the third side, the fourth wall flaring away from the first aperture; anda second aperture opposite the first aperture and defined by edges of the first wall, the second wall, the third wall, and the fourth wall, the second aperture having a second width along the y-axis greater than the first width and a second length along the x-axis equal to the first length such that the waveguide antenna is a hybrid horn waveguide antenna with the first length and the second length along the x-axis being greater than the first width along the y-axis and the second width along the y-axis, respectively and step features only along the x-axis among the x-axis and the y-axis.
  • 2. The apparatus of claim 1, wherein a width of the first waveguide section along the y-axis and a width of the second waveguide section along the y-axis are approximately equal.
  • 3. The apparatus of claim 1, wherein at least a portion of the second waveguide section has a height along the z-axis that is greater than a height of the first waveguide section along the z-axis.
  • 4. The apparatus of claim 3, wherein the height of at least a portion of the second waveguide section is at least one millimeter greater than the height of the first waveguide section.
  • 5. The apparatus of claim 3, further comprising: an iris disposed between the first waveguide section and the second waveguide section, the iris having a width along the y-axis that is not equal to the width of the first waveguide section and the width of the second waveguide section.
  • 6. The apparatus of claim 5, wherein a location of the iris, dimensions of the iris, and dimensions of the first step feature and the second step feature are configured to match an input impedance to the waveguide antenna.
  • 7. The apparatus of claim 6, wherein the iris is located such that the second waveguide section has no portion that extends longitudinally along the x-axis.
  • 8. The apparatus of claim 6, wherein the width of the iris is less than or equal to one millimeter.
  • 9. The apparatus of claim 6, wherein a length of the iris along the x-axis is equal to or greater than one millimeter.
  • 10. The apparatus of claim 1, wherein the waveguide antenna is separated into an upper structure and a lower structure along a separation plane parallel to an xy-plane defined by the x-axis and the y-axis, the separation plane being located approximately midway along walls of the first waveguide section that are parallel to an xz-plane defined by the x-axis and the z-axis.
  • 11. The apparatus of claim 10, wherein the lower structure and the upper structure are formed using an injection molding process.
  • 12. The apparatus of claim 10, wherein the second waveguide section is configured to transition the energy path along the x-axis to along the_z-axis using a right-angle bend without a chamfer, miter, or curve, the right-angle bend configured to minimize energy leakage due to separation of the waveguide antenna along the separation plane.
  • 13. The apparatus of claim 1, wherein a ratio of a length of the first aperture along the x-axis to a length of the antenna section along the x-axis including the length of the first aperture, the length of the first step feature, and the length of the second step feature, and a height of the antenna section along the z-axis are configured to reduce side lobes of a beam generated by the waveguide antenna.
  • 14. A method comprising: forming an upper structure of a waveguide antenna configured to guide electromagnetic energy through a channel defining an energy path for the electromagnetic energy, the upper structure comprising: an upper portion of a first waveguide section including an upper portion of a first port and an upper portion of a first channel section;an upper portion of a second waveguide section including an upper portion of a second channel section and a second port that is parallel to a plane that is orthogonal to a plane that is parallel to the first port;an antenna section having an inverted trapezoidal prism shape, the antenna section comprising: a first aperture configured to align with the second port of the second waveguide section, the first aperture of the antenna section having a first width along a y-axis and a first length along an x-axis such that the first length along the x-axis is greater than the first width along the y-axis;a first step feature extending from a first side of the first aperture nearest to the first port along the x-axis towards the first port;a second step feature extending from a second side of the first aperture, opposite the first side, along the x-axis away from the first port;a first wall extending along a z-axis from an edge of the first step feature that is opposite the first side of the first aperture;a second wall extending along the z-axis from an edge of the second step feature that is opposite the second side of the first aperture;a third wall extending along the y-axis and the z-axis from a third side of the first aperture, the y-axis being orthogonal to the x-axis and the z-axis, the third side being orthogonal to the first side and the second side, the third wall flaring away from the third side;a fourth wall extending along the y-axis and the z-axis from a fourth side of the first aperture, opposite the third side, the fourth wall flaring away from the fourth side; anda second aperture opposite the first aperture and defined by edges of the first wall, the second wall, the third wall, and the fourth wall, the second aperture having a second width along the y-axis greater than the first width and a second length along the x-axis equal to the first length such that the waveguide antenna is a hybrid horn waveguide antenna with the first length and the second length along the x-axis being greater than the first width along the y-axis and the second width along the y-axis, respectively and step features only along the x-axis among the x-axis and the y-axis;forming a lower structure of the waveguide antenna, the lower structure comprising: a lower portion of the first waveguide section including a lower portion of the first port and a lower portion of the first channel section; anda lower portion of the second waveguide section including a lower portion of the second channel section; andmating the upper structure to the lower structure.
  • 15. The method of claim 14, wherein: the upper structure further comprises an upper portion of an iris disposed between the upper portion of the first waveguide section and the upper portion of the second waveguide section; andthe lower structure further comprises a lower portion of the iris disposed between the lower portion of the first waveguide section and the lower portion of the second waveguide section.
  • 16. The method of claim 15, wherein: a height, along the z-axis, of the upper portion of the first waveguide section and a height of the upper portion of the iris are equal; anda height, along the z-axis, of the upper portion of the second waveguide section extends along the z-axis such that the second port is at a height along the z-axis that is greater than the height of the upper portion of the first waveguide section and the height of the upper portion of the iris.
  • 17. The method of claim 15, wherein, upon mating the upper structure and the lower structure, the second waveguide section bends the energy path at a right angle causing the energy path to transition from propagating along the x-axis to propagating along the z-axis.
  • 18. The method of claim 14, wherein forming the upper structure and forming the lower structure utilizes injection molding.
  • 19. A system comprising: a monolithic microwave integrated circuit; anda waveguide antenna electrically coupled to the monolithic microwave integrated circuit and configured to guide electromagnetic energy through a channel defining an energy path for the electromagnetic energy, the waveguide antenna comprising: a first waveguide section configured to propagate the energy path along an x-axis, the first waveguide section comprising: a first port centered around the x-axis at which the electromagnetic energy enters or exits the waveguide antenna; anda first channel portion extending longitudinally along the x-axis;a second waveguide section configured to propagate the energy path from the x-axis to a z-axis, the z-axis being orthogonal to the x-axis, the second waveguide section comprising: a second channel portion extending longitudinally along the z-axis; anda second port centered around the z-axis; andan antenna section having an inverted trapezoidal prism shape and configured to radiate or receive the electromagnetic energy, the antenna section comprising: a first aperture configured to align with the second port of the second waveguide section, the first aperture of the antenna section having a first width along a y-axis and a first length along the x-axis such that the first length along the x-axis is greater than the first width along the y-axis;a first step feature extending from a first side of the first aperture nearest to the first port along the x-axis towards the first port;a second step feature extending from a second side of the first aperture, opposite the first side, along the x-axis away from the first port;a first wall extending along the z-axis from an edge of the first step feature that is opposite the first side of the first aperture;a second wall extending along the z-axis from an edge of the second step feature that is opposite the second side of the first aperture;a third wall extending along the y-axis and the z-axis from a third side of the first aperture, the y-axis being orthogonal to the x-axis and the z-axis, the third side being orthogonal to the first side and the second side, the third wall flaring away from the third side;a fourth wall extending along the y-axis and the z-axis from a fourth side of the first aperture, opposite the third side, the fourth wall flaring away from the fourth side; anda second aperture opposite the first aperture and defined by edges of the first wall, the second wall, the third wall, and the fourth wall, the second aperture having a second width along the y-axis greater than the first width and a second length along the x-axis equal to the first length such that the waveguide antenna is a hybrid horn waveguide antenna with the first length and the second length along the x-axis being greater than the first width along the y-axis and the second width along the y-axis, respectively and step features only along the x-axis among the x-axis and the y-axis.
  • 20. The system of claim 19, wherein the waveguide antenna further comprises: an iris disposed between the first waveguide section and the second waveguide section, the iris having a width along the y-axis that is not equal to the width of the first waveguide section and the width of the second waveguide section.
US Referenced Citations (291)
Number Name Date Kind
2754483 Zaleski Jul 1956 A
2851686 Hagaman Sep 1958 A
3029432 Hansen Apr 1962 A
3032762 Kerr May 1962 A
3328800 Algeo Jun 1967 A
3462713 Knerr Aug 1969 A
3473162 Veith Oct 1969 A
3579149 Ramsey May 1971 A
3594806 Black et al. Jul 1971 A
3597710 Levy Aug 1971 A
3852689 Watson Dec 1974 A
4157516 Grijp Jun 1979 A
4291312 Kaloi Sep 1981 A
4453142 Murphy Jun 1984 A
4562416 Sedivec Dec 1985 A
4590480 Nikolayuk et al. May 1986 A
4792814 Ebisui Dec 1988 A
4839663 Kurtz Jun 1989 A
5030965 Park et al. Jul 1991 A
5047738 Wong et al. Sep 1991 A
5065123 Heckaman et al. Nov 1991 A
5068670 Maoz Nov 1991 A
5113197 Luh May 1992 A
5337065 Bonnet et al. Aug 1994 A
5350499 Shibaike et al. Sep 1994 A
5541612 Josefsson Jul 1996 A
5638079 Kastner et al. Jun 1997 A
5923225 Santos Jul 1999 A
5926147 Sehm et al. Jul 1999 A
5982256 Uchimura et al. Nov 1999 A
5986527 Ishikawa et al. Nov 1999 A
6072375 Adkins et al. Jun 2000 A
6166701 Park et al. Dec 2000 A
6414573 Swineford et al. Jul 2002 B1
6489855 Kitamori et al. Dec 2002 B1
6535083 Hageman et al. Mar 2003 B1
6622370 Sherman et al. Sep 2003 B1
6788918 Saitoh et al. Sep 2004 B2
6794950 Toit et al. Sep 2004 B2
6859114 Eleftheriades et al. Feb 2005 B2
6867660 Kitamori et al. Mar 2005 B2
6958662 Salmela et al. Oct 2005 B1
6992541 Wright et al. Jan 2006 B2
7002511 Ammar et al. Feb 2006 B1
7091919 Bannon Aug 2006 B2
7142165 Sanchez et al. Nov 2006 B2
7193556 Pereira Mar 2007 B1
7420442 Forman Sep 2008 B1
7439822 Shimura et al. Oct 2008 B2
7495532 McKinzie, III Feb 2009 B2
7498994 Vacanti Mar 2009 B2
7626476 Kim et al. Dec 2009 B2
7659799 Jun et al. Feb 2010 B2
7886434 Forman Feb 2011 B1
7973616 Shijo et al. Jul 2011 B2
7994879 Kim et al. Aug 2011 B2
8013694 Hiramatsu et al. Sep 2011 B2
8089327 Margomenos et al. Jan 2012 B2
8159316 Miyazato et al. Apr 2012 B2
8395552 Geiler et al. Mar 2013 B2
8451175 Gummalla et al. May 2013 B2
8451189 Fluhler May 2013 B1
8576023 Buckley et al. Nov 2013 B1
8604990 Chen et al. Dec 2013 B1
8692731 Lee et al. Apr 2014 B2
8717124 Vanhille et al. May 2014 B2
8803638 Kildal Aug 2014 B2
8948562 Norris et al. Feb 2015 B2
9007269 Lee et al. Apr 2015 B2
9203139 Zhu et al. Dec 2015 B2
9203155 Choi et al. Dec 2015 B2
9246204 Kabakian Jan 2016 B1
9258884 Saito Feb 2016 B2
9356238 Norris et al. May 2016 B2
9368878 Chen et al. Jun 2016 B2
9450281 Kim Sep 2016 B2
9525206 Abe Dec 2016 B2
9537212 Rosen et al. Jan 2017 B2
9647313 Marconi et al. May 2017 B2
9653773 Ferrari et al. May 2017 B2
9653819 Izadian May 2017 B1
9673532 Cheng et al. Jun 2017 B2
9806393 Kildal et al. Oct 2017 B2
9806431 Izadian Oct 2017 B1
9813042 Xue et al. Nov 2017 B2
9843301 Rodgers et al. Dec 2017 B1
9882288 Black et al. Jan 2018 B2
9935065 Baheti et al. Apr 2018 B1
9991606 Kirino et al. Jun 2018 B2
9997842 Kirino et al. Jun 2018 B2
10027032 Kirino et al. Jul 2018 B2
10042045 Kirino et al. Aug 2018 B2
10090600 Kirino et al. Oct 2018 B2
10114067 Lam et al. Oct 2018 B2
10153533 Kirino Dec 2018 B2
10158158 Kirino et al. Dec 2018 B2
10164318 Seok et al. Dec 2018 B2
10164344 Kirino et al. Dec 2018 B2
10186787 Wang et al. Jan 2019 B1
10218078 Kirino et al. Feb 2019 B2
10230173 Kirino et al. Mar 2019 B2
10263310 Kildal et al. Apr 2019 B2
10283832 Chayat et al. May 2019 B1
10312596 Gregoire Jun 2019 B2
10315578 Kim et al. Jun 2019 B2
10320083 Kirino et al. Jun 2019 B2
10333227 Kirino et al. Jun 2019 B2
10374323 Kamo et al. Aug 2019 B2
10381317 Maaskant et al. Aug 2019 B2
10381741 Kirino et al. Aug 2019 B2
10439298 Kirino et al. Oct 2019 B2
10468736 Mangaiahgari Nov 2019 B2
10505282 Lilja Dec 2019 B2
10534061 Vassilev et al. Jan 2020 B2
10559889 Kirino et al. Feb 2020 B2
10594045 Kirino et al. Mar 2020 B2
10601144 Kamo et al. Mar 2020 B2
10608345 Kirino et al. Mar 2020 B2
10613216 Vacanti et al. Apr 2020 B2
10622696 Kamo et al. Apr 2020 B2
10627502 Kirino et al. Apr 2020 B2
10649461 Han et al. May 2020 B2
10651138 Kirino et al. May 2020 B2
10651567 Kamo et al. May 2020 B2
10658760 Kamo et al. May 2020 B2
10670810 Sakr et al. Jun 2020 B2
10705294 Guerber et al. Jul 2020 B2
10707584 Kirino et al. Jul 2020 B2
10714802 Kirino et al. Jul 2020 B2
10727561 Kirino et al. Jul 2020 B2
10727611 Kirino et al. Jul 2020 B2
10763590 Kirino et al. Sep 2020 B2
10763591 Kirino et al. Sep 2020 B2
10775573 Hsu et al. Sep 2020 B1
10811373 Zaman et al. Oct 2020 B2
10826147 Sikina et al. Nov 2020 B2
10833382 Sysouphat Nov 2020 B2
10833385 Mangaiahgari Nov 2020 B2
10892536 Fan et al. Jan 2021 B2
10944184 Shi et al. Mar 2021 B2
10957971 Doyle et al. Mar 2021 B2
10957988 Kirino et al. Mar 2021 B2
10962628 Laifenfeld et al. Mar 2021 B1
10971824 Baumgartner et al. Apr 2021 B2
10983194 Patel et al. Apr 2021 B1
10985434 Wagner et al. Apr 2021 B2
10992056 Kamo et al. Apr 2021 B2
11061110 Kamo et al. Jul 2021 B2
11088432 Seok et al. Aug 2021 B2
11088464 Sato et al. Aug 2021 B2
11114733 Doyle et al. Sep 2021 B2
11121441 Rmili et al. Sep 2021 B1
11121475 Yang et al. Sep 2021 B2
11169325 Guerber et al. Nov 2021 B2
11171399 Alexanian et al. Nov 2021 B2
11196171 Doyle et al. Dec 2021 B2
11201414 Doyle et al. Dec 2021 B2
11249011 Challener Feb 2022 B2
11283162 Doyle et al. Mar 2022 B2
11289787 Yang Mar 2022 B2
11349183 Rahiminejad et al. May 2022 B2
11349220 Alexanian et al. May 2022 B2
11378683 Alexanian et al. Jul 2022 B2
11411292 Kirino Aug 2022 B2
11444364 Shi Sep 2022 B2
11495871 Vosoogh et al. Nov 2022 B2
11563259 Alexanian et al. Jan 2023 B2
11611138 Ogawa et al. Mar 2023 B2
11616282 Yao et al. Mar 2023 B2
11626652 Vilenskiy et al. Apr 2023 B2
20020021197 Elco Feb 2002 A1
20030052828 Scherzer et al. Mar 2003 A1
20040041663 Uchimura et al. Mar 2004 A1
20040069984 Estes et al. Apr 2004 A1
20040090290 Teshirogi et al. May 2004 A1
20040174315 Miyata Sep 2004 A1
20050146474 Bannon Jul 2005 A1
20050237253 Kuo et al. Oct 2005 A1
20060038724 Tikhov et al. Feb 2006 A1
20060113598 Chen et al. Jun 2006 A1
20060158382 Nagai Jul 2006 A1
20070013598 Artis et al. Jan 2007 A1
20070054064 Ohmi et al. Mar 2007 A1
20070103381 Upton May 2007 A1
20080129409 Nagaishi et al. Jun 2008 A1
20080150821 Koch et al. Jun 2008 A1
20090040132 Sridhar et al. Feb 2009 A1
20090207090 Pettus et al. Aug 2009 A1
20090243762 Chen et al. Oct 2009 A1
20090243766 Miyagawa et al. Oct 2009 A1
20090300901 Artis et al. Dec 2009 A1
20100134376 Margomenos et al. Jun 2010 A1
20100321265 Yamaguchi et al. Dec 2010 A1
20110181482 Adams et al. Jul 2011 A1
20120013421 Hayata Jan 2012 A1
20120050125 Leiba et al. Mar 2012 A1
20120056776 Shijo et al. Mar 2012 A1
20120068316 Ligander Mar 2012 A1
20120163811 Doany et al. Jun 2012 A1
20120194399 Bily et al. Aug 2012 A1
20120242421 Robin et al. Sep 2012 A1
20120256796 Leiba Oct 2012 A1
20120280770 Abhari et al. Nov 2012 A1
20130057358 Anthony et al. Mar 2013 A1
20130082801 Rofougaran et al. Apr 2013 A1
20130154764 Runyon Jun 2013 A1
20130300602 Zhou et al. Nov 2013 A1
20140015709 Shijo et al. Jan 2014 A1
20140091884 Flatters Apr 2014 A1
20140106684 Burns et al. Apr 2014 A1
20140327491 Kim et al. Nov 2014 A1
20150097633 Devries et al. Apr 2015 A1
20150229017 Suzuki et al. Aug 2015 A1
20150229027 Sonozaki et al. Aug 2015 A1
20150263429 Vahidpour et al. Sep 2015 A1
20150333726 Xue et al. Nov 2015 A1
20150357698 Kushta Dec 2015 A1
20150364804 Tong et al. Dec 2015 A1
20150364830 Tong et al. Dec 2015 A1
20160043455 Seler et al. Feb 2016 A1
20160049714 Ligander et al. Feb 2016 A1
20160056541 Tageman et al. Feb 2016 A1
20160118705 Tang et al. Apr 2016 A1
20160126637 Uemichi May 2016 A1
20160195612 Shi Jul 2016 A1
20160204495 Takeda et al. Jul 2016 A1
20160211582 Saraf Jul 2016 A1
20160276727 Dang et al. Sep 2016 A1
20160293557 Topak et al. Oct 2016 A1
20160301125 Kim et al. Oct 2016 A1
20170003377 Menge Jan 2017 A1
20170012335 Boutayeb Jan 2017 A1
20170040709 Abe Feb 2017 A1
20170084554 Dogiamis et al. Mar 2017 A1
20170288313 Chung et al. Oct 2017 A1
20170294719 Tatomir Oct 2017 A1
20170324135 Blech et al. Nov 2017 A1
20180013208 Izadian et al. Jan 2018 A1
20180032822 Frank et al. Feb 2018 A1
20180123245 Toda et al. May 2018 A1
20180131084 Park et al. May 2018 A1
20180212324 Tatomir Jul 2018 A1
20180226709 Mangaiahgari Aug 2018 A1
20180233465 Spella et al. Aug 2018 A1
20180254563 Sonozaki et al. Sep 2018 A1
20180284186 Chadha et al. Oct 2018 A1
20180301819 Kirino et al. Oct 2018 A1
20180301820 Bregman et al. Oct 2018 A1
20180343711 Wixforth et al. Nov 2018 A1
20180351261 Kamo et al. Dec 2018 A1
20180375185 Kirino et al. Dec 2018 A1
20190006743 Kirino et al. Jan 2019 A1
20190013563 Takeda et al. Jan 2019 A1
20190057945 Maaskant et al. Feb 2019 A1
20190109361 Ichinose et al. Apr 2019 A1
20190115644 Wang et al. Apr 2019 A1
20190187247 Zadian et al. Jun 2019 A1
20190235003 Paulsen Aug 2019 A1
20190245276 Li et al. Aug 2019 A1
20190252778 Duan Aug 2019 A1
20190260137 Watanabe et al. Aug 2019 A1
20190324134 Cattle Oct 2019 A1
20200021001 Mangaiahgari Jan 2020 A1
20200044360 Kamo et al. Feb 2020 A1
20200059002 Renard et al. Feb 2020 A1
20200064483 Li et al. Feb 2020 A1
20200076086 Cheng et al. Mar 2020 A1
20200106171 Shepeleva et al. Apr 2020 A1
20200112077 Kamo et al. Apr 2020 A1
20200166637 Hess et al. May 2020 A1
20200203849 Lim et al. Jun 2020 A1
20200212594 Kirino et al. Jul 2020 A1
20200235453 Lang Jul 2020 A1
20200284907 Gupta et al. Sep 2020 A1
20200287293 Shi et al. Sep 2020 A1
20200319293 Kuriyama et al. Oct 2020 A1
20200343612 Shi Oct 2020 A1
20200346581 Lawson et al. Nov 2020 A1
20200373678 Park et al. Nov 2020 A1
20210028528 Alexanian et al. Jan 2021 A1
20210036393 Mangaiahgari Feb 2021 A1
20210104818 Li et al. Apr 2021 A1
20210110217 Gunel Apr 2021 A1
20210159577 Carlred et al. May 2021 A1
20210218154 Shi et al. Jul 2021 A1
20210242581 Rossiter et al. Aug 2021 A1
20210249777 Alexanian et al. Aug 2021 A1
20210305667 Bencivenni Sep 2021 A1
20220094071 Doyle et al. Mar 2022 A1
20220109246 Emanuelsson et al. Apr 2022 A1
20220196794 Foroozesh et al. Jun 2022 A1
Foreign Referenced Citations (75)
Number Date Country
2654470 Dec 2007 CA
1254446 May 2000 CN
1620738 May 2005 CN
2796131 Jul 2006 CN
101584080 Nov 2009 CN
201383535 Jan 2010 CN
201868568 Jun 2011 CN
102157787 Aug 2011 CN
102420352 Apr 2012 CN
103326125 Sep 2013 CN
203277633 Nov 2013 CN
103490168 Jan 2014 CN
103515682 Jan 2014 CN
102142593 Jun 2014 CN
104101867 Oct 2014 CN
104900956 Sep 2015 CN
104993254 Oct 2015 CN
105071019 Nov 2015 CN
105609909 May 2016 CN
105958167 Sep 2016 CN
107317075 Nov 2017 CN
108258392 Jul 2018 CN
109286081 Jan 2019 CN
109643856 Apr 2019 CN
109980361 Jul 2019 CN
110085990 Aug 2019 CN
209389219 Sep 2019 CN
110401022 Nov 2019 CN
111123210 May 2020 CN
111480090 Jul 2020 CN
108376821 Oct 2020 CN
110474137 Nov 2020 CN
109326863 Dec 2020 CN
112241007 Jan 2021 CN
212604823 Feb 2021 CN
112986951 Jun 2021 CN
112290182 Jul 2021 CN
113193323 Oct 2021 CN
214706247 Nov 2021 CN
112017006415 Sep 2019 DE
102019200893 Jul 2020 DE
0174579 Mar 1986 EP
0818058 Jan 1998 EP
2267841 Dec 2010 EP
2500978 Sep 2012 EP
2843758 Mar 2015 EP
2766224 Dec 2018 EP
3460903 Mar 2019 EP
3785995 Mar 2021 EP
3862773 Aug 2021 EP
4089840 Nov 2022 EP
893008 Apr 1962 GB
2463711 Mar 2010 GB
2489950 Oct 2012 GB
105680133 Jun 2016 IN
2000183222 Jun 2000 JP
2003198242 Jul 2003 JP
2003289201 Oct 2003 JP
5269902 Aug 2013 JP
2013187752 Sep 2013 JP
2015216533 Dec 2015 JP
20080044752 May 2008 KR
1020080044752 May 2008 KR
20080105396 Dec 2008 KR
101092846 Dec 2011 KR
102154338 Sep 2020 KR
9934477 Jul 1999 WO
2013189513 Dec 2013 WO
2018003932 Jan 2018 WO
2018052335 Mar 2018 WO
2019085368 May 2019 WO
2020082363 Apr 2020 WO
2021072380 Apr 2021 WO
2022122319 Jun 2022 WO
2022225804 Oct 2022 WO
Non-Patent Literature Citations (65)
Entry
Xu, et al., “CPW Center-Fed Single-Layer SIW Slot Antenna Array for Automotive Radars”, Jun. 12, 2014, pp. 4528-4536.
Yu, et al., “Optimization and Implementation of SIW Slot Array for Both Medium- and Long-Range 77 GHz Automotive Radar Application”, IEEE Transactions on Antennas and Propagation, vol. 66, No. 7, Jul. 2018, pp. 3769-3774.
Yuasa, et al., “A millimeter wave wideband differential line to waveguide transition using short ended slot line”, Oct. 2014, pp. 1004-1007.
Aulia Dewantari et al., “Flared SIW antenna design and transceiving experiments for W-band SAR”, International Journal of RF and Microwave Computer-Aided Engineering, Wiley Interscience, Hoboken, USA, vol. 28, No. 9, May 9, 2018, XP072009558.
“Extended European Search Report”, EP Application No. 18153137.7, Jun. 15, 2018, 8 pages.
“Extended European Search Report”, EP Application No. 20155296.5, Jul. 13, 2020, 12 pages.
“Extended European Search Report”, EP Application No. 20166797, Sep. 16, 2020, 11 pages.
“Extended European Search Report”, EP Application No. 21211165.2, May 13, 2022, 12 pages.
“Extended European Search Report”, EP Application No. 21211167.8, May 19, 2022, 10 pages.
“Extended European Search Report”, EP Application No. 21211168.6, May 13, 2022, 11 pages.
“Extended European Search Report”, EP Application No. 21211452.4, May 16, 2022, 10 pages.
“Extended European Search Report”, EP Application No. 21211474.8, Apr. 20, 2022, 14 pages.
“Extended European Search Report”, EP Application No. 21211478.9, May 19, 2022, 10 pages.
“Extended European Search Report”, EP Application No. 21212703.9, May 3, 2022, 13 pages.
“Extended European Search Report”, EP Application No. 21215901.6, Jun. 9, 2022, 8 pages.
“Extended European Search Report”, EP Application No. 21216319.0, Jun. 10, 2022, 12 pages.
“Extended European Search Report”, EP Application No. 22160898.7, Aug. 4, 2022, 11 pages.
“Extended European Search Report”, EP Application No. 22166998.9, Sep. 9, 2022, 12 pages.
“Extended European Search Report”, EP Application No. 22183888.1, Dec. 20, 2022, 10 pages.
“Extended European Search Report”, EP Application No. 22183892.3, Dec. 2, 2022, 8 pages.
“Extended European Search Report”, EP Application No. 22184924.3, Dec. 2, 2022, 13 pages.
“Foreign Office Action”, CN Application No. 201810122408.4, Jun. 2, 2021, 15 pages.
“Foreign Office Action”, CN Application No. 201810122408.4, Oct. 18, 2021, 19 pages.
“Foreign Office Action”, CN Application No. 202010146513.9, Feb. 7, 2022, 14 pages.
“WR-90 Waveguides”, Pasternack Enterprises, Inc., 2016, Retrieved from https://web.archive.org/web/20160308205114/http://www.pasternack.com:80/wr-90-waveguides-category.aspx, 2 pages.
Adams, et al., “Dual Band Frequency Scanned, Height Finder Antenna”, 1991 21st European Microwave Conference, 1991, 6 pages.
Alhuwaimel, et al., “Performance Enhancement of a Slotted Waveguide Antenna by Utilizing Parasitic Elements”, Sep. 7, 2015, pp. 1303-1306.
Bauer, et al., “A wideband transition from substrate integrated waveguide to differential microstrip lines in multilayer substrates”, Sep. 2010, pp. 811-813.
Chaloun, et al., “A Wideband 122 GHz Cavity-Backed Dipole Antenna for Millimeter-Wave Radar Altimetry”, 2020 14th European Conference on Antennas and Propagation (EUCAP), Mar. 15, 2020, 4 pages.
Deutschmann, et al., “A Full W-Band Waveguide-to-Differential Microstrip Transition”, Jun. 2019, pp. 335-338.
Furtula, et al., “Waveguide Bandpass Filters for Millimeter-Wave Radiometers”, Journal of Infrared, Millimeter and Terahertz Waves, 2013, 9 pages.
Giese, et al., “Compact Wideband Single-ended and Differential Microstrip-to-waveguide Transitions at W-band”, Jul. 2015, 4 pages.
Gray, et al., “Carbon Fibre Reinforced Plastic Slotted Waveguide Antenna”, Proceedings of Asia-Pacific Microwave Conference 2010, pp. 307-310.
Hansen, et al., “D-Band FMCW Radar Sensor for Industrial Wideband Applications with Fully-Differential MMIC-to-RWG Interface in SIW”, 2021 IEEE/MTT-S International Microwave Symposium, Jun. 7, 2021, pp. 815-818.
Hasan, et al., “F-Band Differential Microstrip Patch Antenna Array and Waveguide to Differential Microstrip Line Transition for FMCW Radar Sensor”, IEEE Sensors Journal, vol. 19, No. 15, Aug. 1, 2019, pp. 6486-6496.
Hausman, “Termination Insensitive Mixers”, 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011), Nov. 7, 2011, 13 pages.
Huang, et al., “The Rectangular Waveguide Board Wall Slot Array Antenna Integrated with One Dimensional Subwavelength Periodic Corrugated Grooves and Artificially Soft Surface Structure”, Dec. 20, 2008, 10 pages.
Jankovic, et al., “Stepped Bend Substrate Integrated Waveguide to Rectangular Waveguide Transitions”, Jun. 2016, 2 pages.
Li, et al., “Millimetre-wave slotted array antenna based on double-layer substrate integrated waveguide”, Jun. 1, 2015, pp. 882-888.
Lin, et al., “A THz Waveguide Bandpass Filter Design Using an Artificial Neural Network”, Micromachines 13(6), May 2022, 11 pages.
Mak, et al., “A Magnetoelectric Dipole Leaky-Wave Antenna for Millimeter-Wave Application”, Dec. 12, 2017, pp. 6395-6402.
Mallahzadeh, et al., “A Low Cross-Polarization Slotted Ridged SIW Array Antenna Design With Mutual Coupling Considerations”, Jul. 17, 2015, pp. 4324-4333.
Ogiwara, et al., “2-D MoM Analysis of the Choke Structure for Isolation Improvement between Two Waveguide Slot Array Antennas”, Proceedings of Asia-Pacific Microwave Conference 2007, 4 pages.
Razmhosseini, et al., “Parasitic Slot Elements for Bandwidth Enhancement of Slotted Waveguide Antennas”, 2019 IEEE 90th Vehicular Technology Conference, Sep. 2019, 5 pages.
Rossello, et al., “Substrate Integrated Waveguide Aperture Coupled Patch Antenna Array for 24 GHz Wireless Backhaul and Radar Applications”, Nov. 16, 2014, 2 pages.
Schneider, et al., “A Low-Loss W-Band Frequency-Scanning Antenna for Wideband Multichannel Radar Applications”, IEEE Antennas and Wireless Propagation Letters, vol. 18, No. 4, Apr. 2019, pp. 806-810.
Serrano, et al., “Lowpass Filter Design for Space Applications in Waveguide Technology Using Alternative Topologies”, Jan. 2013, 117 pages.
Shehab, et al., “Substrate-Integrated-Waveguide Power Dividers”, Oct. 15, 2019, pp. 27-38.
Tong, et al., “A Wide Band Transition from Waveguide to Differential Microstrip Lines”, Dec. 2008, 5 pages.
Wang, et al., “A 79-GHz LTCC differential microstrip line to laminated waveguide transition using high permittivity material”, Dec. 2010, pp. 1593-1596.
Wang, et al., “Low-loss frequency scanning planar array with hybrid feeding structure for low-altitude detection radar”, Sep. 13, 2019, pp. 6708-6711.
Wang, et al., “Mechanical and Dielectric Strength of Laminated Epoxy Dielectric Graded Materials”, Mar. 2020, 15 pages.
Wu, et al., “A Planar W-Band Large-Scale High-Gain Substrate-Integrated Waveguide Slot Array”, Feb. 3, 2020, pp. 6429-6434.
Wu, et al., “The Substrate Integrated Circuits—A New Concept for High-Frequency Electronics and Optoelectronics”, Dec. 2003, 8 pages.
“Extended European Search Report”, EP Application No. 23158037.4, Aug. 17, 2023, 9 pages.
“Extended European Search Report”, EP Application No. 23158947.4, Aug. 17, 2023, 11 pages.
“Foreign Office Action”, CN Application No. 202111550163.3, Jun. 17, 2023, 25 pages.
“Foreign Office Action”, CN Application No. 202111550448.7, Jun. 17, 2023, 19 pages.
“Foreign Office Action”, CN Application No. 202111551711.4, Jun. 17, 2023, 29 pages.
“Foreign Office Action”, CN Application No. 202111551878.0, Jun. 15, 2023, 20 pages.
“Foreign Office Action”, CN Application No. 202111563233.9, May 31, 2023, 15 pages.
“Foreign Office Action”, CN Application No. 202111652507.1, Jun. 26, 2023, 14 pages.
“Foreign Office Action”, CN Application No. 202210251362.2, Jun. 28, 2023, 15 pages.
Ghassemi, et al., “Millimeter-Wave Integrated Pyramidal Horn Antenna Made of Multilayer Printed Circuit Board (PCB) Process”, IEEE Transactions on Antennas and Propagation, vol. 60, No. 9, Sep. 2012, pp. 4432-4435.
Hausman, et al., “Termination Insensitive Mixers”, 2011 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2011), Dec. 19, 2011, 13 pages.
Related Publications (1)
Number Date Country
20240250443 A1 Jul 2024 US