Implantable medical devices are inserted into a living body to perform a number of functions, such as delivery of drug, sensing or stimulating a target area in the living body, etc. Since the implantable medical devices come in contact with living tissues and/or fluid surrounding them, the devices need to be biocompatible. For example, cobalt, nickel, steel, iron nickel alloy, etc. may not be suitable as a housing material for the implantable medical devices since such metals or metal alloys may slowly dissolve when they are exposed to a saline solution or other bodily fluids present in the living body. Accordingly, biocompatible metals or metal alloys, such as titanium (Ti), platinum (Pt), niobium (Nb), and alloys of those materials, are used as a housing material for the implantable medical devices.
Further, the functions performed by the implantable medical devices often require an effective communication between the implantable medical devices and internal or external control devices associated with the implantable medical devices residing within the living body. For example, power or energy may need to be delivered to recharge the implantable medical devices since it may be difficult to get to the implantable medical devices nonintrusively. Further, signals may need to be communicated between the internal or external control devices and the implantable medical devices to perform such functions as the delivery of drug or sensing or stimulating the target area in the living body.
However, the biocompatible metals or metal alloys may have a trouble communicating a high frequency signal via them when they are used as a housing material since their permittivity for high frequency signal is known to be low. For example, titanium (Ti) may not be a good housing material in high frequency signal communication (e.g., above 150 KHz) since the cutoff frequency for titanium housing is around 150 KHz.
Furthermore, it may be difficult to reduce the size of the implantable medical devices based on a biocompatible metal or metal alloy housing since electronic, electrical and/or mechanical elements (e.g., such as a circuit board, passive components, reservoir(s) for drug, antenna, rechargeable battery, etc.) that are implemented inside the housing may need to be built on a platform which is separate from the metal or metal alloy housing.
Reference will now be made in detail to the aspects of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the aspects, it will be understood that they are not intended to limit the invention to these aspects. On the contrary, the disclosure is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention. Furthermore, in the detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. However, it will be obvious to one of ordinary skill in the art that the present disclosure may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.
In one aspect, the ceramic substrate 102 is planar as illustrated in
Further, the ceramic substrate 102 may be a multi-layered substrate, such as a high temperature cofired ceramic (HTCC) alumina substrate or a low temperature cofired ceramic (LTCC) alumina substrate. It is appreciated that the HTCC alumina substrate is based on a multi-layer packaging technology, used in military electronics, MEMS, microprocessor and RF applications. The HTCC packages may comprise multi-layers of alumina oxide with tungsten and molymanganese metallization, where the ceramic is fired at around 1600 degrees Celsius, and make a highly reliable, stress resistant, and high performance packaging choice thanks to their mechanical rigidity and hermeticity.
The LTCC technology may be defined as a way to produce multilayer circuits with the help of single tapes, which are to be used to apply conductive, dielectric and/or resistive pastes on. These single sheets have to be laminated together and fired in one step all. This saves time, money and reduces circuit dimensions. Another advantage of the LTCC may be that every single layer can be inspected, and in the case of inaccuracy or damage, replaced before firing; this prevents the need of manufacturing a whole new circuit. Further, because of the low firing temperature of about 850° C. used in the LTCC technology, it may be possible to use the low resistive materials silver and gold instead of molybdenum and tungsten, which have to be used in conjunction with the HTCCs. Thus, the LTCC technology may be also advantageous as it doesn't utilize tungsten, which has biocompatibility issues, when a device based on tungsten comes in contact with tissues due to a mechanical failure or some other reason.
Further, the ceramic substrate 102, which may be based on the multi-layered HTCC or LTCC technology, may comprise one or more diffusion barriers, where each of the diffusion barriers may be a thin layer, usually micrometers thick, of metal usually placed between two other metals. It is done to act as a barrier to protect either one of the metals from corrupting the other. In one example implementation, the diffusion barriers may be implemented using metals, such as platinum (Pt), platinum iridium (Pt—Ir), titanium (Ti), gold (Au), tungsten (W), copper (Cu), aluminum (Al), tantalum (Ta), etc. or using conductive links. The materials for the conductive links may be deposited by a thick film printing, plating, evaporation, or Arc-PVD. The layers may be further modified by etching, masking, laser cutting, or machining.
One or more electronic elements 208 may be formed within the hermetically sealed enclosure, and the electronic elements 208 may be stably associated (e.g., physically fixed to, communicatively and/or electrically coupled to, etc.) with the ceramic substrate 202. In one aspect, the bonding structure 204 is a metal ring formed on the periphery of the ceramic substrate 202, and the biocompatible metal cap 206 is welded to the metal ring formed on the periphery of the ceramic substrate 202.
In another aspect, the ceramic substrate 202 comprises electrical/electronic components with electrical functionality as well as structures with barrier function. The ceramic substrate 202 may be also equipped with pads used to mount the electrical/electronic components onto the ceramic substrate 202, bonding pads wherein the components are mounted using a bonding technique (e.g., wire-bonding, ball-bonding, etc.), traces forming electrical interconnects, traces forming resistors, capacitors, inductors, etc., antennas for wireless communication, vias where the electrical interconnect spans multiple layers in the ceramic substrate 202, and electrodes or contact points for making measurements inside the body and/or stimulating living tissues or organs. The electrical functions may be implemented by multiple deposition/etch layers to further enhance the functions, such as using titanium as an adhesive layer between the multiple deposition/etch layers. Alternatively, metallic features may be fabricated by stamping, laser cutting, electroforming, and/or laminated into or brazed on to the ceramic substrate 202.
The metal film may be formed on the periphery of the ceramic substrate 302 using the Arc-PVD technique, and then the metal film may be polished or refined. Additionally, an adhesive layer 310 may be formed between the ceramic substrate 302 and the metal film. Once the metal film is formed, the biocompatible metal cap 306 may be positioned on the bonding structure 304, and the part adjoining the biocompatible metal cap 306 and the bonding structure 304 (e.g., the metal film) is welded. In one aspect, the biocompatible metal cap 306 may be formed with one or more corrugations to reduce sidewall modulus, thereby reducing any coefficient thermal expansion (CTE) stresses present on the ceramic substrate 302. Further, silicon carbide (SiC) or film may be applied on the ceramic substrate 302 or a joint connecting the ceramic substrate 302 and the biocompatible metal cap 306 for more robustness.
In
It is to be understood that this invention is not limited to particular aspects described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, representative illustrative methods and materials are now described.
All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual aspects described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several aspects without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and aspects of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary aspects shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.
Pursuant to 35 U.S.C. §119, this application claims priority to the filing date of U.S. Provisional Patent Application Ser. No. 61/368,987, filed Jul. 29, 2010 and entitled “Hybrid Housing for Implantable Medical Device,” which application is hereby incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/045227 | 7/25/2011 | WO | 00 | 2/19/2013 |
Number | Date | Country | |
---|---|---|---|
61368987 | Jul 2010 | US |